Resolution limit of cylinder diameter estimation by diffusion MRI: The impact of gradient waveform and orientation dispersion
Diffusion MRI has been proposed as a non‐invasive technique for axonal diameter mapping. However, accurate estimation of small diameters requires strong gradients, which is a challenge for the transition of the technique from preclinical to clinical MRI scanners, since these have weaker gradients. I...
Saved in:
| Published in | NMR in biomedicine Vol. 30; no. 7 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Wiley Subscription Services, Inc
01.07.2017
John Wiley and Sons Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0952-3480 1099-1492 1099-1492 |
| DOI | 10.1002/nbm.3711 |
Cover
| Abstract | Diffusion MRI has been proposed as a non‐invasive technique for axonal diameter mapping. However, accurate estimation of small diameters requires strong gradients, which is a challenge for the transition of the technique from preclinical to clinical MRI scanners, since these have weaker gradients. In this work, we develop a framework to estimate the lower bound for accurate diameter estimation, which we refer to as the resolution limit. We analyse only the contribution from the intra‐axonal space and assume that axons can be represented by impermeable cylinders. To address the growing interest in using techniques for diffusion encoding that go beyond the conventional single diffusion encoding (SDE) sequence, we present a generalised analysis capable of predicting the resolution limit regardless of the gradient waveform. Using this framework, waveforms were optimised to minimise the resolution limit. The results show that, for parallel cylinders, the SDE experiment is optimal in terms of yielding the lowest possible resolution limit. In the presence of orientation dispersion, diffusion encoding sequences with square‐wave oscillating gradients were optimal. The resolution limit for standard clinical MRI scanners (maximum gradient strength 60–80 mT/m) was found to be between 4 and 8 μm, depending on the noise levels and the level of orientation dispersion. For scanners with a maximum gradient strength of 300 mT/m, the limit was reduced to between 2 and 5 μm.
Accurate quantification of the axon diameter demands strong gradients and can thus be challenging for clinical MRI scanners. We define the resolution limit as the lower bound for accurate diameter estimation and predict its value for diffusion encoding techniques that go beyond the conventional single diffusion encoding sequence. In standard clinical MRI scanners (maximum gradient strength 60‐80 mT/m), the resolution limit was found to be between 4 and 8 μm, depending on noise levels and the level of orientation dispersion. |
|---|---|
| AbstractList | Diffusion MRI has been proposed as a non-invasive technique for axonal diameter mapping. However, accurate estimation of small diameters requires strong gradients, which is a challenge for the transition of the technique from preclinical to clinical MRI scanners, since these have weaker gradients. In this work, we develop a framework to estimate the lower bound for accurate diameter estimation, which we refer to as the resolution limit. We analyse only the contribution from the intra-axonal space and assume that axons can be represented by impermeable cylinders. To address the growing interest in using techniques for diffusion encoding that go beyond the conventional single diffusion encoding (SDE) sequence, we present a generalised analysis capable of predicting the resolution limit regardless of the gradient waveform. Using this framework, waveforms were optimised to minimise the resolution limit. The results show that, for parallel cylinders, the SDE experiment is optimal in terms of yielding the lowest possible resolution limit. In the presence of orientation dispersion, diffusion encoding sequences with square-wave oscillating gradients were optimal. The resolution limit for standard clinical MRI scanners (maximum gradient strength 60-80mT/m) was found to be between 4 and 8μm, depending on the noise levels and the level of orientation dispersion. For scanners with a maximum gradient strength of 300mT/m, the limit was reduced to between 2 and 5μm. Diffusion MRI has been proposed as a non-invasive technique for axonal diameter mapping. However, accurate estimation of small diameters requires strong gradients, which is a challenge for the transition of the technique from preclinical to clinical MRI scanners, since these have weaker gradients. In this work, we develop a framework to estimate the lower bound for accurate diameter estimation, which we refer to as the resolution limit. We analyse only the contribution from the intra-axonal space and assume that axons can be represented by impermeable cylinders. To address the growing interest in using techniques for diffusion encoding that go beyond the conventional single diffusion encoding (SDE) sequence, we present a generalised analysis capable of predicting the resolution limit regardless of the gradient waveform. Using this framework, waveforms were optimised to minimise the resolution limit. The results show that, for parallel cylinders, the SDE experiment is optimal in terms of yielding the lowest possible resolution limit. In the presence of orientation dispersion, diffusion encoding sequences with square-wave oscillating gradients were optimal. The resolution limit for standard clinical MRI scanners (maximum gradient strength 60-80 mT/m) was found to be between 4 and 8 μm, depending on the noise levels and the level of orientation dispersion. For scanners with a maximum gradient strength of 300 mT/m, the limit was reduced to between 2 and 5 μm.Diffusion MRI has been proposed as a non-invasive technique for axonal diameter mapping. However, accurate estimation of small diameters requires strong gradients, which is a challenge for the transition of the technique from preclinical to clinical MRI scanners, since these have weaker gradients. In this work, we develop a framework to estimate the lower bound for accurate diameter estimation, which we refer to as the resolution limit. We analyse only the contribution from the intra-axonal space and assume that axons can be represented by impermeable cylinders. To address the growing interest in using techniques for diffusion encoding that go beyond the conventional single diffusion encoding (SDE) sequence, we present a generalised analysis capable of predicting the resolution limit regardless of the gradient waveform. Using this framework, waveforms were optimised to minimise the resolution limit. The results show that, for parallel cylinders, the SDE experiment is optimal in terms of yielding the lowest possible resolution limit. In the presence of orientation dispersion, diffusion encoding sequences with square-wave oscillating gradients were optimal. The resolution limit for standard clinical MRI scanners (maximum gradient strength 60-80 mT/m) was found to be between 4 and 8 μm, depending on the noise levels and the level of orientation dispersion. For scanners with a maximum gradient strength of 300 mT/m, the limit was reduced to between 2 and 5 μm. Diffusion MRI has been proposed as a non-invasive technique for axonal diameter mapping. However, accurate estimation of small diameters requires strong gradients, which is a challenge for the transition of the technique from preclinical to clinical MRI scanners, since these have weaker gradients. In this work, we develop a framework to estimate the lower bound for accurate diameter estimation, which we refer to as the resolution limit. We analyse only the contribution from the intra-axonal space and assume that axons can be represented by impermeable cylinders. To address the growing interest in using techniques for diffusion encoding that go beyond the conventional single diffusion encoding (SDE) sequence, we present a generalised analysis capable of predicting the resolution limit regardless of the gradient waveform. Using this framework, wave-forms were optimised to minimise the resolution limit. There sults show that, for parallel cylinders, the SDE experiment is optimal in terms of yielding the lowest possible resolution limit. In the presence of orientation dispersion, diffusion encoding sequences with square-wave oscillating gradients were optimal. The resolution limit for standard clinical MRI scanners (maximum gradient strength 60-80mT/m) was found to be between 4 and 8 mu m, depending on the noise levels and the level of orientation dispersion. For scanners with a maximum gradient strength of 300mT/m, the limit was reduced to between 2 and 5 mu m. Diffusion MRI has been proposed as a non‐invasive technique for axonal diameter mapping. However, accurate estimation of small diameters requires strong gradients, which is a challenge for the transition of the technique from preclinical to clinical MRI scanners, since these have weaker gradients. In this work, we develop a framework to estimate the lower bound for accurate diameter estimation, which we refer to as the resolution limit. We analyse only the contribution from the intra‐axonal space and assume that axons can be represented by impermeable cylinders. To address the growing interest in using techniques for diffusion encoding that go beyond the conventional single diffusion encoding (SDE) sequence, we present a generalised analysis capable of predicting the resolution limit regardless of the gradient waveform. Using this framework, waveforms were optimised to minimise the resolution limit. The results show that, for parallel cylinders, the SDE experiment is optimal in terms of yielding the lowest possible resolution limit. In the presence of orientation dispersion, diffusion encoding sequences with square‐wave oscillating gradients were optimal. The resolution limit for standard clinical MRI scanners (maximum gradient strength 60–80 mT/m) was found to be between 4 and 8 μm, depending on the noise levels and the level of orientation dispersion. For scanners with a maximum gradient strength of 300 mT/m, the limit was reduced to between 2 and 5 μm. Diffusion MRI has been proposed as a non-invasive technique for axonal diameter mapping. However, accurate estimation of small diameters requires strong gradients, which is a challenge for the transition of the technique from preclinical to clinical MRI scanners, since these have weaker gradients. In this work, we develop a framework to estimate the lower bound for accurate diameter estimation, which we refer to as the resolution limit. We analyse only the contribution from the intra-axonal space and assume that axons can be represented by impermeable cylinders. To address the growing interest in using techniques for diffusion encoding that go beyond the conventional single diffusion encoding (SDE) sequence, we present a generalised analysis capable of predicting the resolution limit regardless of the gradient waveform. Using this framework, waveforms were optimised to minimise the resolution limit. The results show that, for parallel cylinders, the SDE experiment is optimal in terms of yielding the lowest possible resolution limit. In the presence of orientation dispersion, diffusion encoding sequences with square-wave oscillating gradients were optimal. The resolution limit for standard clinical MRI scanners (maximum gradient strength 60-80mT/m) was found to be between 4 and 8µm, depending on the noise levels and the level of orientation dispersion. For scanners with a maximum gradient strength of 300mT/m, the limit was reduced to between 2 and 5µm. Diffusion MRI has been proposed as a non‐invasive technique for axonal diameter mapping. However, accurate estimation of small diameters requires strong gradients, which is a challenge for the transition of the technique from preclinical to clinical MRI scanners, since these have weaker gradients. In this work, we develop a framework to estimate the lower bound for accurate diameter estimation, which we refer to as the resolution limit. We analyse only the contribution from the intra‐axonal space and assume that axons can be represented by impermeable cylinders. To address the growing interest in using techniques for diffusion encoding that go beyond the conventional single diffusion encoding (SDE) sequence, we present a generalised analysis capable of predicting the resolution limit regardless of the gradient waveform. Using this framework, waveforms were optimised to minimise the resolution limit. The results show that, for parallel cylinders, the SDE experiment is optimal in terms of yielding the lowest possible resolution limit. In the presence of orientation dispersion, diffusion encoding sequences with square‐wave oscillating gradients were optimal. The resolution limit for standard clinical MRI scanners (maximum gradient strength 60–80 mT/m) was found to be between 4 and 8 μm, depending on the noise levels and the level of orientation dispersion. For scanners with a maximum gradient strength of 300 mT/m, the limit was reduced to between 2 and 5 μm. Accurate quantification of the axon diameter demands strong gradients and can thus be challenging for clinical MRI scanners. We define the resolution limit as the lower bound for accurate diameter estimation and predict its value for diffusion encoding techniques that go beyond the conventional single diffusion encoding sequence. In standard clinical MRI scanners (maximum gradient strength 60‐80 mT/m), the resolution limit was found to be between 4 and 8 μm, depending on noise levels and the level of orientation dispersion. |
| Author | Nilsson, Markus Topgaard, Daniel Drobnjak, Ivana Lasič, Samo Westin, Carl‐Fredrik |
| AuthorAffiliation | 5 Department of Biomedical Engineering Linköping University Linköping Sweden 4 Division of Physical Chemistry, Department of Chemistry Lund University Lund Sweden 3 University College London London UK 6 Brigham and Women's Hospital Harvard Medical School Boston MA USA 1 Clinical Sciences Lund, Department of Radiology Lund University Lund Sweden 2 CR Development AB Lund Sweden |
| AuthorAffiliation_xml | – name: 4 Division of Physical Chemistry, Department of Chemistry Lund University Lund Sweden – name: 3 University College London London UK – name: 1 Clinical Sciences Lund, Department of Radiology Lund University Lund Sweden – name: 2 CR Development AB Lund Sweden – name: 6 Brigham and Women's Hospital Harvard Medical School Boston MA USA – name: 5 Department of Biomedical Engineering Linköping University Linköping Sweden |
| Author_xml | – sequence: 1 givenname: Markus orcidid: 0000-0002-3140-8223 surname: Nilsson fullname: Nilsson, Markus email: markus.nilsson@med.lu.se organization: Lund University – sequence: 2 givenname: Samo surname: Lasič fullname: Lasič, Samo organization: CR Development AB – sequence: 3 givenname: Ivana surname: Drobnjak fullname: Drobnjak, Ivana organization: University College London – sequence: 4 givenname: Daniel surname: Topgaard fullname: Topgaard, Daniel organization: Lund University – sequence: 5 givenname: Carl‐Fredrik surname: Westin fullname: Westin, Carl‐Fredrik organization: Harvard Medical School |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28318071$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139612$$DView record from Swedish Publication Index |
| BookMark | eNp9kktv1DAQxyNURB8g8QlQJC7lkMVOnKzNoVIpr0otSFXhOnKc8a4rJw520tUe-O44u0tFK8rFj_FvXv_xYbLXuQ6T5CUlM0pI_rar21kxp_RJckCJEBllIt9LDogo86xgnOwnhyHcEEI4K_JnyX7OC8rJnB4kv64wODsOxnWpNa0ZUqdTtbama9CnjZEtDvGAYTCt3FD1Opq1HsN0ubw6f5deLzE1bS_VxnnhZWOwG9KVvEXtfJvKrkmdn2zbCI0JPfrJ_3nyVEsb8MVuP0q-f_p4ffYlu_j2-fzs9CJTZVXRjJKyQSZrognPa4GaKM7KqqziQUiCSkkthMoFFlSWilOtqjpvGBclIiW6OErebOOOXS_XK2kt9D425NdACUwSQpQQJgkjK7dsWGE_1negkwZ65wdpwWNA6dUS7AgBIVLWqE1vAaRgOme1AiY1j0vJoC4pAzYvkCgkuRJFzJE9muOD-XEKzi_AmhFoISqaR_5ky0e4xUZFKb2090u799KZJSzcLZSMl4RNTR3vAnj3c4zThNYEhdbKDt0YgPK5oIJSwiP6-gF640bfxfEAFYRXc07LqYNXf1d0V8qfnxWB2RZQ3oXgUYMy2_nHAo39l-7HDxz-M6KdfCtjcf0oB1_fX2743-3gAI0 |
| CitedBy_id | crossref_primary_10_1002_jmri_27119 crossref_primary_10_1016_j_jneumeth_2020_108989 crossref_primary_10_1177_0271678X18759859 crossref_primary_10_3389_fnins_2022_874023 crossref_primary_10_1002_nbm_4170 crossref_primary_10_1016_j_jmr_2019_01_007 crossref_primary_10_1016_j_jneumeth_2020_108861 crossref_primary_10_1016_j_neuroimage_2020_117619 crossref_primary_10_1002_mrm_30029 crossref_primary_10_1038_s41598_019_45235_7 crossref_primary_10_1016_j_neuroimage_2022_118958 crossref_primary_10_1007_s00429_018_1658_5 crossref_primary_10_1016_j_neuroimage_2020_116533 crossref_primary_10_1016_j_neuroimage_2020_117107 crossref_primary_10_1053_j_sult_2021_07_006 crossref_primary_10_1016_j_neuroimage_2021_117981 crossref_primary_10_1016_j_neuroimage_2018_12_025 crossref_primary_10_1109_TMI_2019_2894398 crossref_primary_10_1016_j_neuroimage_2018_06_049 crossref_primary_10_1016_j_neuroimage_2019_116406 crossref_primary_10_1016_j_neuroimage_2023_119930 crossref_primary_10_3389_fnins_2023_1258408 crossref_primary_10_1016_j_jmr_2018_03_001 crossref_primary_10_1016_j_neuroimage_2021_118718 crossref_primary_10_1002_mrm_28053 crossref_primary_10_1111_jth_14637 crossref_primary_10_1002_mrm_28216 crossref_primary_10_1016_j_neuroimage_2021_118323 crossref_primary_10_1002_hbm_26420 crossref_primary_10_1002_nbm_5087 crossref_primary_10_1002_hbm_26143 crossref_primary_10_1002_mrm_27551 crossref_primary_10_1002_mrm_27714 crossref_primary_10_1016_j_neuroimage_2023_120409 crossref_primary_10_1103_PhysRevApplied_14_024088 crossref_primary_10_1016_j_neuroimage_2021_118530 crossref_primary_10_1093_cercor_bhac515 crossref_primary_10_3389_fphy_2017_00058 crossref_primary_10_1007_s00429_019_01961_2 crossref_primary_10_1088_1361_6560_aba0cc crossref_primary_10_1016_j_neuroimage_2022_119137 crossref_primary_10_1016_j_neuroimage_2021_117849 crossref_primary_10_1002_nbm_4827 crossref_primary_10_1016_j_jocn_2022_05_027 crossref_primary_10_3389_fnins_2021_646034 crossref_primary_10_1002_jmri_29144 crossref_primary_10_1016_j_neuroimage_2021_118424 crossref_primary_10_1002_nbm_4304 crossref_primary_10_1016_j_jmro_2023_100113 crossref_primary_10_1016_j_neuroimage_2024_120553 crossref_primary_10_1002_hbm_24542 crossref_primary_10_1002_mrm_27451 crossref_primary_10_1002_nbm_3841 crossref_primary_10_1002_mrm_29991 crossref_primary_10_1016_j_neuroimage_2017_11_028 crossref_primary_10_1016_j_neuroimage_2022_118906 crossref_primary_10_1002_mrm_29637 crossref_primary_10_1002_mrm_29118 crossref_primary_10_1002_nbm_5229 crossref_primary_10_1016_j_neuroimage_2018_02_055 crossref_primary_10_3390_biology11030454 crossref_primary_10_1016_j_mri_2021_10_014 crossref_primary_10_1038_s41398_024_02810_5 crossref_primary_10_1002_mrm_30180 crossref_primary_10_7554_eLife_51101 crossref_primary_10_1002_mrm_28014 crossref_primary_10_1016_j_neuroimage_2018_05_047 crossref_primary_10_1016_j_neuroimage_2020_116835 crossref_primary_10_3389_fphy_2025_1516630 crossref_primary_10_1002_hbm_25859 crossref_primary_10_1038_s41598_018_19475_y crossref_primary_10_3389_fnins_2023_1209521 crossref_primary_10_1016_j_jmro_2023_100136 crossref_primary_10_1016_j_neuroimage_2017_07_060 crossref_primary_10_1016_j_media_2021_101988 crossref_primary_10_1103_PhysRevApplied_15_014045 crossref_primary_10_12688_f1000research_15073_1 crossref_primary_10_1007_s00429_021_02358_w crossref_primary_10_1016_j_neuroimage_2018_09_075 crossref_primary_10_1371_journal_pone_0255711 crossref_primary_10_1016_j_pneurobio_2021_102186 crossref_primary_10_1016_j_jmr_2018_09_010 crossref_primary_10_1002_nbm_5208 crossref_primary_10_1007_s10334_018_0685_9 crossref_primary_10_1002_mrm_28963 crossref_primary_10_1016_j_neuroimage_2019_02_036 crossref_primary_10_3389_fphy_2022_812115 crossref_primary_10_1002_mrm_30351 crossref_primary_10_1002_mp_17453 crossref_primary_10_1016_j_jneumeth_2020_108951 crossref_primary_10_1016_j_media_2023_102767 crossref_primary_10_1002_mrm_27463 crossref_primary_10_1002_nbm_4187 crossref_primary_10_3389_fninf_2023_1208073 crossref_primary_10_1016_j_neuroimage_2020_117197 crossref_primary_10_1016_j_neuroimage_2023_120338 crossref_primary_10_1002_hbm_25359 crossref_primary_10_1016_j_neuroimage_2018_04_075 crossref_primary_10_1016_j_neuroimage_2019_116186 crossref_primary_10_1016_j_neuroimage_2021_118183 crossref_primary_10_1016_j_jneumeth_2020_108947 |
| Cites_doi | 10.1016/j.neuroimage.2012.06.042 10.1006/jmra.1995.1091 10.1103/PhysRevB.51.15074 10.1016/j.jmr.2010.05.017 10.1063/1.1642604 10.1152/ajplegacy.1939.127.1.131 10.1038/nmat2141 10.1002/mrm.20274 10.1038/nbt.3714 10.1016/j.neuroimage.2014.09.006 10.1016/j.neuroimage.2014.09.057 10.1002/nbm.3462 10.1002/mrm.10609 10.1002/nbm.3505 10.1016/j.neuroimage.2013.05.078 10.1016/j.jmr.2012.10.015 10.1016/0021-9797(72)90010-0 10.1016/B978-0-12-374709-9.00005-5 10.1016/j.neuroimage.2016.01.018 10.1016/j.neuroimage.2010.05.043 10.1007/s00429-013-0600-0 10.1063/1.1680931 10.1016/j.neuroimage.2016.04.052 10.1002/nbm.1711 10.1371/journal.pone.0141825 10.2214/AJR.12.9231 10.1007/s10334-013-0371-x 10.1006/jmre.2000.2203 10.1002/mrm.24501 10.1109/TMI.2007.907278 10.1016/j.neuroimage.2015.03.061 10.1016/j.jmr.2014.06.017 10.1002/mrm.22782 10.1002/(SICI)1522-2594(200002)43:2<191::AID-MRM5>3.0.CO;2-B 10.1016/j.jmr.2009.07.015 10.1016/j.jmr.2006.06.023 10.1002/mrm.24395 10.1063/1.4871193 10.1002/mrm.21577 10.1113/jphysiol.1951.sp004655 10.1016/j.neuroimage.2016.07.038 10.1016/j.neuroimage.2016.02.039 10.1063/1.2905765 10.1016/j.jmr.2009.09.006 10.1007/s00429-014-0974-7 10.1016/0006-8993(92)90178-C 10.1016/j.neuroimage.2013.03.074 10.1021/j100233a019 10.1063/1.4913502 10.1063/1.1695690 10.1371/journal.pone.0133201 10.3389/fphy.2014.00011 10.1016/j.jmr.2011.02.022 10.1063/1.1668160 10.1103/PhysRevA.37.2877 10.1007/BF02956173 10.1016/S0006-3495(79)85164-4 10.1016/j.jmr.2010.06.002 10.1002/nbm.1795 10.1016/j.neuroimage.2012.03.072 10.1016/j.neuroimage.2008.01.017 10.1006/jmra.1995.9959 10.1016/j.neuroimage.2011.01.084 10.1002/mrm.25631 10.1002/nbm.2999 10.1002/hbm.22099 10.1016/j.neuroimage.2013.05.057 10.1073/pnas.1316944111 10.1103/RevModPhys.79.1077 10.1063/1.3454131 10.1016/0921-4526(93)90124-O 10.1002/mrm.25901 10.1523/JNEUROSCI.5200-08.2009 10.1002/mrm.24529 10.1016/j.jmr.2009.04.014 10.1002/nbm.778 10.1103/PhysRev.94.630 10.1016/0022-2364(90)90376-K 10.1006/jmra.1995.0754 10.1103/PhysRevA.44.7459 |
| ContentType | Journal Article |
| Copyright | Copyright © 2017 The Authors. Published by John Wiley & Sons Ltd. Copyright © 2017 The Authors. NMR in Biomedicine Published by John Wiley & Sons Ltd. Copyright © 2017 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2017 The Authors. Published by John Wiley & Sons Ltd. – notice: Copyright © 2017 The Authors. NMR in Biomedicine Published by John Wiley & Sons Ltd. – notice: Copyright © 2017 John Wiley & Sons, Ltd. |
| CorporateAuthor | Multidimensional microstructure imaging Section V Diagnostic Radiology, (Lund) Institutionen för kliniska vetenskaper, Lund Lunds universitet Naturvetenskapliga fakulteten Physical and theoretical chemistry Faculty of Science Fysikalisk kemi Lund University Sektion V Medical Radiation Physics, Lund Department of Chemistry Kemiska institutionen Department of Clinical Sciences, Lund Diagnostisk radiologi, Lund Physical Chemistry Faculty of Medicine Medicinska fakulteten Enheten för fysikalisk och teoretisk kemi MR Physics Medicinsk strålningsfysik, Lund |
| CorporateAuthor_xml | – name: Faculty of Medicine – name: Medicinska fakulteten – name: Naturvetenskapliga fakulteten – name: Medicinsk strålningsfysik, Lund – name: Physical and theoretical chemistry – name: Physical Chemistry – name: Department of Chemistry – name: MR Physics – name: Enheten för fysikalisk och teoretisk kemi – name: Institutionen för kliniska vetenskaper, Lund – name: Kemiska institutionen – name: Diagnostisk radiologi, Lund – name: Lunds universitet – name: Faculty of Science – name: Diagnostic Radiology, (Lund) – name: Fysikalisk kemi – name: Department of Clinical Sciences, Lund – name: Lund University – name: Sektion V – name: Section V – name: Medical Radiation Physics, Lund – name: Multidimensional microstructure imaging |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 5PM ABXSW ADTPV AOWAS D8T DG8 ZZAVC AGCHP D95 ADTOC UNPAY |
| DOI | 10.1002/nbm.3711 |
| DatabaseName | Wiley Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text SWEPUB Lunds universitet full text SWEPUB Lunds universitet Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Chemistry Physics |
| DocumentTitleAlternate | NILSSON et al |
| EISSN | 1099-1492 |
| EndPage | n/a |
| ExternalDocumentID | 10.1002/nbm.3711 oai_portal_research_lu_se_publications_a94f24bc_4af8_4a54_b514_473e0ce02c93 oai_DiVA_org_liu_139612 PMC5485041 28318071 10_1002_nbm_3711 NBM3711 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Strategic Research (SSF) funderid: AM13-0090 – fundername: NIH funderid: R01MH074794; R01MH092862; P41RR013218; P41EB015902 – fundername: Swedish Research Council (VR) funderid: 2012-3682; 2011-5176; 2014-3910 – fundername: NIBIB NIH HHS grantid: P41 EB015902 – fundername: NCRR NIH HHS grantid: P41 RR013218 – fundername: NIMH NIH HHS grantid: R01 MH074794 – fundername: NIMH NIH HHS grantid: R01 MH092862 – fundername: NIH grantid: R01MH074794; R01MH092862; P41RR013218; P41EB015902 – fundername: Strategic Research (SSF) grantid: AM13-0090 – fundername: Swedish Research Council (VR) grantid: 2012-3682; 2011-5176; 2014-3910 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52V 52W 52X 53G 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIACR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXSBR XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX CITATION AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 5PM ABXSW ADTPV AOWAS D8T DG8 ZZAVC AGCHP D95 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c5661-105de4ab0f082b9ef0c845656f0c9a0eccaf99c29e31a5c81fc6b2d4895ee10f3 |
| IEDL.DBID | DR2 |
| ISSN | 0952-3480 1099-1492 |
| IngestDate | Wed Oct 29 11:18:27 EDT 2025 Thu Oct 16 03:17:18 EDT 2025 Thu Aug 21 06:26:26 EDT 2025 Thu Aug 21 14:03:37 EDT 2025 Thu Oct 02 06:52:35 EDT 2025 Tue Oct 07 06:54:42 EDT 2025 Thu Apr 03 07:06:57 EDT 2025 Sat Oct 25 05:51:34 EDT 2025 Thu Apr 24 23:05:04 EDT 2025 Thu Sep 25 07:37:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | resolution limit microstructure single diffusion encoding oscillating diffusion encoding q-trajectory encoding diffusion imaging Axon diameter double diffusion encoding |
| Language | English |
| License | Attribution-NonCommercial http://creativecommons.org/licenses/by-nc/4.0 Copyright © 2017 The Authors. NMR in Biomedicine Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5661-105de4ab0f082b9ef0c845656f0c9a0eccaf99c29e31a5c81fc6b2d4895ee10f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3140-8223 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.3711 |
| PMID | 28318071 |
| PQID | 1908678153 |
| PQPubID | 2029982 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_1002_nbm_3711 swepub_primary_oai_portal_research_lu_se_publications_a94f24bc_4af8_4a54_b514_473e0ce02c93 swepub_primary_oai_DiVA_org_liu_139612 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5485041 proquest_miscellaneous_1879191108 proquest_journals_1908678153 pubmed_primary_28318071 crossref_citationtrail_10_1002_nbm_3711 crossref_primary_10_1002_nbm_3711 wiley_primary_10_1002_nbm_3711_NBM3711 |
| PublicationCentury | 2000 |
| PublicationDate | July 2017 |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: July 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
| PublicationTitle | NMR in biomedicine |
| PublicationTitleAlternate | NMR Biomed |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2012; 61 2002; 15 2004; 120 2013; 26 2013; 69 2014; 219 2015; 104 2010; e8595 2000; 43 1988; 37 2015; 142 2016; 75 1969; 77 2009; 199 2008; 7 2013; 70 2011; 56 1972; 40 2003; 50 2007; 79 2016; 142 1979; 28 1954; 94 2014; 103C 2014; 2 1991; 44 1992; 598 1939; 127 2009; 200 2011; 66 2009; 201 2011; 24 2012; 25 1990; 90 2014; 246 2012; 20 1951; 115 2007; 26 2012; 63 1968; 48 1990; 31 1995; 51 2010; 206 2016; 129 1873; 9 2015; 10 2009 1995; 117 1993; 183 2008; 59 2008; 128 2005 1995; 113 2014; 111 2012; 226 1972; 238 2011; 210 2009; 29 2004; 52 1965; 42 2012; 199 2000; 147 2013; 78 2015; 114 1974; 60 2013; 34 2016; 135 2013; 80 1983; 87 2010; 133 2016 2015 2014; 140 2006; 182 2016; 29 2008; 40 2010; 52 e_1_2_8_28_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 Gross B (e_1_2_8_36_1) 1969; 77 e_1_2_8_13_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 Waxman SG (e_1_2_8_4_1) 1972; 238 Goodman JW (e_1_2_8_19_1) 2005 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_72_1 Nilsson M (e_1_2_8_24_1) 2012; 20 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_6_1 Wang L (e_1_2_8_56_1) 1995; 117 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 Cory DG (e_1_2_8_31_1) 1990; 31 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 Leergaard TB (e_1_2_8_74_1) 2010; 8595 e_1_2_8_10_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – volume: 79 start-page: 1077 year: 2007 end-page: 1137 article-title: NMR survey of reflected Brownian motion publication-title: Rev Mod Phys – volume: 246 start-page: 36 year: 2014 end-page: 45 article-title: Nonparametric pore size distribution using d‐PFG: comparison to s‐PFG and migration to MRI publication-title: J Magn Reson – volume: 206 start-page: 41 year: 2010 end-page: 51 article-title: Optimizing gradient waveforms for microstructure sensitivity in diffusion‐weighted MR publication-title: J Magn Reson – volume: 26 start-page: 1647 year: 2013 end-page: 1662 article-title: Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments publication-title: NMR Biomed – volume: 201 start-page: 250 year: 2009 end-page: 254 article-title: Determination of the self‐diffusion coefficient of intracellular water using PGSE NMR with variable gradient pulse length publication-title: J Magn Reson – volume: 77 start-page: 171 year: 1969 end-page: 177 article-title: Anwendung der spin‐echo‐methode der messung der selbstdiffusion publication-title: Messtechnik – volume: 199 start-page: W784 year: 2012 article-title: Understanding the mathematics involved in calculating apparent diffusion coefficient maps publication-title: Amer J Roentgenol – year: 2005 – volume: e8595 start-page: 5 year: 2010 article-title: Quantitative histological validation of diffusion MRI fiber orientation distributions in the rat brain publication-title: PLoS One – volume: 183 start-page: 343 year: 1993 end-page: 350 article-title: Time‐dependent self‐diffusion by NMR spin‐echo publication-title: Physica B – volume: 94 start-page: 630 year: 1954 end-page: 638 article-title: Effects of diffusion on free precession in nuclear magnetic resonance experiments publication-title: Phys Rev – volume: 60 start-page: 4508 year: 1974 end-page: 4511 article-title: Spin echo of spins diffusing in a bounded medium publication-title: J Chem Phys – volume: 128 start-page: 154511 year: 2008 article-title: Microscopic anisotropy revealed by NMR double pulsed field gradient experiments with arbitrary timing parameters publication-title: J Chem Phys – volume: 117 start-page: 209 year: 1995 end-page: 219 article-title: The narrow‐pulse criterion for pulsed‐gradient spin‐echo diffusion measurements publication-title: J Magn Reson, Ser A – volume: 43 start-page: 191 year: 2000 end-page: 199 article-title: Assignment of the water slow‐diffusing component in the central nervous system using q‐space diffusion MRS: implications for fiber tract imaging publication-title: Magn Reson Med – volume: 75 start-page: 688 year: 2016 end-page: 700 article-title: PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: Insight from a simulation study publication-title: Magn Reson Med – volume: 80 start-page: 220 year: 2013 end-page: 233 article-title: Pushing the limits of in vivo diffusion MRI for the Human Connectome Project publication-title: NeuroImage – volume: 26 start-page: 1437 year: 2007 end-page: 1447 article-title: Accuracy of q‐space related parameters in MRI: simulations and phantom measurements publication-title: IEEE Trans Med Imag – volume: 15 start-page: 516 year: 2002 end-page: 542 article-title: High b‐value q‐space analyzed diffusion‐weighted MRS and MRI in neuronal tissues – a technical review publication-title: NMR Biomed – volume: 63 start-page: 1 year: 2012 end-page: 10 article-title: Examining brain microstructure using structure tensor analysis of histological sections publication-title: NeuroImage – volume: 20 start-page: 3567 year: 2012 article-title: Investigating tissue microstructure using diffusion MRI: How does the resolution limit of the axon diameter relate to the maximal gradient strength? publication-title: Proc Intl Soc Mag Reson Med – volume: 56 start-page: 1301 year: 2011 end-page: 1315 article-title: Axon diameter mapping in the presence of orientation dispersion with diffusion MRI publication-title: NeuroImage – volume: 199 start-page: 166 year: 2009 end-page: 172 article-title: Spectral characterization of diffusion with chemical shift resolution: Highly concentrated water‐in‐oil emulsion publication-title: J Magn Reson – volume: 28 start-page: 133 year: 1979 end-page: 141 article-title: Diffusion of water in the endosperm tissue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance publication-title: Biophys J – volume: 52 start-page: 1374 year: 2010 end-page: 1389 article-title: Orientationally invariant indices of axon diameter and density from diffusion MRI publication-title: NeuroImage – volume: 238 start-page: 217 year: 1972 end-page: 219 article-title: Relative conduction velocities of small myelinated and non‐myelinated fibres in the central nervous system publication-title: Nature – volume: 219 start-page: 1773 year: 2014 end-page: 1785 article-title: Microstructural organization of axons in the human corpus callosum quantified by diffusion‐weighted magnetic resonance spectroscopy of N‐acetylaspartate and post‐mortem histology publication-title: Brain Struct Func – volume: 2 start-page: 11 year: 2014 article-title: Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic‐angle spinning of the q‐vector publication-title: Frontiers in Physics – volume: 182 start-page: 195 year: 2006 end-page: 199 article-title: Spectral characterization of diffusion in porous media by the modulated gradient spin echo with CPMG sequence publication-title: J Magn Reson – volume: 135 start-page: 333 year: 2016 end-page: 344 article-title: White matter microstructure from nonparametric axon diameter distribution mapping publication-title: NeuroImage – volume: 226 start-page: 13 year: 2012 end-page: 18 article-title: Isotropic diffusion weighting in PGSE NMR by magic‐angle spinning of the q‐vector publication-title: J Magn Reson – volume: 34 start-page: 2747 year: 2013 end-page: 2766 article-title: Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging publication-title: Hum Brain Mapp – volume: 69 start-page: 1572 year: 2013 end-page: 1580 article-title: Noninvasive mapping of water diffusional exchange in the human brain using filter‐exchange imaging publication-title: Magn Reson Med – volume: 66 start-page: 356 year: 2011 end-page: 365 article-title: Apparent exchange rate mapping with diffusion MRI publication-title: Magn Reson Med – volume: 129 start-page: 414 year: 2016 end-page: 427 article-title: In vivo observation and biophysical interpretation of time‐dependent diffusion in human white matter publication-title: NeuroImage – volume: 29 start-page: 7917 year: 2009 end-page: 7928 article-title: How the optic nerve allocates space, energy capacity, and information publication-title: J Neurosci – volume: 206 start-page: 59 year: 2010 end-page: 67 article-title: Evaluating the accuracy and precision of a two‐compartment Kärger model using Monte Carlo simulations publication-title: J Magn Reson – volume: 210 start-page: 151 year: 2011 end-page: 157 article-title: The matrix formalism for generalised gradients with time‐varying orientation in diffusion NMR publication-title: J Magn Reson – volume: 80 start-page: 125 year: 2013 end-page: 143 article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project publication-title: NeuroImage – start-page: 75 year: 2009 end-page: 103 – volume: 61 start-page: 1000 year: 2012 end-page: 1016 article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: NeuroImage – year: 2016 article-title: MRI measurements of reporter‐mediated increases in transmembrane water exchange enable detection of a gene reporter publication-title: Nat Biotechnol – volume: 142 start-page: 522 year: 2016 end-page: 532 article-title: The link between diffusion MRI and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE) publication-title: NeuroImage – volume: 135 start-page: 345 year: 2016 end-page: 362 article-title: Q‐space trajectory imaging for multidimensional diffusion MRI of the human brain publication-title: NeuroImage – volume: 59 start-page: 1347 year: 2008 end-page: 1354 article-title: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI publication-title: Magn Reson Med – volume: 142 start-page: 104201 year: 2015 article-title: NMR diffusion‐encoding with axial symmetry and variable anisotropy: Distinguishing between prolate and oblate microscopic diffusion tensors with unknown orientation distribution publication-title: J Chem Phys – volume: 9 start-page: 413 year: 1873 end-page: 418 article-title: Beitrage zur theorie des mikroskops und der mikroskopischen wahrnehmung publication-title: Archiv fur mikroskopische Anatomie – volume: 133 start-page: 044705 year: 2010 article-title: Noninvasive bipolar double‐pulsed‐field‐gradient NMR reveals signatures for pore size and shape in polydisperse, randomly oriented, inhomogeneous porous media publication-title: J Chem Phys – volume: 75 start-page: 82 year: 2016 end-page: 87 article-title: Conventions and nomenclature for double diffusion encoding NMR and MRI publication-title: Magn Reson Med – volume: 115 start-page: 101 year: 1951 end-page: 122 article-title: A theory of the effects of fibre size in medullated nerve publication-title: J Physiol – volume: 103C start-page: 10 year: 2014 end-page: 19 article-title: Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy publication-title: NeuroImage – volume: 44 start-page: 7459 year: 1991 end-page: 7477 article-title: Transverse spin relaxation in inhomogeneous magnetic fields publication-title: Phys Rev A – volume: 24 start-page: 1422 issue: 10 year: 2011 end-page: 1432 article-title: Towards compartment size estimation in vivo based on double wave vector diffusion weighting publication-title: NMR in Biomedicine – volume: 31 start-page: 149 year: 1990 end-page: 150 article-title: Applications of spin transport as a probe of local geometry publication-title: Polym Prepr – volume: 70 start-page: 711 year: 2013 end-page: 721 article-title: Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI publication-title: Magn Reson Med – volume: 42 start-page: 288 year: 1965 end-page: 292 article-title: Spin diffusion measurements: Spin echoes in the presence of a time‐dependent field gradient publication-title: J Chem Phys. – volume: 113 start-page: 260 year: 1995 end-page: 264 article-title: Spin echoes in a constant gradient and in the presence of simple restriction publication-title: J Magn Reson, Ser A – volume: 78 start-page: 210 year: 2013 end-page: 216 article-title: Mapping average axon diameters in porcine spinal cord white matter and rat corpus callosum using d‐PFG MRI publication-title: NeuroImage – volume: 48 start-page: 4938 year: 1968 end-page: 4945 article-title: Self‐diffusion coefficient of liquid lithium publication-title: J Chem Phys – volume: 10 start-page: e0141825 year: 2015 article-title: Extrapolation‐based references improve motion and eddy‐current correction of high b‐value DWI data: Application in Parkinsons disease dementia publication-title: PloS One – volume: 127 start-page: 131 year: 1939 end-page: 139 article-title: Conduction velocity and diameter of nerve fibers publication-title: Am J Physiology – volume: 29 start-page: 640 year: 2016 end-page: 649 article-title: Quantification of microcirculatory parameters by joint analysis of flow‐compensated and non‐flow‐compensated intravoxel incoherent motion (IVIM) data publication-title: NMR Biomed – volume: 87 start-page: 1737 year: 1983 end-page: 1744 article-title: Examination of the lamellar phase of aerosol OT/water using pulsed field gradient nuclear magnetic resonance publication-title: J Phys Chem – volume: 114 start-page: 18 year: 2015 end-page: 37 article-title: Mesoscopic structure of neuronal tracts from time‐dependent diffusion publication-title: NeuroImage – volume: 51 start-page: 15074 year: 1995 article-title: Multiple wave‐vector extensions of the NMR pulsed‐field‐gradient spin‐echo diffusion measurement publication-title: Phys Rev B – start-page: 1789 year: 2015 end-page: 1790 article-title: Comments on the paper by Horowitz et al. (2014) publication-title: Brain Struct Func – volume: 40 start-page: 206 year: 1972 end-page: 218 article-title: Pulsed NMR studies of restricted diffusion. I. Droplet size distributions in emulsions publication-title: J Colloid Interface Sci – volume: 90 start-page: 177 year: 1990 end-page: 182 article-title: High‐resolution q‐space imaging in porous structures publication-title: J Magn Reson – volume: 37 start-page: 2877 year: 1988 end-page: 2885 article-title: Relaxation of spins due to field inhomogeneities in gaseous samples at low magnetic fields and low pressures publication-title: Phys Rev A – volume: 147 start-page: 232 year: 2000 end-page: 237 article-title: Measurements of restricted diffusion using an oscillating gradient spin‐echo sequence publication-title: J Magn Reson – volume: 70 start-page: 972 issue: 4 year: 2013 end-page: 984 article-title: Comprehensive framework for accurate diffusion MRI parameter estimation publication-title: Magnetic Resonance in Medicine – volume: 40 start-page: 1619 year: 2008 end-page: 1632 article-title: Indirect measurement of regional axon diameter in excised mouse spinal cord with q‐space imaging: Simulation and experimental studies publication-title: NeuroImage – volume: 50 start-page: 1077 year: 2003 end-page: 1088 article-title: Characterization and propagation of uncertainty in diffusion‐weighted MR imaging publication-title: Magn Reson Med – volume: 200 start-page: 291 year: 2009 end-page: 295 article-title: Filter‐exchange PGSE NMR determination of cell membrane permeability publication-title: J Magn Reson – volume: 25 start-page: 795 year: 2012 end-page: 805 article-title: The importance of axonal undulation in diffusion MR measurements: A Monte Carlo simulation study publication-title: NMR Biomed – volume: 29 start-page: 293 year: 2016 end-page: 308 article-title: Towards higher sensitivity and stability of axon diameter estimation with diffusion‐weighted MRI publication-title: NMR Biomed – volume: 117 start-page: 118 year: 1995 end-page: 122 article-title: Frequency‐domain analysis of spin motion using modulated‐gradient NMR publication-title: J Magn Reson, Ser A – volume: 10 start-page: e0133201 year: 2015 article-title: Size distribution imaging by non‐uniform oscillating‐gradient spin echo (nogse) MRI publication-title: PloS One – volume: 104 start-page: 241 year: 2015 end-page: 252 article-title: Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure: Applications in healthy volunteers and in brain tumors publication-title: Neuroimage – volume: 7 start-page: 435 year: 2008 end-page: 441 article-title: Superlenses to overcome the diffraction limit publication-title: Nat Mater – volume: 26 start-page: 345 year: 2013 end-page: 370 article-title: The role of tissue microstructure and water exchange in biophysical modelling of diffusion in white matter publication-title: Magn Reson Mater Phy – volume: 111 start-page: 5088 year: 2014 end-page: 5093 article-title: Revealing mesoscopic structural universality with diffusion publication-title: Proc Natl Acad Sci USA – volume: 52 start-page: 965 year: 2004 end-page: 978 article-title: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter publication-title: Magn Reson Med – volume: 140 start-page: 164201 year: 2014 article-title: Quantification of pore size distribution using diffusion NMR: experimental design and physical insights publication-title: J Chem Phys – volume: 120 start-page: 4032 year: 2004 end-page: 4038 article-title: Diffusion–diffusion correlation and exchange as a signature for local order and dynamics publication-title: J Chem Phys – volume: 598 start-page: 143 year: 1992 end-page: 153 article-title: Fiber composition of the human corpus callosum publication-title: Brain Res – volume: 219 start-page: 1773 issue: 5 year: 2014 end-page: 1785 article-title: Microstructural organization of axons in the human corpus callosum quantified by diffusion‐weighted magnetic resonance spectroscopy of N‐acetylaspartate and post‐mortem histology publication-title: Brain Structure and Function – ident: e_1_2_8_66_1 doi: 10.1016/j.neuroimage.2012.06.042 – ident: e_1_2_8_63_1 doi: 10.1006/jmra.1995.1091 – ident: e_1_2_8_32_1 doi: 10.1103/PhysRevB.51.15074 – ident: e_1_2_8_41_1 doi: 10.1016/j.jmr.2010.05.017 – ident: e_1_2_8_76_1 doi: 10.1063/1.1642604 – ident: e_1_2_8_2_1 doi: 10.1152/ajplegacy.1939.127.1.131 – ident: e_1_2_8_88_1 doi: 10.1038/nmat2141 – ident: e_1_2_8_21_1 doi: 10.1002/mrm.20274 – ident: e_1_2_8_80_1 doi: 10.1038/nbt.3714 – ident: e_1_2_8_47_1 doi: 10.1016/j.neuroimage.2014.09.006 – ident: e_1_2_8_84_1 doi: 10.1016/j.neuroimage.2014.09.057 – ident: e_1_2_8_86_1 doi: 10.1002/nbm.3462 – volume: 238 start-page: 217 year: 1972 ident: e_1_2_8_4_1 article-title: Relative conduction velocities of small myelinated and non‐myelinated fibres in the central nervous system publication-title: Nature – ident: e_1_2_8_51_1 doi: 10.1002/mrm.10609 – ident: e_1_2_8_53_1 doi: 10.1002/nbm.3505 – ident: e_1_2_8_13_1 doi: 10.1016/j.neuroimage.2013.05.078 – ident: e_1_2_8_42_1 doi: 10.1016/j.jmr.2012.10.015 – ident: e_1_2_8_8_1 doi: 10.1016/0021-9797(72)90010-0 – ident: e_1_2_8_5_1 doi: 10.1016/B978-0-12-374709-9.00005-5 – ident: e_1_2_8_87_1 doi: 10.1016/j.neuroimage.2016.01.018 – ident: e_1_2_8_22_1 doi: 10.1016/j.neuroimage.2010.05.043 – ident: e_1_2_8_45_1 doi: 10.1007/s00429-013-0600-0 – ident: e_1_2_8_55_1 doi: 10.1063/1.1680931 – ident: e_1_2_8_12_1 doi: 10.1016/j.neuroimage.2016.04.052 – ident: e_1_2_8_33_1 doi: 10.1002/nbm.1711 – ident: e_1_2_8_67_1 doi: 10.1007/s00429-013-0600-0 – ident: e_1_2_8_52_1 doi: 10.1371/journal.pone.0141825 – ident: e_1_2_8_50_1 doi: 10.2214/AJR.12.9231 – ident: e_1_2_8_9_1 doi: 10.1007/s10334-013-0371-x – ident: e_1_2_8_37_1 doi: 10.1006/jmre.2000.2203 – ident: e_1_2_8_23_1 doi: 10.1002/mrm.24501 – ident: e_1_2_8_15_1 doi: 10.1109/TMI.2007.907278 – ident: e_1_2_8_48_1 doi: 10.1016/j.neuroimage.2015.03.061 – ident: e_1_2_8_35_1 doi: 10.1016/j.jmr.2014.06.017 – volume-title: Introduction to Fourier Optics year: 2005 ident: e_1_2_8_19_1 – ident: e_1_2_8_78_1 doi: 10.1002/mrm.22782 – ident: e_1_2_8_10_1 doi: 10.1002/(SICI)1522-2594(200002)43:2<191::AID-MRM5>3.0.CO;2-B – ident: e_1_2_8_77_1 doi: 10.1016/j.jmr.2009.07.015 – volume: 20 start-page: 3567 year: 2012 ident: e_1_2_8_24_1 article-title: Investigating tissue microstructure using diffusion MRI: How does the resolution limit of the axon diameter relate to the maximal gradient strength? publication-title: Proc Intl Soc Mag Reson Med – ident: e_1_2_8_59_1 doi: 10.1016/j.jmr.2006.06.023 – ident: e_1_2_8_79_1 doi: 10.1002/mrm.24395 – ident: e_1_2_8_64_1 doi: 10.1063/1.4871193 – ident: e_1_2_8_11_1 doi: 10.1002/mrm.21577 – ident: e_1_2_8_3_1 doi: 10.1113/jphysiol.1951.sp004655 – ident: e_1_2_8_85_1 doi: 10.1016/j.neuroimage.2016.07.038 – ident: e_1_2_8_43_1 doi: 10.1016/j.neuroimage.2016.02.039 – ident: e_1_2_8_81_1 doi: 10.1063/1.2905765 – ident: e_1_2_8_57_1 doi: 10.1016/j.jmr.2009.09.006 – ident: e_1_2_8_7_1 doi: 10.1007/s00429-014-0974-7 – ident: e_1_2_8_20_1 doi: 10.1016/0006-8993(92)90178-C – ident: e_1_2_8_34_1 doi: 10.1016/j.neuroimage.2013.03.074 – ident: e_1_2_8_69_1 doi: 10.1021/j100233a019 – ident: e_1_2_8_70_1 doi: 10.1063/1.4913502 – volume: 8595 start-page: 5 year: 2010 ident: e_1_2_8_74_1 article-title: Quantitative histological validation of diffusion MRI fiber orientation distributions in the rat brain publication-title: PLoS One – ident: e_1_2_8_29_1 doi: 10.1063/1.1695690 – ident: e_1_2_8_40_1 doi: 10.1371/journal.pone.0133201 – ident: e_1_2_8_83_1 doi: 10.3389/fphy.2014.00011 – ident: e_1_2_8_73_1 doi: 10.1016/j.jmr.2011.02.022 – ident: e_1_2_8_54_1 doi: 10.1063/1.1668160 – ident: e_1_2_8_61_1 doi: 10.1103/PhysRevA.37.2877 – ident: e_1_2_8_18_1 doi: 10.1007/BF02956173 – ident: e_1_2_8_68_1 doi: 10.1016/S0006-3495(79)85164-4 – ident: e_1_2_8_72_1 doi: 10.1016/j.jmr.2010.06.002 – ident: e_1_2_8_28_1 doi: 10.1002/nbm.1795 – ident: e_1_2_8_27_1 doi: 10.1016/j.neuroimage.2012.03.072 – ident: e_1_2_8_17_1 doi: 10.1016/j.neuroimage.2008.01.017 – volume: 31 start-page: 149 year: 1990 ident: e_1_2_8_31_1 article-title: Applications of spin transport as a probe of local geometry publication-title: Polym Prepr – volume: 77 start-page: 171 year: 1969 ident: e_1_2_8_36_1 article-title: Anwendung der spin‐echo‐methode der messung der selbstdiffusion publication-title: Messtechnik – ident: e_1_2_8_38_1 doi: 10.1006/jmra.1995.9959 – ident: e_1_2_8_26_1 doi: 10.1016/j.neuroimage.2011.01.084 – ident: e_1_2_8_25_1 doi: 10.1002/mrm.25631 – ident: e_1_2_8_82_1 doi: 10.1002/nbm.2999 – ident: e_1_2_8_65_1 doi: 10.1002/hbm.22099 – ident: e_1_2_8_44_1 doi: 10.1016/j.neuroimage.2013.05.057 – ident: e_1_2_8_46_1 doi: 10.1073/pnas.1316944111 – ident: e_1_2_8_60_1 doi: 10.1103/RevModPhys.79.1077 – ident: e_1_2_8_75_1 doi: 10.1063/1.3454131 – ident: e_1_2_8_58_1 doi: 10.1016/0921-4526(93)90124-O – ident: e_1_2_8_30_1 doi: 10.1002/mrm.25901 – ident: e_1_2_8_6_1 doi: 10.1523/JNEUROSCI.5200-08.2009 – ident: e_1_2_8_49_1 doi: 10.1002/mrm.24529 – ident: e_1_2_8_39_1 doi: 10.1016/j.jmr.2009.04.014 – ident: e_1_2_8_14_1 doi: 10.1002/nbm.778 – ident: e_1_2_8_71_1 doi: 10.1103/PhysRev.94.630 – ident: e_1_2_8_16_1 doi: 10.1016/0022-2364(90)90376-K – volume: 117 start-page: 209 year: 1995 ident: e_1_2_8_56_1 article-title: The narrow‐pulse criterion for pulsed‐gradient spin‐echo diffusion measurements publication-title: J Magn Reson, Ser A doi: 10.1006/jmra.1995.0754 – ident: e_1_2_8_62_1 doi: 10.1103/PhysRevA.44.7459 |
| SSID | ssj0008432 |
| Score | 2.5471075 |
| Snippet | Diffusion MRI has been proposed as a non‐invasive technique for axonal diameter mapping. However, accurate estimation of small diameters requires strong... Diffusion MRI has been proposed as a non-invasive technique for axonal diameter mapping. However, accurate estimation of small diameters requires strong... |
| SourceID | unpaywall swepub pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | Algorithms Anisotropy Axon diameter Axons Axons - ultrastructure Biological products Clinical Medicine Computer Simulation Cylinders Diffusion diffusion imaging Diffusion Tensor Imaging - methods double diffusion encoding Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Klinisk medicin Lower bounds Magnetic Fields Magnetic resonance imaging Mapping Medical and Health Sciences Medicin och hälsovetenskap microstructure Models, Anatomic Models, Neurological Noise levels Orientation oscillating diffusion encoding q‐trajectory encoding Radiation Dosage Radiologi och bildbehandling Radiology and Medical Imaging Reproducibility of Results resolution limit Scanners Sensitivity and Specificity Signal-To-Noise Ratio single diffusion encoding Waveforms White Matter - cytology White Matter - diagnostic imaging |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdQJxg88FG-CgMZhMZTSj6cJuatDKaB1AohisZeLNuxt4osqdqGqUj879zFabSygRAvbaXcJbVzPv98vvuZkBfcwDySxNzjWhqPWRl5SlrlgT_2k9BKbRXGO0bjwcGEfTiMD5uAG9bCOH6INuCGI6P21zjAZ5l1fr7Z3Q9fFeq0HyVY2rs1iAGLd8jWZPxx-NUR7IVexFJHR8C5B0uBcM0-e051cz66ADIv5ko2jKI3yHZVzOTqTOb5JrCtZ6b9W0Ss2-QSUr71q6Xq6x-_0T3-f6Nvk5sNaKVDZ2V3yBVTdMn23vqsuC65Nmq26Lvkap1Tqhd3yU_cGnCGTXOso6KlpXqVI0HjnIJdnmIqDkWaD1c_SdWK4oEtFUbw6OjT-9cUrJi6Qk5UPp7XCWpLeia_G0TbVBYZLefTpoCqAHVkPkf9e2Sy_-7z3oHXnPbgaYCUmFcXZ4ZJ5VtAJYob6-u0hpvwg0sfTc1yrkNuokDGOg2sHqgwYymPjQl8G90nnaIszENCZWIDGWCKOwc4qOM0C2wGUDQxJrXg3Hvk5fqdC91QoeOJHLlwJM6hgD4W2Mc98qyVnDn6j0tkdtZmIxoHsBCAs1LAATCfwC3ay_BWcD9GFqasQCaF_8exDqNHHjgrax8CqC9IAf71SLJhf60A0oJvXimmJzU9OKxBY5-B5q6z1A2Vt9MvQ1HOj0U-rQSgfwC4PXJ0iaBb_YmGcupE5JVYGDE7F0sWkjMbMqUFkzaFj5gJBfhbsCQyvjZ-qDm0_nk7TP7Sg7u10f9RQIzfjPD70b_c7TG5HiL2qnOqd0hnOa_ME0COS_W0cQ-_ALL-c3o priority: 102 providerName: Unpaywall |
| Title | Resolution limit of cylinder diameter estimation by diffusion MRI: The impact of gradient waveform and orientation dispersion |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.3711 https://www.ncbi.nlm.nih.gov/pubmed/28318071 https://www.proquest.com/docview/1908678153 https://www.proquest.com/docview/1879191108 https://pubmed.ncbi.nlm.nih.gov/PMC5485041 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139612 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nbm.3711 |
| UnpaywallVersion | publishedVersion |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1099-1492 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1492 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008432 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCAYPfIyvwqgMQuMpXT6cJuatDKaB1GqaKNrgwbJde6vI0qptmIrE_86d88HKBkK8NJVyl9bO2fezffc7Ql5yA34kibnHtTQeszLylLTKg_nYT0IrtVW439EfdPeG7MNhfFhFVWIuTMkP0Wy44chw8zUOcKnm2-dIQ9VpJ0pcWm8Qdd1q6uAXc1TKXG0yABChF7HUr3ln_XC7Vlz1RBfg5cUoyYpL9BZZL_KpXJ7JLFuFtM4n7d4hX-rWlKEoXzvFQnX099-IHv-vuXfJ7Qqq0l5pW_fIFZNvkPWdukLcBrnRrw7mN8h1F0mq5_fJDzwQKM2ZZpg9RSeW6mWGtIwzCtZ4igE4FMk9yqxJqpYUy7QUuG9H-wfvX1OwXVqmb6Ly8cyFpS3omfxmEGNTmY_oZDau0qZyUEe-c9R_QIa77z7u7HlVjQdPA5DEaLp4ZJhUvgUsorixvk4dyIQvXPpoYJZzHXITBTLWaWB1V4UjlvLYmMC30UOylk9y85hQmdhABhjYzgEE6jgdBXYEADQxJrUwpbfIq_p9C10RoGMdjkyU1M2hgD4W2Mct8ryRnJakH5fIbNYmI6phPxeArlLw_uBF4BHNbXgreAojczMpQCaF_8cx-6JFHpUW1vwIYL0gBdDXIsmK7TUCSAa-eicfnzhScFh5xj4Dza3SSldU3o4_9cRkdiyycSEA8wOsbZHPlwiWaz5REU2diKwQcyOm53aQheTMhkxpwaRN4SNmQgHqFiyJjK-NH2oOrX_RDJG_9OCWM_g_CojBmz5en_yr4FNyM0TU5aKpN8naYlaYZ4AZF6pNroZsv-3miDa5Nhzs945-AvqccUU |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELaqIggcEIRXoIBBqJyW7sObteFUClUKTYRQiyoulu3YbaTtbrTJUuXAf2dmX2rUgrgkkXYmrxmPP8_OfEPIG2FhH0li4QmjrMecijytnPYgHvtJ6JRxGvMd48lwdMy-nMQnG-RD2wtT80N0CTdcGVW8xgWOCemdS6yh-vxdlGBf7w02DIZ48grZty4Mc1ZNJwMIEXoR437LPOuHO63m-l50BWBerZNs2ETvkF6ZzdXqQqXpOqitdqX9e-RuAyfpbm3_-2TDZn3S22unuPXJrXFz87xPblbVnmbxgPzGpH3tcjTFDieaO2pWKVInFhQ85hyLZCgScNSdjVSvKI5SKTG3RsffD95T8C9at1ii8mlRlY4t6YX6ZREHU5VNaV7MmtamDNSRkxz1H5Lj_c9HeyOvmcPgGQB7WPEWTy1T2neAF7Swzje8AoLwQigfncAJYUJho0DFhgfODHU4ZVzE1ga-ix6RzSzP7BNCVeICFWDxuQCgZmI-DdwUQGJiLXcQdgfkbWsRaRqScpyVkcqaXjmUYDuJthuQV53kvCbmuEZmqzWqbJbmQgIC4rBDQ6SHt-gug1XwTonKbF6CDIfvJ7BDYkAe1z7QfQjgsYADMBuQZM07OgEk7F6_ks3OKuJuOB3GPgPN7dqP1lQ-zX7syrw4lemslIDLAXoOyM9rBOtzmWzIoM5kWsqFlfNLWV6pBHMh00Yy5Tg8xExqQMaSJZH1jfVDI-DXv-6c-B__4Hbl3X8VkJOPY3x--r-CL0lvdDQ-lIcHk6_PyO0QUVJV_bxFNpdFaZ8DxlvqF9Va_gNbrlJj |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamITZ44FJuhQEGofGULhdnseFprFQb0AlNbJoQkmU79laRpVXbMBWJ_845uZSVDYR4aSvlnLZ2Pttf7HO-Q8gLYWEdSWLhCaOsx5yKPK2c9mA-9pPQKeM07nf09zZ3Dti7o_hoibxucmEqfYj5hhuOjHK-xgFuR6nbOKcaqk87UYJ5vVdYLDjG83X3f2lHcVZWJwMKEXoR436jPOuHG43n4lp0gWBejJOs1USvk9UiH6nZmcqyRVJbrkq9m-RL054qGOVrp5jqjvn-m9Tjfzb4FrlRs1W6VcHrNlmyeYusbjdF4lpkpV-fzbfI1TKY1EzukB94JlAhmmaYQEWHjppZhsqMYwqAPMUYHIr6HlXiJNUzipVaCty6o_393VcU4EurDE50Ph6XkWlTeqa-WaTZVOUpHY4HdeZUDu4oeY7-d8lB7-2n7R2vLvPgGeCSGFAXp5Yp7TugI1pY5xte8kz4IJSPGHNCmFDYKFCx4YEzmzpMGRextYHvontkOR_m9gGhKnGBCjC2XQAPNDFPA5cCB02s5Q5m9TZ52dxwaWoNdCzFkclKvTmU0McS-7hNns0tR5XuxyU2aw1mZD3yJxIIFgcCAAsJfMX8MtwVPIhRuR0WYMPh_wlMwGiT-xXE5j8CdC_gwPvaJFkA39wA9cAXr-SDk1IXHB4-Y5-B53oF0wWX7uBwSw7HxzIbFBJoPzDbNvl8iWH12CdrrakTmRVyYuXo3CayVIK5kGkjmXIcXmImNRBvyZLI-sb6oRHQ-ufzMfKXHlwvEf9HA7n3po_vD__V8ClZ-djtyQ-7e-8fkWshcrAytnqNLE_HhX0MDHKqn5QzxU-cXnJj |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdQJxg88FG-CgMZhMZTSj6cJuatDKaB1AohisZeLNuxt4osqdqGqUj879zFabSygRAvbaXcJbVzPv98vvuZkBfcwDySxNzjWhqPWRl5SlrlgT_2k9BKbRXGO0bjwcGEfTiMD5uAG9bCOH6INuCGI6P21zjAZ5l1fr7Z3Q9fFeq0HyVY2rs1iAGLd8jWZPxx-NUR7IVexFJHR8C5B0uBcM0-e051cz66ADIv5ko2jKI3yHZVzOTqTOb5JrCtZ6b9W0Ss2-QSUr71q6Xq6x-_0T3-f6Nvk5sNaKVDZ2V3yBVTdMn23vqsuC65Nmq26Lvkap1Tqhd3yU_cGnCGTXOso6KlpXqVI0HjnIJdnmIqDkWaD1c_SdWK4oEtFUbw6OjT-9cUrJi6Qk5UPp7XCWpLeia_G0TbVBYZLefTpoCqAHVkPkf9e2Sy_-7z3oHXnPbgaYCUmFcXZ4ZJ5VtAJYob6-u0hpvwg0sfTc1yrkNuokDGOg2sHqgwYymPjQl8G90nnaIszENCZWIDGWCKOwc4qOM0C2wGUDQxJrXg3Hvk5fqdC91QoeOJHLlwJM6hgD4W2Mc98qyVnDn6j0tkdtZmIxoHsBCAs1LAATCfwC3ay_BWcD9GFqasQCaF_8exDqNHHjgrax8CqC9IAf71SLJhf60A0oJvXimmJzU9OKxBY5-B5q6z1A2Vt9MvQ1HOj0U-rQSgfwC4PXJ0iaBb_YmGcupE5JVYGDE7F0sWkjMbMqUFkzaFj5gJBfhbsCQyvjZ-qDm0_nk7TP7Sg7u10f9RQIzfjPD70b_c7TG5HiL2qnOqd0hnOa_ME0COS_W0cQ-_ALL-c3o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resolution+limit+of+cylinder+diameter+estimation+by+diffusion+MRI%3A+The+impact+of+gradient+waveform+and+orientation+dispersion&rft.jtitle=NMR+in+biomedicine&rft.au=Nilsson%2C+Markus&rft.au=Lasi%C4%8D%2C+Samo&rft.au=Drobnjak%2C+Ivana&rft.au=Topgaard%2C+Daniel&rft.date=2017-07-01&rft.issn=0952-3480&rft.eissn=1099-1492&rft.volume=30&rft.issue=7&rft_id=info:doi/10.1002%2Fnbm.3711&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nbm_3711 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon |