Cardiovascular regulation: associations between exercise and head-up tilt

It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 ± 4 years, 179 ± 8 cm, 79 ± 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 an...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of physiology and pharmacology Vol. 97; no. 8; pp. 738 - 745
Main Authors Koschate, J, Drescher, U, Werner, A, Thieschäfer, L, Hoffmann, U
Format Journal Article
LanguageEnglish
Published Canada NRC Research Press 01.08.2019
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text
ISSN0008-4212
1205-7541
1205-7541
DOI10.1139/cjpp-2018-0742

Cover

Abstract It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 ± 4 years, 179 ± 8 cm, 79 ± 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 and 80 W. Pulmonary oxygen uptake ( ) was measured breath-by-breath and heart rate (HR), mean arterial blood pressure (MAP), and total peripheral resistance (TPR) were measured beat-to-beat. Muscular oxygen uptake ( ) was estimated from HR and . Kinetic parameters were determined by time-series analysis, using cross-correlation functions (CCF max (x)) between the parameter and the work rate. Cardiovascular regulations of MAP, HR, and TPR during orthostatic stress were measured beat-to-beat on a tilt seat. Changes between the minima and maxima during the 6° head-down tilt and the 90° head-up tilt positions were calculated for each parameter (Δ tilt-up ). correlated significantly with ΔTPR tilt-up (r = 0.790, p ≤ 0.001). CCF max (HR) was significantly correlated with ΔHR tilt-up (r = –0.705, p = 0.002) and the amplitude in HR from 30 to 80 W (r SP = –0.574, p = 0.016). The observed correlations between cardiorespiratory regulation in response to exercise and orthostatic stress during rest might allow for a more differential analysis of the underlying mechanisms of orthostatic intolerance in, for example, patient groups.
AbstractList It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 ± 4 years, 179 ± 8 cm, 79 ± 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 and 80 W. Pulmonary oxygen uptake (V˙O2pulm) was measured breath-by-breath and heart rate (HR), mean arterial blood pressure (MAP), and total peripheral resistance (TPR) were measured beat-to-beat. Muscular oxygen uptake (V˙O2musc) was estimated from HR and V˙O2pulm. Kinetic parameters were determined by time-series analysis, using cross-correlation functions (CCFmax(x)) between the parameter and the work rate. Cardiovascular regulations of MAP, HR, and TPR during orthostatic stress were measured beat-to-beat on a tilt seat. Changes between the minima and maxima during the 6° head-down tilt and the 90° head-up tilt positions were calculated for each parameter (Δtilt-up). CCFmax(V˙O2musc) correlated significantly with ΔTPRtilt-up (r = 0.790, p ≤ 0.001). CCFmax(HR) was significantly correlated with ΔHRtilt-up (r = –0.705, p = 0.002) and the amplitude in HR from 30 to 80 W (rSP = –0.574, p = 0.016). The observed correlations between cardiorespiratory regulation in response to exercise and orthostatic stress during rest might allow for a more differential analysis of the underlying mechanisms of orthostatic intolerance in, for example, patient groups.Nous avons posé l’hypothèse selon laquelle la cinétique cardiorespiratoire plus rapide pendant l’exercice physique est associée avec une plus grande tolérance orthostatique. Nous avons étudié la cinétique cardiorespiratoire chez 14 sujets de sexe masculin en bonne santé (30 ± 4 ans, 179 ± 8 cm, 79 ± 8 kg) à l’aide d’une bicyclette ergométrique pendant un exercice physique avec des rythmes de travail variables de 30 et 80 W. Nous avons mesuré le taux d’absorption de l’oxygène par les poumons (V˙O2pulm) respiration par respiration et la fréquence cardiaque (FC), la tension artérielle moyenne (TAM) et la résistance périphérique totale (RPT) battement par battement. Nous avons estimé le taux d’absorption de l’oxygène par les muscles (V˙O2musc) à partir de la FC et de la V˙O2pulm. Nous avons établi les paramètres cinétiques par une analyse chronologique à l’aide de fonctions de corrélation croisées (FCCmax(x)) entre le paramètre et le rythme de travail. Nous avons mesuré la régulation cardiovasculaire de la TAM, de la FC et de la RPT pendant un stress orthostatique battement par battement sur un siège basculant. Nous avons calculé les variations de chacun des paramètres entre les minimums et les maximums pendant les positions de basculement tête vers le bas de 6° et basculement tête vers le haut de 90° (Δbasc-haut). La FCCmax(V˙O2musc) était nettement proportionnelle à la ΔRPTbasc-haut (r = 0,790; p ≤ 0,001). La FCCmax(FC) était nettement inversement proportionnelle à la ΔFCbasc-haut (r = –0,705; p = 0,002), ainsi qu’à l’amplitude de la FC de 30 à 80 W (rSP = –0,574; p = 0,016). Les corrélations observées entre la régulation cardiorespiratoire en réaction à l’exercice physique et l’orthostatisme au repos pourraient permettre de procéder à une étude plus différentielle des modes d’action sous-jacents de l’intolérance à l’orthostatisme, par exemple auprès de groupes de patients. [Traduit par la Rédaction]
It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 ± 4 years, 179 ± 8 cm, 79 ± 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 and 80 W. Pulmonary oxygen uptake ( ) was measured breath-by-breath and heart rate (HR), mean arterial blood pressure (MAP), and total peripheral resistance (TPR) were measured beat-to-beat. Muscular oxygen uptake ( ) was estimated from HR and . Kinetic parameters were determined by time-series analysis, using cross-correlation functions (CCF (x)) between the parameter and the work rate. Cardiovascular regulations of MAP, HR, and TPR during orthostatic stress were measured beat-to-beat on a tilt seat. Changes between the minima and maxima during the 6° head-down tilt and the 90° head-up tilt positions were calculated for each parameter (Δ ). correlated significantly with ΔTPR ( = 0.790, ≤ 0.001). CCF (HR) was significantly correlated with ΔHR ( = -0.705, = 0.002) and the amplitude in HR from 30 to 80 W ( = -0.574, = 0.016). The observed correlations between cardiorespiratory regulation in response to exercise and orthostatic stress during rest might allow for a more differential analysis of the underlying mechanisms of orthostatic intolerance in, for example, patient groups.
It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 ± 4 years, 179 ± 8 cm, 79 ± 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 and 80 W. Pulmonary oxygen uptake ([Formula: see text]) was measured breath-by-breath and heart rate (HR), mean arterial blood pressure (MAP), and total peripheral resistance (TPR) were measured beat-to-beat. Muscular oxygen uptake ([Formula: see text]) was estimated from HR and [Formula: see text]. Kinetic parameters were determined by time-series analysis, using cross-correlation functions (CCF max (x)) between the parameter and the work rate. Cardiovascular regulations of MAP, HR, and TPR during orthostatic stress were measured beat-to-beat on a tilt seat. Changes between the minima and maxima during the 6° head-down tilt and the 90° head-up tilt positions were calculated for each parameter (Δ tilt-up ). [Formula: see text] correlated significantly with ΔTPR tilt-up (r = 0.790, p ≤ 0.001). CCF max (HR) was significantly correlated with ΔHR tilt-up (r = –0.705, p = 0.002) and the amplitude in HR from 30 to 80 W (r SP = –0.574, p = 0.016). The observed correlations between cardiorespiratory regulation in response to exercise and orthostatic stress during rest might allow for a more differential analysis of the underlying mechanisms of orthostatic intolerance in, for example, patient groups.
It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 [+ or -] 4 years, 179 [+ or -] 8 cm, 79 [+ or -] 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 and 80 W. Pulmonary oxygen uptake ([??][O.sub.2pulm]) was measured breath-by-breath and heart rate (HR), mean arterial blood pressure (MAP), and total peripheral resistance (TPR) were measured beat-to-beat. Muscular oxygen uptake ([??][O.sub.2musc]) was estimated from HR and [??][O.sub.2pulm]. Kinetic parameters were determined by time-series analysis, using cross-correlation functions ([CCF.sub.max](x)) between the parameter and the work rate. Cardiovascular regulations of MAP, HR, and TPR during orthostatic stress were measured beat-to-beat on a tilt seat. Changes between the minima and maxima during the 6[degrees] head-down tilt and the 90[degrees] head-up tilt positions were calculated for each parameter ([[DELTA].sub.tilt-up]). [CCF.sub.max] ([??][O.sub.2musc]) correlated significantly with [DELTA][TPR.sub.tilt-up] (r = 0.790, p [less than or equal to] 0.001). [CCF.sub.max](HR) was significantly correlated with [DELTA][HR.sub.tilt-up] (r = -0.705, p = 0.002) and the amplitude in HR from 30 to 80 W ([r.sub.SP] = -0.574, p = 0.016). The observed correlations between cardiorespiratory regulation in response to exercise and orthostatic stress during rest might allow for a more differential analysis of the underlying mechanisms of orthostatic intolerance in, for example, patient groups.
It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 [+ or -] 4 years, 179 [+ or -] 8 cm, 79 [+ or -] 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 and 80 W. Pulmonary oxygen uptake ([??][O.sub.2pulm]) was measured breath-by-breath and heart rate (HR), mean arterial blood pressure (MAP), and total peripheral resistance (TPR) were measured beat-to-beat. Muscular oxygen uptake ([??][O.sub.2musc]) was estimated from HR and [??][O.sub.2pulm]. Kinetic parameters were determined by time-series analysis, using cross-correlation functions ([CCF.sub.max](x)) between the parameter and the work rate. Cardiovascular regulations of MAP, HR, and TPR during orthostatic stress were measured beat-to-beat on a tilt seat. Changes between the minima and maxima during the 6[degrees] head-down tilt and the 90[degrees] head-up tilt positions were calculated for each parameter ([[DELTA].sub.tilt-up]). [CCF.sub.max] ([??][O.sub.2musc]) correlated significantly with [DELTA][TPR.sub.tilt-up] (r = 0.790, p [less than or equal to] 0.001). [CCF.sub.max](HR) was significantly correlated with [DELTA][HR.sub.tilt-up] (r = -0.705, p = 0.002) and the amplitude in HR from 30 to 80 W ([r.sub.SP] = -0.574, p = 0.016). The observed correlations between cardiorespiratory regulation in response to exercise and orthostatic stress during rest might allow for a more differential analysis of the underlying mechanisms of orthostatic intolerance in, for example, patient groups. Key words: cardiovascular regulation, orthostatic stress, cardiorespiratory kinetics, tilting experiments, exercise, physical fitness, orthostatic tolerance. Nous avons pose l'hypothese selon laquelle la cinetique cardiorespiratoire plus rapide pendant l'exercice physique est associee avec une plus grande tolerance orthostatique. Nous avons etudie la cinetique cardiorespiratoire chez 14 sujets de sexe masculin en bonne sante (30 [+ or -] 4 ans, 179 [+ or -] 8 cm, 79 [+ or -] 8 kg) a l'aide d'une bicyclette ergometrique pendant un exercice physique avec des rythmes de travail variables de 30 et 80 W. Nous avons mesure le taux d'absorption de l'oxygene par les poumons ([??][O.sub.2pulm]) respiration par respiration et la frequence cardiaque (FC), la tension arterielle moyenne (TAM) et la resistance peripherique totale (RPT) battement par battement. Nous avons estime le taux d'absorption de l'oxygene par les muscles ([??][O.sub.2musc]) a partir de la FC et de la [??][O.sub.2pulm]. Nous avons etabli les parametres cinetiques par une analyse chronologique a l'aide de fonctions de correlation croisees ([FCC.sub.max](x)) entre le parametre et le rythme de travail. Nous avons mesure la regulation cardiovasculaire de la TAM, de la FC et de la RPT pendant un stress orthostatique battement par battement sur un siege basculant. Nous avons calcule les variations de chacun des parametres entre les minimums et les maximums pendant les positions de basculement tete vers le bas de 6[degrees] et basculement tete vers le haut de 90[degrees] (Abasc-haut). La [FCC.sub.max] ([??][O.sub.2musc]) etait nettement proportionnelle a la [DELTA][RPT.sub.basc-haut] (r = 0,790; p [less than or equal to] 0,001). La [FCC.sub.max](FC) etait nettement inversement proportionnelle a la [DELTA][FC.sub.basc-haut] (r = -0,705; p = 0,002), ainsi qu'a l'amplitude de la FC de 30 a 80 W ([r.sub.SP] = -0,574; p = 0,016). Les correlations observees entre la regulation cardiorespiratoire en reaction a l'exercice physique et l'orthostatisme au repos pourraient permettre de proceder a une etude plus differentielle des modes d'action sous-jacents de l'intolerance a l'orthostatisme, par exemple aupres de groupes de patients. [Traduit par la Redaction] Mots-cles : regulation cardiovasculaire, stress orthostatique, cinetique cardiorespiratoire, experiences de basculement, exercice physique, forme physique, tolerance orthostatique.
It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 ± 4 years, 179 ± 8 cm, 79 ± 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 and 80 W. Pulmonary oxygen uptake ( ) was measured breath-by-breath and heart rate (HR), mean arterial blood pressure (MAP), and total peripheral resistance (TPR) were measured beat-to-beat. Muscular oxygen uptake ( ) was estimated from HR and . Kinetic parameters were determined by time-series analysis, using cross-correlation functions (CCFmax(x)) between the parameter and the work rate. Cardiovascular regulations of MAP, HR, and TPR during orthostatic stress were measured beat-to-beat on a tilt seat. Changes between the minima and maxima during the 6° head-down tilt and the 90° head-up tilt positions were calculated for each parameter (Δtilt-up). correlated significantly with ΔTPRtilt-up (r = 0.790, p ≤ 0.001). CCFmax(HR) was significantly correlated with ΔHRtilt-up (r = -0.705, p = 0.002) and the amplitude in HR from 30 to 80 W (rSP = -0.574, p = 0.016). The observed correlations between cardiorespiratory regulation in response to exercise and orthostatic stress during rest might allow for a more differential analysis of the underlying mechanisms of orthostatic intolerance in, for example, patient groups.It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 ± 4 years, 179 ± 8 cm, 79 ± 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 and 80 W. Pulmonary oxygen uptake ( ) was measured breath-by-breath and heart rate (HR), mean arterial blood pressure (MAP), and total peripheral resistance (TPR) were measured beat-to-beat. Muscular oxygen uptake ( ) was estimated from HR and . Kinetic parameters were determined by time-series analysis, using cross-correlation functions (CCFmax(x)) between the parameter and the work rate. Cardiovascular regulations of MAP, HR, and TPR during orthostatic stress were measured beat-to-beat on a tilt seat. Changes between the minima and maxima during the 6° head-down tilt and the 90° head-up tilt positions were calculated for each parameter (Δtilt-up). correlated significantly with ΔTPRtilt-up (r = 0.790, p ≤ 0.001). CCFmax(HR) was significantly correlated with ΔHRtilt-up (r = -0.705, p = 0.002) and the amplitude in HR from 30 to 80 W (rSP = -0.574, p = 0.016). The observed correlations between cardiorespiratory regulation in response to exercise and orthostatic stress during rest might allow for a more differential analysis of the underlying mechanisms of orthostatic intolerance in, for example, patient groups.
It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 ± 4 years, 179 ± 8 cm, 79 ± 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 and 80 W. Pulmonary oxygen uptake ( ) was measured breath-by-breath and heart rate (HR), mean arterial blood pressure (MAP), and total peripheral resistance (TPR) were measured beat-to-beat. Muscular oxygen uptake ( ) was estimated from HR and . Kinetic parameters were determined by time-series analysis, using cross-correlation functions (CCF max (x)) between the parameter and the work rate. Cardiovascular regulations of MAP, HR, and TPR during orthostatic stress were measured beat-to-beat on a tilt seat. Changes between the minima and maxima during the 6° head-down tilt and the 90° head-up tilt positions were calculated for each parameter (Δ tilt-up ). correlated significantly with ΔTPR tilt-up (r = 0.790, p ≤ 0.001). CCF max (HR) was significantly correlated with ΔHR tilt-up (r = –0.705, p = 0.002) and the amplitude in HR from 30 to 80 W (r SP = –0.574, p = 0.016). The observed correlations between cardiorespiratory regulation in response to exercise and orthostatic stress during rest might allow for a more differential analysis of the underlying mechanisms of orthostatic intolerance in, for example, patient groups.
Abstract_FL Nous avons posé l’hypothèse selon laquelle la cinétique cardiorespiratoire plus rapide pendant l’exercice physique est associée avec une plus grande tolérance orthostatique. Nous avons étudié la cinétique cardiorespiratoire chez 14 sujets de sexe masculin en bonne santé (30 ± 4 ans, 179 ± 8 cm, 79 ± 8 kg) à l’aide d’une bicyclette ergométrique pendant un exercice physique avec des rythmes de travail variables de 30 et 80 W. Nous avons mesuré le taux d’absorption de l’oxygène par les poumons ( ) respiration par respiration et la fréquence cardiaque (FC), la tension artérielle moyenne (TAM) et la résistance périphérique totale (RPT) battement par battement. Nous avons estimé le taux d’absorption de l’oxygène par les muscles ( ) à partir de la FC et de la . Nous avons établi les paramètres cinétiques par une analyse chronologique à l’aide de fonctions de corrélation croisées (FCC max (x)) entre le paramètre et le rythme de travail. Nous avons mesuré la régulation cardiovasculaire de la TAM, de la FC et de la RPT pendant un stress orthostatique battement par battement sur un siège basculant. Nous avons calculé les variations de chacun des paramètres entre les minimums et les maximums pendant les positions de basculement tête vers le bas de 6° et basculement tête vers le haut de 90° (Δ basc-haut ). La était nettement proportionnelle à la ΔRPT basc-haut (r = 0,790; p ≤ 0,001). La FCC max (FC) était nettement inversement proportionnelle à la ΔFC basc-haut (r = –0,705; p = 0,002), ainsi qu’à l’amplitude de la FC de 30 à 80 W (r SP = –0,574; p = 0,016). Les corrélations observées entre la régulation cardiorespiratoire en réaction à l’exercice physique et l’orthostatisme au repos pourraient permettre de procéder à une étude plus différentielle des modes d’action sous-jacents de l’intolérance à l’orthostatisme, par exemple auprès de groupes de patients. [Traduit par la Rédaction]
Audience Academic
Author Werner, A
Koschate, J
Hoffmann, U
Thieschäfer, L
Drescher, U
Author_xml – sequence: 1
  givenname: J
  surname: Koschate
  fullname: Koschate, J
  organization: Institute of Physiology and Anatomy, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
– sequence: 2
  givenname: U
  surname: Drescher
  fullname: Drescher, U
  organization: Institute of Physiology and Anatomy, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
– sequence: 3
  givenname: A
  surname: Werner
  fullname: Werner, A
  organization: German Air Force — Centre of Aerospace Medicine, Branch I 1, Aviation Physiology Diagnostics and Research, Steinborner Str. 43, 01936 Königsbrück, Germany
– sequence: 4
  givenname: L
  surname: Thieschäfer
  fullname: Thieschäfer, L
  organization: Institute of Physiology and Anatomy, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
– sequence: 5
  givenname: U
  surname: Hoffmann
  fullname: Hoffmann, U
  organization: Institute of Physiology and Anatomy, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30917299$$D View this record in MEDLINE/PubMed
BookMark eNqVks1v1DAQxS1URLeFK0cUwaUcUvyZOL1VqwIrVSDxcba89mTrVdZJbQfKf4_TbSmLFiHkw2is33uasd8ROvC9B4SeE3xKCGvemPUwlBQTWeKa00doRigWZS04OUAzjLEsOSX0EB3FuM5tJZl8gg4ZbkhNm2aGFnMdrOu_6WjGTociwCrX5Hp_VugYe-Num1gsIX0H8AXcQDAuQqG9La5A23IciuS69BQ9bnUX4dldPUZf3158mb8vLz--W8zPL0sjKpFKDURYyaywbcVZhYXRRhiMCTPS5rH50tSMkboCYRtpQQugnDeWEyMFbS07Ridb3yH01yPEpDYuGug67aEfo6KkaYikvKoz-uoPdN2PwefpFKUVx5xjQR6ole5AOd_2KWgzmapz0QjCGccyU-UeagUegu7yn7QuX-_wL_fwZnDX6nfodA-Uj4WNM3tdX-8IMpPgJq30GKNafP70H-yHXfbF3UuNyw1YNQS30eGHug9KBvgWMKGPMUCrjEu30cgTu04RrKY8qimPasqjmvL4sOAv2b3zXwVkK_DBBIigg7n6l-YngwvsnQ
CitedBy_id crossref_primary_10_1016_j_actaastro_2021_05_030
crossref_primary_10_1038_s41526_024_00387_3
crossref_primary_10_1007_s00421_020_04576_2
Cites_doi 10.1249/JES.0000000000000005
10.1007/s00424-001-0748-y
10.1152/japplphysiol.01190.2006
10.1152/japplphysiol.01092.2010
10.1152/jappl.1990.68.3.979
10.1139/h95-018
10.1139/apnm-2016-0001
10.1152/japplphysiol.01280.2003
10.1046/j.0001-6772.2003.01211.x
10.1097/HJH.0b013e328347a17a
10.1007/s00421-013-2598-7
10.1139/H09-088
10.1152/japplphysiol.00465.2000
10.1007/s10286-013-0222-x
10.1161/01.HYP.8.8.722
10.1152/japplphysiol.00927.2006
10.1152/japplphysiol.01460.2011
10.1007/BF02279892
10.1113/expphysiol.2009.047548
10.1042/CS20060091
10.1097/00005768-199912000-00010
10.1152/jappl.1981.51.6.1662
10.1249/MSS.0000000000000398
10.1016/0002-9149(93)90713-M
10.1007/BF02322255
10.1007/s10286-010-0106-2
10.1093/cvr/24.3.214
10.1161/01.HYP.0000156540.25707.af
10.1113/jphysiol.2003.046029
10.1007/s40520-014-0303-2
10.1007/s00421-013-2710-z
10.1152/ajpheart.1996.270.6.H2132
10.1111/j.1469-445X.1999.tb00077.x
10.1249/MSS.0b013e31815ef29b
10.1152/jappl.1991.70.2.523
10.1113/expphysiol.2004.029496
10.1111/ggi.12983
10.1007/s00421-016-3375-1
10.1007/s10286-011-0119-5
10.1152/jappl.1991.70.1.112
10.1007/s00421-016-3386-y
10.1152/japplphysiol.01152.2009
10.1161/01.CIR.84.3.1016
10.1042/cs0970291
10.1016/j.resp.2017.09.015
10.1007/s004210050209
10.1152/jappl.1981.51.1.194
10.1016/j.exger.2010.06.005
ContentType Journal Article
Copyright COPYRIGHT 2019 NRC Research Press
2019 Published by NRC Research Press
Copyright_xml – notice: COPYRIGHT 2019 NRC Research Press
– notice: 2019 Published by NRC Research Press
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1139/cjpp-2018-0742
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Nursing & Allied Health Premium
MEDLINE
CrossRef





MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Pharmacy, Therapeutics, & Pharmacology
EISSN 1205-7541
EndPage 745
ExternalDocumentID A595143408
30917299
10_1139_cjpp_2018_0742
cjpp-2018-0742
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID -
08R
0R
1AW
29B
2QV
3O-
3V.
4.4
53G
55
5GY
5RE
5RP
7RV
7X7
88A
88E
88I
8AF
8AO
8FE
8FH
8FI
8FJ
8FQ
AALRV
ABDBF
ABFLS
ABPTK
ABUFD
ABUWG
ACGFS
ACGOD
ACIWK
ACKIV
ACPRK
ADBBV
ADKZR
AENEX
AFFNX
AFKRA
AFRAH
AHMBA
AJYGW
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBAFP
BBNVY
BCGST
BCR
BENPR
BES
BHPHI
BKEYQ
BLC
BPHCQ
BVXVI
CAG
COF
CS3
D8U
DU5
DWQXO
DXH
EAD
EAP
EAS
EBD
EBS
ECC
EDH
EJD
EMB
EMK
EPL
ESX
EX3
F5P
FYUFA
GJ
GNUQQ
HCIFZ
HZ
IAO
ICQ
IEA
IHR
INH
INR
IOF
IPY
ISN
ISR
ITC
L7B
LK8
M0L
M1P
M2P
M2Q
M3C
M3E
M3G
M7P
MV1
MVM
NMEPN
NRXXU
NYCZX
O9-
OVD
P2P
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
QF4
QM4
QN7
QO4
QRP
RIG
RRCRK
RRP
SV3
TUS
UAP
WH7
WOW
X
X7M
ZGI
ZXP
---
-~X
.55
.GJ
00T
0R~
36B
6J9
AAYXX
ABJNI
ACGFO
ACUHS
AIAGR
CCPQU
CITATION
DATHI
EMOBN
HMCUK
HZ~
IPNFZ
MK0
NAPCQ
ONR
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
PV9
RZL
TEORI
UKHRP
VQG
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c565t-ae15d83d5df643605cac5c0013c8d5414bc733176e5d98dea5e2449d41c852fd3
ISSN 0008-4212
1205-7541
IngestDate Fri Sep 05 14:07:26 EDT 2025
Sat Aug 16 15:21:19 EDT 2025
Wed Mar 19 00:09:12 EDT 2025
Fri Mar 14 02:42:42 EDT 2025
Tue Jun 10 15:32:40 EDT 2025
Sat Mar 08 18:09:39 EST 2025
Wed Mar 05 04:14:53 EST 2025
Wed Mar 05 04:59:02 EST 2025
Thu Apr 03 06:58:10 EDT 2025
Wed Oct 01 05:48:23 EDT 2025
Thu Apr 24 23:06:22 EDT 2025
Wed Nov 11 00:33:02 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords exercice physique
cardiovascular regulation
cinétique cardiorespiratoire
exercise
expériences de basculement
stress orthostatique
tilting experiments
tolérance orthostatique
cardiorespiratory kinetics
forme physique
orthostatic stress
physical fitness
régulation cardiovasculaire
orthostatic tolerance
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c565t-ae15d83d5df643605cac5c0013c8d5414bc733176e5d98dea5e2449d41c852fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30917299
PQID 2264044051
PQPubID 47727
PageCount 8
ParticipantIDs proquest_journals_2264044051
gale_infotracacademiconefile_A595143408
gale_incontextgauss_ISN_A595143408
crossref_citationtrail_10_1139_cjpp_2018_0742
crossref_primary_10_1139_cjpp_2018_0742
proquest_miscellaneous_2199182467
gale_incontextgauss_ISR_A595143408
gale_infotraccpiq_595143408
gale_infotracmisc_A595143408
pubmed_primary_30917299
nrcresearch_primary_10_1139_cjpp_2018_0742
gale_infotracgeneralonefile_A595143408
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Ottawa
PublicationTitle Canadian journal of physiology and pharmacology
PublicationTitleAlternate Can J Physiol Pharmacol
PublicationYear 2019
Publisher NRC Research Press
Canadian Science Publishing NRC Research Press
Publisher_xml – name: NRC Research Press
– name: Canadian Science Publishing NRC Research Press
References refg47/ref47
refg40/ref40
refg18/ref18
refg36/ref36
refg51/ref51
refg11/ref11
refg25/ref25
refg15/ref15
refg29/ref29
refg43/ref43
refg5/ref5
refg37/ref37
refg19/ref19
refg21/ref21
refg7/ref7
refg4/ref4
refg46/ref46
refg48/ref48
refg10/ref10
refg1/ref1
refg32/ref32
refg35/ref35
refg53/ref53
refg24/ref24
refg16/ref16
refg50/ref50
refg13/ref13
refg27/ref27
refg20/ref20
refg38/ref38
refg45/ref45
refg49/ref49
refg31/ref31
refg9/ref9
refg34/ref34
refg52/ref52
Grassi B. (refg14/ref14) 2006; 57
refg8/ref8
Lamb L.E. (refg26/ref26) 1961; 32
refg2/ref2
refg23/ref23
refg17/ref17
refg30/ref30
refg12/ref12
refg28/ref28
refg41/ref41
refg39/ref39
Convertino V.A. (refg6/ref6) 1987; 15
refg3/ref3
refg44/ref44
refg33/ref33
References_xml – ident: refg38/ref38
  doi: 10.1249/JES.0000000000000005
– ident: refg13/ref13
  doi: 10.1007/s00424-001-0748-y
– ident: refg44/ref44
  doi: 10.1152/japplphysiol.01190.2006
– ident: refg36/ref36
  doi: 10.1152/japplphysiol.01092.2010
– ident: refg1/ref1
  doi: 10.1152/jappl.1990.68.3.979
– ident: refg43/ref43
  doi: 10.1139/h95-018
– volume: 57
  start-page: 53
  year: 2006
  ident: refg14/ref14
  publication-title: And what do they tell us? J. Physiol. Pharmacol.
– ident: refg25/ref25
  doi: 10.1139/apnm-2016-0001
– volume: 32
  start-page: 473
  issue: 6
  year: 1961
  ident: refg26/ref26
  publication-title: Aerosp. Med.
– ident: refg8/ref8
  doi: 10.1152/japplphysiol.01280.2003
– ident: refg47/ref47
  doi: 10.1046/j.0001-6772.2003.01211.x
– ident: refg11/ref11
  doi: 10.1097/HJH.0b013e328347a17a
– ident: refg20/ref20
  doi: 10.1007/s00421-013-2598-7
– ident: refg21/ref21
  doi: 10.1139/H09-088
– ident: refg51/ref51
  doi: 10.1152/japplphysiol.00465.2000
– ident: refg27/ref27
  doi: 10.1007/s10286-013-0222-x
– ident: refg4/ref4
  doi: 10.1161/01.HYP.8.8.722
– ident: refg32/ref32
  doi: 10.1152/japplphysiol.00927.2006
– ident: refg48/ref48
  doi: 10.1152/japplphysiol.01460.2011
– ident: refg5/ref5
  doi: 10.1007/BF02279892
– ident: refg7/ref7
  doi: 10.1113/expphysiol.2009.047548
– ident: refg52/ref52
  doi: 10.1042/CS20060091
– volume: 15
  start-page: 223
  issue: 1
  year: 1987
  ident: refg6/ref6
  publication-title: Exerc. Sport Sci. Rev.
– ident: refg28/ref28
  doi: 10.1097/00005768-199912000-00010
– ident: refg2/ref2
  doi: 10.1152/jappl.1981.51.6.1662
– ident: refg15/ref15
  doi: 10.1249/MSS.0000000000000398
– ident: refg45/ref45
  doi: 10.1016/0002-9149(93)90713-M
– ident: refg17/ref17
  doi: 10.1007/BF02322255
– ident: refg50/ref50
  doi: 10.1007/s10286-010-0106-2
– ident: refg23/ref23
  doi: 10.1093/cvr/24.3.214
– ident: refg53/ref53
  doi: 10.1161/01.HYP.0000156540.25707.af
– ident: refg40/ref40
  doi: 10.1113/jphysiol.2003.046029
– ident: refg34/ref34
  doi: 10.1007/s40520-014-0303-2
– ident: refg24/ref24
  doi: 10.1007/s00421-013-2710-z
– ident: refg31/ref31
  doi: 10.1152/ajpheart.1996.270.6.H2132
– ident: refg35/ref35
  doi: 10.1111/j.1469-445X.1999.tb00077.x
– ident: refg41/ref41
  doi: 10.1249/MSS.0b013e31815ef29b
– ident: refg46/ref46
  doi: 10.1152/jappl.1991.70.2.523
– ident: refg16/ref16
  doi: 10.1113/expphysiol.2004.029496
– ident: refg19/ref19
  doi: 10.1111/ggi.12983
– ident: refg49/ref49
  doi: 10.1007/s00421-016-3375-1
– ident: refg12/ref12
  doi: 10.1007/s10286-011-0119-5
– ident: refg29/ref29
  doi: 10.1152/jappl.1991.70.1.112
– ident: refg9/ref9
  doi: 10.1007/s00421-016-3386-y
– ident: refg37/ref37
  doi: 10.1152/japplphysiol.01152.2009
– ident: refg30/ref30
  doi: 10.1161/01.CIR.84.3.1016
– ident: refg18/ref18
  doi: 10.1042/cs0970291
– ident: refg10/ref10
  doi: 10.1016/j.resp.2017.09.015
– ident: refg33/ref33
  doi: 10.1007/s004210050209
– ident: refg3/ref3
  doi: 10.1152/jappl.1981.51.1.194
– ident: refg39/ref39
  doi: 10.1016/j.exger.2010.06.005
SSID ssj0006838
Score 2.2508476
Snippet It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14...
SourceID proquest
gale
pubmed
crossref
nrcresearch
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 738
SubjectTerms Adult
Analysis
Blood Pressure
Cardiac patients
cardiorespiratory kinetics
Cardiovascular Physiological Phenomena
cardiovascular regulation
cinétique cardiorespiratoire
exercice physique
exercise
Exercise - physiology
expériences de basculement
forme physique
Head-Down Tilt - physiology
Heart beat
Heart Rate
Humans
Intolerance
Male
Muscles
orthostatic stress
orthostatic tolerance
Oxygen
Pharmacology
Physical fitness
Physical training
Physiology
Regulation
Respiration
régulation cardiovasculaire
stress orthostatique
tilting experiments
tolérance orthostatique
Vascular Resistance
Title Cardiovascular regulation: associations between exercise and head-up tilt
URI http://www.nrcresearchpress.com/doi/abs/10.1139/cjpp-2018-0742
https://www.ncbi.nlm.nih.gov/pubmed/30917299
https://www.proquest.com/docview/2264044051
https://www.proquest.com/docview/2199182467
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1205-7541
  dateEnd: 20241005
  omitProxy: true
  ssIdentifier: ssj0006838
  issn: 0008-4212
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPCDY-ygoyCHUSLGVN4sThrRtM24BpglbbW5Q4zlY00tCPh_E_8D9zFztOAq0YSFVV2ZfP-_XOZ59_R8jLlLPYFQJGbtJJLdf3PSsOpLCSGGxhIMAreLhR-NOJdzhyj8_Zeav1s5a1tJjHPfFj6b6S_9EqtIFecZfsP2jWnBQa4DfoF75Bw_B9Ix3vN5NJp6quvM7WiKoXPzPpWGWFpWLNAOxwYi3y1_PxVWOG3jAW1GglihmQiq8prxivzZz8hwlEypEqt3fcMyNkiOdLYIxM65mc6p02A9M2vByjaLF076aq92OvPi2BO6F4OS1Rmlpu4XKzcjTKutq7zPKZYroqza9Kz9Uw4zVb6ivaF-2WfcU6-afFd5AwVXzNc4BGH-7Bd-3Kt5Xr-b-5PJOIWIRAThDi8SEeH-Lxt8i67XsuxPLrg713ewfGtXvcUa5dP5tmAYUzvGneQWOUo339nWwqNIPT5ep4phjXDO-RuzogoQOFrvukJbMNsjnIovnk2zXt0lOj-A3SPVVqv96hw2rf3mynEKsAsUmOmsikFTLf0jouqcYlLXFJAVxU45IiLh-Q0cH74f6hpYt2WAJig7kVyT5LuJOwJIXBLgTLIhJMYKQheII152OBZUJ9T7Ik4ImMmIQRZpC4fcGZnSbOQ7KWTTL5mFBXgIQdB37icWRBirxYxB58-nYsHV-0iVW-5FBoRnssrHIVLldrm2wb-VxxuayUfIE6C5EgJcMMrItoMZuFR19OwgELMMZwd_lKoc8NoW0tlE7g3uBlqF0v8IRIvNaQ3GpIinz8Paz1dhu9F4qUftlpOg1B8Bai0f2qBsO_voZOidJQW5xZiDvvsU4967fJc9ONl8F0zUxOFiCDCZUc7LzfJo8Uus2lHIhQIKIPntxYG1vkdmVhOmRtPl3IpxAKzONn-g_6C8ehBwo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiovascular+regulation%3A+associations+between+exercise+and+head-up+tilt&rft.jtitle=Canadian+journal+of+physiology+and+pharmacology&rft.au=Koschate%2C+J.&rft.au=Drescher%2C+U.&rft.au=Werner%2C+A.&rft.au=Thiesch%C3%A4fer%2C+L.&rft.date=2019-08-01&rft.issn=0008-4212&rft.eissn=1205-7541&rft.volume=97&rft.issue=8&rft.spage=738&rft.epage=745&rft_id=info:doi/10.1139%2Fcjpp-2018-0742&rft.externalDBID=n%2Fa&rft.externalDocID=10_1139_cjpp_2018_0742
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4212&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4212&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4212&client=summon