Beyond completion rate: evaluating the passing ability of footballers

Passing the ball is one of the key skills of a football player yet the metrics commonly used to evaluate passing ability are crude and largely limited to various forms of a pass completion rate. These metrics can be misleading for two general reasons: they do not account for the difficulty of the at...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Royal Statistical Society. Series A, Statistics in society Vol. 179; no. 2; pp. 513 - 533
Main Authors Szczepański, Łukasz, McHale, Ian
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.02.2016
John Wiley & Sons Ltd
Oxford University Press
Subjects
Online AccessGet full text
ISSN0964-1998
1467-985X
DOI10.1111/rssa.12115

Cover

Abstract Passing the ball is one of the key skills of a football player yet the metrics commonly used to evaluate passing ability are crude and largely limited to various forms of a pass completion rate. These metrics can be misleading for two general reasons: they do not account for the difficulty of the attempted pass nor the various levels of uncertainty involved in empirical observations based on different numbers of passes per player. We address both these deficiencies by building a statistical model in which the success of a pass depends on the skill of the executing player as well as other factors including the origin and destination of the pass, the skill of his teammates and the opponents, and proxies for the defensive pressure put on the executing player as well as random chance. We fit the model by using data from the 2006-2007 season of the English Premier League provided by Opta, estimate each player's passing skill and make predictions for the next season. The model predictions considerably outperform a naive method of simply using the previous season's completion rate as a predictor of the following season's completion rate. In particular, we show how a change in the difficulty of passes attempted in both seasons explains a significant proportion of the shift in the observed performance of some players—a fact that is ignored if the raw completion rate is used to evaluate player skill.
AbstractList Passing the ball is one of the key skills of a football player yet the metrics commonly used to evaluate passing ability are crude and largely limited to various forms of a pass completion rate. These metrics can be misleading for two general reasons: they do not account for the difficulty of the attempted pass nor the various levels of uncertainty involved in empirical observations based on different numbers of passes per player. We address both these deficiencies by building a statistical model in which the success of a pass depends on the skill of the executing player as well as other factors including the origin and destination of the pass, the skill of his teammates and the opponents, and proxies for the defensive pressure put on the executing player as well as random chance. We fit the model by using data from the 2006–2007 season of the English Premier League provided by Opta, estimate each player's passing skill and make predictions for the next season. The model predictions considerably outperform a naive method of simply using the previous season's completion rate as a predictor of the following season's completion rate. In particular, we show how a change in the difficulty of passes attempted in both seasons explains a significant proportion of the shift in the observed performance of some players—a fact that is ignored if the raw completion rate is used to evaluate player skill.
Passing the ball is one of the key skills of a football player yet the metrics commonly used to evaluate passing ability are crude and largely limited to various forms of a pass completion rate. These metrics can be misleading for two general reasons: they do not account for the difficulty of the attempted pass nor the various levels of uncertainty involved in empirical observations based on different numbers of passes per player. We address both these deficiencies by building a statistical model in which the success of a pass depends on the skill of the executing player as well as other factors including the origin and destination of the pass, the skill of his teammates and the opponents, and proxies for the defensive pressure put on the executing player as well as random chance. We fit the model by using data from the 2006-2007 season of the English Premier League provided by Opta, estimate each player's passing skill and make predictions for the next season. The model predictions considerably outperform a naive method of simply using the previous season's completion rate as a predictor of the following season's completion rate. In particular, we show how a change in the difficulty of passes attempted in both seasons explains a significant proportion of the shift in the observed performance of some players -- a fact that is ignored if the raw completion rate is used to evaluate player skill. [web URL: http://onlinelibrary.wiley.com/doi/10.1111/rssa.12115/abstract]
Summary Passing the ball is one of the key skills of a football player yet the metrics commonly used to evaluate passing ability are crude and largely limited to various forms of a pass completion rate. These metrics can be misleading for two general reasons: they do not account for the difficulty of the attempted pass nor the various levels of uncertainty involved in empirical observations based on different numbers of passes per player. We address both these deficiencies by building a statistical model in which the success of a pass depends on the skill of the executing player as well as other factors including the origin and destination of the pass, the skill of his teammates and the opponents, and proxies for the defensive pressure put on the executing player as well as random chance. We fit the model by using data from the 2006–2007 season of the English Premier League provided by Opta, estimate each player's passing skill and make predictions for the next season. The model predictions considerably outperform a naive method of simply using the previous season's completion rate as a predictor of the following season's completion rate. In particular, we show how a change in the difficulty of passes attempted in both seasons explains a significant proportion of the shift in the observed performance of some players—a fact that is ignored if the raw completion rate is used to evaluate player skill.
Author McHale, Ian
Szczepański, Łukasz
Author_xml – sequence: 1
  givenname: Łukasz
  surname: Szczepański
  fullname: Szczepański, Łukasz
  organization: University of Salford, and Smartodds, London, UK
– sequence: 2
  givenname: Ian
  surname: McHale
  fullname: McHale, Ian
  email: ian.mchale@manchester.ac.uk
  organization: University of Manchester, UK
BookMark eNp9kMtLxDAQxoMouD4u3oWCN6GatM3L27qsD1gUfKC3kNSpZu02a5JV97-3tepBxLnMMPP9ZoZvA602rgGEdgg-IG0c-hD0AckIoStoQArGUyno_SoaYMmKlEgp1tFGCFPcBecDND6GpWsektLN5jVE65rE6whHCbzqeqGjbR6T-ATJXIfQ1drY2sZl4qqkci4aXdfgwxZaq3QdYPsrb6Lbk_HN6CydXJ6ej4aTtKSM0RR4ZkBAxWReShCY5ZhkTIIRPGtbZWmIIBWmANxAJksN5qEAAxQLUzGN80201--de_eygBDV1C18055UhHNCaUZE0ar2e1XpXQgeKjX3dqb9UhGsOptUZ5P6tKkV41_i0kbdGRG9tvXfCOmRN1vD8p_l6ur6evjN7PbMNETnf5gil4xS2v2c9nMbIrz_zLV_VoznnKq7i1MlBcvFzRlVk_wDZZWWJw
CitedBy_id crossref_primary_10_1007_s10618_021_00810_3
crossref_primary_10_1177_1747954121991447
crossref_primary_10_1371_journal_pone_0304139
crossref_primary_10_3390_s23094506
crossref_primary_10_1080_02640414_2021_1959176
crossref_primary_10_1007_s10994_018_5703_7
crossref_primary_10_1080_02640414_2022_2081405
crossref_primary_10_3233_JSA_200554
crossref_primary_10_1123_ijspp_2024_0247
crossref_primary_10_1142_S0219525918500108
crossref_primary_10_2478_ijcss_2019_0017
crossref_primary_10_2139_ssrn_3071948
crossref_primary_10_1016_j_ejor_2023_01_064
crossref_primary_10_3389_fspor_2022_1019990
crossref_primary_10_1515_jqas_2020_0060
crossref_primary_10_1080_24733938_2023_2239766
crossref_primary_10_1080_02664763_2020_1772210
crossref_primary_10_1093_imaman_dpz004
crossref_primary_10_3390_e23121607
crossref_primary_10_1080_24748668_2020_1736409
crossref_primary_10_1177_1471082X20929881
crossref_primary_10_52082_jssm_2023_707
crossref_primary_10_3389_fpsyg_2019_01777
crossref_primary_10_1016_j_humov_2017_07_010
crossref_primary_10_1080_24733938_2022_2158213
crossref_primary_10_1007_s12283_022_00381_6
crossref_primary_10_1177_17479541241257809
crossref_primary_10_1177_1747954119879350
crossref_primary_10_1016_j_ejor_2019_11_026
crossref_primary_10_1089_big_2018_0067
crossref_primary_10_1515_jqas_2019_0097
crossref_primary_10_1177_17479541221075734
Cites_doi 10.1080/02640410701287255
10.1093/biomet/78.4.719
10.1080/01621459.1975.10479864
10.1371/journal.pone.0010937
10.1080/00031305.1992.10475898
10.1201/9781420010404
10.1287/inte.1110.0589
10.1111/1467-9868.00183
10.1111/rssa.12015
10.1080/01621459.1993.10594284
ContentType Journal Article
Copyright Copyright © 2016 The Royal Statistical Society and John Wiley & Sons Ltd.
2015 Royal Statistical Society
Copyright Blackwell Publishing Ltd. Feb 2016
Copyright_xml – notice: Copyright © 2016 The Royal Statistical Society and John Wiley & Sons Ltd.
– notice: 2015 Royal Statistical Society
– notice: Copyright Blackwell Publishing Ltd. Feb 2016
DBID BSCLL
AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
DOI 10.1111/rssa.12115
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

International Bibliography of the Social Sciences (IBSS)

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1467-985X
EndPage 533
ExternalDocumentID 3975162671
10_1111_rssa_12115
RSSA12115
43965554
ark_67375_WNG_98638TH5_L
Genre article
Feature
GroupedDBID -~X
.3N
.GA
.Y3
05W
07C
10A
1OC
1OL
29L
2AX
3-9
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
66C
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AANHP
AAONW
AARHZ
AASGY
AAUAY
AAWIL
AAXRX
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABDFA
ABEML
ABFAN
ABIVO
ABPFR
ABPQH
ABPTD
ABWST
ABXSQ
ABYWD
ACAHQ
ACBWZ
ACCZN
ACFRR
ACGFS
ACHJO
ACIWK
ACMTB
ACNCT
ACPOU
ACRPL
ACSCC
ACTMH
ACUBG
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADODI
ADOZA
ADQBN
ADRDM
ADULT
ADVEK
ADZMN
AEGXH
AEIMD
AEMOZ
AEUPB
AFBPY
AFEBI
AFGKR
AFVYC
AFXHP
AFZJQ
AGLNM
AGQPQ
AHQJS
AIHAF
AIURR
AJAOE
AJNCP
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMVHM
AMYDB
ANFBD
ASPBG
AS~
ATGXG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CJ0
CO8
COF
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EJD
EMK
EOH
F00
F5P
FEDTE
FVMVE
G-S
G.N
GODZA
H.T
H.X
H13
HF~
HGD
HQ6
HVGLF
HZI
HZ~
H~9
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
NF~
NU-
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RJQFR
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
UB1
VUG
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YF5
YQT
ZGI
ZL0
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c5665-e72be8ef693c9e806301269eb87293cccb181f05ee7be29caebd4ebe508bf6a03
IEDL.DBID DR2
ISSN 0964-1998
IngestDate Fri Sep 12 01:51:08 EDT 2025
Thu Apr 24 23:01:23 EDT 2025
Tue Jul 01 00:50:55 EDT 2025
Tue Sep 09 05:08:43 EDT 2025
Thu Jul 03 22:31:25 EDT 2025
Sun Sep 21 06:18:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5665-e72be8ef693c9e806301269eb87293cccb181f05ee7be29caebd4ebe508bf6a03
Notes ark:/67375/WNG-98638TH5-L
ArticleID:RSSA12115
istex:E9A38E3CE35CCDAB39BA945DC6CDE9BC4FA3AC6E
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink http://usir.salford.ac.uk/id/eprint/36879/1/JRSS%20A%20Szczepanski%20and%20McHale%202015.pdf
PQID 1771552184
PQPubID 105636
PageCount 21
ParticipantIDs proquest_journals_1771552184
crossref_primary_10_1111_rssa_12115
crossref_citationtrail_10_1111_rssa_12115
wiley_primary_10_1111_rssa_12115_RSSA12115
jstor_primary_43965554
istex_primary_ark_67375_WNG_98638TH5_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2016
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: February 2016
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of the Royal Statistical Society. Series A, Statistics in society
PublicationTitleAlternate J. R. Stat. Soc. A
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley & Sons Ltd
Oxford University Press
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons Ltd
– name: Oxford University Press
References Breslow, N. E. and Clayton, D. G. (1993) Approximate inference in generalized linear mixed models. J. Am. Statist. Ass., 88, 9-25.
R Core Team (2012) R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing
McHale, I. G. and Szczepański, Ł. (2014) A mixed effects model for identifying goal scoring ability of footballers. J. R. Statist. Soc. A, 177, 397-417.
Wood, S. N. (2006) Generalized Additive Models: an Introduction with R. Boca Raton: Chapman and Hall-CRC.
Efron, B. and Morris, C. (1975) Data analysis using Stein's estimator and its generalizations. J. Am. Statist. Ass., 70, 311-319.
Lin, X. and Zhang, D. (1999) Inference in generalized additive mixed models by using smoothing splines. J. R. Statist. Soc. B, 61, 381-400.
Duch, J., Waitzman, J. S. and Amaral, L. A. N. (2010) Quantifying the performance of individual players in a team activity. PLOS ONE, 5, no. 6, article e10937.
Loughin, T. M. and Bargen, J. L. (2008) Assessing pitcher and catcher influences on base stealing in Major League Baseball. J. Sprts Sci., 26, 15-20.
Albert, J. (1992) A Bayesian analysis of a Poisson random effects model for home run hitters. Am. Statistn, 46, 246-253.
Albert, J. (2006) Pitching statistics, talent and luck, and the best strikeout seasons of all-time. J. Quant. Anal. Sprts, 2, no. 1
Jensen, S. T., Shirley, K. E. and Wyner, A. J. (2009) Bayesball: a Bayesian hierarchical model for evaluating fielding in major league baseball. Ann. App. Statist., 3, 491-520.
McHale, I. G., Scarf, P. and Folker, D. (2012) On the development of a soccer player performance rating system for the English Premier League. Interfaces, 42, 339-351.
Schall, R. (1991) Estimation in generalized linear models with random effects. Biometrika, 78, 719-727.
Oberstone, J. (2011) Evaluating English Premier League player performance using the MAP model. In Proc. 3rd Int Conf. Mathematics in Sport (eds D. Percy, J. Reade and P. Scarf), pp. 153-159. Southend-on-sea: Institute of Mathematics and Its Applications.
2012
1991; 78
2011
1993; 88
2008; 26
2006
1992; 46
2006; 2
1999; 61
2009; 3
1975; 70
2014; 177
2010; 5
2012; 42
Efron (2023030310213150500_cit5) 1975; 70
McHale (2023030310213150500_cit9) 2012; 42
Core Team (2023030310213150500_cit12) 2012
Albert (2023030310213150500_cit2) 2006; 2
Breslow (2023030310213150500_cit3) 1993; 88
Oberstone (2023030310213150500_cit11) 2011
Albert (2023030310213150500_cit1) 1992; 46
McHale (2023030310213150500_cit10) 2014; 177
Jensen (2023030310213150500_cit6) 2009; 3
Wood (2023030310213150500_cit14) 2006
Duch (2023030310213150500_cit4) 2010; 5
Lin (2023030310213150500_cit7) 1999; 61
Schall (2023030310213150500_cit13) 1991; 78
Loughin (2023030310213150500_cit8) 2008; 26
References_xml – reference: Efron, B. and Morris, C. (1975) Data analysis using Stein's estimator and its generalizations. J. Am. Statist. Ass., 70, 311-319.
– reference: R Core Team (2012) R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing,
– reference: McHale, I. G., Scarf, P. and Folker, D. (2012) On the development of a soccer player performance rating system for the English Premier League. Interfaces, 42, 339-351.
– reference: Wood, S. N. (2006) Generalized Additive Models: an Introduction with R. Boca Raton: Chapman and Hall-CRC.
– reference: Schall, R. (1991) Estimation in generalized linear models with random effects. Biometrika, 78, 719-727.
– reference: Breslow, N. E. and Clayton, D. G. (1993) Approximate inference in generalized linear mixed models. J. Am. Statist. Ass., 88, 9-25.
– reference: McHale, I. G. and Szczepański, Ł. (2014) A mixed effects model for identifying goal scoring ability of footballers. J. R. Statist. Soc. A, 177, 397-417.
– reference: Lin, X. and Zhang, D. (1999) Inference in generalized additive mixed models by using smoothing splines. J. R. Statist. Soc. B, 61, 381-400.
– reference: Duch, J., Waitzman, J. S. and Amaral, L. A. N. (2010) Quantifying the performance of individual players in a team activity. PLOS ONE, 5, no. 6, article e10937.
– reference: Albert, J. (2006) Pitching statistics, talent and luck, and the best strikeout seasons of all-time. J. Quant. Anal. Sprts, 2, no. 1
– reference: Albert, J. (1992) A Bayesian analysis of a Poisson random effects model for home run hitters. Am. Statistn, 46, 246-253.
– reference: Loughin, T. M. and Bargen, J. L. (2008) Assessing pitcher and catcher influences on base stealing in Major League Baseball. J. Sprts Sci., 26, 15-20.
– reference: Jensen, S. T., Shirley, K. E. and Wyner, A. J. (2009) Bayesball: a Bayesian hierarchical model for evaluating fielding in major league baseball. Ann. App. Statist., 3, 491-520.
– reference: Oberstone, J. (2011) Evaluating English Premier League player performance using the MAP model. In Proc. 3rd Int Conf. Mathematics in Sport (eds D. Percy, J. Reade and P. Scarf), pp. 153-159. Southend-on-sea: Institute of Mathematics and Its Applications.
– volume: 3
  start-page: 491
  year: 2009
  end-page: 520
  article-title: Bayesball: a Bayesian hierarchical model for evaluating fielding in major league baseball
  publication-title: Ann. App. Statist.
– start-page: 153
  year: 2011
  end-page: 159
– volume: 2
  year: 2006
  article-title: Pitching statistics, talent and luck, and the best strikeout seasons of all‐time
  publication-title: J. Quant. Anal. Sprts
– volume: 61
  start-page: 381
  year: 1999
  end-page: 400
  article-title: Inference in generalized additive mixed models by using smoothing splines
  publication-title: J. R. Statist. Soc. B
– volume: 42
  start-page: 339
  year: 2012
  end-page: 351
  article-title: On the development of a soccer player performance rating system for the English Premier League
  publication-title: Interfaces
– volume: 78
  start-page: 719
  year: 1991
  end-page: 727
  article-title: Estimation in generalized linear models with random effects
  publication-title: Biometrika
– year: 2006
– volume: 26
  start-page: 15
  year: 2008
  end-page: 20
  article-title: Assessing pitcher and catcher influences on base stealing in Major League Baseball
  publication-title: J. Sprts Sci.
– volume: 5
  year: 2010
  article-title: Quantifying the performance of individual players in a team activity
  publication-title: PLOS ONE
– volume: 88
  start-page: 9
  year: 1993
  end-page: 25
  article-title: Approximate inference in generalized linear mixed models
  publication-title: J. Am. Statist. Ass.
– volume: 46
  start-page: 246
  year: 1992
  end-page: 253
  article-title: A Bayesian analysis of a Poisson random effects model for home run hitters
  publication-title: Am. Statistn
– volume: 70
  start-page: 311
  year: 1975
  end-page: 319
  article-title: Data analysis using Stein's estimator and its generalizations
  publication-title: J. Am. Statist. Ass.
– volume: 177
  start-page: 397
  year: 2014
  end-page: 417
  article-title: A mixed effects model for identifying goal scoring ability of footballers
  publication-title: J. R. Statist. Soc. A
– year: 2012
– volume: 26
  start-page: 15
  year: 2008
  ident: 2023030310213150500_cit8
  article-title: Assessing pitcher and catcher influences on base stealing in Major League Baseball
  publication-title: J. Sprts Sci.
  doi: 10.1080/02640410701287255
– volume: 78
  start-page: 719
  year: 1991
  ident: 2023030310213150500_cit13
  article-title: Estimation in generalized linear models with random effects
  publication-title: Biometrika
  doi: 10.1093/biomet/78.4.719
– volume: 70
  start-page: 311
  year: 1975
  ident: 2023030310213150500_cit5
  article-title: Data analysis using Stein's estimator and its generalizations
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1975.10479864
– volume: 5
  issue: 6
  year: 2010
  ident: 2023030310213150500_cit4
  article-title: Quantifying the performance of individual players in a team activity
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0010937
– volume: 3
  start-page: 491
  year: 2009
  ident: 2023030310213150500_cit6
  article-title: Bayesball: a Bayesian hierarchical model for evaluating fielding in major league baseball
  publication-title: Ann. App. Statist.
– volume: 46
  start-page: 246
  year: 1992
  ident: 2023030310213150500_cit1
  article-title: A Bayesian analysis of a Poisson random effects model for home run hitters
  publication-title: Am. Statistn
  doi: 10.1080/00031305.1992.10475898
– volume: 2
  issue: 1
  year: 2006
  ident: 2023030310213150500_cit2
  article-title: Pitching statistics, talent and luck, and the best strikeout seasons of all-time
  publication-title: J. Quant. Anal. Sprts
– volume-title: Generalized Additive Models: an Introduction with R
  year: 2006
  ident: 2023030310213150500_cit14
  doi: 10.1201/9781420010404
– volume: 42
  start-page: 339
  year: 2012
  ident: 2023030310213150500_cit9
  article-title: On the development of a soccer player performance rating system for the English Premier League
  publication-title: Interfaces
  doi: 10.1287/inte.1110.0589
– start-page: 153
  volume-title: Proc. 3rd Int Conf. Mathematics in Sport
  year: 2011
  ident: 2023030310213150500_cit11
– volume-title: R: a Language and Environment for Statistical Computing
  year: 2012
  ident: 2023030310213150500_cit12
– volume: 61
  start-page: 381
  year: 1999
  ident: 2023030310213150500_cit7
  article-title: Inference in generalized additive mixed models by using smoothing splines
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/1467-9868.00183
– volume: 177
  start-page: 397
  year: 2014
  ident: 2023030310213150500_cit10
  article-title: A mixed effects model for identifying goal scoring ability of footballers
  publication-title: J. R. Statist. Soc. A
  doi: 10.1111/rssa.12015
– volume: 88
  start-page: 9
  year: 1993
  ident: 2023030310213150500_cit3
  article-title: Approximate inference in generalized linear mixed models
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1993.10594284
SSID ssj0000077
Score 2.351947
Snippet Passing the ball is one of the key skills of a football player yet the metrics commonly used to evaluate passing ability are crude and largely limited to...
Summary Passing the ball is one of the key skills of a football player yet the metrics commonly used to evaluate passing ability are crude and largely limited...
SourceID proquest
crossref
wiley
jstor
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 513
SubjectTerms Athletes
Balls
Completion
Football
Generalized additive mixed models
Mathematical models
Professional soccer
Ranking
Rating
Skills
Soccer
Sport
Statistics
Uncertainty
Title Beyond completion rate: evaluating the passing ability of footballers
URI https://api.istex.fr/ark:/67375/WNG-98638TH5-L/fulltext.pdf
https://www.jstor.org/stable/43965554
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssa.12115
https://www.proquest.com/docview/1771552184
Volume 179
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LSxxBEIcL0Ys5xEcimWikIRKIMDLPnhnxssTVRaIHH-hFmu7eGg-GXdlZQf3rrep5ZBUJxNscqqGnq6r71zPVXwNsRVGgS52ij3Gu_aTUNA9Khn5mOk1ou4HG_dE9PpGDi-ToKr2ag732LEzNh-g-uHFmuPmaE1ybaibJJ1WlmY3gTpiHsWRw_v7pDDsqcNcukkRPuJoib9ikXMbzt-mL1WiBB_ahLUx8ITlnhatbeQ6W4Lrtc11wcrtzPzU79ukVzvG9L7UMHxtJKnp1DK3AHI5W4cNxx3OtVmGRNWmNdP4E_frUi3DV6MiOFcyb2BUtOXx0I6ituCNdzs81CfxRjEtRjsdTw7e3TKrPcHHQP_818JvbGHxLki_1MYsM5ljKIrYF5szqCiNZoMlJn8fWWkNioQxSxMxgVFiNZphQiJACNKXUQbwG86PxCL-A0EVowqEMhihlYmVCqkRGhnaCmBRaGvTgZ-sVZRtUOd-Y8Ue1WxYeJ-XGyYPvne1dDeh40-qHc25noie3XNKWpery5FAVOU1D54NU_fZgzXm_MyTBJlPSXB5stOGgmjSvVJhljLCjXbIH286v_-iDOj0767mnr_9jvA6LJNKaSvENmJ9O7vEbCaGp2XQB_wwMmgMR
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hOEAPbYEi0vJhCYQEUlA2mzgJN1QBW9jdAyyCm2V7Jz1stYs2i9T213fG-eiCEBLcfBhLiWfGfraf3wDsh2Ggcx2jj-1U-1GuaR6ULPqZ6Dii7QYad6Pb68vObXR5H99X3Bx-C1PqQzQHbpwZbr7mBOcD6bksnxaFZnEEfmK-5C7oGBNdz6lHBa7wIoH0iPkUaaVOykSe_32frEdLPLS_a2riE9A5D13d2nP-qSywWjjJQqacjI4fZ-bY_n0m6Pju3_oMHytUKk7LMFqFBRyvwYdeI-larMEKw9JS1XkdzsqHL8IR0pF9K1hy4kTU4uHjn4L6igeC5twuxcD_iEku8slkZriAy7T4ArfnZ4PvHb8qyOBbQn2xj0loMMVcZm2bYcpyXa1QZmhSguhta60hvJAHMWJiMMysRjOMKEoIBJpc6qC9AYvjyRg3QeisZVpDGQxRysjKiICJDA1tBjHKtDTowWHtFmUrtXIumvFL1bsWHiflxsmDvcb2odToeNHqwHm3MdHTEbPakljd9S9UltJMNOjEquvBhnN_Y0iYTcYEuzzYquNBVZleqFaSsIodbZQ9OHKOfeUb1PXNzalrfX2L8S4sdwa9rur-6F99gxXCbBVxfAsWZ9NH3CZcNDM7Lvr_ATsLBy8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fa9RAEMeH0kKpD_aHFtMfdkERFFJyuc0mKX0p2vPU9pD-wL7Isrs38aHl7rhcQfvXd2bzw6sUQd_yMAubnf3xmWT2OwCv4zgyhUkwxG5mQlkY2gcVi36mJpEUbqD1f3RPB6p_KT9fJVcLcNjchan0IdoPbrwy_H7NC3wyLOYW-bQsDWsj8A3zJanonGQkOpsTj4p83UVidMnpFFktTsp5PL_bPjiOlnhkfzaZiQ-Yc55c_dHTW4XvTaerjJPr_duZ3Xd3f-g5_u9brcHTmknFUTWJ1mEBRxvw5LQVdC03YIWhtNJ0fgbH1bUX4dPRkT0rWHDiQDTS4aMfgtqKCYE5P1dS4L_EuBDFeDyzXL5lWj6Hy97xxft-WJdjCB0xXxJiGlvMsFB51-WYsVhXJ1Y52owAveucs0QLRZQgphbj3Bm0Q0lzhBDQFspE3U1YHI1H-AKEyTu2M1TREJWSTknCEhVbCgVR5kZZDOBt4xXtaq1yLplxo5uYhcdJ-3EK4FVrO6kUOh61euOd25qY6TXntKWJ_jb4qPOM9qGLfqJPAtj03m8NidhUQtAVwE4zHXS9zkvdSVPWsKMwOYB33q9_6YM-Oz8_8k9b_2K8B8tfP_T0yafBl21YIWCrs8Z3YHE2vcVdgqKZfenn_j0kowXe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+completion+rate%3A+evaluating+the+passing+ability+of+footballers&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+A%2C+Statistics+in+society&rft.au=Szczepa%C5%84ski%2C+%C5%81ukasz&rft.au=McHale%2C+Ian&rft.date=2016-02-01&rft.pub=John+Wiley+%26+Sons+Ltd&rft.issn=0964-1998&rft.eissn=1467-985X&rft.volume=179&rft.issue=2&rft.spage=513&rft.epage=533&rft_id=info:doi/10.1111%2Frssa.12115&rft.externalDocID=43965554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1998&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1998&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1998&client=summon