Short-Time Wind Speed Forecast Using Artificial Learning-Based Algorithms

The need for an efficient power source for operating the modern industry has been rapidly increasing in the past years. Therefore, the latest renewable power sources are difficult to be predicted. The generated power is highly dependent on fluctuated factors (such as wind bearing, pressure, wind spe...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2020; no. 2020; pp. 1 - 15
Main Authors Al-Dahidi, Sameer, Al-Hindawi, Qays, Alsheikh, Ahmad, Ibrahim, Mariam, ElMoaqet, Hisham
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-5265
1687-5273
1687-5273
DOI10.1155/2020/8439719

Cover

Abstract The need for an efficient power source for operating the modern industry has been rapidly increasing in the past years. Therefore, the latest renewable power sources are difficult to be predicted. The generated power is highly dependent on fluctuated factors (such as wind bearing, pressure, wind speed, and humidity of surrounding atmosphere). Thus, accurate forecasting methods are of paramount importance to be developed and employed in practice. In this paper, a case study of a wind harvesting farm is investigated in terms of wind speed collected data. For data like the wind speed that are hard to be predicted, a well built and tested forecasting algorithm must be provided. To accomplish this goal, four neural network-based algorithms: artificial neural network (ANN), convolutional neural network (CNN), long short-term memory (LSTM), and a hybrid model convolutional LSTM (ConvLSTM) that combines LSTM with CNN, and one support vector machine (SVM) model are investigated, evaluated, and compared using different statistical and time indicators to assure that the final model meets the goal that is built for. Results show that even though SVM delivered the most accurate predictions, ConvLSTM was chosen due to its less computational efforts as well as high prediction accuracy.
AbstractList The need for an efficient power source for operating the modern industry has been rapidly increasing in the past years. Therefore, the latest renewable power sources are difficult to be predicted. The generated power is highly dependent on fluctuated factors (such as wind bearing, pressure, wind speed, and humidity of surrounding atmosphere). Thus, accurate forecasting methods are of paramount importance to be developed and employed in practice. In this paper, a case study of a wind harvesting farm is investigated in terms of wind speed collected data. For data like the wind speed that are hard to be predicted, a well built and tested forecasting algorithm must be provided. To accomplish this goal, four neural network-based algorithms: artificial neural network (ANN), convolutional neural network (CNN), long short-term memory (LSTM), and a hybrid model convolutional LSTM (ConvLSTM) that combines LSTM with CNN, and one support vector machine (SVM) model are investigated, evaluated, and compared using different statistical and time indicators to assure that the final model meets the goal that is built for. Results show that even though SVM delivered the most accurate predictions, ConvLSTM was chosen due to its less computational efforts as well as high prediction accuracy.
The need for an efficient power source for operating the modern industry has been rapidly increasing in the past years. Therefore, the latest renewable power sources are difficult to be predicted. The generated power is highly dependent on fluctuated factors (such as wind bearing, pressure, wind speed, and humidity of surrounding atmosphere). Thus, accurate forecasting methods are of paramount importance to be developed and employed in practice. In this paper, a case study of a wind harvesting farm is investigated in terms of wind speed collected data. For data like the wind speed that are hard to be predicted, a well built and tested forecasting algorithm must be provided. To accomplish this goal, four neural network-based algorithms: artificial neural network (ANN), convolutional neural network (CNN), long short-term memory (LSTM), and a hybrid model convolutional LSTM (ConvLSTM) that combines LSTM with CNN, and one support vector machine (SVM) model are investigated, evaluated, and compared using different statistical and time indicators to assure that the final model meets the goal that is built for. Results show that even though SVM delivered the most accurate predictions, ConvLSTM was chosen due to its less computational efforts as well as high prediction accuracy.The need for an efficient power source for operating the modern industry has been rapidly increasing in the past years. Therefore, the latest renewable power sources are difficult to be predicted. The generated power is highly dependent on fluctuated factors (such as wind bearing, pressure, wind speed, and humidity of surrounding atmosphere). Thus, accurate forecasting methods are of paramount importance to be developed and employed in practice. In this paper, a case study of a wind harvesting farm is investigated in terms of wind speed collected data. For data like the wind speed that are hard to be predicted, a well built and tested forecasting algorithm must be provided. To accomplish this goal, four neural network-based algorithms: artificial neural network (ANN), convolutional neural network (CNN), long short-term memory (LSTM), and a hybrid model convolutional LSTM (ConvLSTM) that combines LSTM with CNN, and one support vector machine (SVM) model are investigated, evaluated, and compared using different statistical and time indicators to assure that the final model meets the goal that is built for. Results show that even though SVM delivered the most accurate predictions, ConvLSTM was chosen due to its less computational efforts as well as high prediction accuracy.
The need for an efficient power source for operating the modern industry has been rapidly increasing in the past years. Therefore, the latest renewable power sources are difficult to be predicted. The generated power is highly dependent on fluctuated factors (such as wind bearing, pressure, wind speed, and humidity of surrounding atmosphere). Thus, accurate forecasting methods are of paramount importance to be developed and employed in practice. In this paper, a case study of a wind harvesting farm is investigated in terms of wind speed collected data. For data like the wind speed that are hard to be predicted, a well built and tested forecasting algorithm must be provided. To accomplish this goal, four neural network-based algorithms: artificial neural network ( ), convolutional neural network ( ), long short-term memory ( ), and a hybrid model convolutional LSTM ( ) that combines with , and one support vector machine ( ) model are investigated, evaluated, and compared using different statistical and time indicators to assure that the final model meets the goal that is built for. Results show that even though delivered the most accurate predictions, was chosen due to its less computational efforts as well as high prediction accuracy.
The need for an efficient power source for operating the modern industry has been rapidly increasing in the past years. Therefore, the latest renewable power sources are difficult to be predicted. The generated power is highly dependent on fluctuated factors (such as wind bearing, pressure, wind speed, and humidity of surrounding atmosphere). Thus, accurate forecasting methods are of paramount importance to be developed and employed in practice. In this paper, a case study of a wind harvesting farm is investigated in terms of wind speed collected data. For data like the wind speed that are hard to be predicted, a well built and tested forecasting algorithm must be provided. To accomplish this goal, four neural network-based algorithms: artificial neural network ( ANN ), convolutional neural network ( CNN ), long short-term memory ( LSTM ), and a hybrid model convolutional LSTM ( ConvLSTM ) that combines LSTM with CNN , and one support vector machine ( SVM ) model are investigated, evaluated, and compared using different statistical and time indicators to assure that the final model meets the goal that is built for. Results show that even though SVM delivered the most accurate predictions, ConvLSTM was chosen due to its less computational efforts as well as high prediction accuracy.
Audience Academic
Author Al-Hindawi, Qays
Al-Dahidi, Sameer
Alsheikh, Ahmad
ElMoaqet, Hisham
Ibrahim, Mariam
AuthorAffiliation 2 Faculty of Applied Sciences and Industrial Engineering, Deggendorf Institute of Technology, Deggendorf 94469, Germany
3 School of Electrical, Information and Media Eng., University of Wuppertal, Wuppertal 42119, Germany
4 Dept. of Mechanical & Maintenance Eng., Faculty of Applied Technical Sciences, German Jordanian University, Amman 11180, Jordan
1 Dept. of Mechatronics Eng., Faculty of Applied Technical Sciences, German Jordanian University, Amman 11180, Jordan
AuthorAffiliation_xml – name: 4 Dept. of Mechanical & Maintenance Eng., Faculty of Applied Technical Sciences, German Jordanian University, Amman 11180, Jordan
– name: 2 Faculty of Applied Sciences and Industrial Engineering, Deggendorf Institute of Technology, Deggendorf 94469, Germany
– name: 3 School of Electrical, Information and Media Eng., University of Wuppertal, Wuppertal 42119, Germany
– name: 1 Dept. of Mechatronics Eng., Faculty of Applied Technical Sciences, German Jordanian University, Amman 11180, Jordan
Author_xml – sequence: 1
  fullname: Al-Dahidi, Sameer
– sequence: 2
  fullname: Al-Hindawi, Qays
– sequence: 3
  fullname: Alsheikh, Ahmad
– sequence: 4
  fullname: Ibrahim, Mariam
– sequence: 5
  fullname: ElMoaqet, Hisham
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32377179$$D View this record in MEDLINE/PubMed
BookMark eNqFks9rHCEcxaUkND_aW89loJdCOo0_1lEvhU1o2sBCD0noURznO7uGGd3qTEL--zjsNtsESk6Kft7z-fQI7fngAaEPBH8lhPNTiik-lTOmBFFv0CGppCg5FWzvaV7xA3SU0i3GXHBM36IDRpkQRKhDdHm1CnEor10PxW_nm-JqDdAUFyGCNWkobpLzy2IeB9c660xXLMBEn9fKM5MyOO-WIbph1ad3aL81XYL32_EY3Vx8vz7_WS5-_bg8ny9Kyys-lMoyJWlLuKyllBWrJOXAFADFzGIBoqmxJNZyw2yjuGkUMaK2FQWAmhPBjlG58R392jzcm67T6-h6Ex80wXqqRE-V6G0lmf-24ddj3UNjwQ_R7DTBOP18x7uVXoY7ncUC41k2-Lw1iOHPCGnQvUsWus54CGPSlCklmaCcZvTTC_Q2jNHnOiZKzKTAVbWjlqYD7Xwb8rl2MtXzigquBONT7o__5n4K_PftMkA3gI0hpQittm4wgwvTNVz3vza-vBC9Ut7JBl_lv2Hu3Wv0NjJkBlqzowmTuSL2CCfAzho
CitedBy_id crossref_primary_10_3390_en15010370
crossref_primary_10_1155_2021_2009062
crossref_primary_10_1016_j_seta_2022_102068
crossref_primary_10_1007_s13042_023_01963_x
crossref_primary_10_7717_peerj_cs_1949
crossref_primary_10_2208_jscejhe_78_2_I_1039
crossref_primary_10_1016_j_jag_2022_102924
crossref_primary_10_1016_j_enconman_2022_115583
crossref_primary_10_1155_2021_6678355
crossref_primary_10_1109_ACCESS_2021_3111408
crossref_primary_10_3390_pr11051530
crossref_primary_10_3390_systems11050237
crossref_primary_10_4491_KSEE_2021_43_4_219
crossref_primary_10_3390_en15031082
crossref_primary_10_1016_j_epsr_2024_111307
crossref_primary_10_1007_s40031_021_00618_1
crossref_primary_10_1155_2024_6680818
crossref_primary_10_32604_iasc_2023_030480
crossref_primary_10_1088_1757_899X_1258_1_012061
crossref_primary_10_3390_en16176272
crossref_primary_10_1016_j_dche_2022_100048
crossref_primary_10_3390_computation12080163
crossref_primary_10_1155_2021_8895844
crossref_primary_10_1016_j_asoc_2023_110864
crossref_primary_10_1109_ACCESS_2021_3112666
crossref_primary_10_21605_cukurovaumfd_1230965
crossref_primary_10_1007_s11071_024_09595_8
crossref_primary_10_1371_journal_pone_0278491
Cites_doi 10.4249/scholarpedia.1717
10.1016/j.enconman.2018.03.098
10.1016/j.enpol.2008.01.027
10.1006/jcss.1995.1013
10.1007/bf02478259
10.1016/j.apenergy.2018.01.094
10.1088/1742-6596/910/1/012020
10.1016/j.rser.2014.03.033
10.3390/en9120989
10.1007/bf00344251
10.1016/j.apenergy.2013.08.025
10.1016/j.renene.2013.08.011
10.1162/neco.1997.9.8.1735
ContentType Journal Article
Copyright Copyright © 2020 Mariam Ibrahim et al.
COPYRIGHT 2020 John Wiley & Sons, Inc.
Copyright © 2020 Mariam Ibrahim et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
Copyright © 2020 Mariam Ibrahim et al. 2020
Copyright_xml – notice: Copyright © 2020 Mariam Ibrahim et al.
– notice: COPYRIGHT 2020 John Wiley & Sons, Inc.
– notice: Copyright © 2020 Mariam Ibrahim et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2020 Mariam Ibrahim et al. 2020
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2020/8439719
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (subscription)
Technology Collection
Natural Science Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database (Proquest)
Engineering Database (Proquest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Franco, Leonardo
Editor_xml – sequence: 1
  givenname: Leonardo
  surname: Franco
  fullname: Franco, Leonardo
EndPage 15
ExternalDocumentID 10.1155/2020/8439719
PMC7197004
A627597359
32377179
10_1155_2020_8439719
1138837
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
0R~
188
24P
29F
2UF
2WC
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAKPC
AAMMB
ABDBF
ABIVO
ABJCF
ABUWG
ACCMX
ACGFO
ACIWK
ACM
ACPRK
ACUHS
ADBBV
ADJCN
ADRAZ
AEFGJ
AENEX
AFKRA
AGXDD
AHFXO
AHMBA
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EJD
EMOBN
ESX
F5P
FYUFA
GNUQQ
GX1
H13
HCIFZ
HMCUK
HYE
I-F
IAO
IHR
IL9
INR
K6V
K7-
KQ8
L6V
LK8
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PUEGO
Q2X
RHU
RNS
RPM
SV3
TR2
TUS
UKHRP
UZ4
~8M
3V.
AAJEY
AINHJ
GROUPED_DOAJ
ICD
INH
IPY
ITC
M0N
RHW
RHX
XH6
AAYXX
CITATION
CGR
CNMHZ
CUY
CVCKV
CVF
ECM
EIF
NPM
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c565t-9c3982f158b888636825e39ee203c07e7db081cc5a3cd95ad91a7bc62eeeb5173
IEDL.DBID M48
ISSN 1687-5265
1687-5273
IngestDate Sun Oct 26 04:13:49 EDT 2025
Tue Sep 30 16:44:04 EDT 2025
Sun Sep 28 12:01:52 EDT 2025
Tue Oct 07 05:51:10 EDT 2025
Mon Oct 20 22:48:21 EDT 2025
Thu Apr 03 07:04:35 EDT 2025
Wed Oct 01 02:22:12 EDT 2025
Thu Apr 24 22:58:02 EDT 2025
Sun Jun 02 18:54:50 EDT 2024
Thu Sep 25 15:26:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2020
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
Copyright © 2020 Mariam Ibrahim et al.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c565t-9c3982f158b888636825e39ee203c07e7db081cc5a3cd95ad91a7bc62eeeb5173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Leonardo Franco
ORCID 0000-0001-5683-3317
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2020/8439719
PMID 32377179
PQID 2397487066
PQPubID 237303
PageCount 15
ParticipantIDs unpaywall_primary_10_1155_2020_8439719
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7197004
proquest_miscellaneous_2399837252
proquest_journals_2397487066
gale_infotracmisc_A627597359
pubmed_primary_32377179
crossref_citationtrail_10_1155_2020_8439719
crossref_primary_10_1155_2020_8439719
hindawi_primary_10_1155_2020_8439719
emarefa_primary_1138837
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: United States
– name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationTitleAlternate Comput Intell Neurosci
PublicationYear 2020
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
References 14
(19) 2016; 9
15
26
16
29
(4) 2007
(20) 2018; 114
2
3
5
6
7
8
(25) 2019; 46
9
References_xml – ident: 6
  doi: 10.4249/scholarpedia.1717
– ident: 15
  doi: 10.1016/j.enconman.2018.03.098
– ident: 3
  doi: 10.1016/j.enpol.2008.01.027
– volume: 46
  start-page: 27
  issue: 4
  year: 2019
  ident: 25
  publication-title: IAENG International Journal of Computer Science
– start-page: 504
  year: 2007
  ident: 4
– ident: 9
  doi: 10.1006/jcss.1995.1013
– ident: 5
  doi: 10.1007/bf02478259
– ident: 29
  doi: 10.1016/j.apenergy.2018.01.094
– ident: 26
  doi: 10.1088/1742-6596/910/1/012020
– ident: 2
  doi: 10.1016/j.rser.2014.03.033
– volume: 114
  start-page: 277
  issue: 3
  year: 2018
  ident: 20
  publication-title: Computer Modeling in Engineering & Sciences
– volume: 9
  start-page: 989
  issue: 12
  year: 2016
  ident: 19
  publication-title: Energies
  doi: 10.3390/en9120989
– ident: 7
  doi: 10.1007/bf00344251
– ident: 14
  doi: 10.1016/j.apenergy.2013.08.025
– ident: 16
  doi: 10.1016/j.renene.2013.08.011
– ident: 8
  doi: 10.1162/neco.1997.9.8.1735
SSID ssj0057502
Score 2.3812194
Snippet The need for an efficient power source for operating the modern industry has been rapidly increasing in the past years. Therefore, the latest renewable power...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
hindawi
emarefa
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Alternative energy sources
Analysis
Artificial neural networks
Back propagation
Cable television broadcasting industry
Case studies
Computer applications
Data collection
Decomposition
Forecasting
Forecasting - methods
Forecasting techniques
Genetic algorithms
Harvesting
Industry forecasts
Kalman filters
Learning theory
Long short-term memory
Machine Learning
Mathematical models
Neural networks
Optimization
Power plants
Power sources
Solar energy
Support vector machines
Time series
Wavelet transforms
Wind
Wind farms
Wind power
Wind speed
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdg0gQvCBiwsIKMNPaCIpI4tuPHgpgKEjwwJvoW-atrpTat1lTT_vvdOW6gjK-3RD7bl5wvd2dffkfIsfCCuZyZ1KoylDDTqakcTy0ikxhjtJzgie7nL2J0Xn4a83EESVrfPsIHa4fhefa2QsOJ8J53K4GZW19H4-0HFxyOLrVQgL4g2vs2v_2XvjuWZ98vNFzo_ku8P8UY-Gr2O0_zdsLkvU2z0tdXej7_yRqdPiQPohtJh53cH5E7vnlMDoYNhNCLa3pCQ2Jn2DE_IB_PpuBjp_izB_0O09OzFZgsikU5rV63NGQNhKE6NAkaMVcv0ndg4hwdzi-Wl7N2ulg_IeenH769H6WxgkJqwVFrU2WZqopJzisDka5gAuJBz5T3RcZsJr10BlwCa7lm1imuncq1NFYU3nvDc8mekr1m2fhDQvOJNSWXmTFOlbnThklXyjIz1suCMZOQN9u3W9sIL45VLuZ1CDM4r1EWdZRFQl731KsOVuMPdM-ioH6Q5ayCqDohAxRcjXoI81jQClsPEXNZScah43EU6D_GH2ylXUflXdcFNJV4_isS8qpvxgkwIa3xy02gUcBFwQtgsVsc_USsYBKiZBhc7iybngAhvXdbmtk0QHsDS1hvICEn_QL7K__P_-8xj8h9vO22jgZkr73c-BfgTLXmZVClG2GNEvA
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central (subscription)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdGpwleEDAYgYKMNPaCrCVxHCcPCHVo00CiQoyJvUX-6jqpTQtNNe2_585xsk3AeIuUi33y3fnu7MvvCNnNXc5twjUzZeZbmCmmCyuYQWQSrbWSE7zR_TLOj0-zz2fibIOMu39hsKyy2xP9Rm0XBs_I91NwnBleyuUflj8Zdo3C29WuhYYKrRXsew8xdo9spoiMNSCbB4fjr9-6vRlik7YKMQfTQmD4rhReCDwFiPcL9M-IunPDSW25uYIH1W_aW1NMly8v_haU_llbeX9dL9XVpZrNbjiuo0fkYYg46ahVkcdkw9VPyPaohmx7fkX3qK8B9Yfr2-TTyRTCcYb_hdAfMD09WYJ3o9i_06hVQ32BgR-qBZ6gAZ71nB2AN7R0NDuHNWum89VTcnp0-P3jMQvNFpiBmK5hpeFlkU4SUWhIinOeQ-roeOlcGnMTSyethujBGKG4saVQtkyU1CZPnXNaJJI_I4N6UbvnhCYTozMhY61tmSVWaS5tJrNYGydTznVE3nWrW5mARI4NMWaVz0iEqFAWVZBFRN721MsWgeMfdDtBUNdkCS8gAY_IEAVXocnCPAYMyFQjhGcuJRfw4W4Q6H_GH3bSroKdr6prrYzIm_41ToC1a7VbrD1NCVykIgUWW-XoJ-Ipl5BQw-Dyltr0BIj-fftNfTH1KODAErYmiMher2B38v_ibv5fkgdI3Z4uDcmg-bV2ryDeavTrYES_Ab7OI7o
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGpwlexscYZBRkpLEXlC6J4zgRTwExDSQmpFExJKTIX10r2rRaU03jr-cucTLKt3hL5It9sc-5-yWX3xGyn9iEmZApX2dxXcJM-io13NfITKKUkmKEX3TfnSTHw_jtGT_bIC_af2EMUsTPpVkOxohJLyf109rN6_JQA1oEuB4cpuhIw2ywMKMbZDPhEIj3yObw5H3-CSFWAlsHid-vjwVr0945X-tizSFt2ZmEA9k9oLecGr8KQH_Oo7y5Khfy6lJOp985qaPb5HN7e01uypfBqlID_fUH5sf_vP87ZNsFrzRvrO0u2bDlPbKTlwDcZ1f0gNbppPV7-h3y5nQMkb2Pv5jQjzAIPV2Ao6RYClTLZUXrXIW6q4bDgjqm13P_JThWQ_Pp-fxiUo1ny_tkePT6w6tj39Vt8DWEh5WfaZal0SjkqQJ8nbAEUKhlmbVRwHQgrDAKAhGtuWTaZFyaLJRC6SSy1ioeCrZLeuW8tA8JDUdaxVwESpksDo1UTJhYxIHSVkSMKY88bxev0I7UHGtrTIsa3HBe4GwVbrY88qyTXjRkHr-Re-Ds4FosZClgeY_00S4K3P0wjoa9qIscmZ4zwThcuO-W7S_991tjKtqlLSJoivGrc-KRp10zDoBpcKWdr2qZDLSIeAQqNrbXDcQiJgCbQ-dizSo7ASQSX28pJ-OaUBxUwioHHjno7PeP-u_9q-AjcgtPm1dWfdKrLlb2MQRxlXriNus3xL4-_Q
  priority: 102
  providerName: Unpaywall
Title Short-Time Wind Speed Forecast Using Artificial Learning-Based Algorithms
URI https://search.emarefa.net/detail/BIM-1138837
https://dx.doi.org/10.1155/2020/8439719
https://www.ncbi.nlm.nih.gov/pubmed/32377179
https://www.proquest.com/docview/2397487066
https://www.proquest.com/docview/2399837252
https://pubmed.ncbi.nlm.nih.gov/PMC7197004
https://downloads.hindawi.com/journals/cin/2020/8439719.pdf
UnpaywallVersion publishedVersion
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070625
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1687-5273
  dateEnd: 20230628
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: ABDBF
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 7X7
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250430
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: M48
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 24P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfGpgleJmB8BEplpLEXFEjiOE4eEEphpSCtmjYqylNkO-5aKU27fmj0v-cuX1AY4yWJ4ott-e5yd_Hld4QcBSZgqcuUrSO_KGEmbRWm3NaITKKUkmKEO7qn_aA38L8M-XCH1NVGqwVc3hjaYT2pwSJ78-Nq8x4U_l2h8Jxj_O68DdGyIv7nHtioCIs4nPrNfgL4JGX2YQAqhYDwdQr8H09vGad9M5VwIZuX9f4Yw-TryU3O6N85lXfX-VxurmWW_WawuvfJQeVp0rgUjQdkx-QPyWGcQ5Q93dBjWuR-Fh_VD8nnizGsgI3_g9BvMDy9mINVo1i3U8vlihaJBUVXJeAErWBZL-0OWMGUxtnlbDFZjafLR2TQPfn6oWdXRRZsDb7cyo40i0Jv5PJQQTAcsABCRsMiYzyHaUcYkSrwGrTmkuk04jKNXCmUDjxjjOKuYI_Jbj7LzVNC3ZFWPheOUmnku6lUTKS-8B2ljfAYUxZ5Xa9uoisEciyEkSVFJMJ5grxIKl5Y5FVDPS-RN_5B96Ri1C8yl4UQeFukhYxLUHhgHA2Ko5MYYZkjwTg8eFQx9D_9t2puJ7V4Jh40-bhFHFjkZdOMA2DOWm5m64Imgll43IMplsLRDMQ8JiCQhs7Fltg0BIj6vd2ST8YF-jdMCUsSWOS4EbBb5__s9lV4Tu4hdflVqUV2V4u1eQF-1kq1yR0xFHAMu5_aZC_ufOx04dw56Z-dtwv1guN5bwj3Bv2z-PtPd_ImRQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LU9swEN6hYRh66Ys-3NLWnYFcOobYsiz70EMKpUl5XICBm5FkhTBNnLRxJpP-qP6V_qXu-gX0QU8cevOM19Ja3qe0_hZgLTABS1ymHB35eQsz6agw4Y4mZBKllBQ9OtHdPwg6x_6nU366AN-rf2GorLKyibmhTkaa9sg3PXScPh3KBWUF5a6ZzzA_m7zrbuPHXPe8nQ9HWx2nbCHgaIxUMifSLAq9nstDhalewAJMiAyLjPFaTLeEEYlCn6g1l0wnEZdJ5EqhdOAZYxR3BcNxm-MvDnWpotPcsmXHHVhEVlyvAYtbJ9sfO5Xtx9inqHIMUHUJeL4qteecdhlamyH5f0L1ueIEl8xQ4oWsncJSn9Lx2cWfgt7fazeXp-lYzmdyMLjiGHfuw49qSYt6mM8b00xt6G-_oE3-P2v-AO6VMbrdLpTqISyY9BGstFOZjYZzu2nnVbP5ccQKdA_7mMA49CeNfYILah-OMR6wqeOplpPMzksy8qEKqA67BLQ9d95j_JDY7cE5cpD1h5PHcHwr7_kEGukoNc_Adnta-Vy0lEoi302kYiLxhd9S2giPMWXB20peYl1it1MLkUGc53CcxyRdcSldFqzX1OMCs-QvdE9L0bskc1kYMmHBKoliTEYO59FocnTcJkDrSDCOD66VIvqP8VcrsYpLyziJL2XKgjf1bZqAqv1SM5rmNBFy4XEPWSzEvZ6IeUwI9CIWiGuKUBMQXvr1O-lFP8dNR5aomYMFzVplbuT_-c38v4blztH-XrzXPdh9AXfpyWJvbhUa2depeYnRaqZelSbChrPbVpqfZVyeUg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVgUuvMrDEMBIbS_ITez1eu0DQqElJBQqpFK1N7O73jQViROIoyj8NP4Kf4YZv9ryKKceuFnyeHe8nufu-BuA9cAELHGZcnTk5y3MpKPChDuakEmUUlL06UT3_V7QPfDfHvGjJfhe_QtDZZWVTcwNdTLWtEfe9NBx-nQoFzT7ZVnEh53Oy8kXhzpI0Ulr1U6jEJFds5hj-jZ90dvBb73heZ3XH7e7TtlhwNEYyGROpFkUen2XhwozwYAFmC8ZFhnjtZhuCSMShS5Tay6ZTiIuk8iVQunAM8Yo7gqG416BlTAQARqFle3DnTfdyg9gHFRUPAaoxgRCX5Xdc047Dq1mSLEAIfyccYirZiTxQtYOYnVAqfn85E8B8O91nNdm6UQu5nI4POMkOzfhR7W8RW3M561Zprb0t1-QJ__P9b8FN8rY3W4XynYblkx6B9baqczGo4W9aefVtPkxxRr09geY2Dj0h419iItr708wTrCpE6qW08zOSzXyoQoID7sEuj12XmFckdjt4TG-cTYYTe_CwaW81D1YTsepeQC229fK56KlVBL5biIVE4kv_JbSRniMKQueV7IT6xLTnVqLDOM8t-M8JkmLS0mzYKOmnhRYJn-hu1-K4SmZy8KQCQsaJJYxGT-cR6Mp0nGbgK4jwTg-uF6K6z_Gb1QiFpcWcxqfypcFz-rbNAFVAaZmPMtpIuTC4x6yWIh-PRHzmBDoXSwQ55SiJiAc9fN30pNBjqeOLFGTBws2a_W5kP-HF_P_FK6iZsTvenu7j-A6PVhs2TVgOfs6M48xiM3Uk9Ja2PDpshXkJ4zepxo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGpwlexscYZBRkpLEXlC6J4zgRTwExDSQmpFExJKTIX10r2rRaU03jr-cucTLKt3hL5It9sc-5-yWX3xGyn9iEmZApX2dxXcJM-io13NfITKKUkmKEX3TfnSTHw_jtGT_bIC_af2EMUsTPpVkOxohJLyf109rN6_JQA1oEuB4cpuhIw2ywMKMbZDPhEIj3yObw5H3-CSFWAlsHid-vjwVr0945X-tizSFt2ZmEA9k9oLecGr8KQH_Oo7y5Khfy6lJOp985qaPb5HN7e01uypfBqlID_fUH5sf_vP87ZNsFrzRvrO0u2bDlPbKTlwDcZ1f0gNbppPV7-h3y5nQMkb2Pv5jQjzAIPV2Ao6RYClTLZUXrXIW6q4bDgjqm13P_JThWQ_Pp-fxiUo1ny_tkePT6w6tj39Vt8DWEh5WfaZal0SjkqQJ8nbAEUKhlmbVRwHQgrDAKAhGtuWTaZFyaLJRC6SSy1ioeCrZLeuW8tA8JDUdaxVwESpksDo1UTJhYxIHSVkSMKY88bxev0I7UHGtrTIsa3HBe4GwVbrY88qyTXjRkHr-Re-Ds4FosZClgeY_00S4K3P0wjoa9qIscmZ4zwThcuO-W7S_991tjKtqlLSJoivGrc-KRp10zDoBpcKWdr2qZDLSIeAQqNrbXDcQiJgCbQ-dizSo7ASQSX28pJ-OaUBxUwioHHjno7PeP-u_9q-AjcgtPm1dWfdKrLlb2MQRxlXriNus3xL4-_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Time+Wind+Speed+Forecast+Using+Artificial+Learning-Based+Algorithms&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Ibrahim%2C+Mariam&rft.au=Alsheikh%2C+Ahmad&rft.au=Hindawi%2C+Qays+Al&rft.au=Dahidi%2C+Sameer+Al&rft.date=2020&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-5265&rft_id=info:doi/10.1155%2F2020%2F8439719&rft.externalDocID=A627597359
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon