Bayesian hierarchical modeling for subject-level response classification in peptide microarray immunoassays
The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g., envelope proteins of a virus) are an important high throughput tool f...
Saved in:
| Published in | Biometrics Vol. 72; no. 4; pp. 1206 - 1215 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Blackwell Publishing Ltd
01.12.2016
Wiley-Blackwell |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0006-341X 1541-0420 1541-0420 |
| DOI | 10.1111/biom.12523 |
Cover
| Abstract | The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g., envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay's many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects' immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial data sets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses. |
|---|---|
| AbstractList | The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g., envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay's many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects' immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial data sets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses.The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g., envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay's many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects' immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial data sets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses. The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g., envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay's many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects' immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial data sets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses. Summary The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g., envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay's many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects' immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial data sets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses. The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g. envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay’s many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects’ immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial datasets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses. Summary The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g., envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay's many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects’ immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy‐tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial data sets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non‐responses. |
| Author | Imholte, Gregory Gottardo, Raphael |
| Author_xml | – sequence: 1 givenname: Gregory surname: Imholte fullname: Imholte, Gregory email: gimholte@uw.edu, gimholte@uw.edurgottardo@fredhutch.org organization: Department of Statistics, University of Washington, Seattle, Washington, U.S.A – sequence: 2 givenname: Raphael surname: Gottardo fullname: Gottardo, Raphael email: rgottardo@fredhutch.org, gimholte@uw.edurgottardo@fredhutch.org organization: Fred Hutchinson Cancer Research Center, Seattle, Washington, U.S.A |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27061097$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks9v0zAcxSM0xLrBhTsoEheElOGfsXNBYhOUocEOG4Kb5TjfrO4Su9jJtv73uO1WwYQGvljW9_Oe5ee3l-047yDLnmN0gNN6W1vfH2DCCX2UTTBnuECMoJ1sghAqC8rwj91sL8Z5OlYckSfZLhGoxKgSk-zyUC8hWu3ymYWgg5lZo7u89w101l3krQ95HOs5mKHo4Aq6PEBceBchN52O0baJH6x3uXX5AhaDbSDvrQleh6CXue370fkE6mV8mj1udRfh2e2-n337-OH86FNxcjo9Pnp_UhhelrQwNWsaJoiscS1bJmnJEJESsCiFwQ0D0ZSYNwRhgThHFJhuueESNEetQITuZ-82voux7qEx4IagO7UIttdhqby26s-JszN14a8UL7GQFU8Gr28Ngv85QhxUb6OBrtMO_BgVSUkyxnEl_oliWUpKJEXsP1BOBZWcrF7w6h4692NwKTSFK0IFQxTTB6nkhVIT1te-_D2NbQx3HUjAmw2QPi3GAO0WwUitCqZWBVPrgiUY3YONHdYFSEna7u8SvJFc2w6WD5irw-PTL3eaFxvNPA4-bDWMlel7qEzzYjO3cYCb7VyHS1UKKrj6_nWqzs4_V2d4ShWivwAw0vsJ |
| CODEN | BIOMA5 |
| CitedBy_id | crossref_primary_10_1093_bioinformatics_btae637 crossref_primary_10_1016_j_celrep_2020_107624 crossref_primary_10_3389_fbinf_2021_694324 |
| Cites_doi | 10.1038/nrg2825 10.1101/cshperspect.a007039 10.1371/journal.pgen.0030161 10.1093/biostatistics/kxj037 10.1016/j.jim.2007.07.015 10.1086/508748 10.1371/journal.pbio.0000016 10.1128/CVI.00208-09 10.1016/j.jim.2013.06.001 10.1016/j.jaci.2003.12.588 10.1016/j.jaci.2009.05.024 10.1080/01621459.1990.10474930 10.1001/jama.2015.2940 10.1093/biostatistics/5.2.155 10.1073/pnas.091062498 10.1371/journal.pone.0017238 10.1371/journal.pone.0075665 10.1056/NEJMoa0908492 10.1093/biomet/80.2.267 10.1186/1471-2105-12-324 10.1128/JVI.77.20.11125-11138.2003 |
| ContentType | Journal Article |
| Copyright | Copyright © 2016 International Biometric Society 2016, The International Biometric Society 2016, The International Biometric Society. |
| Copyright_xml | – notice: Copyright © 2016 International Biometric Society – notice: 2016, The International Biometric Society – notice: 2016, The International Biometric Society. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 7QO 8FD FR3 P64 7S9 L.6 5PM |
| DOI | 10.1111/biom.12523 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic Engineering Research Database CrossRef AGRICOLA ProQuest Computer Science Collection MEDLINE ProQuest Computer Science Collection |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Biology Mathematics |
| EISSN | 1541-0420 |
| EndPage | 1215 |
| ExternalDocumentID | PMC5617895 4287430641 27061097 10_1111_biom_12523 BIOM12523 44695338 ark_67375_WNG_STJ9S1G3_0 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: UM1 AI068635 |
| GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAMMB AANHP AANLZ AAONW AASGY AAUAY AAWIL AAXRX AAYCA AAZKR AAZSN ABAWQ ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOD ACHJO ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEOTA AEUPB AEUYR AFBPY AFDVO AFEBI AFGKR AFKRA AFVYC AFWVQ AFZJQ AGLNM AGQPQ AGTJU AGXDD AHGBF AHMBA AIAGR AIDQK AIDYY AIHAF AIURR AJAOE AJBYB AJNCP AJXKR ALAGY ALEEW ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESTFP ESX F00 F01 F04 F5P FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X H13 HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AGORE ALIPV 3V. AAHHS ABTAH ACCFJ ADZOD AEEZP AELPN AEQDE AEUQT AFFTP AFPWT AIBGX AIWBW AJBDE JSODD VQA WRC AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN JQ2 7X8 7QO 8FD FR3 P64 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c5663-cb4dd4728b1b8f483640288e1767c1d4e7d615d201705503e4af5c58ea50f7023 |
| IEDL.DBID | DR2 |
| ISSN | 0006-341X 1541-0420 |
| IngestDate | Tue Sep 30 16:52:15 EDT 2025 Fri Oct 03 00:10:45 EDT 2025 Tue Oct 07 11:12:25 EDT 2025 Sun Sep 28 06:51:52 EDT 2025 Wed Aug 13 06:08:06 EDT 2025 Wed Aug 13 08:01:37 EDT 2025 Wed Feb 19 02:43:17 EST 2025 Wed Oct 01 01:41:34 EDT 2025 Thu Apr 24 23:10:47 EDT 2025 Wed Jan 22 16:56:49 EST 2025 Thu Jul 03 22:16:38 EDT 2025 Sun Sep 21 06:18:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Bayesian hierarchical model Mixture modeling Classification Peptide microarray |
| Language | English |
| License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model 2016, The International Biometric Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5663-cb4dd4728b1b8f483640288e1767c1d4e7d615d201705503e4af5c58ea50f7023 |
| Notes | ArticleID:BIOM12523 istex:E04229F86A4D4A6C05D1DD109E60972139242B08 ark:/67375/WNG-STJ9S1G3-0 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 27061097 |
| PQID | 1853054104 |
| PQPubID | 35366 |
| PageCount | 10 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5617895 proquest_miscellaneous_2000445197 proquest_miscellaneous_1868328304 proquest_miscellaneous_1853738522 proquest_journals_1923740313 proquest_journals_1853054104 pubmed_primary_27061097 crossref_primary_10_1111_biom_12523 crossref_citationtrail_10_1111_biom_12523 wiley_primary_10_1111_biom_12523_BIOM12523 jstor_primary_44695338 istex_primary_ark_67375_WNG_STJ9S1G3_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | December 2016 |
| PublicationDateYYYYMMDD | 2016-12-01 |
| PublicationDate_xml | – month: 12 year: 2016 text: December 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationTitle | Biometrics |
| PublicationTitleAlternate | Biom |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd Wiley-Blackwell |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
| References | Meng, X.-L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 80, 267-278. Lange, K. L., Little, R. J. A., and Taylor, J. M. G. (1989). Robust statistical modeling using the t distribution. Journal of the American Statistical Association 84, 881-896. Rerks-Ngarm, S., Pitisuttithum, P., Nitayaphan, S., Kaewkungwal, J., Chiu, J., Paris, R., et al. (2009). Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. The New England Journal of Medicine 361, 2209-2220. Lin, J., Bardina, L., Shreffler, W. G., Andreae, D. A., Ge, Y., Wang, J., et al. (2009). Development of a novel peptide microarray for large-scale epitope mapping of food allergens. Journal of Allergy and Clinical Immunology 124, 315-322.e3. Ritchie, M. E., Silver, J., Oshlack, A., Holmes, M., Diyagama, D., Holloway, A., et al. (2007). A comparison of background correction methods for two-colour microarrays. Bioinformatics (Oxford, England) 23, 2700-2707. Thompson, A. E. (2015). The immune system. JAMA 313, 1686. Imholte, G. C., Sauteraud, R., Korber, B., Bailer, R. T., Turk, E. T., Shen, X., et al. (2013). A computational framework for the analysis of peptide microarray antibody binding data with application to HIV vaccine profiling. Journal of Immunological Methods 395, 1-13. Wei, G. C. G. and Tanner, M. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. Journal of the American Statistical Association 85 699-704. Li, C. and Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118-127. Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America 98, 5116-5121. Leek, J. T. and Storey, J. D. (2007). Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genetics 3, 1724-1735. Shreffler, W. G., Beyer, K., Chu, T. H. T., Burks, A. W., and Sampson, H. A. (2004). Microarray immunoassay: Association of clinical history, in vitro IgE function, and heterogeneity of allergenic peanut epitopes. Journal of Allergy and Clinical Immunology 113, 776-782. Overbaugh, J. and Morris, L. (2012). The antibody response against HIV-1. Cold Spring Harbor Perspectives in Medicine 2, 1-17. Pitisuttithum, P., Gilbert, P., Gurwith, M., Heyward, W., Martin, M., van Griensven, F., et al. (2006). Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. The Journal of Infectious Diseases 194, 1661-1671. Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., et al. (2010). Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews. Genetics 11, 733-739. Gottardo, R., Bailer, R. T., Korber, B. T., Gnanakaran, S., Phillips, J., Shen, X., et al. (2013). Plasma IgG to linear epitopes in the V2 and V3 regions of HIV-1 gp120 correlate with a reduced risk of infection in the RV144 vaccine efficacy trial. PLoS ONE 8, e75665. Nahtman, T., Jernberg, A., Mahdavifar, S., Zerweck, J., Schutkowski, M., Maeurer, M., et al. (2007). Validation of peptide epitope microarray experiments and extraction of quality data. Journal of Immunological Methods 328, 1-13. Gaseitsiwe, S., Valentini, D., Mahdavifar, S., Reilly, M., Ehrnst, A., and Maeurer, M. (2010). Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401. Clinical and Vaccine Immunology 17, 168-175. Little, R. J. A. (1988). Robust estimation of the mean and covariance matrix from data with missing values. Journal of the Royal Statistical Society, Series C 37, 23-38. Market, E. and Papavasiliou, F. N. (2003). V(D)J recombination and the evolution of the adaptive immune system. PLoS Biology 1, 24-27. Neuman de Vegvar, H. E., Amara, R. R., Steinman, L., Utz, P. J., Robinson, H. L., and Robinson, W. H. (2003). Microarray profiling of antibody responses against simian-human immunodeficiency virus: Postchallenge convergence of reactivities independent of host histocompatibility type and vaccine regimen. Journal of Virology 77, 11125-11138. Chen, C., Grennan, K., Badner, J., Zhang, D., Gershon, E., Jin, L., et al. (2011). Removing batch effects in analysis of expression microarray data: An evaluation of six batch adjustment methods. PLoS ONE 6, e17238. Newton, M. A., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004). Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5, 155-176. Renard, B. Y., Löwer, M., Kühne, Y., Reimer, U., Rothermel, A., Türeci, O., et al. (2011). rapmad: Robust analysis of peptide microarray data. BMC Bioinformatics 12, 324. 1989; 84 2010; 11 2007; 328 2010; 17 1988; 37 2004; 5 2011; 12 2006; 194 2013; 8 2011; 6 2003; 77 1990; 85 2012; 2 2004; 113 2001 2015; 313 2007; 8 2009; 124 1993; 80 2009; 361 2013; 395 2007; 3 2003; 1 2007; 23 2001; 98 Overbaugh (2024010914422937800_biom12523-bib-0017) 2012; 2 Leek (2024010914422937800_biom12523-bib-0008) 2007; 3 Newton (2024010914422937800_biom12523-bib-0016) 2004; 5 Thompson (2024010914422937800_biom12523-bib-0023) 2015; 313 Gottardo (2024010914422937800_biom12523-bib-0003) 2013; 8 Rerks-Ngarm (2024010914422937800_biom12523-bib-0020) 2009; 361 Meng (2024010914422937800_biom12523-bib-0013) 1993; 80 Li (2024010914422937800_biom12523-bib-0009) 2007; 8 Neuman de Vegvar (2024010914422937800_biom12523-bib-0015) 2003; 77 Pitisuttithum (2024010914422937800_biom12523-bib-0018) 2006; 194 Ritchie (2024010914422937800_biom12523-bib-0021) 2007; 23 Janeway (2024010914422937800_biom12523-bib-0005) 2001 Gaseitsiwe (2024010914422937800_biom12523-bib-0002) 2010; 17 Market (2024010914422937800_biom12523-bib-0012) 2003; 1 Imholte (2024010914422937800_biom12523-bib-0004) 2013; 395 Tusher (2024010914422937800_biom12523-bib-0024) 2001; 98 Wei (2024010914422937800_biom12523-bib-0025) 1990; 85 Shreffler (2024010914422937800_biom12523-bib-0022) 2004; 113 Renard (2024010914422937800_biom12523-bib-0019) 2011; 12 Chen (2024010914422937800_biom12523-bib-0001) 2011; 6 Lin (2024010914422937800_biom12523-bib-0010) 2009; 124 Leek (2024010914422937800_biom12523-bib-0007) 2010; 11 Nahtman (2024010914422937800_biom12523-bib-0014) 2007; 328 Lange (2024010914422937800_biom12523-bib-0006) 1989; 84 Little (2024010914422937800_biom12523-bib-0011) 1988; 37 25919540 - JAMA. 2015 Apr 28;313(16):1686 17720982 - Bioinformatics. 2007 Oct 15;23(20):2700-7 23770318 - J Immunol Methods. 2013 Sep 30;395(1-2):1-13 15100687 - J Allergy Clin Immunol. 2004 Apr;113(4):776-82 17907809 - PLoS Genet. 2007 Sep;3(9):1724-35 17109337 - J Infect Dis. 2006 Dec 15;194(12):1661-71 24086607 - PLoS One. 2013 Sep 26;8(9):e75665 17765917 - J Immunol Methods. 2007 Dec 1;328(1-2):1-13 21816082 - BMC Bioinformatics. 2011 Aug 04;12:324 16632515 - Biostatistics. 2007 Jan;8(1):118-27 20838408 - Nat Rev Genet. 2010 Oct;11(10 ):733-9 14512560 - J Virol. 2003 Oct;77(20):11125-38 14551913 - PLoS Biol. 2003 Oct;1(1):E16 11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 19843557 - N Engl J Med. 2009 Dec 3;361(23):2209-20 22315717 - Cold Spring Harb Perspect Med. 2012 Jan;2(1):a007039 19864486 - Clin Vaccine Immunol. 2010 Jan;17(1):168-75 15054023 - Biostatistics. 2004 Apr;5(2):155-76 19577281 - J Allergy Clin Immunol. 2009 Aug;124(2):315-22, 322.e1-3 21386892 - PLoS One. 2011 Feb 28;6(2):e17238 |
| References_xml | – reference: Market, E. and Papavasiliou, F. N. (2003). V(D)J recombination and the evolution of the adaptive immune system. PLoS Biology 1, 24-27. – reference: Gottardo, R., Bailer, R. T., Korber, B. T., Gnanakaran, S., Phillips, J., Shen, X., et al. (2013). Plasma IgG to linear epitopes in the V2 and V3 regions of HIV-1 gp120 correlate with a reduced risk of infection in the RV144 vaccine efficacy trial. PLoS ONE 8, e75665. – reference: Leek, J. T. and Storey, J. D. (2007). Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genetics 3, 1724-1735. – reference: Neuman de Vegvar, H. E., Amara, R. R., Steinman, L., Utz, P. J., Robinson, H. L., and Robinson, W. H. (2003). Microarray profiling of antibody responses against simian-human immunodeficiency virus: Postchallenge convergence of reactivities independent of host histocompatibility type and vaccine regimen. Journal of Virology 77, 11125-11138. – reference: Thompson, A. E. (2015). The immune system. JAMA 313, 1686. – reference: Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America 98, 5116-5121. – reference: Wei, G. C. G. and Tanner, M. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. Journal of the American Statistical Association 85 699-704. – reference: Meng, X.-L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 80, 267-278. – reference: Li, C. and Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118-127. – reference: Pitisuttithum, P., Gilbert, P., Gurwith, M., Heyward, W., Martin, M., van Griensven, F., et al. (2006). Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. The Journal of Infectious Diseases 194, 1661-1671. – reference: Shreffler, W. G., Beyer, K., Chu, T. H. T., Burks, A. W., and Sampson, H. A. (2004). Microarray immunoassay: Association of clinical history, in vitro IgE function, and heterogeneity of allergenic peanut epitopes. Journal of Allergy and Clinical Immunology 113, 776-782. – reference: Lin, J., Bardina, L., Shreffler, W. G., Andreae, D. A., Ge, Y., Wang, J., et al. (2009). Development of a novel peptide microarray for large-scale epitope mapping of food allergens. Journal of Allergy and Clinical Immunology 124, 315-322.e3. – reference: Rerks-Ngarm, S., Pitisuttithum, P., Nitayaphan, S., Kaewkungwal, J., Chiu, J., Paris, R., et al. (2009). Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. The New England Journal of Medicine 361, 2209-2220. – reference: Imholte, G. C., Sauteraud, R., Korber, B., Bailer, R. T., Turk, E. T., Shen, X., et al. (2013). A computational framework for the analysis of peptide microarray antibody binding data with application to HIV vaccine profiling. Journal of Immunological Methods 395, 1-13. – reference: Overbaugh, J. and Morris, L. (2012). The antibody response against HIV-1. Cold Spring Harbor Perspectives in Medicine 2, 1-17. – reference: Renard, B. Y., Löwer, M., Kühne, Y., Reimer, U., Rothermel, A., Türeci, O., et al. (2011). rapmad: Robust analysis of peptide microarray data. BMC Bioinformatics 12, 324. – reference: Little, R. J. A. (1988). Robust estimation of the mean and covariance matrix from data with missing values. Journal of the Royal Statistical Society, Series C 37, 23-38. – reference: Ritchie, M. E., Silver, J., Oshlack, A., Holmes, M., Diyagama, D., Holloway, A., et al. (2007). A comparison of background correction methods for two-colour microarrays. Bioinformatics (Oxford, England) 23, 2700-2707. – reference: Gaseitsiwe, S., Valentini, D., Mahdavifar, S., Reilly, M., Ehrnst, A., and Maeurer, M. (2010). Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401. Clinical and Vaccine Immunology 17, 168-175. – reference: Nahtman, T., Jernberg, A., Mahdavifar, S., Zerweck, J., Schutkowski, M., Maeurer, M., et al. (2007). Validation of peptide epitope microarray experiments and extraction of quality data. Journal of Immunological Methods 328, 1-13. – reference: Newton, M. A., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004). Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5, 155-176. – reference: Chen, C., Grennan, K., Badner, J., Zhang, D., Gershon, E., Jin, L., et al. (2011). Removing batch effects in analysis of expression microarray data: An evaluation of six batch adjustment methods. PLoS ONE 6, e17238. – reference: Lange, K. L., Little, R. J. A., and Taylor, J. M. G. (1989). Robust statistical modeling using the t distribution. Journal of the American Statistical Association 84, 881-896. – reference: Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., et al. (2010). Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews. Genetics 11, 733-739. – volume: 8 start-page: 118 year: 2007 end-page: 127 article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods publication-title: Biostatistics – volume: 395 start-page: 1 year: 2013 end-page: 13 article-title: A computational framework for the analysis of peptide microarray antibody binding data with application to HIV vaccine profiling publication-title: Journal of Immunological Methods – volume: 84 start-page: 881 year: 1989 end-page: 896 article-title: Robust statistical modeling using the t distribution publication-title: Journal of the American Statistical Association – year: 2001 – volume: 328 start-page: 1 year: 2007 end-page: 13 article-title: Validation of peptide epitope microarray experiments and extraction of quality data publication-title: Journal of Immunological Methods – volume: 80 start-page: 267 year: 1993 end-page: 278 article-title: Maximum likelihood estimation via the ECM algorithm: A general framework publication-title: Biometrika – volume: 1 start-page: 24 year: 2003 end-page: 27 article-title: V(D)J recombination and the evolution of the adaptive immune system publication-title: PLoS Biology – volume: 113 start-page: 776 year: 2004 end-page: 782 article-title: Microarray immunoassay: Association of clinical history, in vitro IgE function, and heterogeneity of allergenic peanut epitopes publication-title: Journal of Allergy and Clinical Immunology – volume: 2 start-page: 1 year: 2012 end-page: 17 article-title: The antibody response against HIV‐1 publication-title: Cold Spring Harbor Perspectives in Medicine – volume: 124 start-page: 315 year: 2009 end-page: 322.e3 article-title: Development of a novel peptide microarray for large‐scale epitope mapping of food allergens publication-title: Journal of Allergy and Clinical Immunology – volume: 17 start-page: 168 year: 2010 end-page: 175 article-title: Peptide microarray‐based identification of Mycobacterium tuberculosis epitope binding to HLA‐DRB1*0101, DRB1*1501, and DRB1*0401 publication-title: Clinical and Vaccine Immunology – volume: 6 start-page: e17238 year: 2011 article-title: Removing batch effects in analysis of expression microarray data: An evaluation of six batch adjustment methods publication-title: PLoS ONE – volume: 12 start-page: 324 year: 2011 article-title: rapmad: Robust analysis of peptide microarray data publication-title: BMC Bioinformatics – volume: 23 start-page: 2700 year: 2007 end-page: 2707 article-title: A comparison of background correction methods for two‐colour microarrays publication-title: Bioinformatics (Oxford, England) – volume: 11 start-page: 733 year: 2010 end-page: 739 article-title: Tackling the widespread and critical impact of batch effects in high‐throughput data publication-title: Nature Reviews. Genetics – volume: 8 start-page: e75665 year: 2013 article-title: Plasma IgG to linear epitopes in the V2 and V3 regions of HIV‐1 gp120 correlate with a reduced risk of infection in the RV144 vaccine efficacy trial publication-title: PLoS ONE – volume: 361 start-page: 2209 year: 2009 end-page: 2220 article-title: Vaccination with ALVAC and AIDSVAX to prevent HIV‐1 infection in Thailand publication-title: The New England Journal of Medicine – volume: 313 start-page: 1686 year: 2015 article-title: The immune system publication-title: JAMA – volume: 85 start-page: 699 year: 1990 end-page: 704 article-title: A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms publication-title: Journal of the American Statistical Association – volume: 5 start-page: 155 year: 2004 end-page: 176 article-title: Detecting differential gene expression with a semiparametric hierarchical mixture method publication-title: Biostatistics – volume: 37 start-page: 23 year: 1988 end-page: 38 article-title: Robust estimation of the mean and covariance matrix from data with missing values publication-title: Journal of the Royal Statistical Society, Series C – volume: 194 start-page: 1661 year: 2006 end-page: 1671 article-title: Randomized, double‐blind, placebo‐controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV‐1 vaccine among injection drug users in Bangkok, Thailand publication-title: The Journal of Infectious Diseases – volume: 3 start-page: 1724 year: 2007 end-page: 1735 article-title: Capturing heterogeneity in gene expression studies by surrogate variable analysis publication-title: PLoS Genetics – volume: 77 start-page: 11125 year: 2003 end-page: 11138 article-title: Microarray profiling of antibody responses against simian‐human immunodeficiency virus: Postchallenge convergence of reactivities independent of host histocompatibility type and vaccine regimen publication-title: Journal of Virology – volume: 98 start-page: 5116 year: 2001 end-page: 5121 article-title: Significance analysis of microarrays applied to the ionizing radiation response publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 11 start-page: 733 year: 2010 ident: 2024010914422937800_biom12523-bib-0007 article-title: Tackling the widespread and critical impact of batch effects in high-throughput data publication-title: Nature Reviews. Genetics doi: 10.1038/nrg2825 – volume: 2 start-page: 1 year: 2012 ident: 2024010914422937800_biom12523-bib-0017 article-title: The antibody response against HIV-1 publication-title: Cold Spring Harbor Perspectives in Medicine doi: 10.1101/cshperspect.a007039 – volume: 3 start-page: 1724 year: 2007 ident: 2024010914422937800_biom12523-bib-0008 article-title: Capturing heterogeneity in gene expression studies by surrogate variable analysis publication-title: PLoS Genetics doi: 10.1371/journal.pgen.0030161 – volume: 8 start-page: 118 year: 2007 ident: 2024010914422937800_biom12523-bib-0009 article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods publication-title: Biostatistics doi: 10.1093/biostatistics/kxj037 – volume: 328 start-page: 1 year: 2007 ident: 2024010914422937800_biom12523-bib-0014 article-title: Validation of peptide epitope microarray experiments and extraction of quality data publication-title: Journal of Immunological Methods doi: 10.1016/j.jim.2007.07.015 – volume: 194 start-page: 1661 year: 2006 ident: 2024010914422937800_biom12523-bib-0018 article-title: Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand publication-title: The Journal of Infectious Diseases doi: 10.1086/508748 – volume: 1 start-page: 24 year: 2003 ident: 2024010914422937800_biom12523-bib-0012 article-title: V(D)J recombination and the evolution of the adaptive immune system publication-title: PLoS Biology doi: 10.1371/journal.pbio.0000016 – volume: 17 start-page: 168 year: 2010 ident: 2024010914422937800_biom12523-bib-0002 article-title: Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401 publication-title: Clinical and Vaccine Immunology doi: 10.1128/CVI.00208-09 – volume: 395 start-page: 1 year: 2013 ident: 2024010914422937800_biom12523-bib-0004 article-title: A computational framework for the analysis of peptide microarray antibody binding data with application to HIV vaccine profiling publication-title: Journal of Immunological Methods doi: 10.1016/j.jim.2013.06.001 – volume: 113 start-page: 776 year: 2004 ident: 2024010914422937800_biom12523-bib-0022 article-title: Microarray immunoassay: Association of clinical history, in vitro IgE function, and heterogeneity of allergenic peanut epitopes publication-title: Journal of Allergy and Clinical Immunology doi: 10.1016/j.jaci.2003.12.588 – volume: 124 start-page: 315 year: 2009 ident: 2024010914422937800_biom12523-bib-0010 article-title: Development of a novel peptide microarray for large-scale epitope mapping of food allergens publication-title: Journal of Allergy and Clinical Immunology doi: 10.1016/j.jaci.2009.05.024 – volume: 84 start-page: 881 year: 1989 ident: 2024010914422937800_biom12523-bib-0006 article-title: Robust statistical modeling using the t distribution publication-title: Journal of the American Statistical Association – volume: 85 start-page: 699 year: 1990 ident: 2024010914422937800_biom12523-bib-0025 article-title: A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1990.10474930 – volume: 313 start-page: 1686 year: 2015 ident: 2024010914422937800_biom12523-bib-0023 article-title: The immune system publication-title: JAMA doi: 10.1001/jama.2015.2940 – volume: 5 start-page: 155 year: 2004 ident: 2024010914422937800_biom12523-bib-0016 article-title: Detecting differential gene expression with a semiparametric hierarchical mixture method publication-title: Biostatistics doi: 10.1093/biostatistics/5.2.155 – volume: 98 start-page: 5116 year: 2001 ident: 2024010914422937800_biom12523-bib-0024 article-title: Significance analysis of microarrays applied to the ionizing radiation response publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.091062498 – volume: 6 start-page: e17238 year: 2011 ident: 2024010914422937800_biom12523-bib-0001 article-title: Removing batch effects in analysis of expression microarray data: An evaluation of six batch adjustment methods publication-title: PLoS ONE doi: 10.1371/journal.pone.0017238 – volume: 8 start-page: e75665 year: 2013 ident: 2024010914422937800_biom12523-bib-0003 article-title: Plasma IgG to linear epitopes in the V2 and V3 regions of HIV-1 gp120 correlate with a reduced risk of infection in the RV144 vaccine efficacy trial publication-title: PLoS ONE doi: 10.1371/journal.pone.0075665 – volume: 23 start-page: 2700 year: 2007 ident: 2024010914422937800_biom12523-bib-0021 article-title: A comparison of background correction methods for two-colour microarrays publication-title: Bioinformatics (Oxford, England) – year: 2001 ident: 2024010914422937800_biom12523-bib-0005 – volume: 361 start-page: 2209 year: 2009 ident: 2024010914422937800_biom12523-bib-0020 article-title: Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand publication-title: The New England Journal of Medicine doi: 10.1056/NEJMoa0908492 – volume: 37 start-page: 23 year: 1988 ident: 2024010914422937800_biom12523-bib-0011 article-title: Robust estimation of the mean and covariance matrix from data with missing values publication-title: Journal of the Royal Statistical Society, Series C – volume: 80 start-page: 267 year: 1993 ident: 2024010914422937800_biom12523-bib-0013 article-title: Maximum likelihood estimation via the ECM algorithm: A general framework publication-title: Biometrika doi: 10.1093/biomet/80.2.267 – volume: 12 start-page: 324 year: 2011 ident: 2024010914422937800_biom12523-bib-0019 article-title: rapmad: Robust analysis of peptide microarray data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-324 – volume: 77 start-page: 11125 year: 2003 ident: 2024010914422937800_biom12523-bib-0015 article-title: Microarray profiling of antibody responses against simian-human immunodeficiency virus: Postchallenge convergence of reactivities independent of host histocompatibility type and vaccine regimen publication-title: Journal of Virology doi: 10.1128/JVI.77.20.11125-11138.2003 – reference: 14551913 - PLoS Biol. 2003 Oct;1(1):E16 – reference: 22315717 - Cold Spring Harb Perspect Med. 2012 Jan;2(1):a007039 – reference: 20838408 - Nat Rev Genet. 2010 Oct;11(10 ):733-9 – reference: 17720982 - Bioinformatics. 2007 Oct 15;23(20):2700-7 – reference: 14512560 - J Virol. 2003 Oct;77(20):11125-38 – reference: 24086607 - PLoS One. 2013 Sep 26;8(9):e75665 – reference: 25919540 - JAMA. 2015 Apr 28;313(16):1686 – reference: 16632515 - Biostatistics. 2007 Jan;8(1):118-27 – reference: 19843557 - N Engl J Med. 2009 Dec 3;361(23):2209-20 – reference: 15100687 - J Allergy Clin Immunol. 2004 Apr;113(4):776-82 – reference: 21816082 - BMC Bioinformatics. 2011 Aug 04;12:324 – reference: 15054023 - Biostatistics. 2004 Apr;5(2):155-76 – reference: 23770318 - J Immunol Methods. 2013 Sep 30;395(1-2):1-13 – reference: 21386892 - PLoS One. 2011 Feb 28;6(2):e17238 – reference: 17765917 - J Immunol Methods. 2007 Dec 1;328(1-2):1-13 – reference: 19577281 - J Allergy Clin Immunol. 2009 Aug;124(2):315-22, 322.e1-3 – reference: 11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 – reference: 17109337 - J Infect Dis. 2006 Dec 15;194(12):1661-71 – reference: 19864486 - Clin Vaccine Immunol. 2010 Jan;17(1):168-75 – reference: 17907809 - PLoS Genet. 2007 Sep;3(9):1724-35 |
| SSID | ssj0009502 |
| Score | 2.1867044 |
| Snippet | The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array... Summary The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to... Summary The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to... |
| SourceID | pubmedcentral proquest pubmed crossref wiley jstor istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1206 |
| SubjectTerms | Adaptive control AIDS Vaccines - immunology Antibodies Antibodies - analysis Antibody response Bayes Theorem Bayesian analysis Bayesian hierarchical model BIOMETRIC METHODOLOGY biometry blood serum Classification Computer Simulation data collection False Positive Reactions Humans Immune system Immunoassay Immunoassay - statistics & numerical data immunoassays Immunogenicity Mapping microarray technology Mixture modeling model validation Models, Statistical Outliers (statistics) pathogens Peptide microarray Peptides probability Probes Protein Array Analysis Proteins Randomized Controlled Trials as Topic ROC Curve Screens Sensitivity Tiling Vaccines Viruses |
| Title | Bayesian hierarchical modeling for subject-level response classification in peptide microarray immunoassays |
| URI | https://api.istex.fr/ark:/67375/WNG-STJ9S1G3-0/fulltext.pdf https://www.jstor.org/stable/44695338 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12523 https://www.ncbi.nlm.nih.gov/pubmed/27061097 https://www.proquest.com/docview/1853054104 https://www.proquest.com/docview/1923740313 https://www.proquest.com/docview/1853738522 https://www.proquest.com/docview/1868328304 https://www.proquest.com/docview/2000445197 https://pubmed.ncbi.nlm.nih.gov/PMC5617895 |
| Volume | 72 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1541-0420 dateEnd: 20241028 omitProxy: true ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: ABDBF dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0006-341X databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1541-0420 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009502 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9RAFL2UFqE-WF1tjVYZUQSFLPnOBHyxYlsLW8G2uC8SMh-LS9tsSXbB9cmf4G_0l3jvTBJ3dS3oW2BuEmZyZ-65mXPPADzLMKj7kZ-5HKMhJihKuUJmwg2EClWCEUfGVO88OE4Oz6KjYTxcg1dtLYzVh-h-uNHMMOs1TfBC1AuTnMrT-xieA5L69MPE5FMfggXFXc9KhRO5K_KHjTYp0Xh-3boUjTZoYL-0xMRVkPNP5uQiojUhaX8LPrWdsUyU8_5sKvry6286j__b29twq8Gq7LV1rjuwpsse3LCnV857cHPQSb7WPdgk2GpVn-_C5V4x11SeyeiobbNZgb7AzLE7GCsZImVWzwT9A_rx7fsFEZdYZdm6mkkC9MRgMk7DxiW7IuqN0uyS2INFVRVzNqa6lgkaFvP6Hpztvz19c-g2Bzu4EtFj6EoRKRWlARe-4KOIhwlmsZxrP01S6atIpwqBlgqs1o8X6qgYxTLmuoi9UYooYxvWy0mp7wPDuxIp4jBBGBNJ5XNMWHUQa-6lWo9k7MCL9gPnslE9p8M3LvI2-6GRzc3IOvC0s72yWh8rrZ4bP-lMiuqc2HFpnH88PshPTo-yE_8gzD0Hto0jdYaYeROZlzuw23pW3qwYdU64CeEz9mJ1MwLxNCKhTQeedM24FND-TlHqycw-gsSJguA6mwTXcB7Sa_5mE5htfqpodmDH-nvXhyD1SKAfW9KlmdAZkFz5cks5_mxky2OqRs3wi7w0jn7NEOd7794PzNWDfzF-CJvoMoklG-3C-rSa6UcIGafisVkafgJ6DmhF |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL2CTYjxwEdhEBhgBEICKVXiOIn7yBBbN9YisU70LUpsV1Tb0qkfEuWJn8Bv5Jdwr52GFsokeKvkm1Sxr32P7XPPBXjRwqAeirDlS4yGuEHR2i9Uq_B5oSOdYMRRMeU7d7pJ-0Qc9uN-xc2hXBinD1EfuNHMsOs1TXA6kF6a5ZSf3sT4zKOrsCkS3KgQJvrIlzR3AycWTvQuEfYrdVIi8vx6diUebVLXfllQE9eBzj-5k8uY1galvVuu8urEahkSF-W0OZsWTfX1N6XH__7e23CzgqvsjfOvO3DFlA245gpYzhtwo1Orvk4asEXI1Qk_34Xz3XxuKEOTUbVte1-B7sBs5R0MlwzBMpvMCjoG-vHt-xlxl9jYEXYNU4TpicRk_YYNS3ZB7Btt2DkRCPPxOJ-zIaW2jNAwn0_uwcneu97btl_VdvAVAsjIV4XQWqRcFmEhB0JGOH5cShOmSapCLUyqEWtp7uR-gsiIfBCrWJo8DgYpAo1t2ChHpXkADJ9KVBFHCSIZoXQocc9qeGxkkBozULEHrxYjnKlK-Jzqb5xliw0Q9Wxme9aD57XthZP7WGv10jpKbZKPT4kgl8bZp-5-dtw7bB2H-1EWeLBtPak2xM038XmlBzsL18qqRWOSEXRCBI1fsb4ZsXgqSGvTg2d1M64GdMWTl2Y0c68gfSLOL7NJcBmXEf3N32y4vemnpGYP7juHr7-BpwFp9GNLujIVagNSLF9tKYefrXJ5TAmpLRyR19bTL-nibPfgQ8f-evgvxk_hervXOcqODrrvH8EWuk_iuEc7sDEdz8xjRJDT4oldJ34C1VRsZg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE2h74FIYCwwwAiGBlCoXO3EeGaO7QAtim-hblNiuqLalVdJKlCd-Ar-RX8I5dhpaKJPgLZJPEtk59vkcf-c7hDxLIKj7zE9cAdEQNihKublMcjfIVagiiDiSY75ztxcdnLKjPu_X3BzMhbH6EM0PN5wZZr3GCa7HarAwyzE_vQ3xOQivknXGE4GMvr2PwYLmrmfFwpHexfx-rU6KRJ5f9y7Fo3Uc2i9zauIq0Pknd3IR05qg1LlpK69WRssQuShn7ekkb8uvvyk9_nd_b5EbNVylr6x_3SZXdNEi12wBy1mLbHYb1deqRTYQuVrh5zvkYjebaczQpFht25xXgDtQU3kHwiUFsEyraY6_gX58-36O3CVaWsKuphIxPZKYjN_QYUHHyL5Rml4ggTAry2xGh5jaMgLDbFbdJaedNyevD9y6toMrAUCGrsyZUiwORO7nYsBEGMFGVgjtx1EsfcV0rABrqcDK_XihZtmASy50xr1BDEBji6wVo0JvEwp3RTLnYQRIhknlC9iz6oBr4cVaDyR3yIv5F05lLXyO9TfO0_kGCEc2NSPrkKeN7djKfay0em4cpTHJyjMkyMU8_dTbT49PjpJjfz9MPYdsGU9qDGHzjXxe4ZCduWul9aJRpQidAEFDL1Y3AxaPGWptOuRJ0wyrAR7xZIUeTe0jUJ8oCC6ziWAZFyG-5m82gTnpx6Rmh9yzDt_0IYg91OiHlnhpKjQGqFi-3FIMPxvlco4JqQl8kZfG0y8Z4nT38H3XXN3_F-PH5PqHvU767rD39gHZAO-JLPVoh6xNyql-CABykj8yy8RP66pr6g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+hierarchical+modeling+for+subject-level+response+classification+in+peptide+microarray+immunoassays&rft.jtitle=Biometrics&rft.au=Imholte%2C+Gregory&rft.au=Gottardo%2C+Raphael&rft.date=2016-12-01&rft.issn=1541-0420&rft.eissn=1541-0420&rft.volume=72&rft.issue=4&rft.spage=1206&rft_id=info:doi/10.1111%2Fbiom.12523&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |