Cardiovascular regulation: associations between exercise and head-up tilt
It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 ± 4 years, 179 ± 8 cm, 79 ± 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 an...
Saved in:
Published in | Canadian journal of physiology and pharmacology Vol. 97; no. 8; pp. 738 - 745 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Canada
NRC Research Press
01.08.2019
Canadian Science Publishing NRC Research Press |
Subjects | |
Online Access | Get full text |
ISSN | 0008-4212 1205-7541 1205-7541 |
DOI | 10.1139/cjpp-2018-0742 |
Cover
Abstract | It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 ± 4 years, 179 ± 8 cm, 79 ± 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 and 80 W. Pulmonary oxygen uptake (
) was measured breath-by-breath and heart rate (HR), mean arterial blood pressure (MAP), and total peripheral resistance (TPR) were measured beat-to-beat. Muscular oxygen uptake (
) was estimated from HR and
. Kinetic parameters were determined by time-series analysis, using cross-correlation functions (CCF
max
(x)) between the parameter and the work rate. Cardiovascular regulations of MAP, HR, and TPR during orthostatic stress were measured beat-to-beat on a tilt seat. Changes between the minima and maxima during the 6° head-down tilt and the 90° head-up tilt positions were calculated for each parameter (Δ
tilt-up
).
correlated significantly with ΔTPR
tilt-up
(r = 0.790, p ≤ 0.001). CCF
max
(HR) was significantly correlated with ΔHR
tilt-up
(r = –0.705, p = 0.002) and the amplitude in HR from 30 to 80 W (r
SP
= –0.574, p = 0.016). The observed correlations between cardiorespiratory regulation in response to exercise and orthostatic stress during rest might allow for a more differential analysis of the underlying mechanisms of orthostatic intolerance in, for example, patient groups. |
---|---|
AbstractList | It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 ± 4 years, 179 ± 8 cm, 79 ± 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 and 80 W. Pulmonary oxygen uptake (V˙O2pulm) was measured breath-by-breath and heart rate (HR), mean arterial blood pressure (MAP), and total peripheral resistance (TPR) were measured beat-to-beat. Muscular oxygen uptake (V˙O2musc) was estimated from HR and V˙O2pulm. Kinetic parameters were determined by time-series analysis, using cross-correlation functions (CCFmax(x)) between the parameter and the work rate. Cardiovascular regulations of MAP, HR, and TPR during orthostatic stress were measured beat-to-beat on a tilt seat. Changes between the minima and maxima during the 6° head-down tilt and the 90° head-up tilt positions were calculated for each parameter (Δtilt-up). CCFmax(V˙O2musc) correlated significantly with ΔTPRtilt-up (r = 0.790, p ≤ 0.001). CCFmax(HR) was significantly correlated with ΔHRtilt-up (r = –0.705, p = 0.002) and the amplitude in HR from 30 to 80 W (rSP = –0.574, p = 0.016). The observed correlations between cardiorespiratory regulation in response to exercise and orthostatic stress during rest might allow for a more differential analysis of the underlying mechanisms of orthostatic intolerance in, for example, patient groups.Nous avons posé l’hypothèse selon laquelle la cinétique cardiorespiratoire plus rapide pendant l’exercice physique est associée avec une plus grande tolérance orthostatique. Nous avons étudié la cinétique cardiorespiratoire chez 14 sujets de sexe masculin en bonne santé (30 ± 4 ans, 179 ± 8 cm, 79 ± 8 kg) à l’aide d’une bicyclette ergométrique pendant un exercice physique avec des rythmes de travail variables de 30 et 80 W. Nous avons mesuré le taux d’absorption de l’oxygène par les poumons (V˙O2pulm) respiration par respiration et la fréquence cardiaque (FC), la tension artérielle moyenne (TAM) et la résistance périphérique totale (RPT) battement par battement. Nous avons estimé le taux d’absorption de l’oxygène par les muscles (V˙O2musc) à partir de la FC et de la V˙O2pulm. Nous avons établi les paramètres cinétiques par une analyse chronologique à l’aide de fonctions de corrélation croisées (FCCmax(x)) entre le paramètre et le rythme de travail. Nous avons mesuré la régulation cardiovasculaire de la TAM, de la FC et de la RPT pendant un stress orthostatique battement par battement sur un siège basculant. Nous avons calculé les variations de chacun des paramètres entre les minimums et les maximums pendant les positions de basculement tête vers le bas de 6° et basculement tête vers le haut de 90° (Δbasc-haut). La FCCmax(V˙O2musc) était nettement proportionnelle à la ΔRPTbasc-haut (r = 0,790; p ≤ 0,001). La FCCmax(FC) était nettement inversement proportionnelle à la ΔFCbasc-haut (r = –0,705; p = 0,002), ainsi qu’à l’amplitude de la FC de 30 à 80 W (rSP = –0,574; p = 0,016). Les corrélations observées entre la régulation cardiorespiratoire en réaction à l’exercice physique et l’orthostatisme au repos pourraient permettre de procéder à une étude plus différentielle des modes d’action sous-jacents de l’intolérance à l’orthostatisme, par exemple auprès de groupes de patients. [Traduit par la Rédaction] It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 ± 4 years, 179 ± 8 cm, 79 ± 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 and 80 W. Pulmonary oxygen uptake ( ) was measured breath-by-breath and heart rate (HR), mean arterial blood pressure (MAP), and total peripheral resistance (TPR) were measured beat-to-beat. Muscular oxygen uptake ( ) was estimated from HR and . Kinetic parameters were determined by time-series analysis, using cross-correlation functions (CCF (x)) between the parameter and the work rate. Cardiovascular regulations of MAP, HR, and TPR during orthostatic stress were measured beat-to-beat on a tilt seat. Changes between the minima and maxima during the 6° head-down tilt and the 90° head-up tilt positions were calculated for each parameter (Δ ). correlated significantly with ΔTPR ( = 0.790, ≤ 0.001). CCF (HR) was significantly correlated with ΔHR ( = -0.705, = 0.002) and the amplitude in HR from 30 to 80 W ( = -0.574, = 0.016). The observed correlations between cardiorespiratory regulation in response to exercise and orthostatic stress during rest might allow for a more differential analysis of the underlying mechanisms of orthostatic intolerance in, for example, patient groups. It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 ± 4 years, 179 ± 8 cm, 79 ± 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 and 80 W. Pulmonary oxygen uptake ([Formula: see text]) was measured breath-by-breath and heart rate (HR), mean arterial blood pressure (MAP), and total peripheral resistance (TPR) were measured beat-to-beat. Muscular oxygen uptake ([Formula: see text]) was estimated from HR and [Formula: see text]. Kinetic parameters were determined by time-series analysis, using cross-correlation functions (CCF max (x)) between the parameter and the work rate. Cardiovascular regulations of MAP, HR, and TPR during orthostatic stress were measured beat-to-beat on a tilt seat. Changes between the minima and maxima during the 6° head-down tilt and the 90° head-up tilt positions were calculated for each parameter (Δ tilt-up ). [Formula: see text] correlated significantly with ΔTPR tilt-up (r = 0.790, p ≤ 0.001). CCF max (HR) was significantly correlated with ΔHR tilt-up (r = –0.705, p = 0.002) and the amplitude in HR from 30 to 80 W (r SP = –0.574, p = 0.016). The observed correlations between cardiorespiratory regulation in response to exercise and orthostatic stress during rest might allow for a more differential analysis of the underlying mechanisms of orthostatic intolerance in, for example, patient groups. It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 [+ or -] 4 years, 179 [+ or -] 8 cm, 79 [+ or -] 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 and 80 W. Pulmonary oxygen uptake ([??][O.sub.2pulm]) was measured breath-by-breath and heart rate (HR), mean arterial blood pressure (MAP), and total peripheral resistance (TPR) were measured beat-to-beat. Muscular oxygen uptake ([??][O.sub.2musc]) was estimated from HR and [??][O.sub.2pulm]. Kinetic parameters were determined by time-series analysis, using cross-correlation functions ([CCF.sub.max](x)) between the parameter and the work rate. Cardiovascular regulations of MAP, HR, and TPR during orthostatic stress were measured beat-to-beat on a tilt seat. Changes between the minima and maxima during the 6[degrees] head-down tilt and the 90[degrees] head-up tilt positions were calculated for each parameter ([[DELTA].sub.tilt-up]). [CCF.sub.max] ([??][O.sub.2musc]) correlated significantly with [DELTA][TPR.sub.tilt-up] (r = 0.790, p [less than or equal to] 0.001). [CCF.sub.max](HR) was significantly correlated with [DELTA][HR.sub.tilt-up] (r = -0.705, p = 0.002) and the amplitude in HR from 30 to 80 W ([r.sub.SP] = -0.574, p = 0.016). The observed correlations between cardiorespiratory regulation in response to exercise and orthostatic stress during rest might allow for a more differential analysis of the underlying mechanisms of orthostatic intolerance in, for example, patient groups. It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 [+ or -] 4 years, 179 [+ or -] 8 cm, 79 [+ or -] 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 and 80 W. Pulmonary oxygen uptake ([??][O.sub.2pulm]) was measured breath-by-breath and heart rate (HR), mean arterial blood pressure (MAP), and total peripheral resistance (TPR) were measured beat-to-beat. Muscular oxygen uptake ([??][O.sub.2musc]) was estimated from HR and [??][O.sub.2pulm]. Kinetic parameters were determined by time-series analysis, using cross-correlation functions ([CCF.sub.max](x)) between the parameter and the work rate. Cardiovascular regulations of MAP, HR, and TPR during orthostatic stress were measured beat-to-beat on a tilt seat. Changes between the minima and maxima during the 6[degrees] head-down tilt and the 90[degrees] head-up tilt positions were calculated for each parameter ([[DELTA].sub.tilt-up]). [CCF.sub.max] ([??][O.sub.2musc]) correlated significantly with [DELTA][TPR.sub.tilt-up] (r = 0.790, p [less than or equal to] 0.001). [CCF.sub.max](HR) was significantly correlated with [DELTA][HR.sub.tilt-up] (r = -0.705, p = 0.002) and the amplitude in HR from 30 to 80 W ([r.sub.SP] = -0.574, p = 0.016). The observed correlations between cardiorespiratory regulation in response to exercise and orthostatic stress during rest might allow for a more differential analysis of the underlying mechanisms of orthostatic intolerance in, for example, patient groups. Key words: cardiovascular regulation, orthostatic stress, cardiorespiratory kinetics, tilting experiments, exercise, physical fitness, orthostatic tolerance. Nous avons pose l'hypothese selon laquelle la cinetique cardiorespiratoire plus rapide pendant l'exercice physique est associee avec une plus grande tolerance orthostatique. Nous avons etudie la cinetique cardiorespiratoire chez 14 sujets de sexe masculin en bonne sante (30 [+ or -] 4 ans, 179 [+ or -] 8 cm, 79 [+ or -] 8 kg) a l'aide d'une bicyclette ergometrique pendant un exercice physique avec des rythmes de travail variables de 30 et 80 W. Nous avons mesure le taux d'absorption de l'oxygene par les poumons ([??][O.sub.2pulm]) respiration par respiration et la frequence cardiaque (FC), la tension arterielle moyenne (TAM) et la resistance peripherique totale (RPT) battement par battement. Nous avons estime le taux d'absorption de l'oxygene par les muscles ([??][O.sub.2musc]) a partir de la FC et de la [??][O.sub.2pulm]. Nous avons etabli les parametres cinetiques par une analyse chronologique a l'aide de fonctions de correlation croisees ([FCC.sub.max](x)) entre le parametre et le rythme de travail. Nous avons mesure la regulation cardiovasculaire de la TAM, de la FC et de la RPT pendant un stress orthostatique battement par battement sur un siege basculant. Nous avons calcule les variations de chacun des parametres entre les minimums et les maximums pendant les positions de basculement tete vers le bas de 6[degrees] et basculement tete vers le haut de 90[degrees] (Abasc-haut). La [FCC.sub.max] ([??][O.sub.2musc]) etait nettement proportionnelle a la [DELTA][RPT.sub.basc-haut] (r = 0,790; p [less than or equal to] 0,001). La [FCC.sub.max](FC) etait nettement inversement proportionnelle a la [DELTA][FC.sub.basc-haut] (r = -0,705; p = 0,002), ainsi qu'a l'amplitude de la FC de 30 a 80 W ([r.sub.SP] = -0,574; p = 0,016). Les correlations observees entre la regulation cardiorespiratoire en reaction a l'exercice physique et l'orthostatisme au repos pourraient permettre de proceder a une etude plus differentielle des modes d'action sous-jacents de l'intolerance a l'orthostatisme, par exemple aupres de groupes de patients. [Traduit par la Redaction] Mots-cles : regulation cardiovasculaire, stress orthostatique, cinetique cardiorespiratoire, experiences de basculement, exercice physique, forme physique, tolerance orthostatique. It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 ± 4 years, 179 ± 8 cm, 79 ± 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 and 80 W. Pulmonary oxygen uptake ( ) was measured breath-by-breath and heart rate (HR), mean arterial blood pressure (MAP), and total peripheral resistance (TPR) were measured beat-to-beat. Muscular oxygen uptake ( ) was estimated from HR and . Kinetic parameters were determined by time-series analysis, using cross-correlation functions (CCFmax(x)) between the parameter and the work rate. Cardiovascular regulations of MAP, HR, and TPR during orthostatic stress were measured beat-to-beat on a tilt seat. Changes between the minima and maxima during the 6° head-down tilt and the 90° head-up tilt positions were calculated for each parameter (Δtilt-up). correlated significantly with ΔTPRtilt-up (r = 0.790, p ≤ 0.001). CCFmax(HR) was significantly correlated with ΔHRtilt-up (r = -0.705, p = 0.002) and the amplitude in HR from 30 to 80 W (rSP = -0.574, p = 0.016). The observed correlations between cardiorespiratory regulation in response to exercise and orthostatic stress during rest might allow for a more differential analysis of the underlying mechanisms of orthostatic intolerance in, for example, patient groups.It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 ± 4 years, 179 ± 8 cm, 79 ± 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 and 80 W. Pulmonary oxygen uptake ( ) was measured breath-by-breath and heart rate (HR), mean arterial blood pressure (MAP), and total peripheral resistance (TPR) were measured beat-to-beat. Muscular oxygen uptake ( ) was estimated from HR and . Kinetic parameters were determined by time-series analysis, using cross-correlation functions (CCFmax(x)) between the parameter and the work rate. Cardiovascular regulations of MAP, HR, and TPR during orthostatic stress were measured beat-to-beat on a tilt seat. Changes between the minima and maxima during the 6° head-down tilt and the 90° head-up tilt positions were calculated for each parameter (Δtilt-up). correlated significantly with ΔTPRtilt-up (r = 0.790, p ≤ 0.001). CCFmax(HR) was significantly correlated with ΔHRtilt-up (r = -0.705, p = 0.002) and the amplitude in HR from 30 to 80 W (rSP = -0.574, p = 0.016). The observed correlations between cardiorespiratory regulation in response to exercise and orthostatic stress during rest might allow for a more differential analysis of the underlying mechanisms of orthostatic intolerance in, for example, patient groups. It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14 healthy male subjects (30 ± 4 years, 179 ± 8 cm, 79 ± 8 kg) were tested on a cycle ergometer during exercise with changing work rates of 30 and 80 W. Pulmonary oxygen uptake ( ) was measured breath-by-breath and heart rate (HR), mean arterial blood pressure (MAP), and total peripheral resistance (TPR) were measured beat-to-beat. Muscular oxygen uptake ( ) was estimated from HR and . Kinetic parameters were determined by time-series analysis, using cross-correlation functions (CCF max (x)) between the parameter and the work rate. Cardiovascular regulations of MAP, HR, and TPR during orthostatic stress were measured beat-to-beat on a tilt seat. Changes between the minima and maxima during the 6° head-down tilt and the 90° head-up tilt positions were calculated for each parameter (Δ tilt-up ). correlated significantly with ΔTPR tilt-up (r = 0.790, p ≤ 0.001). CCF max (HR) was significantly correlated with ΔHR tilt-up (r = –0.705, p = 0.002) and the amplitude in HR from 30 to 80 W (r SP = –0.574, p = 0.016). The observed correlations between cardiorespiratory regulation in response to exercise and orthostatic stress during rest might allow for a more differential analysis of the underlying mechanisms of orthostatic intolerance in, for example, patient groups. |
Abstract_FL | Nous avons posé l’hypothèse selon laquelle la cinétique cardiorespiratoire plus rapide pendant l’exercice physique est associée avec une plus grande tolérance orthostatique. Nous avons étudié la cinétique cardiorespiratoire chez 14 sujets de sexe masculin en bonne santé (30 ± 4 ans, 179 ± 8 cm, 79 ± 8 kg) à l’aide d’une bicyclette ergométrique pendant un exercice physique avec des rythmes de travail variables de 30 et 80 W. Nous avons mesuré le taux d’absorption de l’oxygène par les poumons (
) respiration par respiration et la fréquence cardiaque (FC), la tension artérielle moyenne (TAM) et la résistance périphérique totale (RPT) battement par battement. Nous avons estimé le taux d’absorption de l’oxygène par les muscles (
) à partir de la FC et de la
. Nous avons établi les paramètres cinétiques par une analyse chronologique à l’aide de fonctions de corrélation croisées (FCC
max
(x)) entre le paramètre et le rythme de travail. Nous avons mesuré la régulation cardiovasculaire de la TAM, de la FC et de la RPT pendant un stress orthostatique battement par battement sur un siège basculant. Nous avons calculé les variations de chacun des paramètres entre les minimums et les maximums pendant les positions de basculement tête vers le bas de 6° et basculement tête vers le haut de 90° (Δ
basc-haut
). La
était nettement proportionnelle à la ΔRPT
basc-haut
(r = 0,790; p ≤ 0,001). La FCC
max
(FC) était nettement inversement proportionnelle à la ΔFC
basc-haut
(r = –0,705; p = 0,002), ainsi qu’à l’amplitude de la FC de 30 à 80 W (r
SP
= –0,574; p = 0,016). Les corrélations observées entre la régulation cardiorespiratoire en réaction à l’exercice physique et l’orthostatisme au repos pourraient permettre de procéder à une étude plus différentielle des modes d’action sous-jacents de l’intolérance à l’orthostatisme, par exemple auprès de groupes de patients. [Traduit par la Rédaction] |
Audience | Academic |
Author | Werner, A Koschate, J Hoffmann, U Thieschäfer, L Drescher, U |
Author_xml | – sequence: 1 givenname: J surname: Koschate fullname: Koschate, J organization: Institute of Physiology and Anatomy, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany – sequence: 2 givenname: U surname: Drescher fullname: Drescher, U organization: Institute of Physiology and Anatomy, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany – sequence: 3 givenname: A surname: Werner fullname: Werner, A organization: German Air Force — Centre of Aerospace Medicine, Branch I 1, Aviation Physiology Diagnostics and Research, Steinborner Str. 43, 01936 Königsbrück, Germany – sequence: 4 givenname: L surname: Thieschäfer fullname: Thieschäfer, L organization: Institute of Physiology and Anatomy, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany – sequence: 5 givenname: U surname: Hoffmann fullname: Hoffmann, U organization: Institute of Physiology and Anatomy, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30917299$$D View this record in MEDLINE/PubMed |
BookMark | eNqVks1v1DAQxS1URLeFK0cUwaUcUvyZOL1VqwIrVSDxcba89mTrVdZJbQfKf4_TbSmLFiHkw2is33uasd8ROvC9B4SeE3xKCGvemPUwlBQTWeKa00doRigWZS04OUAzjLEsOSX0EB3FuM5tJZl8gg4ZbkhNm2aGFnMdrOu_6WjGTociwCrX5Hp_VugYe-Num1gsIX0H8AXcQDAuQqG9La5A23IciuS69BQ9bnUX4dldPUZf3158mb8vLz--W8zPL0sjKpFKDURYyaywbcVZhYXRRhiMCTPS5rH50tSMkboCYRtpQQugnDeWEyMFbS07Ridb3yH01yPEpDYuGug67aEfo6KkaYikvKoz-uoPdN2PwefpFKUVx5xjQR6ole5AOd_2KWgzmapz0QjCGccyU-UeagUegu7yn7QuX-_wL_fwZnDX6nfodA-Uj4WNM3tdX-8IMpPgJq30GKNafP70H-yHXfbF3UuNyw1YNQS30eGHug9KBvgWMKGPMUCrjEu30cgTu04RrKY8qimPasqjmvL4sOAv2b3zXwVkK_DBBIigg7n6l-YngwvsnQ |
CitedBy_id | crossref_primary_10_1016_j_actaastro_2021_05_030 crossref_primary_10_1038_s41526_024_00387_3 crossref_primary_10_1007_s00421_020_04576_2 |
Cites_doi | 10.1249/JES.0000000000000005 10.1007/s00424-001-0748-y 10.1152/japplphysiol.01190.2006 10.1152/japplphysiol.01092.2010 10.1152/jappl.1990.68.3.979 10.1139/h95-018 10.1139/apnm-2016-0001 10.1152/japplphysiol.01280.2003 10.1046/j.0001-6772.2003.01211.x 10.1097/HJH.0b013e328347a17a 10.1007/s00421-013-2598-7 10.1139/H09-088 10.1152/japplphysiol.00465.2000 10.1007/s10286-013-0222-x 10.1161/01.HYP.8.8.722 10.1152/japplphysiol.00927.2006 10.1152/japplphysiol.01460.2011 10.1007/BF02279892 10.1113/expphysiol.2009.047548 10.1042/CS20060091 10.1097/00005768-199912000-00010 10.1152/jappl.1981.51.6.1662 10.1249/MSS.0000000000000398 10.1016/0002-9149(93)90713-M 10.1007/BF02322255 10.1007/s10286-010-0106-2 10.1093/cvr/24.3.214 10.1161/01.HYP.0000156540.25707.af 10.1113/jphysiol.2003.046029 10.1007/s40520-014-0303-2 10.1007/s00421-013-2710-z 10.1152/ajpheart.1996.270.6.H2132 10.1111/j.1469-445X.1999.tb00077.x 10.1249/MSS.0b013e31815ef29b 10.1152/jappl.1991.70.2.523 10.1113/expphysiol.2004.029496 10.1111/ggi.12983 10.1007/s00421-016-3375-1 10.1007/s10286-011-0119-5 10.1152/jappl.1991.70.1.112 10.1007/s00421-016-3386-y 10.1152/japplphysiol.01152.2009 10.1161/01.CIR.84.3.1016 10.1042/cs0970291 10.1016/j.resp.2017.09.015 10.1007/s004210050209 10.1152/jappl.1981.51.1.194 10.1016/j.exger.2010.06.005 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 NRC Research Press 2019 Published by NRC Research Press |
Copyright_xml | – notice: COPYRIGHT 2019 NRC Research Press – notice: 2019 Published by NRC Research Press |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 7X8 |
DOI | 10.1139/cjpp-2018-0742 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Nursing & Allied Health Premium MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1205-7541 |
EndPage | 745 |
ExternalDocumentID | A595143408 30917299 10_1139_cjpp_2018_0742 cjpp-2018-0742 |
Genre | Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | - 08R 0R 1AW 29B 2QV 3O- 3V. 4.4 53G 55 5GY 5RE 5RP 7RV 7X7 88A 88E 88I 8AF 8AO 8FE 8FH 8FI 8FJ 8FQ AALRV ABDBF ABFLS ABPTK ABUFD ABUWG ACGFS ACGOD ACIWK ACKIV ACPRK ADBBV ADKZR AENEX AFFNX AFKRA AFRAH AHMBA AJYGW ALMA_UNASSIGNED_HOLDINGS AZQEC BBAFP BBNVY BCGST BCR BENPR BES BHPHI BKEYQ BLC BPHCQ BVXVI CAG COF CS3 D8U DU5 DWQXO DXH EAD EAP EAS EBD EBS ECC EDH EJD EMB EMK EPL ESX EX3 F5P FYUFA GJ GNUQQ HCIFZ HZ IAO ICQ IEA IHR INH INR IOF IPY ISN ISR ITC L7B LK8 M0L M1P M2P M2Q M3C M3E M3G M7P MV1 MVM NMEPN NRXXU NYCZX O9- OVD P2P PQEST PQQKQ PQUKI PRINS PROAC PSQYO QF4 QM4 QN7 QO4 QRP RIG RRCRK RRP SV3 TUS UAP WH7 WOW X X7M ZGI ZXP --- -~X .55 .GJ 00T 0R~ 36B 6J9 AAYXX ABJNI ACGFO ACUHS AIAGR CCPQU CITATION DATHI EMOBN HMCUK HZ~ IPNFZ MK0 NAPCQ ONR PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO PV9 RZL TEORI UKHRP VQG ALIPV CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c565t-ae15d83d5df643605cac5c0013c8d5414bc733176e5d98dea5e2449d41c852fd3 |
ISSN | 0008-4212 1205-7541 |
IngestDate | Fri Sep 05 14:07:26 EDT 2025 Sat Aug 16 15:21:19 EDT 2025 Wed Mar 19 00:09:12 EDT 2025 Fri Mar 14 02:42:42 EDT 2025 Tue Jun 10 15:32:40 EDT 2025 Sat Mar 08 18:09:39 EST 2025 Wed Mar 05 04:14:53 EST 2025 Wed Mar 05 04:59:02 EST 2025 Thu Apr 03 06:58:10 EDT 2025 Wed Oct 01 05:48:23 EDT 2025 Thu Apr 24 23:06:22 EDT 2025 Wed Nov 11 00:33:02 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | exercice physique cardiovascular regulation cinétique cardiorespiratoire exercise expériences de basculement stress orthostatique tilting experiments tolérance orthostatique cardiorespiratory kinetics forme physique orthostatic stress physical fitness régulation cardiovasculaire orthostatic tolerance |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c565t-ae15d83d5df643605cac5c0013c8d5414bc733176e5d98dea5e2449d41c852fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 30917299 |
PQID | 2264044051 |
PQPubID | 47727 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2264044051 gale_infotracacademiconefile_A595143408 gale_incontextgauss_ISN_A595143408 crossref_citationtrail_10_1139_cjpp_2018_0742 crossref_primary_10_1139_cjpp_2018_0742 proquest_miscellaneous_2199182467 gale_incontextgauss_ISR_A595143408 gale_infotraccpiq_595143408 gale_infotracmisc_A595143408 pubmed_primary_30917299 nrcresearch_primary_10_1139_cjpp_2018_0742 gale_infotracgeneralonefile_A595143408 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada – name: Ottawa |
PublicationTitle | Canadian journal of physiology and pharmacology |
PublicationTitleAlternate | Can J Physiol Pharmacol |
PublicationYear | 2019 |
Publisher | NRC Research Press Canadian Science Publishing NRC Research Press |
Publisher_xml | – name: NRC Research Press – name: Canadian Science Publishing NRC Research Press |
References | refg47/ref47 refg40/ref40 refg18/ref18 refg36/ref36 refg51/ref51 refg11/ref11 refg25/ref25 refg15/ref15 refg29/ref29 refg43/ref43 refg5/ref5 refg37/ref37 refg19/ref19 refg21/ref21 refg7/ref7 refg4/ref4 refg46/ref46 refg48/ref48 refg10/ref10 refg1/ref1 refg32/ref32 refg35/ref35 refg53/ref53 refg24/ref24 refg16/ref16 refg50/ref50 refg13/ref13 refg27/ref27 refg20/ref20 refg38/ref38 refg45/ref45 refg49/ref49 refg31/ref31 refg9/ref9 refg34/ref34 refg52/ref52 Grassi B. (refg14/ref14) 2006; 57 refg8/ref8 Lamb L.E. (refg26/ref26) 1961; 32 refg2/ref2 refg23/ref23 refg17/ref17 refg30/ref30 refg12/ref12 refg28/ref28 refg41/ref41 refg39/ref39 Convertino V.A. (refg6/ref6) 1987; 15 refg3/ref3 refg44/ref44 refg33/ref33 |
References_xml | – ident: refg38/ref38 doi: 10.1249/JES.0000000000000005 – ident: refg13/ref13 doi: 10.1007/s00424-001-0748-y – ident: refg44/ref44 doi: 10.1152/japplphysiol.01190.2006 – ident: refg36/ref36 doi: 10.1152/japplphysiol.01092.2010 – ident: refg1/ref1 doi: 10.1152/jappl.1990.68.3.979 – ident: refg43/ref43 doi: 10.1139/h95-018 – volume: 57 start-page: 53 year: 2006 ident: refg14/ref14 publication-title: And what do they tell us? J. Physiol. Pharmacol. – ident: refg25/ref25 doi: 10.1139/apnm-2016-0001 – volume: 32 start-page: 473 issue: 6 year: 1961 ident: refg26/ref26 publication-title: Aerosp. Med. – ident: refg8/ref8 doi: 10.1152/japplphysiol.01280.2003 – ident: refg47/ref47 doi: 10.1046/j.0001-6772.2003.01211.x – ident: refg11/ref11 doi: 10.1097/HJH.0b013e328347a17a – ident: refg20/ref20 doi: 10.1007/s00421-013-2598-7 – ident: refg21/ref21 doi: 10.1139/H09-088 – ident: refg51/ref51 doi: 10.1152/japplphysiol.00465.2000 – ident: refg27/ref27 doi: 10.1007/s10286-013-0222-x – ident: refg4/ref4 doi: 10.1161/01.HYP.8.8.722 – ident: refg32/ref32 doi: 10.1152/japplphysiol.00927.2006 – ident: refg48/ref48 doi: 10.1152/japplphysiol.01460.2011 – ident: refg5/ref5 doi: 10.1007/BF02279892 – ident: refg7/ref7 doi: 10.1113/expphysiol.2009.047548 – ident: refg52/ref52 doi: 10.1042/CS20060091 – volume: 15 start-page: 223 issue: 1 year: 1987 ident: refg6/ref6 publication-title: Exerc. Sport Sci. Rev. – ident: refg28/ref28 doi: 10.1097/00005768-199912000-00010 – ident: refg2/ref2 doi: 10.1152/jappl.1981.51.6.1662 – ident: refg15/ref15 doi: 10.1249/MSS.0000000000000398 – ident: refg45/ref45 doi: 10.1016/0002-9149(93)90713-M – ident: refg17/ref17 doi: 10.1007/BF02322255 – ident: refg50/ref50 doi: 10.1007/s10286-010-0106-2 – ident: refg23/ref23 doi: 10.1093/cvr/24.3.214 – ident: refg53/ref53 doi: 10.1161/01.HYP.0000156540.25707.af – ident: refg40/ref40 doi: 10.1113/jphysiol.2003.046029 – ident: refg34/ref34 doi: 10.1007/s40520-014-0303-2 – ident: refg24/ref24 doi: 10.1007/s00421-013-2710-z – ident: refg31/ref31 doi: 10.1152/ajpheart.1996.270.6.H2132 – ident: refg35/ref35 doi: 10.1111/j.1469-445X.1999.tb00077.x – ident: refg41/ref41 doi: 10.1249/MSS.0b013e31815ef29b – ident: refg46/ref46 doi: 10.1152/jappl.1991.70.2.523 – ident: refg16/ref16 doi: 10.1113/expphysiol.2004.029496 – ident: refg19/ref19 doi: 10.1111/ggi.12983 – ident: refg49/ref49 doi: 10.1007/s00421-016-3375-1 – ident: refg12/ref12 doi: 10.1007/s10286-011-0119-5 – ident: refg29/ref29 doi: 10.1152/jappl.1991.70.1.112 – ident: refg9/ref9 doi: 10.1007/s00421-016-3386-y – ident: refg37/ref37 doi: 10.1152/japplphysiol.01152.2009 – ident: refg30/ref30 doi: 10.1161/01.CIR.84.3.1016 – ident: refg18/ref18 doi: 10.1042/cs0970291 – ident: refg10/ref10 doi: 10.1016/j.resp.2017.09.015 – ident: refg33/ref33 doi: 10.1007/s004210050209 – ident: refg3/ref3 doi: 10.1152/jappl.1981.51.1.194 – ident: refg39/ref39 doi: 10.1016/j.exger.2010.06.005 |
SSID | ssj0006838 |
Score | 2.2508476 |
Snippet | It was hypothesized that faster cardiorespiratory kinetics during exercise are associated with higher orthostatic tolerance. Cardiorespiratory kinetics of 14... |
SourceID | proquest gale pubmed crossref nrcresearch |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 738 |
SubjectTerms | Adult Analysis Blood Pressure Cardiac patients cardiorespiratory kinetics Cardiovascular Physiological Phenomena cardiovascular regulation cinétique cardiorespiratoire exercice physique exercise Exercise - physiology expériences de basculement forme physique Head-Down Tilt - physiology Heart beat Heart Rate Humans Intolerance Male Muscles orthostatic stress orthostatic tolerance Oxygen Pharmacology Physical fitness Physical training Physiology Regulation Respiration régulation cardiovasculaire stress orthostatique tilting experiments tolérance orthostatique Vascular Resistance |
Title | Cardiovascular regulation: associations between exercise and head-up tilt |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/cjpp-2018-0742 https://www.ncbi.nlm.nih.gov/pubmed/30917299 https://www.proquest.com/docview/2264044051 https://www.proquest.com/docview/2199182467 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1205-7541 dateEnd: 20241005 omitProxy: true ssIdentifier: ssj0006838 issn: 0008-4212 databaseCode: ABDBF dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPCDY-ygoyCHUSLGVN4sThrRtM24BpglbbW5Q4zlY00tCPh_E_8D9zFztOAq0YSFVV2ZfP-_XOZ59_R8jLlLPYFQJGbtJJLdf3PSsOpLCSGGxhIMAreLhR-NOJdzhyj8_Zeav1s5a1tJjHPfFj6b6S_9EqtIFecZfsP2jWnBQa4DfoF75Bw_B9Ix3vN5NJp6quvM7WiKoXPzPpWGWFpWLNAOxwYi3y1_PxVWOG3jAW1GglihmQiq8prxivzZz8hwlEypEqt3fcMyNkiOdLYIxM65mc6p02A9M2vByjaLF076aq92OvPi2BO6F4OS1Rmlpu4XKzcjTKutq7zPKZYroqza9Kz9Uw4zVb6ivaF-2WfcU6-afFd5AwVXzNc4BGH-7Bd-3Kt5Xr-b-5PJOIWIRAThDi8SEeH-Lxt8i67XsuxPLrg713ewfGtXvcUa5dP5tmAYUzvGneQWOUo339nWwqNIPT5ep4phjXDO-RuzogoQOFrvukJbMNsjnIovnk2zXt0lOj-A3SPVVqv96hw2rf3mynEKsAsUmOmsikFTLf0jouqcYlLXFJAVxU45IiLh-Q0cH74f6hpYt2WAJig7kVyT5LuJOwJIXBLgTLIhJMYKQheII152OBZUJ9T7Ik4ImMmIQRZpC4fcGZnSbOQ7KWTTL5mFBXgIQdB37icWRBirxYxB58-nYsHV-0iVW-5FBoRnssrHIVLldrm2wb-VxxuayUfIE6C5EgJcMMrItoMZuFR19OwgELMMZwd_lKoc8NoW0tlE7g3uBlqF0v8IRIvNaQ3GpIinz8Paz1dhu9F4qUftlpOg1B8Bai0f2qBsO_voZOidJQW5xZiDvvsU4967fJc9ONl8F0zUxOFiCDCZUc7LzfJo8Uus2lHIhQIKIPntxYG1vkdmVhOmRtPl3IpxAKzONn-g_6C8ehBwo |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiovascular+regulation%3A+associations+between+exercise+and+head-up+tilt&rft.jtitle=Canadian+journal+of+physiology+and+pharmacology&rft.au=Koschate%2C+J.&rft.au=Drescher%2C+U.&rft.au=Werner%2C+A.&rft.au=Thiesch%C3%A4fer%2C+L.&rft.date=2019-08-01&rft.issn=0008-4212&rft.eissn=1205-7541&rft.volume=97&rft.issue=8&rft.spage=738&rft.epage=745&rft_id=info:doi/10.1139%2Fcjpp-2018-0742&rft.externalDBID=n%2Fa&rft.externalDocID=10_1139_cjpp_2018_0742 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4212&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4212&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4212&client=summon |