Bayesian hierarchical modeling for subject-level response classification in peptide microarray immunoassays

The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g., envelope proteins of a virus) are an important high throughput tool f...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 72; no. 4; pp. 1206 - 1215
Main Authors Imholte, Gregory, Gottardo, Raphael
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.12.2016
Wiley-Blackwell
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/biom.12523

Cover

Abstract The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g., envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay's many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects' immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial data sets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses.
AbstractList The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g., envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay's many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects' immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial data sets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses.The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g., envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay's many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects' immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial data sets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses.
The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g., envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay's many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects' immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial data sets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses.
Summary The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g., envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay's many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects' immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial data sets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses.
The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g. envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay’s many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects’ immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial datasets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses.
Summary The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g., envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay's many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects’ immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy‐tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial data sets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non‐responses.
Author Imholte, Gregory
Gottardo, Raphael
Author_xml – sequence: 1
  givenname: Gregory
  surname: Imholte
  fullname: Imholte, Gregory
  email: gimholte@uw.edu, gimholte@uw.edurgottardo@fredhutch.org
  organization: Department of Statistics, University of Washington, Seattle, Washington, U.S.A
– sequence: 2
  givenname: Raphael
  surname: Gottardo
  fullname: Gottardo, Raphael
  email: rgottardo@fredhutch.org, gimholte@uw.edurgottardo@fredhutch.org
  organization: Fred Hutchinson Cancer Research Center, Seattle, Washington, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27061097$$D View this record in MEDLINE/PubMed
BookMark eNqNks9v0zAcxSM0xLrBhTsoEheElOGfsXNBYhOUocEOG4Kb5TjfrO4Su9jJtv73uO1WwYQGvljW9_Oe5ee3l-047yDLnmN0gNN6W1vfH2DCCX2UTTBnuECMoJ1sghAqC8rwj91sL8Z5OlYckSfZLhGoxKgSk-zyUC8hWu3ymYWgg5lZo7u89w101l3krQ95HOs5mKHo4Aq6PEBceBchN52O0baJH6x3uXX5AhaDbSDvrQleh6CXue370fkE6mV8mj1udRfh2e2-n337-OH86FNxcjo9Pnp_UhhelrQwNWsaJoiscS1bJmnJEJESsCiFwQ0D0ZSYNwRhgThHFJhuueESNEetQITuZ-82voux7qEx4IagO7UIttdhqby26s-JszN14a8UL7GQFU8Gr28Ngv85QhxUb6OBrtMO_BgVSUkyxnEl_oliWUpKJEXsP1BOBZWcrF7w6h4692NwKTSFK0IFQxTTB6nkhVIT1te-_D2NbQx3HUjAmw2QPi3GAO0WwUitCqZWBVPrgiUY3YONHdYFSEna7u8SvJFc2w6WD5irw-PTL3eaFxvNPA4-bDWMlel7qEzzYjO3cYCb7VyHS1UKKrj6_nWqzs4_V2d4ShWivwAw0vsJ
CODEN BIOMA5
CitedBy_id crossref_primary_10_1093_bioinformatics_btae637
crossref_primary_10_1016_j_celrep_2020_107624
crossref_primary_10_3389_fbinf_2021_694324
Cites_doi 10.1038/nrg2825
10.1101/cshperspect.a007039
10.1371/journal.pgen.0030161
10.1093/biostatistics/kxj037
10.1016/j.jim.2007.07.015
10.1086/508748
10.1371/journal.pbio.0000016
10.1128/CVI.00208-09
10.1016/j.jim.2013.06.001
10.1016/j.jaci.2003.12.588
10.1016/j.jaci.2009.05.024
10.1080/01621459.1990.10474930
10.1001/jama.2015.2940
10.1093/biostatistics/5.2.155
10.1073/pnas.091062498
10.1371/journal.pone.0017238
10.1371/journal.pone.0075665
10.1056/NEJMoa0908492
10.1093/biomet/80.2.267
10.1186/1471-2105-12-324
10.1128/JVI.77.20.11125-11138.2003
ContentType Journal Article
Copyright Copyright © 2016 International Biometric Society
2016, The International Biometric Society
2016, The International Biometric Society.
Copyright_xml – notice: Copyright © 2016 International Biometric Society
– notice: 2016, The International Biometric Society
– notice: 2016, The International Biometric Society.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7QO
8FD
FR3
P64
7S9
L.6
5PM
DOI 10.1111/biom.12523
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Engineering Research Database

CrossRef
AGRICOLA
ProQuest Computer Science Collection
MEDLINE

ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 1215
ExternalDocumentID PMC5617895
4287430641
27061097
10_1111_biom_12523
BIOM12523
44695338
ark_67375_WNG_STJ9S1G3_0
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: UM1 AI068635
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAMMB
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAYCA
AAZKR
AAZSN
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFGKR
AFKRA
AFVYC
AFWVQ
AFZJQ
AGLNM
AGQPQ
AGTJU
AGXDD
AHGBF
AHMBA
AIAGR
AIDQK
AIDYY
AIHAF
AIURR
AJAOE
AJBYB
AJNCP
AJXKR
ALAGY
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
H13
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AGORE
ALIPV
3V.
AAHHS
ABTAH
ACCFJ
ADZOD
AEEZP
AELPN
AEQDE
AEUQT
AFFTP
AFPWT
AIBGX
AIWBW
AJBDE
JSODD
VQA
WRC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
JQ2
7X8
7QO
8FD
FR3
P64
7S9
L.6
5PM
ID FETCH-LOGICAL-c5663-cb4dd4728b1b8f483640288e1767c1d4e7d615d201705503e4af5c58ea50f7023
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Tue Sep 30 16:52:15 EDT 2025
Fri Oct 03 00:10:45 EDT 2025
Tue Oct 07 11:12:25 EDT 2025
Sun Sep 28 06:51:52 EDT 2025
Wed Aug 13 06:08:06 EDT 2025
Wed Aug 13 08:01:37 EDT 2025
Wed Feb 19 02:43:17 EST 2025
Wed Oct 01 01:41:34 EDT 2025
Thu Apr 24 23:10:47 EDT 2025
Wed Jan 22 16:56:49 EST 2025
Thu Jul 03 22:16:38 EDT 2025
Sun Sep 21 06:18:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Bayesian hierarchical model
Mixture modeling
Classification
Peptide microarray
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
2016, The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5663-cb4dd4728b1b8f483640288e1767c1d4e7d615d201705503e4af5c58ea50f7023
Notes ArticleID:BIOM12523
istex:E04229F86A4D4A6C05D1DD109E60972139242B08
ark:/67375/WNG-STJ9S1G3-0
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27061097
PQID 1853054104
PQPubID 35366
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5617895
proquest_miscellaneous_2000445197
proquest_miscellaneous_1868328304
proquest_miscellaneous_1853738522
proquest_journals_1923740313
proquest_journals_1853054104
pubmed_primary_27061097
crossref_primary_10_1111_biom_12523
crossref_citationtrail_10_1111_biom_12523
wiley_primary_10_1111_biom_12523_BIOM12523
jstor_primary_44695338
istex_primary_ark_67375_WNG_STJ9S1G3_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2016
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biom
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References Meng, X.-L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 80, 267-278.
Lange, K. L., Little, R. J. A., and Taylor, J. M. G. (1989). Robust statistical modeling using the t distribution. Journal of the American Statistical Association 84, 881-896.
Rerks-Ngarm, S., Pitisuttithum, P., Nitayaphan, S., Kaewkungwal, J., Chiu, J., Paris, R., et al. (2009). Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. The New England Journal of Medicine 361, 2209-2220.
Lin, J., Bardina, L., Shreffler, W. G., Andreae, D. A., Ge, Y., Wang, J., et al. (2009). Development of a novel peptide microarray for large-scale epitope mapping of food allergens. Journal of Allergy and Clinical Immunology 124, 315-322.e3.
Ritchie, M. E., Silver, J., Oshlack, A., Holmes, M., Diyagama, D., Holloway, A., et al. (2007). A comparison of background correction methods for two-colour microarrays. Bioinformatics (Oxford, England) 23, 2700-2707.
Thompson, A. E. (2015). The immune system. JAMA 313, 1686.
Imholte, G. C., Sauteraud, R., Korber, B., Bailer, R. T., Turk, E. T., Shen, X., et al. (2013). A computational framework for the analysis of peptide microarray antibody binding data with application to HIV vaccine profiling. Journal of Immunological Methods 395, 1-13.
Wei, G. C. G. and Tanner, M. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. Journal of the American Statistical Association 85 699-704.
Li, C. and Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118-127.
Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America 98, 5116-5121.
Leek, J. T. and Storey, J. D. (2007). Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genetics 3, 1724-1735.
Shreffler, W. G., Beyer, K., Chu, T. H. T., Burks, A. W., and Sampson, H. A. (2004). Microarray immunoassay: Association of clinical history, in vitro IgE function, and heterogeneity of allergenic peanut epitopes. Journal of Allergy and Clinical Immunology 113, 776-782.
Overbaugh, J. and Morris, L. (2012). The antibody response against HIV-1. Cold Spring Harbor Perspectives in Medicine 2, 1-17.
Pitisuttithum, P., Gilbert, P., Gurwith, M., Heyward, W., Martin, M., van Griensven, F., et al. (2006). Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. The Journal of Infectious Diseases 194, 1661-1671.
Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., et al. (2010). Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews. Genetics 11, 733-739.
Gottardo, R., Bailer, R. T., Korber, B. T., Gnanakaran, S., Phillips, J., Shen, X., et al. (2013). Plasma IgG to linear epitopes in the V2 and V3 regions of HIV-1 gp120 correlate with a reduced risk of infection in the RV144 vaccine efficacy trial. PLoS ONE 8, e75665.
Nahtman, T., Jernberg, A., Mahdavifar, S., Zerweck, J., Schutkowski, M., Maeurer, M., et al. (2007). Validation of peptide epitope microarray experiments and extraction of quality data. Journal of Immunological Methods 328, 1-13.
Gaseitsiwe, S., Valentini, D., Mahdavifar, S., Reilly, M., Ehrnst, A., and Maeurer, M. (2010). Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401. Clinical and Vaccine Immunology 17, 168-175.
Little, R. J. A. (1988). Robust estimation of the mean and covariance matrix from data with missing values. Journal of the Royal Statistical Society, Series C 37, 23-38.
Market, E. and Papavasiliou, F. N. (2003). V(D)J recombination and the evolution of the adaptive immune system. PLoS Biology 1, 24-27.
Neuman de Vegvar, H. E., Amara, R. R., Steinman, L., Utz, P. J., Robinson, H. L., and Robinson, W. H. (2003). Microarray profiling of antibody responses against simian-human immunodeficiency virus: Postchallenge convergence of reactivities independent of host histocompatibility type and vaccine regimen. Journal of Virology 77, 11125-11138.
Chen, C., Grennan, K., Badner, J., Zhang, D., Gershon, E., Jin, L., et al. (2011). Removing batch effects in analysis of expression microarray data: An evaluation of six batch adjustment methods. PLoS ONE 6, e17238.
Newton, M. A., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004). Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5, 155-176.
Renard, B. Y., Löwer, M., Kühne, Y., Reimer, U., Rothermel, A., Türeci, O., et al. (2011). rapmad: Robust analysis of peptide microarray data. BMC Bioinformatics 12, 324.
1989; 84
2010; 11
2007; 328
2010; 17
1988; 37
2004; 5
2011; 12
2006; 194
2013; 8
2011; 6
2003; 77
1990; 85
2012; 2
2004; 113
2001
2015; 313
2007; 8
2009; 124
1993; 80
2009; 361
2013; 395
2007; 3
2003; 1
2007; 23
2001; 98
Overbaugh (2024010914422937800_biom12523-bib-0017) 2012; 2
Leek (2024010914422937800_biom12523-bib-0008) 2007; 3
Newton (2024010914422937800_biom12523-bib-0016) 2004; 5
Thompson (2024010914422937800_biom12523-bib-0023) 2015; 313
Gottardo (2024010914422937800_biom12523-bib-0003) 2013; 8
Rerks-Ngarm (2024010914422937800_biom12523-bib-0020) 2009; 361
Meng (2024010914422937800_biom12523-bib-0013) 1993; 80
Li (2024010914422937800_biom12523-bib-0009) 2007; 8
Neuman de Vegvar (2024010914422937800_biom12523-bib-0015) 2003; 77
Pitisuttithum (2024010914422937800_biom12523-bib-0018) 2006; 194
Ritchie (2024010914422937800_biom12523-bib-0021) 2007; 23
Janeway (2024010914422937800_biom12523-bib-0005) 2001
Gaseitsiwe (2024010914422937800_biom12523-bib-0002) 2010; 17
Market (2024010914422937800_biom12523-bib-0012) 2003; 1
Imholte (2024010914422937800_biom12523-bib-0004) 2013; 395
Tusher (2024010914422937800_biom12523-bib-0024) 2001; 98
Wei (2024010914422937800_biom12523-bib-0025) 1990; 85
Shreffler (2024010914422937800_biom12523-bib-0022) 2004; 113
Renard (2024010914422937800_biom12523-bib-0019) 2011; 12
Chen (2024010914422937800_biom12523-bib-0001) 2011; 6
Lin (2024010914422937800_biom12523-bib-0010) 2009; 124
Leek (2024010914422937800_biom12523-bib-0007) 2010; 11
Nahtman (2024010914422937800_biom12523-bib-0014) 2007; 328
Lange (2024010914422937800_biom12523-bib-0006) 1989; 84
Little (2024010914422937800_biom12523-bib-0011) 1988; 37
25919540 - JAMA. 2015 Apr 28;313(16):1686
17720982 - Bioinformatics. 2007 Oct 15;23(20):2700-7
23770318 - J Immunol Methods. 2013 Sep 30;395(1-2):1-13
15100687 - J Allergy Clin Immunol. 2004 Apr;113(4):776-82
17907809 - PLoS Genet. 2007 Sep;3(9):1724-35
17109337 - J Infect Dis. 2006 Dec 15;194(12):1661-71
24086607 - PLoS One. 2013 Sep 26;8(9):e75665
17765917 - J Immunol Methods. 2007 Dec 1;328(1-2):1-13
21816082 - BMC Bioinformatics. 2011 Aug 04;12:324
16632515 - Biostatistics. 2007 Jan;8(1):118-27
20838408 - Nat Rev Genet. 2010 Oct;11(10 ):733-9
14512560 - J Virol. 2003 Oct;77(20):11125-38
14551913 - PLoS Biol. 2003 Oct;1(1):E16
11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21
19843557 - N Engl J Med. 2009 Dec 3;361(23):2209-20
22315717 - Cold Spring Harb Perspect Med. 2012 Jan;2(1):a007039
19864486 - Clin Vaccine Immunol. 2010 Jan;17(1):168-75
15054023 - Biostatistics. 2004 Apr;5(2):155-76
19577281 - J Allergy Clin Immunol. 2009 Aug;124(2):315-22, 322.e1-3
21386892 - PLoS One. 2011 Feb 28;6(2):e17238
References_xml – reference: Market, E. and Papavasiliou, F. N. (2003). V(D)J recombination and the evolution of the adaptive immune system. PLoS Biology 1, 24-27.
– reference: Gottardo, R., Bailer, R. T., Korber, B. T., Gnanakaran, S., Phillips, J., Shen, X., et al. (2013). Plasma IgG to linear epitopes in the V2 and V3 regions of HIV-1 gp120 correlate with a reduced risk of infection in the RV144 vaccine efficacy trial. PLoS ONE 8, e75665.
– reference: Leek, J. T. and Storey, J. D. (2007). Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genetics 3, 1724-1735.
– reference: Neuman de Vegvar, H. E., Amara, R. R., Steinman, L., Utz, P. J., Robinson, H. L., and Robinson, W. H. (2003). Microarray profiling of antibody responses against simian-human immunodeficiency virus: Postchallenge convergence of reactivities independent of host histocompatibility type and vaccine regimen. Journal of Virology 77, 11125-11138.
– reference: Thompson, A. E. (2015). The immune system. JAMA 313, 1686.
– reference: Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America 98, 5116-5121.
– reference: Wei, G. C. G. and Tanner, M. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. Journal of the American Statistical Association 85 699-704.
– reference: Meng, X.-L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 80, 267-278.
– reference: Li, C. and Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118-127.
– reference: Pitisuttithum, P., Gilbert, P., Gurwith, M., Heyward, W., Martin, M., van Griensven, F., et al. (2006). Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. The Journal of Infectious Diseases 194, 1661-1671.
– reference: Shreffler, W. G., Beyer, K., Chu, T. H. T., Burks, A. W., and Sampson, H. A. (2004). Microarray immunoassay: Association of clinical history, in vitro IgE function, and heterogeneity of allergenic peanut epitopes. Journal of Allergy and Clinical Immunology 113, 776-782.
– reference: Lin, J., Bardina, L., Shreffler, W. G., Andreae, D. A., Ge, Y., Wang, J., et al. (2009). Development of a novel peptide microarray for large-scale epitope mapping of food allergens. Journal of Allergy and Clinical Immunology 124, 315-322.e3.
– reference: Rerks-Ngarm, S., Pitisuttithum, P., Nitayaphan, S., Kaewkungwal, J., Chiu, J., Paris, R., et al. (2009). Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. The New England Journal of Medicine 361, 2209-2220.
– reference: Imholte, G. C., Sauteraud, R., Korber, B., Bailer, R. T., Turk, E. T., Shen, X., et al. (2013). A computational framework for the analysis of peptide microarray antibody binding data with application to HIV vaccine profiling. Journal of Immunological Methods 395, 1-13.
– reference: Overbaugh, J. and Morris, L. (2012). The antibody response against HIV-1. Cold Spring Harbor Perspectives in Medicine 2, 1-17.
– reference: Renard, B. Y., Löwer, M., Kühne, Y., Reimer, U., Rothermel, A., Türeci, O., et al. (2011). rapmad: Robust analysis of peptide microarray data. BMC Bioinformatics 12, 324.
– reference: Little, R. J. A. (1988). Robust estimation of the mean and covariance matrix from data with missing values. Journal of the Royal Statistical Society, Series C 37, 23-38.
– reference: Ritchie, M. E., Silver, J., Oshlack, A., Holmes, M., Diyagama, D., Holloway, A., et al. (2007). A comparison of background correction methods for two-colour microarrays. Bioinformatics (Oxford, England) 23, 2700-2707.
– reference: Gaseitsiwe, S., Valentini, D., Mahdavifar, S., Reilly, M., Ehrnst, A., and Maeurer, M. (2010). Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401. Clinical and Vaccine Immunology 17, 168-175.
– reference: Nahtman, T., Jernberg, A., Mahdavifar, S., Zerweck, J., Schutkowski, M., Maeurer, M., et al. (2007). Validation of peptide epitope microarray experiments and extraction of quality data. Journal of Immunological Methods 328, 1-13.
– reference: Newton, M. A., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004). Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5, 155-176.
– reference: Chen, C., Grennan, K., Badner, J., Zhang, D., Gershon, E., Jin, L., et al. (2011). Removing batch effects in analysis of expression microarray data: An evaluation of six batch adjustment methods. PLoS ONE 6, e17238.
– reference: Lange, K. L., Little, R. J. A., and Taylor, J. M. G. (1989). Robust statistical modeling using the t distribution. Journal of the American Statistical Association 84, 881-896.
– reference: Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., et al. (2010). Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews. Genetics 11, 733-739.
– volume: 8
  start-page: 118
  year: 2007
  end-page: 127
  article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods
  publication-title: Biostatistics
– volume: 395
  start-page: 1
  year: 2013
  end-page: 13
  article-title: A computational framework for the analysis of peptide microarray antibody binding data with application to HIV vaccine profiling
  publication-title: Journal of Immunological Methods
– volume: 84
  start-page: 881
  year: 1989
  end-page: 896
  article-title: Robust statistical modeling using the t distribution
  publication-title: Journal of the American Statistical Association
– year: 2001
– volume: 328
  start-page: 1
  year: 2007
  end-page: 13
  article-title: Validation of peptide epitope microarray experiments and extraction of quality data
  publication-title: Journal of Immunological Methods
– volume: 80
  start-page: 267
  year: 1993
  end-page: 278
  article-title: Maximum likelihood estimation via the ECM algorithm: A general framework
  publication-title: Biometrika
– volume: 1
  start-page: 24
  year: 2003
  end-page: 27
  article-title: V(D)J recombination and the evolution of the adaptive immune system
  publication-title: PLoS Biology
– volume: 113
  start-page: 776
  year: 2004
  end-page: 782
  article-title: Microarray immunoassay: Association of clinical history, in vitro IgE function, and heterogeneity of allergenic peanut epitopes
  publication-title: Journal of Allergy and Clinical Immunology
– volume: 2
  start-page: 1
  year: 2012
  end-page: 17
  article-title: The antibody response against HIV‐1
  publication-title: Cold Spring Harbor Perspectives in Medicine
– volume: 124
  start-page: 315
  year: 2009
  end-page: 322.e3
  article-title: Development of a novel peptide microarray for large‐scale epitope mapping of food allergens
  publication-title: Journal of Allergy and Clinical Immunology
– volume: 17
  start-page: 168
  year: 2010
  end-page: 175
  article-title: Peptide microarray‐based identification of Mycobacterium tuberculosis epitope binding to HLA‐DRB1*0101, DRB1*1501, and DRB1*0401
  publication-title: Clinical and Vaccine Immunology
– volume: 6
  start-page: e17238
  year: 2011
  article-title: Removing batch effects in analysis of expression microarray data: An evaluation of six batch adjustment methods
  publication-title: PLoS ONE
– volume: 12
  start-page: 324
  year: 2011
  article-title: rapmad: Robust analysis of peptide microarray data
  publication-title: BMC Bioinformatics
– volume: 23
  start-page: 2700
  year: 2007
  end-page: 2707
  article-title: A comparison of background correction methods for two‐colour microarrays
  publication-title: Bioinformatics (Oxford, England)
– volume: 11
  start-page: 733
  year: 2010
  end-page: 739
  article-title: Tackling the widespread and critical impact of batch effects in high‐throughput data
  publication-title: Nature Reviews. Genetics
– volume: 8
  start-page: e75665
  year: 2013
  article-title: Plasma IgG to linear epitopes in the V2 and V3 regions of HIV‐1 gp120 correlate with a reduced risk of infection in the RV144 vaccine efficacy trial
  publication-title: PLoS ONE
– volume: 361
  start-page: 2209
  year: 2009
  end-page: 2220
  article-title: Vaccination with ALVAC and AIDSVAX to prevent HIV‐1 infection in Thailand
  publication-title: The New England Journal of Medicine
– volume: 313
  start-page: 1686
  year: 2015
  article-title: The immune system
  publication-title: JAMA
– volume: 85
  start-page: 699
  year: 1990
  end-page: 704
  article-title: A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
  publication-title: Journal of the American Statistical Association
– volume: 5
  start-page: 155
  year: 2004
  end-page: 176
  article-title: Detecting differential gene expression with a semiparametric hierarchical mixture method
  publication-title: Biostatistics
– volume: 37
  start-page: 23
  year: 1988
  end-page: 38
  article-title: Robust estimation of the mean and covariance matrix from data with missing values
  publication-title: Journal of the Royal Statistical Society, Series C
– volume: 194
  start-page: 1661
  year: 2006
  end-page: 1671
  article-title: Randomized, double‐blind, placebo‐controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV‐1 vaccine among injection drug users in Bangkok, Thailand
  publication-title: The Journal of Infectious Diseases
– volume: 3
  start-page: 1724
  year: 2007
  end-page: 1735
  article-title: Capturing heterogeneity in gene expression studies by surrogate variable analysis
  publication-title: PLoS Genetics
– volume: 77
  start-page: 11125
  year: 2003
  end-page: 11138
  article-title: Microarray profiling of antibody responses against simian‐human immunodeficiency virus: Postchallenge convergence of reactivities independent of host histocompatibility type and vaccine regimen
  publication-title: Journal of Virology
– volume: 98
  start-page: 5116
  year: 2001
  end-page: 5121
  article-title: Significance analysis of microarrays applied to the ionizing radiation response
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 11
  start-page: 733
  year: 2010
  ident: 2024010914422937800_biom12523-bib-0007
  article-title: Tackling the widespread and critical impact of batch effects in high-throughput data
  publication-title: Nature Reviews. Genetics
  doi: 10.1038/nrg2825
– volume: 2
  start-page: 1
  year: 2012
  ident: 2024010914422937800_biom12523-bib-0017
  article-title: The antibody response against HIV-1
  publication-title: Cold Spring Harbor Perspectives in Medicine
  doi: 10.1101/cshperspect.a007039
– volume: 3
  start-page: 1724
  year: 2007
  ident: 2024010914422937800_biom12523-bib-0008
  article-title: Capturing heterogeneity in gene expression studies by surrogate variable analysis
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.0030161
– volume: 8
  start-page: 118
  year: 2007
  ident: 2024010914422937800_biom12523-bib-0009
  article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxj037
– volume: 328
  start-page: 1
  year: 2007
  ident: 2024010914422937800_biom12523-bib-0014
  article-title: Validation of peptide epitope microarray experiments and extraction of quality data
  publication-title: Journal of Immunological Methods
  doi: 10.1016/j.jim.2007.07.015
– volume: 194
  start-page: 1661
  year: 2006
  ident: 2024010914422937800_biom12523-bib-0018
  article-title: Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand
  publication-title: The Journal of Infectious Diseases
  doi: 10.1086/508748
– volume: 1
  start-page: 24
  year: 2003
  ident: 2024010914422937800_biom12523-bib-0012
  article-title: V(D)J recombination and the evolution of the adaptive immune system
  publication-title: PLoS Biology
  doi: 10.1371/journal.pbio.0000016
– volume: 17
  start-page: 168
  year: 2010
  ident: 2024010914422937800_biom12523-bib-0002
  article-title: Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401
  publication-title: Clinical and Vaccine Immunology
  doi: 10.1128/CVI.00208-09
– volume: 395
  start-page: 1
  year: 2013
  ident: 2024010914422937800_biom12523-bib-0004
  article-title: A computational framework for the analysis of peptide microarray antibody binding data with application to HIV vaccine profiling
  publication-title: Journal of Immunological Methods
  doi: 10.1016/j.jim.2013.06.001
– volume: 113
  start-page: 776
  year: 2004
  ident: 2024010914422937800_biom12523-bib-0022
  article-title: Microarray immunoassay: Association of clinical history, in vitro IgE function, and heterogeneity of allergenic peanut epitopes
  publication-title: Journal of Allergy and Clinical Immunology
  doi: 10.1016/j.jaci.2003.12.588
– volume: 124
  start-page: 315
  year: 2009
  ident: 2024010914422937800_biom12523-bib-0010
  article-title: Development of a novel peptide microarray for large-scale epitope mapping of food allergens
  publication-title: Journal of Allergy and Clinical Immunology
  doi: 10.1016/j.jaci.2009.05.024
– volume: 84
  start-page: 881
  year: 1989
  ident: 2024010914422937800_biom12523-bib-0006
  article-title: Robust statistical modeling using the t distribution
  publication-title: Journal of the American Statistical Association
– volume: 85
  start-page: 699
  year: 1990
  ident: 2024010914422937800_biom12523-bib-0025
  article-title: A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1990.10474930
– volume: 313
  start-page: 1686
  year: 2015
  ident: 2024010914422937800_biom12523-bib-0023
  article-title: The immune system
  publication-title: JAMA
  doi: 10.1001/jama.2015.2940
– volume: 5
  start-page: 155
  year: 2004
  ident: 2024010914422937800_biom12523-bib-0016
  article-title: Detecting differential gene expression with a semiparametric hierarchical mixture method
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/5.2.155
– volume: 98
  start-page: 5116
  year: 2001
  ident: 2024010914422937800_biom12523-bib-0024
  article-title: Significance analysis of microarrays applied to the ionizing radiation response
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.091062498
– volume: 6
  start-page: e17238
  year: 2011
  ident: 2024010914422937800_biom12523-bib-0001
  article-title: Removing batch effects in analysis of expression microarray data: An evaluation of six batch adjustment methods
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0017238
– volume: 8
  start-page: e75665
  year: 2013
  ident: 2024010914422937800_biom12523-bib-0003
  article-title: Plasma IgG to linear epitopes in the V2 and V3 regions of HIV-1 gp120 correlate with a reduced risk of infection in the RV144 vaccine efficacy trial
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0075665
– volume: 23
  start-page: 2700
  year: 2007
  ident: 2024010914422937800_biom12523-bib-0021
  article-title: A comparison of background correction methods for two-colour microarrays
  publication-title: Bioinformatics (Oxford, England)
– year: 2001
  ident: 2024010914422937800_biom12523-bib-0005
– volume: 361
  start-page: 2209
  year: 2009
  ident: 2024010914422937800_biom12523-bib-0020
  article-title: Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand
  publication-title: The New England Journal of Medicine
  doi: 10.1056/NEJMoa0908492
– volume: 37
  start-page: 23
  year: 1988
  ident: 2024010914422937800_biom12523-bib-0011
  article-title: Robust estimation of the mean and covariance matrix from data with missing values
  publication-title: Journal of the Royal Statistical Society, Series C
– volume: 80
  start-page: 267
  year: 1993
  ident: 2024010914422937800_biom12523-bib-0013
  article-title: Maximum likelihood estimation via the ECM algorithm: A general framework
  publication-title: Biometrika
  doi: 10.1093/biomet/80.2.267
– volume: 12
  start-page: 324
  year: 2011
  ident: 2024010914422937800_biom12523-bib-0019
  article-title: rapmad: Robust analysis of peptide microarray data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-324
– volume: 77
  start-page: 11125
  year: 2003
  ident: 2024010914422937800_biom12523-bib-0015
  article-title: Microarray profiling of antibody responses against simian-human immunodeficiency virus: Postchallenge convergence of reactivities independent of host histocompatibility type and vaccine regimen
  publication-title: Journal of Virology
  doi: 10.1128/JVI.77.20.11125-11138.2003
– reference: 14551913 - PLoS Biol. 2003 Oct;1(1):E16
– reference: 22315717 - Cold Spring Harb Perspect Med. 2012 Jan;2(1):a007039
– reference: 20838408 - Nat Rev Genet. 2010 Oct;11(10 ):733-9
– reference: 17720982 - Bioinformatics. 2007 Oct 15;23(20):2700-7
– reference: 14512560 - J Virol. 2003 Oct;77(20):11125-38
– reference: 24086607 - PLoS One. 2013 Sep 26;8(9):e75665
– reference: 25919540 - JAMA. 2015 Apr 28;313(16):1686
– reference: 16632515 - Biostatistics. 2007 Jan;8(1):118-27
– reference: 19843557 - N Engl J Med. 2009 Dec 3;361(23):2209-20
– reference: 15100687 - J Allergy Clin Immunol. 2004 Apr;113(4):776-82
– reference: 21816082 - BMC Bioinformatics. 2011 Aug 04;12:324
– reference: 15054023 - Biostatistics. 2004 Apr;5(2):155-76
– reference: 23770318 - J Immunol Methods. 2013 Sep 30;395(1-2):1-13
– reference: 21386892 - PLoS One. 2011 Feb 28;6(2):e17238
– reference: 17765917 - J Immunol Methods. 2007 Dec 1;328(1-2):1-13
– reference: 19577281 - J Allergy Clin Immunol. 2009 Aug;124(2):315-22, 322.e1-3
– reference: 11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21
– reference: 17109337 - J Infect Dis. 2006 Dec 15;194(12):1661-71
– reference: 19864486 - Clin Vaccine Immunol. 2010 Jan;17(1):168-75
– reference: 17907809 - PLoS Genet. 2007 Sep;3(9):1724-35
SSID ssj0009502
Score 2.1867044
Snippet The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array...
Summary The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to...
Summary The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1206
SubjectTerms Adaptive control
AIDS Vaccines - immunology
Antibodies
Antibodies - analysis
Antibody response
Bayes Theorem
Bayesian analysis
Bayesian hierarchical model
BIOMETRIC METHODOLOGY
biometry
blood serum
Classification
Computer Simulation
data collection
False Positive Reactions
Humans
Immune system
Immunoassay
Immunoassay - statistics & numerical data
immunoassays
Immunogenicity
Mapping
microarray technology
Mixture modeling
model validation
Models, Statistical
Outliers (statistics)
pathogens
Peptide microarray
Peptides
probability
Probes
Protein Array Analysis
Proteins
Randomized Controlled Trials as Topic
ROC Curve
Screens
Sensitivity
Tiling
Vaccines
Viruses
Title Bayesian hierarchical modeling for subject-level response classification in peptide microarray immunoassays
URI https://api.istex.fr/ark:/67375/WNG-STJ9S1G3-0/fulltext.pdf
https://www.jstor.org/stable/44695338
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12523
https://www.ncbi.nlm.nih.gov/pubmed/27061097
https://www.proquest.com/docview/1853054104
https://www.proquest.com/docview/1923740313
https://www.proquest.com/docview/1853738522
https://www.proquest.com/docview/1868328304
https://www.proquest.com/docview/2000445197
https://pubmed.ncbi.nlm.nih.gov/PMC5617895
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1541-0420
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: ABDBF
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0006-341X
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9RAFL2UFqE-WF1tjVYZUQSFLPnOBHyxYlsLW8G2uC8SMh-LS9tsSXbB9cmf4G_0l3jvTBJ3dS3oW2BuEmZyZ-65mXPPADzLMKj7kZ-5HKMhJihKuUJmwg2EClWCEUfGVO88OE4Oz6KjYTxcg1dtLYzVh-h-uNHMMOs1TfBC1AuTnMrT-xieA5L69MPE5FMfggXFXc9KhRO5K_KHjTYp0Xh-3boUjTZoYL-0xMRVkPNP5uQiojUhaX8LPrWdsUyU8_5sKvry6286j__b29twq8Gq7LV1rjuwpsse3LCnV857cHPQSb7WPdgk2GpVn-_C5V4x11SeyeiobbNZgb7AzLE7GCsZImVWzwT9A_rx7fsFEZdYZdm6mkkC9MRgMk7DxiW7IuqN0uyS2INFVRVzNqa6lgkaFvP6Hpztvz19c-g2Bzu4EtFj6EoRKRWlARe-4KOIhwlmsZxrP01S6atIpwqBlgqs1o8X6qgYxTLmuoi9UYooYxvWy0mp7wPDuxIp4jBBGBNJ5XNMWHUQa-6lWo9k7MCL9gPnslE9p8M3LvI2-6GRzc3IOvC0s72yWh8rrZ4bP-lMiuqc2HFpnH88PshPTo-yE_8gzD0Hto0jdYaYeROZlzuw23pW3qwYdU64CeEz9mJ1MwLxNCKhTQeedM24FND-TlHqycw-gsSJguA6mwTXcB7Sa_5mE5htfqpodmDH-nvXhyD1SKAfW9KlmdAZkFz5cks5_mxky2OqRs3wi7w0jn7NEOd7794PzNWDfzF-CJvoMoklG-3C-rSa6UcIGafisVkafgJ6DmhF
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL2CTYjxwEdhEBhgBEICKVXiOIn7yBBbN9YisU70LUpsV1Tb0qkfEuWJn8Bv5Jdwr52GFsokeKvkm1Sxr32P7XPPBXjRwqAeirDlS4yGuEHR2i9Uq_B5oSOdYMRRMeU7d7pJ-0Qc9uN-xc2hXBinD1EfuNHMsOs1TXA6kF6a5ZSf3sT4zKOrsCkS3KgQJvrIlzR3AycWTvQuEfYrdVIi8vx6diUebVLXfllQE9eBzj-5k8uY1galvVuu8urEahkSF-W0OZsWTfX1N6XH__7e23CzgqvsjfOvO3DFlA245gpYzhtwo1Orvk4asEXI1Qk_34Xz3XxuKEOTUbVte1-B7sBs5R0MlwzBMpvMCjoG-vHt-xlxl9jYEXYNU4TpicRk_YYNS3ZB7Btt2DkRCPPxOJ-zIaW2jNAwn0_uwcneu97btl_VdvAVAsjIV4XQWqRcFmEhB0JGOH5cShOmSapCLUyqEWtp7uR-gsiIfBCrWJo8DgYpAo1t2ChHpXkADJ9KVBFHCSIZoXQocc9qeGxkkBozULEHrxYjnKlK-Jzqb5xliw0Q9Wxme9aD57XthZP7WGv10jpKbZKPT4kgl8bZp-5-dtw7bB2H-1EWeLBtPak2xM038XmlBzsL18qqRWOSEXRCBI1fsb4ZsXgqSGvTg2d1M64GdMWTl2Y0c68gfSLOL7NJcBmXEf3N32y4vemnpGYP7juHr7-BpwFp9GNLujIVagNSLF9tKYefrXJ5TAmpLRyR19bTL-nibPfgQ8f-evgvxk_hervXOcqODrrvH8EWuk_iuEc7sDEdz8xjRJDT4oldJ34C1VRsZg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE2h74FIYCwwwAiGBlCoXO3EeGaO7QAtim-hblNiuqLalVdJKlCd-Ar-RX8I5dhpaKJPgLZJPEtk59vkcf-c7hDxLIKj7zE9cAdEQNihKublMcjfIVagiiDiSY75ztxcdnLKjPu_X3BzMhbH6EM0PN5wZZr3GCa7HarAwyzE_vQ3xOQivknXGE4GMvr2PwYLmrmfFwpHexfx-rU6KRJ5f9y7Fo3Uc2i9zauIq0Pknd3IR05qg1LlpK69WRssQuShn7ekkb8uvvyk9_nd_b5EbNVylr6x_3SZXdNEi12wBy1mLbHYb1deqRTYQuVrh5zvkYjebaczQpFht25xXgDtQU3kHwiUFsEyraY6_gX58-36O3CVaWsKuphIxPZKYjN_QYUHHyL5Rml4ggTAry2xGh5jaMgLDbFbdJaedNyevD9y6toMrAUCGrsyZUiwORO7nYsBEGMFGVgjtx1EsfcV0rABrqcDK_XihZtmASy50xr1BDEBji6wVo0JvEwp3RTLnYQRIhknlC9iz6oBr4cVaDyR3yIv5F05lLXyO9TfO0_kGCEc2NSPrkKeN7djKfay0em4cpTHJyjMkyMU8_dTbT49PjpJjfz9MPYdsGU9qDGHzjXxe4ZCduWul9aJRpQidAEFDL1Y3AxaPGWptOuRJ0wyrAR7xZIUeTe0jUJ8oCC6ziWAZFyG-5m82gTnpx6Rmh9yzDt_0IYg91OiHlnhpKjQGqFi-3FIMPxvlco4JqQl8kZfG0y8Z4nT38H3XXN3_F-PH5PqHvU767rD39gHZAO-JLPVoh6xNyql-CABykj8yy8RP66pr6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+hierarchical+modeling+for+subject-level+response+classification+in+peptide+microarray+immunoassays&rft.jtitle=Biometrics&rft.au=Imholte%2C+Gregory&rft.au=Gottardo%2C+Raphael&rft.date=2016-12-01&rft.issn=1541-0420&rft.eissn=1541-0420&rft.volume=72&rft.issue=4&rft.spage=1206&rft_id=info:doi/10.1111%2Fbiom.12523&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon