Scalable transcriptomics analysis with Dask: applications in data science and machine learning

Background Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the prediction, diagnosis and prognosis of different diseases. Data science and specifically machine learning have many applications i...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 23; no. 1; pp. 514 - 20
Main Authors Moreno, Marta, Vilaça, Ricardo, Ferreira, Pedro G.
Format Journal Article
LanguageEnglish
Published London BioMed Central 30.11.2022
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-022-05065-3

Cover

Abstract Background Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the prediction, diagnosis and prognosis of different diseases. Data science and specifically machine learning have many applications in gene expression analysis. However, as the dimensionality of genomics datasets grows, scalable solutions become necessary. Methods In this paper we review the main steps and bottlenecks in machine learning pipelines, as well as the main concepts behind scalable data science including those of concurrent and parallel programming. We discuss the benefits of the Dask framework and how it can be integrated with the Python scientific environment to perform data analysis in computational biology and bioinformatics. Results This review illustrates the role of Dask for boosting data science applications in different case studies. Detailed documentation and code on these procedures is made available at https://github.com/martaccmoreno/gexp-ml-dask . Conclusion By showing when and how Dask can be used in transcriptomics analysis, this review will serve as an entry point to help genomic data scientists develop more scalable data analysis procedures.
AbstractList Abstract Background Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the prediction, diagnosis and prognosis of different diseases. Data science and specifically machine learning have many applications in gene expression analysis. However, as the dimensionality of genomics datasets grows, scalable solutions become necessary. Methods In this paper we review the main steps and bottlenecks in machine learning pipelines, as well as the main concepts behind scalable data science including those of concurrent and parallel programming. We discuss the benefits of the Dask framework and how it can be integrated with the Python scientific environment to perform data analysis in computational biology and bioinformatics. Results This review illustrates the role of Dask for boosting data science applications in different case studies. Detailed documentation and code on these procedures is made available at https://github.com/martaccmoreno/gexp-ml-dask . Conclusion By showing when and how Dask can be used in transcriptomics analysis, this review will serve as an entry point to help genomic data scientists develop more scalable data analysis procedures.
Background Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the prediction, diagnosis and prognosis of different diseases. Data science and specifically machine learning have many applications in gene expression analysis. However, as the dimensionality of genomics datasets grows, scalable solutions become necessary. Methods In this paper we review the main steps and bottlenecks in machine learning pipelines, as well as the main concepts behind scalable data science including those of concurrent and parallel programming. We discuss the benefits of the Dask framework and how it can be integrated with the Python scientific environment to perform data analysis in computational biology and bioinformatics. Results This review illustrates the role of Dask for boosting data science applications in different case studies. Detailed documentation and code on these procedures is made available at https://github.com/martaccmoreno/gexp-ml-dask. Conclusion By showing when and how Dask can be used in transcriptomics analysis, this review will serve as an entry point to help genomic data scientists develop more scalable data analysis procedures.
Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the prediction, diagnosis and prognosis of different diseases. Data science and specifically machine learning have many applications in gene expression analysis. However, as the dimensionality of genomics datasets grows, scalable solutions become necessary. In this paper we review the main steps and bottlenecks in machine learning pipelines, as well as the main concepts behind scalable data science including those of concurrent and parallel programming. We discuss the benefits of the Dask framework and how it can be integrated with the Python scientific environment to perform data analysis in computational biology and bioinformatics. This review illustrates the role of Dask for boosting data science applications in different case studies. Detailed documentation and code on these procedures is made available at https://github.com/martaccmoreno/gexp-ml-dask . By showing when and how Dask can be used in transcriptomics analysis, this review will serve as an entry point to help genomic data scientists develop more scalable data analysis procedures.
Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the prediction, diagnosis and prognosis of different diseases. Data science and specifically machine learning have many applications in gene expression analysis. However, as the dimensionality of genomics datasets grows, scalable solutions become necessary.BACKGROUNDGene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the prediction, diagnosis and prognosis of different diseases. Data science and specifically machine learning have many applications in gene expression analysis. However, as the dimensionality of genomics datasets grows, scalable solutions become necessary.In this paper we review the main steps and bottlenecks in machine learning pipelines, as well as the main concepts behind scalable data science including those of concurrent and parallel programming. We discuss the benefits of the Dask framework and how it can be integrated with the Python scientific environment to perform data analysis in computational biology and bioinformatics.METHODSIn this paper we review the main steps and bottlenecks in machine learning pipelines, as well as the main concepts behind scalable data science including those of concurrent and parallel programming. We discuss the benefits of the Dask framework and how it can be integrated with the Python scientific environment to perform data analysis in computational biology and bioinformatics.This review illustrates the role of Dask for boosting data science applications in different case studies. Detailed documentation and code on these procedures is made available at https://github.com/martaccmoreno/gexp-ml-dask .RESULTSThis review illustrates the role of Dask for boosting data science applications in different case studies. Detailed documentation and code on these procedures is made available at https://github.com/martaccmoreno/gexp-ml-dask .By showing when and how Dask can be used in transcriptomics analysis, this review will serve as an entry point to help genomic data scientists develop more scalable data analysis procedures.CONCLUSIONBy showing when and how Dask can be used in transcriptomics analysis, this review will serve as an entry point to help genomic data scientists develop more scalable data analysis procedures.
Background Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the prediction, diagnosis and prognosis of different diseases. Data science and specifically machine learning have many applications in gene expression analysis. However, as the dimensionality of genomics datasets grows, scalable solutions become necessary. Methods In this paper we review the main steps and bottlenecks in machine learning pipelines, as well as the main concepts behind scalable data science including those of concurrent and parallel programming. We discuss the benefits of the Dask framework and how it can be integrated with the Python scientific environment to perform data analysis in computational biology and bioinformatics. Results This review illustrates the role of Dask for boosting data science applications in different case studies. Detailed documentation and code on these procedures is made available at https://github.com/martaccmoreno/gexp-ml-dask . Conclusion By showing when and how Dask can be used in transcriptomics analysis, this review will serve as an entry point to help genomic data scientists develop more scalable data analysis procedures.
ArticleNumber 514
Author Vilaça, Ricardo
Moreno, Marta
Ferreira, Pedro G.
Author_xml – sequence: 1
  givenname: Marta
  surname: Moreno
  fullname: Moreno, Marta
  organization: Department of Computer Science, Faculty of Sciences, University of Porto, Laboratory of Artificial Intelligence and Decision Support, INESC TEC
– sequence: 2
  givenname: Ricardo
  surname: Vilaça
  fullname: Vilaça, Ricardo
  organization: High-Assurance Software Laboratory, INESC TEC, Department of Informatics, Minho Advanced Computing Center, University of Minho, Gualtar
– sequence: 3
  givenname: Pedro G.
  surname: Ferreira
  fullname: Ferreira, Pedro G.
  email: pgferreira@fc.up.pt
  organization: Department of Computer Science, Faculty of Sciences, University of Porto, Laboratory of Artificial Intelligence and Decision Support, INESC TEC, Institute of Molecular Pathology and Immunology of the University of Porto, Institute for Research and Innovation in Health (i3s)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36451115$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhSNURB_wB1ggS2zYBPyI45gFUlVaqFSJBbDFunGcGQ-OHeyEav497mQobRcVK7_OOTr-7nFx4IM3RfGS4LeENPW7RGjDZYkpLTHHNS_Zk-KIVIKUlGB-cGd_WByntMGYiAbzZ8UhqytOCOFHxY-vGhy0zqApgk862nEKg9UJgQe3TTahazut0UdIP98jGEdnNUw2-ISsRx1MgJK2xmuTDR0aQK-tN8gZiN761fPiaQ8umRf79aT4fnH-7exzefXl0-XZ6VWpec2nUkvW96LvBKaM9QCGdYABc9ZUnSamZoS2om20lqYDLiTTncRStMRQKrQAdlJcLrldgI0aox0gblUAq3YXIa4UxMlqZxTte2C4koYKqFreN5kiAK21zGcJOGexJWv2I2yvwbnbQILVDXm1kFeZvNqRVyy7PiyucW4H02njM1B3r8r9F2_XahV-KykIxg3NAW_2ATH8mk2a1GCTNs6BN2FOioqqqmtRV02Wvn4g3YQ55nndqDjPjbAkWfXqbqPbKn-HnwXNItAxpBRNr7SddsPNBa17_Lf0gfW_EO3Bpiz2KxP_1X7E9Qe41uQa
CitedBy_id crossref_primary_10_34133_bmef_0100
crossref_primary_10_59717_j_xinn_life_2024_100079
Cites_doi 10.1038/s41388-018-0385-y
10.1016/s2213-2600(16)00048-5
10.1021/acs.molpharmaceut.6b00248
10.3322/caac.21565
10.1093/bioinformatics/btz420
10.1007/978-1-4842-2199-0_8
10.1038/nature14248
10.3390/info11040193
10.1016/j.celrep.2019.11.017
10.1109/icpads.2012.97
10.1038/npre.2010.4282.1
10.1126/science.aad0095
10.1093/bioinformatics/btu324
10.1145/106973.106981
10.1245/s10434-013-3070-y
10.1038/nature12625
10.1038/nmeth.1613
10.1007/s10120-019-01029-4
10.1186/gb-2010-11-3-r25
10.3390/ijms18081652
10.1038/s41592-019-0686-2
10.14778/3407790.3407807
10.5114/wo.2014.47136
10.1038/89044
10.1051/0004-6361/201732493
10.1109/works49585.2019.00010
10.1146/annurev-immunol-090419-020340
10.1038/nature11247
10.1038/s41573-019-0024-5
10.1145/2939672.2939785
10.1101/2021.03.23.436606
10.1093/bioinformatics/18.1.39
10.1101/2022.05.26.493607
10.1101/2021.05.03.442499
10.1109/IPDPSW55747.2022.00045
10.7554/elife.51254
10.1164/rccm.201502-0355oc
10.1016/j.cell.2016.12.013
10.1038/s12276-018-0071-8
10.25080/majora-1b6fd038-011
10.1038/s41592-021-01358-2
10.1186/1471-2105-11-94
10.1038/nrg.2016.10
10.1126/science.aaa8415
10.1161/circulationaha.115.001593
10.1016/j.jaad.2015.01.009
10.14778/3494124.3494152
10.1109/mcse.2007.55
10.1101/2021.02.24.432740
10.1093/nar/gkx1081
10.1038/nmeth.1226
10.1186/s12864-017-3906-0
10.1186/s13059-018-1599-6
10.1186/s13059-019-1906-x
10.1186/s13059-019-1836-7
10.1038/nrg3920
10.25080/shinma-7f4c6e7-00a
10.1145/2934664
10.1186/s12859-017-1984-2
10.1038/s41586-020-2649-2
10.25080/Majora-629e541a-007
10.1126/scitranslmed.aal5209
10.1371/journal.pone.0186906
10.1093/bioinformatics/bty916
10.1038/nmeth.4220
10.1056/nejmoa1510764
10.1182/blood-2013-11-536359
10.1093/infdis/jis499
10.1111/j.2517-6161.1974.tb00994.x
10.1038/s41576-019-0150-2
10.1038/ng.2653
10.21105/joss.03249
10.7314/apjcp.2016.17.2.835
10.1155/2015/621690
10.1021/acs.jctc.1c00447
10.1145/2503210.2503219
10.1038/nature12531
10.1038/s41598-020-58290-2
10.1186/s12920-020-0677-2
10.1186/gb-2013-14-7-r75
10.1172/jci.insight.93247
10.25080/majora-7b98e3ed-013
10.15252/msb.20188746
10.1002/cam4.718
10.25080/majora-92bf1922-00a
10.1515/jib-2014-236
10.1038/s41588-018-0160-6
10.1145/3225058.3225128
10.1093/bib/bbx008
10.1109/2.476197
10.1038/s41596-020-00409-w
10.1109/mcse.2010.119
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12859-022-05065-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
ProQuest Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 20
ExternalDocumentID oai_doaj_org_article_2ffa3049e27a4b5f8128aa26c97a49a0
oai:repositorium.uminho.pt:1822/90084
PMC9710082
36451115
10_1186_s12859_022_05065_3
Genre Journal Article
Review
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c565t-c93ff7fd70233faae3da0a05384dc1e6312b7b8cc9eda5793cd9097b1e227c7a3
IEDL.DBID DOA
ISSN 1471-2105
IngestDate Fri Oct 03 12:52:58 EDT 2025
Sun Oct 26 04:14:08 EDT 2025
Tue Sep 30 17:17:51 EDT 2025
Fri Sep 05 08:42:36 EDT 2025
Tue Oct 07 05:13:14 EDT 2025
Thu Apr 03 07:06:38 EDT 2025
Thu Apr 24 22:58:57 EDT 2025
Wed Oct 01 04:15:41 EDT 2025
Sat Sep 06 07:27:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Scalable data science
Data analysis
Gene expression
Transcriptomics
Machine learning
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c565t-c93ff7fd70233faae3da0a05384dc1e6312b7b8cc9eda5793cd9097b1e227c7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink https://doaj.org/article/2ffa3049e27a4b5f8128aa26c97a49a0
PMID 36451115
PQID 2755506091
PQPubID 44065
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_2ffa3049e27a4b5f8128aa26c97a49a0
unpaywall_primary_10_1186_s12859_022_05065_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9710082
proquest_miscellaneous_2744667648
proquest_journals_2755506091
pubmed_primary_36451115
crossref_citationtrail_10_1186_s12859_022_05065_3
crossref_primary_10_1186_s12859_022_05065_3
springer_journals_10_1186_s12859_022_05065_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-30
PublicationDateYYYYMMDD 2022-11-30
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2022
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References M List (5065_CR19) 2014; 11
V Svensson (5065_CR87) 2017; 14
J Lonsdale (5065_CR92) 2013; 45
H El-Rewini (5065_CR64) 1995; 28
E Madissoon (5065_CR90) 2020; 21
5065_CR48
5065_CR47
5065_CR46
MD Robinson (5065_CR29) 2010; 11
D Petersohn (5065_CR99) 2020; 13
M Kunz (5065_CR72) 2018; 37
5065_CR42
5065_CR41
CR Harris (5065_CR36) 2020; 585
MA Breddels (5065_CR103) 2018; 618
5065_CR102
5065_CR101
JH Bullard (5065_CR30) 2010; 11
J Vamathevan (5065_CR9) 2019; 18
5065_CR38
MI Jordan (5065_CR16) 2015; 349
J Zhou (5065_CR21) 2018; 50
5065_CR33
M Mostavi (5065_CR74) 2020; 13
G Palla (5065_CR59) 2022; 19
C Soneson (5065_CR65) 2014; 30
S-K Kim (5065_CR73) 2020; 23
CA Davis (5065_CR95) 2018; 46
ENCODE Project Consortium (5065_CR94) 2012; 489
P Gerami (5065_CR78) 2015; 72
M Garber (5065_CR27) 2011; 8
EMV Allen (5065_CR79) 2015; 350
D Petersohn (5065_CR100) 2021; 15
J Iqbal (5065_CR77) 2014; 123
F Wrede (5065_CR53) 2019; 35
5065_CR62
5065_CR61
H-Y Lim (5065_CR84) 2013; 20
A Casamassimi (5065_CR2) 2017; 18
J Zyprych-Walczak (5065_CR28) 2015; 2015
M Zaharia (5065_CR44) 2012; 37
K Tomczak (5065_CR85) 2015; 19
T Lappalainen (5065_CR93) 2013; 501
S Anders (5065_CR31) 2010
Y Li (5065_CR71) 2017; 18
C Evans (5065_CR32) 2018; 19
JC Daniel (5065_CR43) 2019
RA Burrell (5065_CR66) 2013; 501
5065_CR58
5065_CR57
5065_CR52
5065_CR51
MW Libbrecht (5065_CR15) 2015; 16
P Virtanen (5065_CR37) 2020; 17
D Glass (5065_CR6) 2013; 14
J Bergstra (5065_CR34) 2012; 13
JM Cliff (5065_CR10) 2013; 207
BP Scicluna (5065_CR4) 2015; 192
NC Tran (5065_CR55) 2021; 6
MD Lam (5065_CR63) 1991; 25
MD Podolsky (5065_CR80) 2016; 17
SA Byron (5065_CR1) 2016; 17
RD Team (5065_CR60) 2018
C Huang (5065_CR12) 2017; 12
JD Hunter (5065_CR39) 2007; 9
A Taylor-Weiner (5065_CR50) 2019; 20
M Efremova (5065_CR86) 2020; 38
T Sakellaropoulos (5065_CR13) 2019; 29
TS Andrews (5065_CR89) 2021; 16
S-J Sammut (5065_CR3) 2021; 601
T Kang (5065_CR17) 2017; 18
MD Luecken (5065_CR88) 2019; 15
JE Bradner (5065_CR67) 2017; 168
A Kundaje (5065_CR96) 2015; 518
A Aliper (5065_CR18) 2016; 13
5065_CR76
KD Miller (5065_CR69) 2019; 69
J Khan (5065_CR75) 2001; 7
S Raschka (5065_CR23) 2020; 11
T Moerman (5065_CR56) 2019; 35
M Zaharia (5065_CR45) 2016; 59
M Stone (5065_CR24) 1974; 36
F Perez (5065_CR35) 2010; 13
CA Jackson (5065_CR54) 2020; 9
JA Sparano (5065_CR83) 2015; 373
5065_CR25
5065_CR22
DV Nguyen (5065_CR70) 2002; 18
5065_CR20
N Wong (5065_CR81) 2016; 5
A Mortazavi (5065_CR26) 2008; 5
JG Fleischer (5065_CR7) 2018; 19
B Hwang (5065_CR97) 2018; 50
RC Deo (5065_CR14) 2015; 132
F Pedregosa (5065_CR40) 2011; 12
5065_CR98
M Sinkala (5065_CR82) 2020; 10
PG Murray (5065_CR11) 2018
5065_CR91
R Stark (5065_CR68) 2019; 20
P Smith (5065_CR49) 2021; 17
BB Cummings (5065_CR8) 2017; 9
TE Sweeney (5065_CR5) 2016; 4
References_xml – volume: 37
  start-page: 6136
  issue: 47
  year: 2018
  ident: 5065_CR72
  publication-title: Oncogene
  doi: 10.1038/s41388-018-0385-y
– volume: 4
  start-page: 213
  issue: 3
  year: 2016
  ident: 5065_CR5
  publication-title: Lancet Respir Med
  doi: 10.1016/s2213-2600(16)00048-5
– volume: 13
  start-page: 2524
  issue: 7
  year: 2016
  ident: 5065_CR18
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.6b00248
– volume: 601
  start-page: 1
  year: 2021
  ident: 5065_CR3
  publication-title: Nature
– volume: 69
  start-page: 363
  issue: 5
  year: 2019
  ident: 5065_CR69
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21565
– volume: 35
  start-page: 5199
  issue: 24
  year: 2019
  ident: 5065_CR53
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz420
– ident: 5065_CR91
  doi: 10.1007/978-1-4842-2199-0_8
– volume: 518
  start-page: 317
  issue: 7539
  year: 2015
  ident: 5065_CR96
  publication-title: Nature
  doi: 10.1038/nature14248
– ident: 5065_CR33
– volume: 11
  start-page: 193
  issue: 4
  year: 2020
  ident: 5065_CR23
  publication-title: Information
  doi: 10.3390/info11040193
– volume: 29
  start-page: 3367
  issue: 11
  year: 2019
  ident: 5065_CR13
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.11.017
– ident: 5065_CR41
  doi: 10.1109/icpads.2012.97
– year: 2010
  ident: 5065_CR31
  publication-title: Nat Preced
  doi: 10.1038/npre.2010.4282.1
– volume: 350
  start-page: 207
  issue: 6257
  year: 2015
  ident: 5065_CR79
  publication-title: Science
  doi: 10.1126/science.aad0095
– volume: 30
  start-page: 2517
  issue: 17
  year: 2014
  ident: 5065_CR65
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu324
– volume: 25
  start-page: 63
  issue: Special Issue
  year: 1991
  ident: 5065_CR63
  publication-title: ACM SIGOPS Oper Syst Rev
  doi: 10.1145/106973.106981
– volume: 20
  start-page: 3747
  issue: 12
  year: 2013
  ident: 5065_CR84
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-013-3070-y
– volume: 13
  start-page: 281
  issue: 2
  year: 2012
  ident: 5065_CR34
  publication-title: J Mach Learn Res
– volume: 37
  start-page: 45
  issue: 4
  year: 2012
  ident: 5065_CR44
  publication-title: Usenix Login
– volume: 501
  start-page: 338
  issue: 7467
  year: 2013
  ident: 5065_CR66
  publication-title: Nature
  doi: 10.1038/nature12625
– ident: 5065_CR76
– volume: 8
  start-page: 469
  issue: 6
  year: 2011
  ident: 5065_CR27
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1613
– volume: 23
  start-page: 473
  issue: 3
  year: 2020
  ident: 5065_CR73
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-019-01029-4
– volume: 11
  start-page: 1
  issue: 3
  year: 2010
  ident: 5065_CR29
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-3-r25
– volume: 18
  start-page: 1652
  issue: 8
  year: 2017
  ident: 5065_CR2
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms18081652
– volume: 17
  start-page: 261
  issue: 3
  year: 2020
  ident: 5065_CR37
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 13
  start-page: 2033
  issue: 12
  year: 2020
  ident: 5065_CR99
  publication-title: VLDB Endow
  doi: 10.14778/3407790.3407807
– volume: 19
  start-page: 68
  issue: 1A
  year: 2015
  ident: 5065_CR85
  publication-title: Współczesna Onkologia
  doi: 10.5114/wo.2014.47136
– ident: 5065_CR101
– volume-title: Data science at scale with Python and Dask
  year: 2019
  ident: 5065_CR43
– volume: 7
  start-page: 673
  issue: 6
  year: 2001
  ident: 5065_CR75
  publication-title: Nat Med
  doi: 10.1038/89044
– volume: 618
  start-page: 13
  year: 2018
  ident: 5065_CR103
  publication-title: Astron Astrophys
  doi: 10.1051/0004-6361/201732493
– ident: 5065_CR52
  doi: 10.1109/works49585.2019.00010
– volume: 38
  start-page: 727
  year: 2020
  ident: 5065_CR86
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-090419-020340
– volume: 489
  start-page: 57
  issue: 7414
  year: 2012
  ident: 5065_CR94
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 18
  start-page: 463
  issue: 6
  year: 2019
  ident: 5065_CR9
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/s41573-019-0024-5
– ident: 5065_CR20
  doi: 10.1145/2939672.2939785
– ident: 5065_CR58
  doi: 10.1101/2021.03.23.436606
– volume: 18
  start-page: 39
  issue: 1
  year: 2002
  ident: 5065_CR70
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.1.39
– ident: 5065_CR61
  doi: 10.1101/2022.05.26.493607
– ident: 5065_CR57
  doi: 10.1101/2021.05.03.442499
– ident: 5065_CR62
  doi: 10.1109/IPDPSW55747.2022.00045
– volume: 9
  start-page: 51254
  year: 2020
  ident: 5065_CR54
  publication-title: eLife
  doi: 10.7554/elife.51254
– volume: 192
  start-page: 826
  issue: 7
  year: 2015
  ident: 5065_CR4
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201502-0355oc
– volume: 168
  start-page: 629
  issue: 4
  year: 2017
  ident: 5065_CR67
  publication-title: Cell
  doi: 10.1016/j.cell.2016.12.013
– volume: 50
  start-page: 1
  issue: 8
  year: 2018
  ident: 5065_CR97
  publication-title: Exp Mol Med
  doi: 10.1038/s12276-018-0071-8
– ident: 5065_CR98
  doi: 10.25080/majora-1b6fd038-011
– volume: 19
  start-page: 171
  issue: 2
  year: 2022
  ident: 5065_CR59
  publication-title: Nat Methods
  doi: 10.1038/s41592-021-01358-2
– volume: 11
  start-page: 1
  issue: 1
  year: 2010
  ident: 5065_CR30
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-11-94
– volume: 17
  start-page: 257
  issue: 5
  year: 2016
  ident: 5065_CR1
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2016.10
– volume: 349
  start-page: 255
  issue: 6245
  year: 2015
  ident: 5065_CR16
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 132
  start-page: 1920
  issue: 20
  year: 2015
  ident: 5065_CR14
  publication-title: Circulation
  doi: 10.1161/circulationaha.115.001593
– volume-title: RAPIDS: collection of libraries for end to end GPU data science
  year: 2018
  ident: 5065_CR60
– volume: 72
  start-page: 780
  issue: 5
  year: 2015
  ident: 5065_CR78
  publication-title: J Am Acad Dermatol
  doi: 10.1016/j.jaad.2015.01.009
– volume: 15
  start-page: 739
  issue: 3
  year: 2021
  ident: 5065_CR100
  publication-title: Proc VLDB Endow
  doi: 10.14778/3494124.3494152
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  ident: 5065_CR39
  publication-title: Comput Sci Engi
  doi: 10.1109/mcse.2007.55
– ident: 5065_CR51
  doi: 10.1101/2021.02.24.432740
– volume: 46
  start-page: 794
  issue: D1
  year: 2018
  ident: 5065_CR95
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1081
– volume: 5
  start-page: 621
  issue: 7
  year: 2008
  ident: 5065_CR26
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1226
– volume: 18
  start-page: 1
  issue: 1
  year: 2017
  ident: 5065_CR71
  publication-title: BMC Genom
  doi: 10.1186/s12864-017-3906-0
– volume: 19
  start-page: 1
  issue: 1
  year: 2018
  ident: 5065_CR7
  publication-title: Genome Biol
  doi: 10.1186/s13059-018-1599-6
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  ident: 5065_CR90
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1906-x
– volume: 20
  start-page: 1
  issue: 1
  year: 2019
  ident: 5065_CR50
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1836-7
– volume: 16
  start-page: 321
  issue: 6
  year: 2015
  ident: 5065_CR15
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3920
– ident: 5065_CR47
  doi: 10.25080/shinma-7f4c6e7-00a
– volume: 59
  start-page: 56
  issue: 11
  year: 2016
  ident: 5065_CR45
  publication-title: Commun ACM
  doi: 10.1145/2934664
– volume: 18
  start-page: 1
  issue: 1
  year: 2017
  ident: 5065_CR17
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-017-1984-2
– volume: 585
  start-page: 357
  issue: 7825
  year: 2020
  ident: 5065_CR36
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– ident: 5065_CR46
  doi: 10.25080/Majora-629e541a-007
– volume: 9
  start-page: 5209
  issue: 386
  year: 2017
  ident: 5065_CR8
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aal5209
– volume: 12
  start-page: 0186906
  issue: 10
  year: 2017
  ident: 5065_CR12
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0186906
– volume: 35
  start-page: 2159
  issue: 12
  year: 2019
  ident: 5065_CR56
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty916
– volume: 14
  start-page: 381
  issue: 4
  year: 2017
  ident: 5065_CR87
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4220
– volume: 373
  start-page: 2005
  issue: 21
  year: 2015
  ident: 5065_CR83
  publication-title: N Engl J Med
  doi: 10.1056/nejmoa1510764
– volume: 123
  start-page: 2915
  issue: 19
  year: 2014
  ident: 5065_CR77
  publication-title: Blood J Am Soc Hematol
  doi: 10.1182/blood-2013-11-536359
– volume: 207
  start-page: 18
  issue: 1
  year: 2013
  ident: 5065_CR10
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jis499
– volume: 36
  start-page: 111
  issue: 2
  year: 1974
  ident: 5065_CR24
  publication-title: J R Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– volume: 20
  start-page: 631
  issue: 11
  year: 2019
  ident: 5065_CR68
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-019-0150-2
– volume: 45
  start-page: 580
  issue: 6
  year: 2013
  ident: 5065_CR92
  publication-title: Nat Genet
  doi: 10.1038/ng.2653
– volume: 6
  start-page: 3249
  issue: 61
  year: 2021
  ident: 5065_CR55
  publication-title: J Open Source Softw
  doi: 10.21105/joss.03249
– volume: 17
  start-page: 835
  issue: 2
  year: 2016
  ident: 5065_CR80
  publication-title: Asian Pac J Cancer Prev
  doi: 10.7314/apjcp.2016.17.2.835
– volume: 2015
  start-page: 1
  year: 2015
  ident: 5065_CR28
  publication-title: Biomed Res Int
  doi: 10.1155/2015/621690
– volume: 17
  start-page: 5907
  issue: 9
  year: 2021
  ident: 5065_CR49
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.1c00447
– volume: 12
  start-page: 2825
  year: 2011
  ident: 5065_CR40
  publication-title: J Mach Learn Res
– ident: 5065_CR42
  doi: 10.1145/2503210.2503219
– volume: 501
  start-page: 506
  issue: 7468
  year: 2013
  ident: 5065_CR93
  publication-title: Nature
  doi: 10.1038/nature12531
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 5065_CR82
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-58290-2
– volume: 13
  start-page: 1
  issue: 5
  year: 2020
  ident: 5065_CR74
  publication-title: BMC Med Genom
  doi: 10.1186/s12920-020-0677-2
– volume: 14
  start-page: 1
  issue: 7
  year: 2013
  ident: 5065_CR6
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-7-r75
– year: 2018
  ident: 5065_CR11
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.93247
– ident: 5065_CR22
  doi: 10.25080/majora-7b98e3ed-013
– ident: 5065_CR102
– volume: 15
  start-page: 8746
  issue: 6
  year: 2019
  ident: 5065_CR88
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20188746
– volume: 5
  start-page: 1619
  issue: 7
  year: 2016
  ident: 5065_CR81
  publication-title: Cancer Med
  doi: 10.1002/cam4.718
– ident: 5065_CR25
– ident: 5065_CR38
  doi: 10.25080/majora-92bf1922-00a
– volume: 11
  start-page: 1
  issue: 2
  year: 2014
  ident: 5065_CR19
  publication-title: J Integr Bioinform
  doi: 10.1515/jib-2014-236
– volume: 50
  start-page: 1171
  issue: 8
  year: 2018
  ident: 5065_CR21
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0160-6
– ident: 5065_CR48
  doi: 10.1145/3225058.3225128
– volume: 19
  start-page: 776
  issue: 5
  year: 2018
  ident: 5065_CR32
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx008
– volume: 28
  start-page: 27
  issue: 12
  year: 1995
  ident: 5065_CR64
  publication-title: Computer
  doi: 10.1109/2.476197
– volume: 16
  start-page: 1
  issue: 1
  year: 2021
  ident: 5065_CR89
  publication-title: Nat Protoc
  doi: 10.1038/s41596-020-00409-w
– volume: 13
  start-page: 13
  issue: 2
  year: 2010
  ident: 5065_CR35
  publication-title: Comput Sci Eng
  doi: 10.1109/mcse.2010.119
SSID ssj0017805
Score 2.4303875
SecondaryResourceType review_article
Snippet Background Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive...
Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the...
Background Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive...
Abstract Background Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 514
SubjectTerms Algorithms
Bioinformatics
Biological effects
Biomedical and Life Sciences
Case studies
Computational Biology
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer applications
Data analysis
Data Science
Disease
DNA methylation
Feature selection
Gene expression
Gene Expression Profiling
Genetic engineering
Genomics
Genotype & phenotype
Learning algorithms
Life Sciences
Machine Learning
Medical research
Microarrays
Parallel programming
Pipelining (computers)
Programming languages
Research Article
Scalable data science
Transcriptome
Transcriptomics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTojxgPgaBAYyEm8sWmMncYyEEINNExIVAibtCetiO2NaScvaCu2_x-c62SpQxWNiO3J8d76z7-53AC-R9J4tm5QrJ9McOclcbT1BZC2sbITNKTn506g8Os4_nhQnGzDqcmEorLLbE8NGbSeG7sj3uCwKAsNT2dvpr5SqRpF3tSuhgbG0gn0TIMZuwCYnZKwBbO4fjD5_6f0KhODfpc5U5d4sI_y2lCLah_7jRSpW1FNA8f-X6fl3BGXvRr0NtxbtFC9_43h8TVMd3oU70cRk75Y8cQ82XHsfbi6LTl4-gO9fPVkoYYrNSU-FXYNSk2cMI0AJo8tZ9gFn56_ZdQc3O2sZRZSyqDb9AMt-hmhMx2L5idOHcHx48O39URqrLKTGG3Pz1CjRNLKx0mtv0SA6YXGIXjar3JrMlSLjtawrY5SzWHhxNlYNlawzx7k0EsU2DNpJ6x4DU1I5oyrhT3E2L3OJMqv9fiEFKpfJukwg6xZXmwhBTpUwxjocRapSLwmiPUF0IIgWCbzqx0yXABxre-8TzfqeBJ4dXkwuTnWURc2bBsm76LjEvC4ab-NUiLw0yj8rHCaw01FcR4me6Sv-S-BF3-xlkRws2LrJgvqQd1yWeZXAoyWD9DMhd6_XK0UCcoV1Vqa62tKe_Qh43yogMPEEdjsmu5rWuqXY7RnxP1buyfqffgpbnMQkgF7uwGB-sXDPvDk2r59HGfsDUDwxeQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VIgQcEG8CBRmJGw3d2EkcIyHEq6qQygVW6glr4kepWLJlH4L993icR7tiVXHguIktWTPz5Rvv2N8APEPiPVv6lCsn0xw5Ya62wSGyFlZ6YXO6nHz4qTwY5x-PiqMt6NsddQacb9zaUT-p8Wzy4vfP1esA-FcR8FW5N89IhS2lc-mjIlBqKi7B5cBUilo5HOZnVQXS7-8vzmyct0ZOUcN_U-L59_nJoYh6Ha4um1Nc_cLJ5BxP7d-EG12Cyd60EXELtlxzG660LSdXd-Dr5-AUui7FFsRS8ZtBF5PnDDt5EkZ_zbL3OP_-kp0vb7OThtF5UtaRZphg2Y94FtOxrvnE8V0Y73_48u4g7XospCakcovUKOG99FYG7hYe0QmLIwzIrHJrMleKjNeyroxRzmIRwGysGilZZ45zaSSKe7DdTBv3AJiSyhlVibCHs3mZS5RZHb4WUqBymazLBLLeuNp0AuTUB2Oi40akKnXrEB0coqNDtEjg-TDntJXfuHD0W_LZMJKks-OD6exYd0jU3Huk2qLjEvO68CHDqRB5aVT4rXCUwE7vcd2Ho-ayKEiKUWUJPB1eByRSeQUbN13SGKqNyzKvErjfBsiwEir2BlYpEpBrobO21PU3zcm3qPatov4ST2C3D7KzZV1kit0hEP_Bcg__h-UewTVOYIrCmDuwvZgt3eOQsi3qJxGHfwCUGTss
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BEaIcKr4KgYKMxI1GbOzEjrnRQlUhwQUq9YQ1_ghUXdKquyvUf4_H8YZdUVVwTGJHlmfGb5LneQZ4hYR7XnYl10GVNXKKOeujQZQVXnXC11Sc_OmzPDyqPx43x1kmh2phVvn7qpVvZhUprJW053zSRLgsxU24FUFKJmJW7o-MAWnzL4tiruy3BjxJn_-qpPLvvZEjQXoX7iz6c7z8hdPpCgYd3IOtnDyyd4O178ON0D-A28NxkpcP4duXOOFUCsXmhEBpPaCi4xnDLD3C6Lcre4-z07dslbpmJz2jvaIsA2Ls4NnPtM8ysHywxPdHcHTw4ev-YZnPTyhdTNPmpdOi61TnVcRl0SEG4XGCMera2rsqSFFxq2zrnA4emxiozuuJVrYKnCunUGzDRn_WhyfAtNLB6VbE7zNfy1qhqmxcCZRAHSplZQHVcnKNy-LidMbF1KSPjFaawSAmGsQkgxhRwOuxz_kgrXFt6z2y2diSZLHTjegtJkeZ4V2HxBsGrrC2TRezlxaRS6fjtcZJATtLi5scqzPDVdOQzKKuCng5Po5RRtQJ9uFsQW2I91aybgt4PDjIOBIiciNiNAWoNddZG-r6k_7kR1Ly1klbiRewu3SyP8O6bip2R0f8h5l7-n9vfwabnMImyVvuwMb8YhGex8Rrbl-kiPsN2rQj0w
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVohy4F0IFGQkbjRlbSd2zK08qgqJCglWKhcsvwJVl7Ris0Ll1-NxsumuWhU4Jh5Lzjw848zMZ4DnBv2eF3XOVJB5YRjanPVRINJyL2vuC2xO_rAv9ibF-4Py4Awsejl9TyvxckYRYC3HkvNxGb1lzq_Cmihj2D2Ctcn-x50vqXtI0jweXcpFU8yFE1ccT8LnvyioPF8bOSRIb8D1eXNiTn-Z6XTJB-3e6qq3Zgm6EEtPjrbnrd12v88DO_79827DzT4SJTud6tyBK6G5C9e6uylP78HXT1F62FdFWnRnaXPBDuYZMT2OCcF_uOStmR29Ist5cHLYECw8Jb13jRM8-ZGKNgPpb6n4dh8mu-8-v9nL-8sYchdjvjZ3ite1rL2MTp7XxgTuzdhEE64K72gQnDIrbeWcCt6U0eqdV2MlLQ2MSScN34BRc9yEh0CUVMGpisfDni9EIY2kNm4rkhsVqLQiA7qQlHY9UjlemDHV6cRSCd3xTUe-6cQ3zTN4Mcw56XA6LqV-jQowUCLGdnoRhaN7k9Wsrg0mIQOTprBlHUOhyhgmnIrPyowz2Fyoj-4Nf6aZLEvEbFQ0g2fDcDRZzMOYJhzPkQaT6FIUVQYPOm0bVoJZ4eh-ygzkih6uLHV1pDn8nmDBVQJqYhlsLTT2bFmXsWJr0Op_4Nyj_yN_DOsMtTthZW7CqP05D09iFNfap739_gHJHDtQ
  priority: 102
  providerName: Unpaywall
Title Scalable transcriptomics analysis with Dask: applications in data science and machine learning
URI https://link.springer.com/article/10.1186/s12859-022-05065-3
https://www.ncbi.nlm.nih.gov/pubmed/36451115
https://www.proquest.com/docview/2755506091
https://www.proquest.com/docview/2744667648
https://pubmed.ncbi.nlm.nih.gov/PMC9710082
http://doi.org/10.1186/s12859-022-05065-3
https://doaj.org/article/2ffa3049e27a4b5f8128aa26c97a49a0
UnpaywallVersion submittedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEAIeEN8ERmUk3li0xk78wVtXVqZKqyZGpfJC5MQOTJRsoq3Q_nvunDS0Ag0eeEmU2JGc-8jPzp1_B_DKEu45WcXceBWnlpPPFQ4VogrhVCVcSpuTjyfyaJqOZ9lso9QX5YQ19MCN4PZ5VVkKBXmubFpkFQKStpbL0uC1sWG13tdmvZhq4wfE1L_eIqPl_iIhnraYMtf7GYJuLLZgKLD1_2mK-XumZBcuvQO3VvWFvfxh5_MNRBrdg7vtVJINmle4D9d8_QBuNsUlLx_Cp1MUP22MYkvCo_B1oC3IC2ZbIhJGP2HZW7v4-oZtBrLZWc0oc5S18IgPOPYtZF161paZ-PwIpqPDD8OjuK2mEJc4aVvGpRFVpSqnEKVFZa0XzvYt-qBOXZl4KRJeqEKXpfHOZui2pTN9o4rEc65KZcVj2KnPa_8UmFHGl0YLXK25VKbKqqTA74IS1vhEFTKCZC3cvGypxqnixTwPSw4t80YhOSokDwrJRQSvu2cuGqKNK3sfkM66nkSSHW6g6eSt6eR_M50Idtcaz1vPXeRcZRmRLpokgpddM_ocBVJs7c9X1Iei4EqmOoInjYF0I6GwLuJHFoHaMp2toW631GdfAq-3CUxLPIK9tZH9GtZVotjrDPEfJPfsf0juOdzm5EyBAnMXdpbfV_4FTs6WRQ-uq5nCox6968GNwWB8OsbzweHk5D3eHcphL3gqHo9TjS3Tycng40_Yhjvm
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQ4IN4EChgJTjTqxk7iGAkhoFRb-rjQSnuqcWKnVCzZpburav8Uv5EZ59GuQCsuPSZxIsfztGfmG4BXhuyeTcuQKyfD2HCSudwiQWQurCyFjak4ef8g7R_FXwbJYAV-t7UwlFbZ6kSvqO2ooDPyTS6ThMDwVPR-_CukrlEUXW1baNRssevm57hlm7zb2UL6vuZ8-_Php37YdBUIC3RepmGhRFnK0kq0VqI0xglregZ5MYttEblURDyXeVYUylmTIPsWVvWUzCPHuSykEfjda3A9FqhLUH7koNvgRdQfoC3MydLNSUTocCHly_dw6kkoFoyf7xHwL8f27_zMLkh7C9Zm1djMz81weMkObt-B240Dyz7UHHcXVlx1D27ULS3n9-H4KxKdyrHYlKyg10lU-DxhpoE_YXT0y7bM5Mdbdjl8zk4rRvmqrDHK-IJlP32up2NNc4uTB3B0Jav9EFarUeUeA1NSuUJlAveINk5jaWSUozaSwigXyTwNIGoXVxcNwDn12Rhqv9HJUl0TRCNBtCeIFgG86d4Z1_AeS0d_JJp1Iwma298YnZ3oRtI1L0tDsUvHpYnzpEQPKjOGp4XCa2V6Aay3FNeNvpjoC-4O4GX3GCWdwjemcqMZjaHYu0zjLIBHNYN0M6FgMlqtJAC5wDoLU118Up1-92jiyuM78QA2Wia7mNaypdjoGPE_Vu7J8p9-AWv9w_09vbdzsPsUbnISGQ-vuQ6r07OZe4aO3zR_7qWNwberFu8_it9pDA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BEdcD4iglUMBIvNGoGzuxY95gy6pcFRJU6hOW46NUbLOrblao_x6Pc7Arqgoes7EjyzNfPmdn5huAlxp5z3KfUulEmmuKmKtsMIiomBWe2RyLkz8f8P3D_MNRcbRSxR-z3fuQZFvTgCpNdbM7t76FeMl3FxnqrqWYiT4qAomm7CpcywO7YQ-DMR8PcQRU7O9LZS6ct0ZHUbX_oqPm3xmTQ9j0Ntxc1nN9_ktPpyvMNLkLd7ojJXnT-sA9uOLq-3C9bTJ5_gC-fw1mwAIp0iAvxbcEliIviO4ESQj-GUv29OLna7Ia0CYnNcEMUtLRZJhgyWnMvnSkazdxvAmHk3ffxvtp11UhNeHw1qRGMu-FtyKwNfNaO2b1SAcslrk1meMso5WoSmOks7oI8DVWjqSoMkepMEKzh7BRz2r3CIgU0hlZsvDVZnOeCy2yKrwfBNPSZaLiCWT95irTSY5j54upip8eJVetQVQwiIoGUSyBV8OceSu4cenot2izYSSKZccfZmfHqsOeot5rjCY6KnReFT64Sak15UaGa6lHCWz3FlcdgheKiqJA8UWZJfBiuB2whwEVXbvZEsdgNFzwvExgq3WQYSUY3g08UiQg1lxnbanrd-qTH1HfW0bFJZrATu9kf5Z12VbsDI74Dzv3-P-e_hxufNmbqE_vDz4-gVsUERT1L7dhozlbuqfhZNZUzyL4fgML2C8J
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVohy4F0IFGQkbjRlbSd2zK08qgqJCglWKhcsvwJVl7Ris0Ll1-NxsumuWhU4Jh5Lzjw848zMZ4DnBv2eF3XOVJB5YRjanPVRINJyL2vuC2xO_rAv9ibF-4Py4Awsejl9TyvxckYRYC3HkvNxGb1lzq_Cmihj2D2Ctcn-x50vqXtI0jweXcpFU8yFE1ccT8LnvyioPF8bOSRIb8D1eXNiTn-Z6XTJB-3e6qq3Zgm6EEtPjrbnrd12v88DO_79827DzT4SJTud6tyBK6G5C9e6uylP78HXT1F62FdFWnRnaXPBDuYZMT2OCcF_uOStmR29Ist5cHLYECw8Jb13jRM8-ZGKNgPpb6n4dh8mu-8-v9nL-8sYchdjvjZ3ite1rL2MTp7XxgTuzdhEE64K72gQnDIrbeWcCt6U0eqdV2MlLQ2MSScN34BRc9yEh0CUVMGpisfDni9EIY2kNm4rkhsVqLQiA7qQlHY9UjlemDHV6cRSCd3xTUe-6cQ3zTN4Mcw56XA6LqV-jQowUCLGdnoRhaN7k9Wsrg0mIQOTprBlHUOhyhgmnIrPyowz2Fyoj-4Nf6aZLEvEbFQ0g2fDcDRZzMOYJhzPkQaT6FIUVQYPOm0bVoJZ4eh-ygzkih6uLHV1pDn8nmDBVQJqYhlsLTT2bFmXsWJr0Op_4Nyj_yN_DOsMtTthZW7CqP05D09iFNfap739_gHJHDtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+transcriptomics+analysis+with+Dask%3A+applications+in+data+science+and+machine+learning&rft.jtitle=BMC+bioinformatics&rft.au=Marta+Moreno&rft.au=Ricardo+Vila%C3%A7a&rft.au=Pedro+G.+Ferreira&rft.date=2022-11-30&rft.pub=BMC&rft.eissn=1471-2105&rft.volume=23&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1186%2Fs12859-022-05065-3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2ffa3049e27a4b5f8128aa26c97a49a0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon