Scalable transcriptomics analysis with Dask: applications in data science and machine learning
Background Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the prediction, diagnosis and prognosis of different diseases. Data science and specifically machine learning have many applications i...
Saved in:
| Published in | BMC bioinformatics Vol. 23; no. 1; pp. 514 - 20 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
30.11.2022
Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-022-05065-3 |
Cover
| Abstract | Background
Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the prediction, diagnosis and prognosis of different diseases. Data science and specifically machine learning have many applications in gene expression analysis. However, as the dimensionality of genomics datasets grows, scalable solutions become necessary.
Methods
In this paper we review the main steps and bottlenecks in machine learning pipelines, as well as the main concepts behind scalable data science including those of concurrent and parallel programming. We discuss the benefits of the
Dask
framework and how it can be integrated with the Python scientific environment to perform data analysis in computational biology and bioinformatics.
Results
This review illustrates the role of
Dask
for boosting data science applications in different case studies. Detailed documentation and code on these procedures is made available at
https://github.com/martaccmoreno/gexp-ml-dask
.
Conclusion
By showing when and how
Dask
can be used in transcriptomics analysis, this review will serve as an entry point to help genomic data scientists develop more scalable data analysis procedures. |
|---|---|
| AbstractList | Abstract Background Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the prediction, diagnosis and prognosis of different diseases. Data science and specifically machine learning have many applications in gene expression analysis. However, as the dimensionality of genomics datasets grows, scalable solutions become necessary. Methods In this paper we review the main steps and bottlenecks in machine learning pipelines, as well as the main concepts behind scalable data science including those of concurrent and parallel programming. We discuss the benefits of the Dask framework and how it can be integrated with the Python scientific environment to perform data analysis in computational biology and bioinformatics. Results This review illustrates the role of Dask for boosting data science applications in different case studies. Detailed documentation and code on these procedures is made available at https://github.com/martaccmoreno/gexp-ml-dask . Conclusion By showing when and how Dask can be used in transcriptomics analysis, this review will serve as an entry point to help genomic data scientists develop more scalable data analysis procedures. Background Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the prediction, diagnosis and prognosis of different diseases. Data science and specifically machine learning have many applications in gene expression analysis. However, as the dimensionality of genomics datasets grows, scalable solutions become necessary. Methods In this paper we review the main steps and bottlenecks in machine learning pipelines, as well as the main concepts behind scalable data science including those of concurrent and parallel programming. We discuss the benefits of the Dask framework and how it can be integrated with the Python scientific environment to perform data analysis in computational biology and bioinformatics. Results This review illustrates the role of Dask for boosting data science applications in different case studies. Detailed documentation and code on these procedures is made available at https://github.com/martaccmoreno/gexp-ml-dask. Conclusion By showing when and how Dask can be used in transcriptomics analysis, this review will serve as an entry point to help genomic data scientists develop more scalable data analysis procedures. Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the prediction, diagnosis and prognosis of different diseases. Data science and specifically machine learning have many applications in gene expression analysis. However, as the dimensionality of genomics datasets grows, scalable solutions become necessary. In this paper we review the main steps and bottlenecks in machine learning pipelines, as well as the main concepts behind scalable data science including those of concurrent and parallel programming. We discuss the benefits of the Dask framework and how it can be integrated with the Python scientific environment to perform data analysis in computational biology and bioinformatics. This review illustrates the role of Dask for boosting data science applications in different case studies. Detailed documentation and code on these procedures is made available at https://github.com/martaccmoreno/gexp-ml-dask . By showing when and how Dask can be used in transcriptomics analysis, this review will serve as an entry point to help genomic data scientists develop more scalable data analysis procedures. Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the prediction, diagnosis and prognosis of different diseases. Data science and specifically machine learning have many applications in gene expression analysis. However, as the dimensionality of genomics datasets grows, scalable solutions become necessary.BACKGROUNDGene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the prediction, diagnosis and prognosis of different diseases. Data science and specifically machine learning have many applications in gene expression analysis. However, as the dimensionality of genomics datasets grows, scalable solutions become necessary.In this paper we review the main steps and bottlenecks in machine learning pipelines, as well as the main concepts behind scalable data science including those of concurrent and parallel programming. We discuss the benefits of the Dask framework and how it can be integrated with the Python scientific environment to perform data analysis in computational biology and bioinformatics.METHODSIn this paper we review the main steps and bottlenecks in machine learning pipelines, as well as the main concepts behind scalable data science including those of concurrent and parallel programming. We discuss the benefits of the Dask framework and how it can be integrated with the Python scientific environment to perform data analysis in computational biology and bioinformatics.This review illustrates the role of Dask for boosting data science applications in different case studies. Detailed documentation and code on these procedures is made available at https://github.com/martaccmoreno/gexp-ml-dask .RESULTSThis review illustrates the role of Dask for boosting data science applications in different case studies. Detailed documentation and code on these procedures is made available at https://github.com/martaccmoreno/gexp-ml-dask .By showing when and how Dask can be used in transcriptomics analysis, this review will serve as an entry point to help genomic data scientists develop more scalable data analysis procedures.CONCLUSIONBy showing when and how Dask can be used in transcriptomics analysis, this review will serve as an entry point to help genomic data scientists develop more scalable data analysis procedures. Background Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the prediction, diagnosis and prognosis of different diseases. Data science and specifically machine learning have many applications in gene expression analysis. However, as the dimensionality of genomics datasets grows, scalable solutions become necessary. Methods In this paper we review the main steps and bottlenecks in machine learning pipelines, as well as the main concepts behind scalable data science including those of concurrent and parallel programming. We discuss the benefits of the Dask framework and how it can be integrated with the Python scientific environment to perform data analysis in computational biology and bioinformatics. Results This review illustrates the role of Dask for boosting data science applications in different case studies. Detailed documentation and code on these procedures is made available at https://github.com/martaccmoreno/gexp-ml-dask . Conclusion By showing when and how Dask can be used in transcriptomics analysis, this review will serve as an entry point to help genomic data scientists develop more scalable data analysis procedures. |
| ArticleNumber | 514 |
| Author | Vilaça, Ricardo Moreno, Marta Ferreira, Pedro G. |
| Author_xml | – sequence: 1 givenname: Marta surname: Moreno fullname: Moreno, Marta organization: Department of Computer Science, Faculty of Sciences, University of Porto, Laboratory of Artificial Intelligence and Decision Support, INESC TEC – sequence: 2 givenname: Ricardo surname: Vilaça fullname: Vilaça, Ricardo organization: High-Assurance Software Laboratory, INESC TEC, Department of Informatics, Minho Advanced Computing Center, University of Minho, Gualtar – sequence: 3 givenname: Pedro G. surname: Ferreira fullname: Ferreira, Pedro G. email: pgferreira@fc.up.pt organization: Department of Computer Science, Faculty of Sciences, University of Porto, Laboratory of Artificial Intelligence and Decision Support, INESC TEC, Institute of Molecular Pathology and Immunology of the University of Porto, Institute for Research and Innovation in Health (i3s) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36451115$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv1DAUhSNURB_wB1ggS2zYBPyI45gFUlVaqFSJBbDFunGcGQ-OHeyEav497mQobRcVK7_OOTr-7nFx4IM3RfGS4LeENPW7RGjDZYkpLTHHNS_Zk-KIVIKUlGB-cGd_WByntMGYiAbzZ8UhqytOCOFHxY-vGhy0zqApgk862nEKg9UJgQe3TTahazut0UdIP98jGEdnNUw2-ISsRx1MgJK2xmuTDR0aQK-tN8gZiN761fPiaQ8umRf79aT4fnH-7exzefXl0-XZ6VWpec2nUkvW96LvBKaM9QCGdYABc9ZUnSamZoS2om20lqYDLiTTncRStMRQKrQAdlJcLrldgI0aox0gblUAq3YXIa4UxMlqZxTte2C4koYKqFreN5kiAK21zGcJOGexJWv2I2yvwbnbQILVDXm1kFeZvNqRVyy7PiyucW4H02njM1B3r8r9F2_XahV-KykIxg3NAW_2ATH8mk2a1GCTNs6BN2FOioqqqmtRV02Wvn4g3YQ55nndqDjPjbAkWfXqbqPbKn-HnwXNItAxpBRNr7SddsPNBa17_Lf0gfW_EO3Bpiz2KxP_1X7E9Qe41uQa |
| CitedBy_id | crossref_primary_10_34133_bmef_0100 crossref_primary_10_59717_j_xinn_life_2024_100079 |
| Cites_doi | 10.1038/s41388-018-0385-y 10.1016/s2213-2600(16)00048-5 10.1021/acs.molpharmaceut.6b00248 10.3322/caac.21565 10.1093/bioinformatics/btz420 10.1007/978-1-4842-2199-0_8 10.1038/nature14248 10.3390/info11040193 10.1016/j.celrep.2019.11.017 10.1109/icpads.2012.97 10.1038/npre.2010.4282.1 10.1126/science.aad0095 10.1093/bioinformatics/btu324 10.1145/106973.106981 10.1245/s10434-013-3070-y 10.1038/nature12625 10.1038/nmeth.1613 10.1007/s10120-019-01029-4 10.1186/gb-2010-11-3-r25 10.3390/ijms18081652 10.1038/s41592-019-0686-2 10.14778/3407790.3407807 10.5114/wo.2014.47136 10.1038/89044 10.1051/0004-6361/201732493 10.1109/works49585.2019.00010 10.1146/annurev-immunol-090419-020340 10.1038/nature11247 10.1038/s41573-019-0024-5 10.1145/2939672.2939785 10.1101/2021.03.23.436606 10.1093/bioinformatics/18.1.39 10.1101/2022.05.26.493607 10.1101/2021.05.03.442499 10.1109/IPDPSW55747.2022.00045 10.7554/elife.51254 10.1164/rccm.201502-0355oc 10.1016/j.cell.2016.12.013 10.1038/s12276-018-0071-8 10.25080/majora-1b6fd038-011 10.1038/s41592-021-01358-2 10.1186/1471-2105-11-94 10.1038/nrg.2016.10 10.1126/science.aaa8415 10.1161/circulationaha.115.001593 10.1016/j.jaad.2015.01.009 10.14778/3494124.3494152 10.1109/mcse.2007.55 10.1101/2021.02.24.432740 10.1093/nar/gkx1081 10.1038/nmeth.1226 10.1186/s12864-017-3906-0 10.1186/s13059-018-1599-6 10.1186/s13059-019-1906-x 10.1186/s13059-019-1836-7 10.1038/nrg3920 10.25080/shinma-7f4c6e7-00a 10.1145/2934664 10.1186/s12859-017-1984-2 10.1038/s41586-020-2649-2 10.25080/Majora-629e541a-007 10.1126/scitranslmed.aal5209 10.1371/journal.pone.0186906 10.1093/bioinformatics/bty916 10.1038/nmeth.4220 10.1056/nejmoa1510764 10.1182/blood-2013-11-536359 10.1093/infdis/jis499 10.1111/j.2517-6161.1974.tb00994.x 10.1038/s41576-019-0150-2 10.1038/ng.2653 10.21105/joss.03249 10.7314/apjcp.2016.17.2.835 10.1155/2015/621690 10.1021/acs.jctc.1c00447 10.1145/2503210.2503219 10.1038/nature12531 10.1038/s41598-020-58290-2 10.1186/s12920-020-0677-2 10.1186/gb-2013-14-7-r75 10.1172/jci.insight.93247 10.25080/majora-7b98e3ed-013 10.15252/msb.20188746 10.1002/cam4.718 10.25080/majora-92bf1922-00a 10.1515/jib-2014-236 10.1038/s41588-018-0160-6 10.1145/3225058.3225128 10.1093/bib/bbx008 10.1109/2.476197 10.1038/s41596-020-00409-w 10.1109/mcse.2010.119 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12859-022-05065-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) ProQuest Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 20 |
| ExternalDocumentID | oai_doaj_org_article_2ffa3049e27a4b5f8128aa26c97a49a0 oai:repositorium.uminho.pt:1822/90084 PMC9710082 36451115 10_1186_s12859_022_05065_3 |
| Genre | Journal Article Review |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 2VQ 4.4 ADRAZ ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c565t-c93ff7fd70233faae3da0a05384dc1e6312b7b8cc9eda5793cd9097b1e227c7a3 |
| IEDL.DBID | DOA |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:52:58 EDT 2025 Sun Oct 26 04:14:08 EDT 2025 Tue Sep 30 17:17:51 EDT 2025 Fri Sep 05 08:42:36 EDT 2025 Tue Oct 07 05:13:14 EDT 2025 Thu Apr 03 07:06:38 EDT 2025 Thu Apr 24 22:58:57 EDT 2025 Wed Oct 01 04:15:41 EDT 2025 Sat Sep 06 07:27:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Scalable data science Data analysis Gene expression Transcriptomics Machine learning |
| Language | English |
| License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c565t-c93ff7fd70233faae3da0a05384dc1e6312b7b8cc9eda5793cd9097b1e227c7a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
| OpenAccessLink | https://doaj.org/article/2ffa3049e27a4b5f8128aa26c97a49a0 |
| PMID | 36451115 |
| PQID | 2755506091 |
| PQPubID | 44065 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2ffa3049e27a4b5f8128aa26c97a49a0 unpaywall_primary_10_1186_s12859_022_05065_3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9710082 proquest_miscellaneous_2744667648 proquest_journals_2755506091 pubmed_primary_36451115 crossref_citationtrail_10_1186_s12859_022_05065_3 crossref_primary_10_1186_s12859_022_05065_3 springer_journals_10_1186_s12859_022_05065_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-30 |
| PublicationDateYYYYMMDD | 2022-11-30 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2022 |
| Publisher | BioMed Central Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V – name: BMC |
| References | M List (5065_CR19) 2014; 11 V Svensson (5065_CR87) 2017; 14 J Lonsdale (5065_CR92) 2013; 45 H El-Rewini (5065_CR64) 1995; 28 E Madissoon (5065_CR90) 2020; 21 5065_CR48 5065_CR47 5065_CR46 MD Robinson (5065_CR29) 2010; 11 D Petersohn (5065_CR99) 2020; 13 M Kunz (5065_CR72) 2018; 37 5065_CR42 5065_CR41 CR Harris (5065_CR36) 2020; 585 MA Breddels (5065_CR103) 2018; 618 5065_CR102 5065_CR101 JH Bullard (5065_CR30) 2010; 11 J Vamathevan (5065_CR9) 2019; 18 5065_CR38 MI Jordan (5065_CR16) 2015; 349 J Zhou (5065_CR21) 2018; 50 5065_CR33 M Mostavi (5065_CR74) 2020; 13 G Palla (5065_CR59) 2022; 19 C Soneson (5065_CR65) 2014; 30 S-K Kim (5065_CR73) 2020; 23 CA Davis (5065_CR95) 2018; 46 ENCODE Project Consortium (5065_CR94) 2012; 489 P Gerami (5065_CR78) 2015; 72 M Garber (5065_CR27) 2011; 8 EMV Allen (5065_CR79) 2015; 350 D Petersohn (5065_CR100) 2021; 15 J Iqbal (5065_CR77) 2014; 123 F Wrede (5065_CR53) 2019; 35 5065_CR62 5065_CR61 H-Y Lim (5065_CR84) 2013; 20 A Casamassimi (5065_CR2) 2017; 18 J Zyprych-Walczak (5065_CR28) 2015; 2015 M Zaharia (5065_CR44) 2012; 37 K Tomczak (5065_CR85) 2015; 19 T Lappalainen (5065_CR93) 2013; 501 S Anders (5065_CR31) 2010 Y Li (5065_CR71) 2017; 18 C Evans (5065_CR32) 2018; 19 JC Daniel (5065_CR43) 2019 RA Burrell (5065_CR66) 2013; 501 5065_CR58 5065_CR57 5065_CR52 5065_CR51 MW Libbrecht (5065_CR15) 2015; 16 P Virtanen (5065_CR37) 2020; 17 D Glass (5065_CR6) 2013; 14 J Bergstra (5065_CR34) 2012; 13 JM Cliff (5065_CR10) 2013; 207 BP Scicluna (5065_CR4) 2015; 192 NC Tran (5065_CR55) 2021; 6 MD Lam (5065_CR63) 1991; 25 MD Podolsky (5065_CR80) 2016; 17 SA Byron (5065_CR1) 2016; 17 RD Team (5065_CR60) 2018 C Huang (5065_CR12) 2017; 12 JD Hunter (5065_CR39) 2007; 9 A Taylor-Weiner (5065_CR50) 2019; 20 M Efremova (5065_CR86) 2020; 38 T Sakellaropoulos (5065_CR13) 2019; 29 TS Andrews (5065_CR89) 2021; 16 S-J Sammut (5065_CR3) 2021; 601 T Kang (5065_CR17) 2017; 18 MD Luecken (5065_CR88) 2019; 15 JE Bradner (5065_CR67) 2017; 168 A Kundaje (5065_CR96) 2015; 518 A Aliper (5065_CR18) 2016; 13 5065_CR76 KD Miller (5065_CR69) 2019; 69 J Khan (5065_CR75) 2001; 7 S Raschka (5065_CR23) 2020; 11 T Moerman (5065_CR56) 2019; 35 M Zaharia (5065_CR45) 2016; 59 M Stone (5065_CR24) 1974; 36 F Perez (5065_CR35) 2010; 13 CA Jackson (5065_CR54) 2020; 9 JA Sparano (5065_CR83) 2015; 373 5065_CR25 5065_CR22 DV Nguyen (5065_CR70) 2002; 18 5065_CR20 N Wong (5065_CR81) 2016; 5 A Mortazavi (5065_CR26) 2008; 5 JG Fleischer (5065_CR7) 2018; 19 B Hwang (5065_CR97) 2018; 50 RC Deo (5065_CR14) 2015; 132 F Pedregosa (5065_CR40) 2011; 12 5065_CR98 M Sinkala (5065_CR82) 2020; 10 PG Murray (5065_CR11) 2018 5065_CR91 R Stark (5065_CR68) 2019; 20 P Smith (5065_CR49) 2021; 17 BB Cummings (5065_CR8) 2017; 9 TE Sweeney (5065_CR5) 2016; 4 |
| References_xml | – volume: 37 start-page: 6136 issue: 47 year: 2018 ident: 5065_CR72 publication-title: Oncogene doi: 10.1038/s41388-018-0385-y – volume: 4 start-page: 213 issue: 3 year: 2016 ident: 5065_CR5 publication-title: Lancet Respir Med doi: 10.1016/s2213-2600(16)00048-5 – volume: 13 start-page: 2524 issue: 7 year: 2016 ident: 5065_CR18 publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.6b00248 – volume: 601 start-page: 1 year: 2021 ident: 5065_CR3 publication-title: Nature – volume: 69 start-page: 363 issue: 5 year: 2019 ident: 5065_CR69 publication-title: CA Cancer J Clin doi: 10.3322/caac.21565 – volume: 35 start-page: 5199 issue: 24 year: 2019 ident: 5065_CR53 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz420 – ident: 5065_CR91 doi: 10.1007/978-1-4842-2199-0_8 – volume: 518 start-page: 317 issue: 7539 year: 2015 ident: 5065_CR96 publication-title: Nature doi: 10.1038/nature14248 – ident: 5065_CR33 – volume: 11 start-page: 193 issue: 4 year: 2020 ident: 5065_CR23 publication-title: Information doi: 10.3390/info11040193 – volume: 29 start-page: 3367 issue: 11 year: 2019 ident: 5065_CR13 publication-title: Cell Rep doi: 10.1016/j.celrep.2019.11.017 – ident: 5065_CR41 doi: 10.1109/icpads.2012.97 – year: 2010 ident: 5065_CR31 publication-title: Nat Preced doi: 10.1038/npre.2010.4282.1 – volume: 350 start-page: 207 issue: 6257 year: 2015 ident: 5065_CR79 publication-title: Science doi: 10.1126/science.aad0095 – volume: 30 start-page: 2517 issue: 17 year: 2014 ident: 5065_CR65 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu324 – volume: 25 start-page: 63 issue: Special Issue year: 1991 ident: 5065_CR63 publication-title: ACM SIGOPS Oper Syst Rev doi: 10.1145/106973.106981 – volume: 20 start-page: 3747 issue: 12 year: 2013 ident: 5065_CR84 publication-title: Ann Surg Oncol doi: 10.1245/s10434-013-3070-y – volume: 13 start-page: 281 issue: 2 year: 2012 ident: 5065_CR34 publication-title: J Mach Learn Res – volume: 37 start-page: 45 issue: 4 year: 2012 ident: 5065_CR44 publication-title: Usenix Login – volume: 501 start-page: 338 issue: 7467 year: 2013 ident: 5065_CR66 publication-title: Nature doi: 10.1038/nature12625 – ident: 5065_CR76 – volume: 8 start-page: 469 issue: 6 year: 2011 ident: 5065_CR27 publication-title: Nat Methods doi: 10.1038/nmeth.1613 – volume: 23 start-page: 473 issue: 3 year: 2020 ident: 5065_CR73 publication-title: Gastric Cancer doi: 10.1007/s10120-019-01029-4 – volume: 11 start-page: 1 issue: 3 year: 2010 ident: 5065_CR29 publication-title: Genome Biol doi: 10.1186/gb-2010-11-3-r25 – volume: 18 start-page: 1652 issue: 8 year: 2017 ident: 5065_CR2 publication-title: Int J Mol Sci doi: 10.3390/ijms18081652 – volume: 17 start-page: 261 issue: 3 year: 2020 ident: 5065_CR37 publication-title: Nat Methods doi: 10.1038/s41592-019-0686-2 – volume: 13 start-page: 2033 issue: 12 year: 2020 ident: 5065_CR99 publication-title: VLDB Endow doi: 10.14778/3407790.3407807 – volume: 19 start-page: 68 issue: 1A year: 2015 ident: 5065_CR85 publication-title: Współczesna Onkologia doi: 10.5114/wo.2014.47136 – ident: 5065_CR101 – volume-title: Data science at scale with Python and Dask year: 2019 ident: 5065_CR43 – volume: 7 start-page: 673 issue: 6 year: 2001 ident: 5065_CR75 publication-title: Nat Med doi: 10.1038/89044 – volume: 618 start-page: 13 year: 2018 ident: 5065_CR103 publication-title: Astron Astrophys doi: 10.1051/0004-6361/201732493 – ident: 5065_CR52 doi: 10.1109/works49585.2019.00010 – volume: 38 start-page: 727 year: 2020 ident: 5065_CR86 publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-090419-020340 – volume: 489 start-page: 57 issue: 7414 year: 2012 ident: 5065_CR94 publication-title: Nature doi: 10.1038/nature11247 – volume: 18 start-page: 463 issue: 6 year: 2019 ident: 5065_CR9 publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-019-0024-5 – ident: 5065_CR20 doi: 10.1145/2939672.2939785 – ident: 5065_CR58 doi: 10.1101/2021.03.23.436606 – volume: 18 start-page: 39 issue: 1 year: 2002 ident: 5065_CR70 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.1.39 – ident: 5065_CR61 doi: 10.1101/2022.05.26.493607 – ident: 5065_CR57 doi: 10.1101/2021.05.03.442499 – ident: 5065_CR62 doi: 10.1109/IPDPSW55747.2022.00045 – volume: 9 start-page: 51254 year: 2020 ident: 5065_CR54 publication-title: eLife doi: 10.7554/elife.51254 – volume: 192 start-page: 826 issue: 7 year: 2015 ident: 5065_CR4 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201502-0355oc – volume: 168 start-page: 629 issue: 4 year: 2017 ident: 5065_CR67 publication-title: Cell doi: 10.1016/j.cell.2016.12.013 – volume: 50 start-page: 1 issue: 8 year: 2018 ident: 5065_CR97 publication-title: Exp Mol Med doi: 10.1038/s12276-018-0071-8 – ident: 5065_CR98 doi: 10.25080/majora-1b6fd038-011 – volume: 19 start-page: 171 issue: 2 year: 2022 ident: 5065_CR59 publication-title: Nat Methods doi: 10.1038/s41592-021-01358-2 – volume: 11 start-page: 1 issue: 1 year: 2010 ident: 5065_CR30 publication-title: BMC Bioinform doi: 10.1186/1471-2105-11-94 – volume: 17 start-page: 257 issue: 5 year: 2016 ident: 5065_CR1 publication-title: Nat Rev Genet doi: 10.1038/nrg.2016.10 – volume: 349 start-page: 255 issue: 6245 year: 2015 ident: 5065_CR16 publication-title: Science doi: 10.1126/science.aaa8415 – volume: 132 start-page: 1920 issue: 20 year: 2015 ident: 5065_CR14 publication-title: Circulation doi: 10.1161/circulationaha.115.001593 – volume-title: RAPIDS: collection of libraries for end to end GPU data science year: 2018 ident: 5065_CR60 – volume: 72 start-page: 780 issue: 5 year: 2015 ident: 5065_CR78 publication-title: J Am Acad Dermatol doi: 10.1016/j.jaad.2015.01.009 – volume: 15 start-page: 739 issue: 3 year: 2021 ident: 5065_CR100 publication-title: Proc VLDB Endow doi: 10.14778/3494124.3494152 – volume: 9 start-page: 90 issue: 3 year: 2007 ident: 5065_CR39 publication-title: Comput Sci Engi doi: 10.1109/mcse.2007.55 – ident: 5065_CR51 doi: 10.1101/2021.02.24.432740 – volume: 46 start-page: 794 issue: D1 year: 2018 ident: 5065_CR95 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1081 – volume: 5 start-page: 621 issue: 7 year: 2008 ident: 5065_CR26 publication-title: Nat Methods doi: 10.1038/nmeth.1226 – volume: 18 start-page: 1 issue: 1 year: 2017 ident: 5065_CR71 publication-title: BMC Genom doi: 10.1186/s12864-017-3906-0 – volume: 19 start-page: 1 issue: 1 year: 2018 ident: 5065_CR7 publication-title: Genome Biol doi: 10.1186/s13059-018-1599-6 – volume: 21 start-page: 1 issue: 1 year: 2020 ident: 5065_CR90 publication-title: Genome Biol doi: 10.1186/s13059-019-1906-x – volume: 20 start-page: 1 issue: 1 year: 2019 ident: 5065_CR50 publication-title: Genome Biol doi: 10.1186/s13059-019-1836-7 – volume: 16 start-page: 321 issue: 6 year: 2015 ident: 5065_CR15 publication-title: Nat Rev Genet doi: 10.1038/nrg3920 – ident: 5065_CR47 doi: 10.25080/shinma-7f4c6e7-00a – volume: 59 start-page: 56 issue: 11 year: 2016 ident: 5065_CR45 publication-title: Commun ACM doi: 10.1145/2934664 – volume: 18 start-page: 1 issue: 1 year: 2017 ident: 5065_CR17 publication-title: BMC Bioinform doi: 10.1186/s12859-017-1984-2 – volume: 585 start-page: 357 issue: 7825 year: 2020 ident: 5065_CR36 publication-title: Nature doi: 10.1038/s41586-020-2649-2 – ident: 5065_CR46 doi: 10.25080/Majora-629e541a-007 – volume: 9 start-page: 5209 issue: 386 year: 2017 ident: 5065_CR8 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aal5209 – volume: 12 start-page: 0186906 issue: 10 year: 2017 ident: 5065_CR12 publication-title: PLoS ONE doi: 10.1371/journal.pone.0186906 – volume: 35 start-page: 2159 issue: 12 year: 2019 ident: 5065_CR56 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty916 – volume: 14 start-page: 381 issue: 4 year: 2017 ident: 5065_CR87 publication-title: Nat Methods doi: 10.1038/nmeth.4220 – volume: 373 start-page: 2005 issue: 21 year: 2015 ident: 5065_CR83 publication-title: N Engl J Med doi: 10.1056/nejmoa1510764 – volume: 123 start-page: 2915 issue: 19 year: 2014 ident: 5065_CR77 publication-title: Blood J Am Soc Hematol doi: 10.1182/blood-2013-11-536359 – volume: 207 start-page: 18 issue: 1 year: 2013 ident: 5065_CR10 publication-title: J Infect Dis doi: 10.1093/infdis/jis499 – volume: 36 start-page: 111 issue: 2 year: 1974 ident: 5065_CR24 publication-title: J R Stat Soc Ser B (Methodol) doi: 10.1111/j.2517-6161.1974.tb00994.x – volume: 20 start-page: 631 issue: 11 year: 2019 ident: 5065_CR68 publication-title: Nat Rev Genet doi: 10.1038/s41576-019-0150-2 – volume: 45 start-page: 580 issue: 6 year: 2013 ident: 5065_CR92 publication-title: Nat Genet doi: 10.1038/ng.2653 – volume: 6 start-page: 3249 issue: 61 year: 2021 ident: 5065_CR55 publication-title: J Open Source Softw doi: 10.21105/joss.03249 – volume: 17 start-page: 835 issue: 2 year: 2016 ident: 5065_CR80 publication-title: Asian Pac J Cancer Prev doi: 10.7314/apjcp.2016.17.2.835 – volume: 2015 start-page: 1 year: 2015 ident: 5065_CR28 publication-title: Biomed Res Int doi: 10.1155/2015/621690 – volume: 17 start-page: 5907 issue: 9 year: 2021 ident: 5065_CR49 publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.1c00447 – volume: 12 start-page: 2825 year: 2011 ident: 5065_CR40 publication-title: J Mach Learn Res – ident: 5065_CR42 doi: 10.1145/2503210.2503219 – volume: 501 start-page: 506 issue: 7468 year: 2013 ident: 5065_CR93 publication-title: Nature doi: 10.1038/nature12531 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 5065_CR82 publication-title: Sci Rep doi: 10.1038/s41598-020-58290-2 – volume: 13 start-page: 1 issue: 5 year: 2020 ident: 5065_CR74 publication-title: BMC Med Genom doi: 10.1186/s12920-020-0677-2 – volume: 14 start-page: 1 issue: 7 year: 2013 ident: 5065_CR6 publication-title: Genome Biol doi: 10.1186/gb-2013-14-7-r75 – year: 2018 ident: 5065_CR11 publication-title: JCI Insight doi: 10.1172/jci.insight.93247 – ident: 5065_CR22 doi: 10.25080/majora-7b98e3ed-013 – ident: 5065_CR102 – volume: 15 start-page: 8746 issue: 6 year: 2019 ident: 5065_CR88 publication-title: Mol Syst Biol doi: 10.15252/msb.20188746 – volume: 5 start-page: 1619 issue: 7 year: 2016 ident: 5065_CR81 publication-title: Cancer Med doi: 10.1002/cam4.718 – ident: 5065_CR25 – ident: 5065_CR38 doi: 10.25080/majora-92bf1922-00a – volume: 11 start-page: 1 issue: 2 year: 2014 ident: 5065_CR19 publication-title: J Integr Bioinform doi: 10.1515/jib-2014-236 – volume: 50 start-page: 1171 issue: 8 year: 2018 ident: 5065_CR21 publication-title: Nat Genet doi: 10.1038/s41588-018-0160-6 – ident: 5065_CR48 doi: 10.1145/3225058.3225128 – volume: 19 start-page: 776 issue: 5 year: 2018 ident: 5065_CR32 publication-title: Brief Bioinform doi: 10.1093/bib/bbx008 – volume: 28 start-page: 27 issue: 12 year: 1995 ident: 5065_CR64 publication-title: Computer doi: 10.1109/2.476197 – volume: 16 start-page: 1 issue: 1 year: 2021 ident: 5065_CR89 publication-title: Nat Protoc doi: 10.1038/s41596-020-00409-w – volume: 13 start-page: 13 issue: 2 year: 2010 ident: 5065_CR35 publication-title: Comput Sci Eng doi: 10.1109/mcse.2010.119 |
| SSID | ssj0017805 |
| Score | 2.4303875 |
| SecondaryResourceType | review_article |
| Snippet | Background
Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive... Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the... Background Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive... Abstract Background Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 514 |
| SubjectTerms | Algorithms Bioinformatics Biological effects Biomedical and Life Sciences Case studies Computational Biology Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer applications Data analysis Data Science Disease DNA methylation Feature selection Gene expression Gene Expression Profiling Genetic engineering Genomics Genotype & phenotype Learning algorithms Life Sciences Machine Learning Medical research Microarrays Parallel programming Pipelining (computers) Programming languages Research Article Scalable data science Transcriptome Transcriptomics |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTojxgPgaBAYyEm8sWmMncYyEEINNExIVAibtCetiO2NaScvaCu2_x-c62SpQxWNiO3J8d76z7-53AC-R9J4tm5QrJ9McOclcbT1BZC2sbITNKTn506g8Os4_nhQnGzDqcmEorLLbE8NGbSeG7sj3uCwKAsNT2dvpr5SqRpF3tSuhgbG0gn0TIMZuwCYnZKwBbO4fjD5_6f0KhODfpc5U5d4sI_y2lCLah_7jRSpW1FNA8f-X6fl3BGXvRr0NtxbtFC9_43h8TVMd3oU70cRk75Y8cQ82XHsfbi6LTl4-gO9fPVkoYYrNSU-FXYNSk2cMI0AJo8tZ9gFn56_ZdQc3O2sZRZSyqDb9AMt-hmhMx2L5idOHcHx48O39URqrLKTGG3Pz1CjRNLKx0mtv0SA6YXGIXjar3JrMlSLjtawrY5SzWHhxNlYNlawzx7k0EsU2DNpJ6x4DU1I5oyrhT3E2L3OJMqv9fiEFKpfJukwg6xZXmwhBTpUwxjocRapSLwmiPUF0IIgWCbzqx0yXABxre-8TzfqeBJ4dXkwuTnWURc2bBsm76LjEvC4ab-NUiLw0yj8rHCaw01FcR4me6Sv-S-BF3-xlkRws2LrJgvqQd1yWeZXAoyWD9DMhd6_XK0UCcoV1Vqa62tKe_Qh43yogMPEEdjsmu5rWuqXY7RnxP1buyfqffgpbnMQkgF7uwGB-sXDPvDk2r59HGfsDUDwxeQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VIgQcEG8CBRmJGw3d2EkcIyHEq6qQygVW6glr4kepWLJlH4L993icR7tiVXHguIktWTPz5Rvv2N8APEPiPVv6lCsn0xw5Ya62wSGyFlZ6YXO6nHz4qTwY5x-PiqMt6NsddQacb9zaUT-p8Wzy4vfP1esA-FcR8FW5N89IhS2lc-mjIlBqKi7B5cBUilo5HOZnVQXS7-8vzmyct0ZOUcN_U-L59_nJoYh6Ha4um1Nc_cLJ5BxP7d-EG12Cyd60EXELtlxzG660LSdXd-Dr5-AUui7FFsRS8ZtBF5PnDDt5EkZ_zbL3OP_-kp0vb7OThtF5UtaRZphg2Y94FtOxrvnE8V0Y73_48u4g7XospCakcovUKOG99FYG7hYe0QmLIwzIrHJrMleKjNeyroxRzmIRwGysGilZZ45zaSSKe7DdTBv3AJiSyhlVibCHs3mZS5RZHb4WUqBymazLBLLeuNp0AuTUB2Oi40akKnXrEB0coqNDtEjg-TDntJXfuHD0W_LZMJKks-OD6exYd0jU3Huk2qLjEvO68CHDqRB5aVT4rXCUwE7vcd2Ho-ayKEiKUWUJPB1eByRSeQUbN13SGKqNyzKvErjfBsiwEir2BlYpEpBrobO21PU3zcm3qPatov4ST2C3D7KzZV1kit0hEP_Bcg__h-UewTVOYIrCmDuwvZgt3eOQsi3qJxGHfwCUGTss priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BEaIcKr4KgYKMxI1GbOzEjrnRQlUhwQUq9YQ1_ghUXdKquyvUf4_H8YZdUVVwTGJHlmfGb5LneQZ4hYR7XnYl10GVNXKKOeujQZQVXnXC11Sc_OmzPDyqPx43x1kmh2phVvn7qpVvZhUprJW053zSRLgsxU24FUFKJmJW7o-MAWnzL4tiruy3BjxJn_-qpPLvvZEjQXoX7iz6c7z8hdPpCgYd3IOtnDyyd4O178ON0D-A28NxkpcP4duXOOFUCsXmhEBpPaCi4xnDLD3C6Lcre4-z07dslbpmJz2jvaIsA2Ls4NnPtM8ysHywxPdHcHTw4ev-YZnPTyhdTNPmpdOi61TnVcRl0SEG4XGCMera2rsqSFFxq2zrnA4emxiozuuJVrYKnCunUGzDRn_WhyfAtNLB6VbE7zNfy1qhqmxcCZRAHSplZQHVcnKNy-LidMbF1KSPjFaawSAmGsQkgxhRwOuxz_kgrXFt6z2y2diSZLHTjegtJkeZ4V2HxBsGrrC2TRezlxaRS6fjtcZJATtLi5scqzPDVdOQzKKuCng5Po5RRtQJ9uFsQW2I91aybgt4PDjIOBIiciNiNAWoNddZG-r6k_7kR1Ly1klbiRewu3SyP8O6bip2R0f8h5l7-n9vfwabnMImyVvuwMb8YhGex8Rrbl-kiPsN2rQj0w priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVohy4F0IFGQkbjRlbSd2zK08qgqJCglWKhcsvwJVl7Ris0Ll1-NxsumuWhU4Jh5Lzjw848zMZ4DnBv2eF3XOVJB5YRjanPVRINJyL2vuC2xO_rAv9ibF-4Py4Awsejl9TyvxckYRYC3HkvNxGb1lzq_Cmihj2D2Ctcn-x50vqXtI0jweXcpFU8yFE1ccT8LnvyioPF8bOSRIb8D1eXNiTn-Z6XTJB-3e6qq3Zgm6EEtPjrbnrd12v88DO_79827DzT4SJTud6tyBK6G5C9e6uylP78HXT1F62FdFWnRnaXPBDuYZMT2OCcF_uOStmR29Ist5cHLYECw8Jb13jRM8-ZGKNgPpb6n4dh8mu-8-v9nL-8sYchdjvjZ3ite1rL2MTp7XxgTuzdhEE64K72gQnDIrbeWcCt6U0eqdV2MlLQ2MSScN34BRc9yEh0CUVMGpisfDni9EIY2kNm4rkhsVqLQiA7qQlHY9UjlemDHV6cRSCd3xTUe-6cQ3zTN4Mcw56XA6LqV-jQowUCLGdnoRhaN7k9Wsrg0mIQOTprBlHUOhyhgmnIrPyowz2Fyoj-4Nf6aZLEvEbFQ0g2fDcDRZzMOYJhzPkQaT6FIUVQYPOm0bVoJZ4eh-ygzkih6uLHV1pDn8nmDBVQJqYhlsLTT2bFmXsWJr0Op_4Nyj_yN_DOsMtTthZW7CqP05D09iFNfap739_gHJHDtQ priority: 102 providerName: Unpaywall |
| Title | Scalable transcriptomics analysis with Dask: applications in data science and machine learning |
| URI | https://link.springer.com/article/10.1186/s12859-022-05065-3 https://www.ncbi.nlm.nih.gov/pubmed/36451115 https://www.proquest.com/docview/2755506091 https://www.proquest.com/docview/2744667648 https://pubmed.ncbi.nlm.nih.gov/PMC9710082 http://doi.org/10.1186/s12859-022-05065-3 https://doaj.org/article/2ffa3049e27a4b5f8128aa26c97a49a0 |
| UnpaywallVersion | submittedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEAIeEN8ERmUk3li0xk78wVtXVqZKqyZGpfJC5MQOTJRsoq3Q_nvunDS0Ag0eeEmU2JGc-8jPzp1_B_DKEu45WcXceBWnlpPPFQ4VogrhVCVcSpuTjyfyaJqOZ9lso9QX5YQ19MCN4PZ5VVkKBXmubFpkFQKStpbL0uC1sWG13tdmvZhq4wfE1L_eIqPl_iIhnraYMtf7GYJuLLZgKLD1_2mK-XumZBcuvQO3VvWFvfxh5_MNRBrdg7vtVJINmle4D9d8_QBuNsUlLx_Cp1MUP22MYkvCo_B1oC3IC2ZbIhJGP2HZW7v4-oZtBrLZWc0oc5S18IgPOPYtZF161paZ-PwIpqPDD8OjuK2mEJc4aVvGpRFVpSqnEKVFZa0XzvYt-qBOXZl4KRJeqEKXpfHOZui2pTN9o4rEc65KZcVj2KnPa_8UmFHGl0YLXK25VKbKqqTA74IS1vhEFTKCZC3cvGypxqnixTwPSw4t80YhOSokDwrJRQSvu2cuGqKNK3sfkM66nkSSHW6g6eSt6eR_M50Idtcaz1vPXeRcZRmRLpokgpddM_ocBVJs7c9X1Iei4EqmOoInjYF0I6GwLuJHFoHaMp2toW631GdfAq-3CUxLPIK9tZH9GtZVotjrDPEfJPfsf0juOdzm5EyBAnMXdpbfV_4FTs6WRQ-uq5nCox6968GNwWB8OsbzweHk5D3eHcphL3gqHo9TjS3Tycng40_Yhjvm |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQ4IN4EChgJTjTqxk7iGAkhoFRb-rjQSnuqcWKnVCzZpburav8Uv5EZ59GuQCsuPSZxIsfztGfmG4BXhuyeTcuQKyfD2HCSudwiQWQurCyFjak4ef8g7R_FXwbJYAV-t7UwlFbZ6kSvqO2ooDPyTS6ThMDwVPR-_CukrlEUXW1baNRssevm57hlm7zb2UL6vuZ8-_Php37YdBUIC3RepmGhRFnK0kq0VqI0xglregZ5MYttEblURDyXeVYUylmTIPsWVvWUzCPHuSykEfjda3A9FqhLUH7koNvgRdQfoC3MydLNSUTocCHly_dw6kkoFoyf7xHwL8f27_zMLkh7C9Zm1djMz81weMkObt-B240Dyz7UHHcXVlx1D27ULS3n9-H4KxKdyrHYlKyg10lU-DxhpoE_YXT0y7bM5Mdbdjl8zk4rRvmqrDHK-IJlP32up2NNc4uTB3B0Jav9EFarUeUeA1NSuUJlAveINk5jaWSUozaSwigXyTwNIGoXVxcNwDn12Rhqv9HJUl0TRCNBtCeIFgG86d4Z1_AeS0d_JJp1Iwma298YnZ3oRtI1L0tDsUvHpYnzpEQPKjOGp4XCa2V6Aay3FNeNvpjoC-4O4GX3GCWdwjemcqMZjaHYu0zjLIBHNYN0M6FgMlqtJAC5wDoLU118Up1-92jiyuM78QA2Wia7mNaypdjoGPE_Vu7J8p9-AWv9w_09vbdzsPsUbnISGQ-vuQ6r07OZe4aO3zR_7qWNwberFu8_it9pDA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BEdcD4iglUMBIvNGoGzuxY95gy6pcFRJU6hOW46NUbLOrblao_x6Pc7Arqgoes7EjyzNfPmdn5huAlxp5z3KfUulEmmuKmKtsMIiomBWe2RyLkz8f8P3D_MNRcbRSxR-z3fuQZFvTgCpNdbM7t76FeMl3FxnqrqWYiT4qAomm7CpcywO7YQ-DMR8PcQRU7O9LZS6ct0ZHUbX_oqPm3xmTQ9j0Ntxc1nN9_ktPpyvMNLkLd7ojJXnT-sA9uOLq-3C9bTJ5_gC-fw1mwAIp0iAvxbcEliIviO4ESQj-GUv29OLna7Ia0CYnNcEMUtLRZJhgyWnMvnSkazdxvAmHk3ffxvtp11UhNeHw1qRGMu-FtyKwNfNaO2b1SAcslrk1meMso5WoSmOks7oI8DVWjqSoMkepMEKzh7BRz2r3CIgU0hlZsvDVZnOeCy2yKrwfBNPSZaLiCWT95irTSY5j54upip8eJVetQVQwiIoGUSyBV8OceSu4cenot2izYSSKZccfZmfHqsOeot5rjCY6KnReFT64Sak15UaGa6lHCWz3FlcdgheKiqJA8UWZJfBiuB2whwEVXbvZEsdgNFzwvExgq3WQYSUY3g08UiQg1lxnbanrd-qTH1HfW0bFJZrATu9kf5Z12VbsDI74Dzv3-P-e_hxufNmbqE_vDz4-gVsUERT1L7dhozlbuqfhZNZUzyL4fgML2C8J |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVohy4F0IFGQkbjRlbSd2zK08qgqJCglWKhcsvwJVl7Ris0Ll1-NxsumuWhU4Jh5Lzjw848zMZ4DnBv2eF3XOVJB5YRjanPVRINJyL2vuC2xO_rAv9ibF-4Py4Awsejl9TyvxckYRYC3HkvNxGb1lzq_Cmihj2D2Ctcn-x50vqXtI0jweXcpFU8yFE1ccT8LnvyioPF8bOSRIb8D1eXNiTn-Z6XTJB-3e6qq3Zgm6EEtPjrbnrd12v88DO_79827DzT4SJTud6tyBK6G5C9e6uylP78HXT1F62FdFWnRnaXPBDuYZMT2OCcF_uOStmR29Ist5cHLYECw8Jb13jRM8-ZGKNgPpb6n4dh8mu-8-v9nL-8sYchdjvjZ3ite1rL2MTp7XxgTuzdhEE64K72gQnDIrbeWcCt6U0eqdV2MlLQ2MSScN34BRc9yEh0CUVMGpisfDni9EIY2kNm4rkhsVqLQiA7qQlHY9UjlemDHV6cRSCd3xTUe-6cQ3zTN4Mcw56XA6LqV-jQowUCLGdnoRhaN7k9Wsrg0mIQOTprBlHUOhyhgmnIrPyowz2Fyoj-4Nf6aZLEvEbFQ0g2fDcDRZzMOYJhzPkQaT6FIUVQYPOm0bVoJZ4eh-ygzkih6uLHV1pDn8nmDBVQJqYhlsLTT2bFmXsWJr0Op_4Nyj_yN_DOsMtTthZW7CqP05D09iFNfap739_gHJHDtQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+transcriptomics+analysis+with+Dask%3A+applications+in+data+science+and+machine+learning&rft.jtitle=BMC+bioinformatics&rft.au=Marta+Moreno&rft.au=Ricardo+Vila%C3%A7a&rft.au=Pedro+G.+Ferreira&rft.date=2022-11-30&rft.pub=BMC&rft.eissn=1471-2105&rft.volume=23&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1186%2Fs12859-022-05065-3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2ffa3049e27a4b5f8128aa26c97a49a0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |