Short-Time Wind Speed Forecast Using Artificial Learning-Based Algorithms
The need for an efficient power source for operating the modern industry has been rapidly increasing in the past years. Therefore, the latest renewable power sources are difficult to be predicted. The generated power is highly dependent on fluctuated factors (such as wind bearing, pressure, wind spe...
Saved in:
| Published in | Computational intelligence and neuroscience Vol. 2020; no. 2020; pp. 1 - 15 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cairo, Egypt
Hindawi Publishing Corporation
2020
Hindawi John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1687-5265 1687-5273 1687-5273 |
| DOI | 10.1155/2020/8439719 |
Cover
| Abstract | The need for an efficient power source for operating the modern industry has been rapidly increasing in the past years. Therefore, the latest renewable power sources are difficult to be predicted. The generated power is highly dependent on fluctuated factors (such as wind bearing, pressure, wind speed, and humidity of surrounding atmosphere). Thus, accurate forecasting methods are of paramount importance to be developed and employed in practice. In this paper, a case study of a wind harvesting farm is investigated in terms of wind speed collected data. For data like the wind speed that are hard to be predicted, a well built and tested forecasting algorithm must be provided. To accomplish this goal, four neural network-based algorithms: artificial neural network (ANN), convolutional neural network (CNN), long short-term memory (LSTM), and a hybrid model convolutional LSTM (ConvLSTM) that combines LSTM with CNN, and one support vector machine (SVM) model are investigated, evaluated, and compared using different statistical and time indicators to assure that the final model meets the goal that is built for. Results show that even though SVM delivered the most accurate predictions, ConvLSTM was chosen due to its less computational efforts as well as high prediction accuracy. |
|---|---|
| AbstractList | The need for an efficient power source for operating the modern industry has been rapidly increasing in the past years. Therefore, the latest renewable power sources are difficult to be predicted. The generated power is highly dependent on fluctuated factors (such as wind bearing, pressure, wind speed, and humidity of surrounding atmosphere). Thus, accurate forecasting methods are of paramount importance to be developed and employed in practice. In this paper, a case study of a wind harvesting farm is investigated in terms of wind speed collected data. For data like the wind speed that are hard to be predicted, a well built and tested forecasting algorithm must be provided. To accomplish this goal, four neural network-based algorithms: artificial neural network (ANN), convolutional neural network (CNN), long short-term memory (LSTM), and a hybrid model convolutional LSTM (ConvLSTM) that combines LSTM with CNN, and one support vector machine (SVM) model are investigated, evaluated, and compared using different statistical and time indicators to assure that the final model meets the goal that is built for. Results show that even though SVM delivered the most accurate predictions, ConvLSTM was chosen due to its less computational efforts as well as high prediction accuracy. The need for an efficient power source for operating the modern industry has been rapidly increasing in the past years. Therefore, the latest renewable power sources are difficult to be predicted. The generated power is highly dependent on fluctuated factors (such as wind bearing, pressure, wind speed, and humidity of surrounding atmosphere). Thus, accurate forecasting methods are of paramount importance to be developed and employed in practice. In this paper, a case study of a wind harvesting farm is investigated in terms of wind speed collected data. For data like the wind speed that are hard to be predicted, a well built and tested forecasting algorithm must be provided. To accomplish this goal, four neural network-based algorithms: artificial neural network (ANN), convolutional neural network (CNN), long short-term memory (LSTM), and a hybrid model convolutional LSTM (ConvLSTM) that combines LSTM with CNN, and one support vector machine (SVM) model are investigated, evaluated, and compared using different statistical and time indicators to assure that the final model meets the goal that is built for. Results show that even though SVM delivered the most accurate predictions, ConvLSTM was chosen due to its less computational efforts as well as high prediction accuracy.The need for an efficient power source for operating the modern industry has been rapidly increasing in the past years. Therefore, the latest renewable power sources are difficult to be predicted. The generated power is highly dependent on fluctuated factors (such as wind bearing, pressure, wind speed, and humidity of surrounding atmosphere). Thus, accurate forecasting methods are of paramount importance to be developed and employed in practice. In this paper, a case study of a wind harvesting farm is investigated in terms of wind speed collected data. For data like the wind speed that are hard to be predicted, a well built and tested forecasting algorithm must be provided. To accomplish this goal, four neural network-based algorithms: artificial neural network (ANN), convolutional neural network (CNN), long short-term memory (LSTM), and a hybrid model convolutional LSTM (ConvLSTM) that combines LSTM with CNN, and one support vector machine (SVM) model are investigated, evaluated, and compared using different statistical and time indicators to assure that the final model meets the goal that is built for. Results show that even though SVM delivered the most accurate predictions, ConvLSTM was chosen due to its less computational efforts as well as high prediction accuracy. The need for an efficient power source for operating the modern industry has been rapidly increasing in the past years. Therefore, the latest renewable power sources are difficult to be predicted. The generated power is highly dependent on fluctuated factors (such as wind bearing, pressure, wind speed, and humidity of surrounding atmosphere). Thus, accurate forecasting methods are of paramount importance to be developed and employed in practice. In this paper, a case study of a wind harvesting farm is investigated in terms of wind speed collected data. For data like the wind speed that are hard to be predicted, a well built and tested forecasting algorithm must be provided. To accomplish this goal, four neural network-based algorithms: artificial neural network ( ), convolutional neural network ( ), long short-term memory ( ), and a hybrid model convolutional LSTM ( ) that combines with , and one support vector machine ( ) model are investigated, evaluated, and compared using different statistical and time indicators to assure that the final model meets the goal that is built for. Results show that even though delivered the most accurate predictions, was chosen due to its less computational efforts as well as high prediction accuracy. The need for an efficient power source for operating the modern industry has been rapidly increasing in the past years. Therefore, the latest renewable power sources are difficult to be predicted. The generated power is highly dependent on fluctuated factors (such as wind bearing, pressure, wind speed, and humidity of surrounding atmosphere). Thus, accurate forecasting methods are of paramount importance to be developed and employed in practice. In this paper, a case study of a wind harvesting farm is investigated in terms of wind speed collected data. For data like the wind speed that are hard to be predicted, a well built and tested forecasting algorithm must be provided. To accomplish this goal, four neural network-based algorithms: artificial neural network ( ANN ), convolutional neural network ( CNN ), long short-term memory ( LSTM ), and a hybrid model convolutional LSTM ( ConvLSTM ) that combines LSTM with CNN , and one support vector machine ( SVM ) model are investigated, evaluated, and compared using different statistical and time indicators to assure that the final model meets the goal that is built for. Results show that even though SVM delivered the most accurate predictions, ConvLSTM was chosen due to its less computational efforts as well as high prediction accuracy. |
| Audience | Academic |
| Author | Al-Hindawi, Qays Al-Dahidi, Sameer Alsheikh, Ahmad ElMoaqet, Hisham Ibrahim, Mariam |
| AuthorAffiliation | 2 Faculty of Applied Sciences and Industrial Engineering, Deggendorf Institute of Technology, Deggendorf 94469, Germany 3 School of Electrical, Information and Media Eng., University of Wuppertal, Wuppertal 42119, Germany 4 Dept. of Mechanical & Maintenance Eng., Faculty of Applied Technical Sciences, German Jordanian University, Amman 11180, Jordan 1 Dept. of Mechatronics Eng., Faculty of Applied Technical Sciences, German Jordanian University, Amman 11180, Jordan |
| AuthorAffiliation_xml | – name: 4 Dept. of Mechanical & Maintenance Eng., Faculty of Applied Technical Sciences, German Jordanian University, Amman 11180, Jordan – name: 2 Faculty of Applied Sciences and Industrial Engineering, Deggendorf Institute of Technology, Deggendorf 94469, Germany – name: 3 School of Electrical, Information and Media Eng., University of Wuppertal, Wuppertal 42119, Germany – name: 1 Dept. of Mechatronics Eng., Faculty of Applied Technical Sciences, German Jordanian University, Amman 11180, Jordan |
| Author_xml | – sequence: 1 fullname: Al-Dahidi, Sameer – sequence: 2 fullname: Al-Hindawi, Qays – sequence: 3 fullname: Alsheikh, Ahmad – sequence: 4 fullname: Ibrahim, Mariam – sequence: 5 fullname: ElMoaqet, Hisham |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32377179$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks9rHCEcxaUkND_aW89loJdCOo0_1lEvhU1o2sBCD0noURznO7uGGd3qTEL--zjsNtsESk6Kft7z-fQI7fngAaEPBH8lhPNTiik-lTOmBFFv0CGppCg5FWzvaV7xA3SU0i3GXHBM36IDRpkQRKhDdHm1CnEor10PxW_nm-JqDdAUFyGCNWkobpLzy2IeB9c660xXLMBEn9fKM5MyOO-WIbph1ad3aL81XYL32_EY3Vx8vz7_WS5-_bg8ny9Kyys-lMoyJWlLuKyllBWrJOXAFADFzGIBoqmxJNZyw2yjuGkUMaK2FQWAmhPBjlG58R392jzcm67T6-h6Ex80wXqqRE-V6G0lmf-24ddj3UNjwQ_R7DTBOP18x7uVXoY7ncUC41k2-Lw1iOHPCGnQvUsWus54CGPSlCklmaCcZvTTC_Q2jNHnOiZKzKTAVbWjlqYD7Xwb8rl2MtXzigquBONT7o__5n4K_PftMkA3gI0hpQittm4wgwvTNVz3vza-vBC9Ut7JBl_lv2Hu3Wv0NjJkBlqzowmTuSL2CCfAzho |
| CitedBy_id | crossref_primary_10_3390_en15010370 crossref_primary_10_1155_2021_2009062 crossref_primary_10_1016_j_seta_2022_102068 crossref_primary_10_1007_s13042_023_01963_x crossref_primary_10_7717_peerj_cs_1949 crossref_primary_10_2208_jscejhe_78_2_I_1039 crossref_primary_10_1016_j_jag_2022_102924 crossref_primary_10_1016_j_enconman_2022_115583 crossref_primary_10_1155_2021_6678355 crossref_primary_10_1109_ACCESS_2021_3111408 crossref_primary_10_3390_pr11051530 crossref_primary_10_3390_systems11050237 crossref_primary_10_4491_KSEE_2021_43_4_219 crossref_primary_10_3390_en15031082 crossref_primary_10_1016_j_epsr_2024_111307 crossref_primary_10_1007_s40031_021_00618_1 crossref_primary_10_1155_2024_6680818 crossref_primary_10_32604_iasc_2023_030480 crossref_primary_10_1088_1757_899X_1258_1_012061 crossref_primary_10_3390_en16176272 crossref_primary_10_1016_j_dche_2022_100048 crossref_primary_10_3390_computation12080163 crossref_primary_10_1155_2021_8895844 crossref_primary_10_1016_j_asoc_2023_110864 crossref_primary_10_1109_ACCESS_2021_3112666 crossref_primary_10_21605_cukurovaumfd_1230965 crossref_primary_10_1007_s11071_024_09595_8 crossref_primary_10_1371_journal_pone_0278491 |
| Cites_doi | 10.4249/scholarpedia.1717 10.1016/j.enconman.2018.03.098 10.1016/j.enpol.2008.01.027 10.1006/jcss.1995.1013 10.1007/bf02478259 10.1016/j.apenergy.2018.01.094 10.1088/1742-6596/910/1/012020 10.1016/j.rser.2014.03.033 10.3390/en9120989 10.1007/bf00344251 10.1016/j.apenergy.2013.08.025 10.1016/j.renene.2013.08.011 10.1162/neco.1997.9.8.1735 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 Mariam Ibrahim et al. COPYRIGHT 2020 John Wiley & Sons, Inc. Copyright © 2020 Mariam Ibrahim et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 Copyright © 2020 Mariam Ibrahim et al. 2020 |
| Copyright_xml | – notice: Copyright © 2020 Mariam Ibrahim et al. – notice: COPYRIGHT 2020 John Wiley & Sons, Inc. – notice: Copyright © 2020 Mariam Ibrahim et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2020 Mariam Ibrahim et al. 2020 |
| DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 8AL 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU CWDGH DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KR7 L6V L7M LK8 L~C L~D M0N M0S M1P M7P M7S P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1155/2020/8439719 |
| DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (subscription) Technology Collection Natural Science Collection ProQuest One Community College Middle East & Africa Database ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database (Proquest) Engineering Database (Proquest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Materials Research Database ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1687-5273 |
| Editor | Franco, Leonardo |
| Editor_xml | – sequence: 1 givenname: Leonardo surname: Franco fullname: Franco, Leonardo |
| EndPage | 15 |
| ExternalDocumentID | 10.1155/2020/8439719 PMC7197004 A627597359 32377179 10_1155_2020_8439719 1138837 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --- 0R~ 188 24P 29F 2UF 2WC 4.4 53G 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAFWJ AAKPC AAMMB ABDBF ABIVO ABJCF ABUWG ACCMX ACGFO ACIWK ACM ACPRK ACUHS ADBBV ADJCN ADRAZ AEFGJ AENEX AFKRA AGXDD AHFXO AHMBA AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C1A CCPQU CS3 CWDGH DIK DWQXO E3Z EBD EBS EJD EMOBN ESX F5P FYUFA GNUQQ GX1 H13 HCIFZ HMCUK HYE I-F IAO IHR IL9 INR K6V K7- KQ8 L6V LK8 M1P M48 M7P M7S MK~ O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PTHSS PUEGO Q2X RHU RNS RPM SV3 TR2 TUS UKHRP UZ4 ~8M 3V. AAJEY AINHJ GROUPED_DOAJ ICD INH IPY ITC M0N RHW RHX XH6 AAYXX CITATION CGR CNMHZ CUY CVCKV CVF ECM EIF NPM 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c565t-9c3982f158b888636825e39ee203c07e7db081cc5a3cd95ad91a7bc62eeeb5173 |
| IEDL.DBID | M48 |
| ISSN | 1687-5265 1687-5273 |
| IngestDate | Sun Oct 26 04:13:49 EDT 2025 Tue Sep 30 16:44:04 EDT 2025 Sun Sep 28 12:01:52 EDT 2025 Tue Oct 07 05:51:10 EDT 2025 Mon Oct 20 22:48:21 EDT 2025 Thu Apr 03 07:04:35 EDT 2025 Wed Oct 01 02:22:12 EDT 2025 Thu Apr 24 22:58:02 EDT 2025 Sun Jun 02 18:54:50 EDT 2024 Thu Sep 25 15:26:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2020 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 Copyright © 2020 Mariam Ibrahim et al. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c565t-9c3982f158b888636825e39ee203c07e7db081cc5a3cd95ad91a7bc62eeeb5173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Leonardo Franco |
| ORCID | 0000-0001-5683-3317 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2020/8439719 |
| PMID | 32377179 |
| PQID | 2397487066 |
| PQPubID | 237303 |
| PageCount | 15 |
| ParticipantIDs | unpaywall_primary_10_1155_2020_8439719 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7197004 proquest_miscellaneous_2399837252 proquest_journals_2397487066 gale_infotracmisc_A627597359 pubmed_primary_32377179 crossref_citationtrail_10_1155_2020_8439719 crossref_primary_10_1155_2020_8439719 hindawi_primary_10_1155_2020_8439719 emarefa_primary_1138837 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-00-00 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 2020-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Cairo, Egypt |
| PublicationPlace_xml | – name: Cairo, Egypt – name: United States – name: New York |
| PublicationTitle | Computational intelligence and neuroscience |
| PublicationTitleAlternate | Comput Intell Neurosci |
| PublicationYear | 2020 |
| Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc |
| References | 14 (19) 2016; 9 15 26 16 29 (4) 2007 (20) 2018; 114 2 3 5 6 7 8 (25) 2019; 46 9 |
| References_xml | – ident: 6 doi: 10.4249/scholarpedia.1717 – ident: 15 doi: 10.1016/j.enconman.2018.03.098 – ident: 3 doi: 10.1016/j.enpol.2008.01.027 – volume: 46 start-page: 27 issue: 4 year: 2019 ident: 25 publication-title: IAENG International Journal of Computer Science – start-page: 504 year: 2007 ident: 4 – ident: 9 doi: 10.1006/jcss.1995.1013 – ident: 5 doi: 10.1007/bf02478259 – ident: 29 doi: 10.1016/j.apenergy.2018.01.094 – ident: 26 doi: 10.1088/1742-6596/910/1/012020 – ident: 2 doi: 10.1016/j.rser.2014.03.033 – volume: 114 start-page: 277 issue: 3 year: 2018 ident: 20 publication-title: Computer Modeling in Engineering & Sciences – volume: 9 start-page: 989 issue: 12 year: 2016 ident: 19 publication-title: Energies doi: 10.3390/en9120989 – ident: 7 doi: 10.1007/bf00344251 – ident: 14 doi: 10.1016/j.apenergy.2013.08.025 – ident: 16 doi: 10.1016/j.renene.2013.08.011 – ident: 8 doi: 10.1162/neco.1997.9.8.1735 |
| SSID | ssj0057502 |
| Score | 2.3812194 |
| Snippet | The need for an efficient power source for operating the modern industry has been rapidly increasing in the past years. Therefore, the latest renewable power... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref hindawi emarefa |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Algorithms Alternative energy sources Analysis Artificial neural networks Back propagation Cable television broadcasting industry Case studies Computer applications Data collection Decomposition Forecasting Forecasting - methods Forecasting techniques Genetic algorithms Harvesting Industry forecasts Kalman filters Learning theory Long short-term memory Machine Learning Mathematical models Neural networks Optimization Power plants Power sources Solar energy Support vector machines Time series Wavelet transforms Wind Wind farms Wind power Wind speed |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdg0gQvCBiwsIKMNPaCIpI4tuPHgpgKEjwwJvoW-atrpTat1lTT_vvdOW6gjK-3RD7bl5wvd2dffkfIsfCCuZyZ1KoylDDTqakcTy0ikxhjtJzgie7nL2J0Xn4a83EESVrfPsIHa4fhefa2QsOJ8J53K4GZW19H4-0HFxyOLrVQgL4g2vs2v_2XvjuWZ98vNFzo_ku8P8UY-Gr2O0_zdsLkvU2z0tdXej7_yRqdPiQPohtJh53cH5E7vnlMDoYNhNCLa3pCQ2Jn2DE_IB_PpuBjp_izB_0O09OzFZgsikU5rV63NGQNhKE6NAkaMVcv0ndg4hwdzi-Wl7N2ulg_IeenH769H6WxgkJqwVFrU2WZqopJzisDka5gAuJBz5T3RcZsJr10BlwCa7lm1imuncq1NFYU3nvDc8mekr1m2fhDQvOJNSWXmTFOlbnThklXyjIz1suCMZOQN9u3W9sIL45VLuZ1CDM4r1EWdZRFQl731KsOVuMPdM-ioH6Q5ayCqDohAxRcjXoI81jQClsPEXNZScah43EU6D_GH2ylXUflXdcFNJV4_isS8qpvxgkwIa3xy02gUcBFwQtgsVsc_USsYBKiZBhc7iybngAhvXdbmtk0QHsDS1hvICEn_QL7K__P_-8xj8h9vO22jgZkr73c-BfgTLXmZVClG2GNEvA priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central (subscription) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdGpwleEDAYgYKMNPaCrCVxHCcPCHVo00CiQoyJvUX-6jqpTQtNNe2_585xsk3AeIuUi33y3fnu7MvvCNnNXc5twjUzZeZbmCmmCyuYQWQSrbWSE7zR_TLOj0-zz2fibIOMu39hsKyy2xP9Rm0XBs_I91NwnBleyuUflj8Zdo3C29WuhYYKrRXsew8xdo9spoiMNSCbB4fjr9-6vRlik7YKMQfTQmD4rhReCDwFiPcL9M-IunPDSW25uYIH1W_aW1NMly8v_haU_llbeX9dL9XVpZrNbjiuo0fkYYg46ahVkcdkw9VPyPaohmx7fkX3qK8B9Yfr2-TTyRTCcYb_hdAfMD09WYJ3o9i_06hVQ32BgR-qBZ6gAZ71nB2AN7R0NDuHNWum89VTcnp0-P3jMQvNFpiBmK5hpeFlkU4SUWhIinOeQ-roeOlcGnMTSyethujBGKG4saVQtkyU1CZPnXNaJJI_I4N6UbvnhCYTozMhY61tmSVWaS5tJrNYGydTznVE3nWrW5mARI4NMWaVz0iEqFAWVZBFRN721MsWgeMfdDtBUNdkCS8gAY_IEAVXocnCPAYMyFQjhGcuJRfw4W4Q6H_GH3bSroKdr6prrYzIm_41ToC1a7VbrD1NCVykIgUWW-XoJ-Ipl5BQw-Dyltr0BIj-fftNfTH1KODAErYmiMher2B38v_ibv5fkgdI3Z4uDcmg-bV2ryDeavTrYES_Ab7OI7o priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGpwlexscYZBRkpLEXlC6J4zgRTwExDSQmpFExJKTIX10r2rRaU03jr-cucTLKt3hL5It9sc-5-yWX3xGyn9iEmZApX2dxXcJM-io13NfITKKUkmKEX3TfnSTHw_jtGT_bIC_af2EMUsTPpVkOxohJLyf109rN6_JQA1oEuB4cpuhIw2ywMKMbZDPhEIj3yObw5H3-CSFWAlsHid-vjwVr0945X-tizSFt2ZmEA9k9oLecGr8KQH_Oo7y5Khfy6lJOp985qaPb5HN7e01uypfBqlID_fUH5sf_vP87ZNsFrzRvrO0u2bDlPbKTlwDcZ1f0gNbppPV7-h3y5nQMkb2Pv5jQjzAIPV2Ao6RYClTLZUXrXIW6q4bDgjqm13P_JThWQ_Pp-fxiUo1ny_tkePT6w6tj39Vt8DWEh5WfaZal0SjkqQJ8nbAEUKhlmbVRwHQgrDAKAhGtuWTaZFyaLJRC6SSy1ioeCrZLeuW8tA8JDUdaxVwESpksDo1UTJhYxIHSVkSMKY88bxev0I7UHGtrTIsa3HBe4GwVbrY88qyTXjRkHr-Re-Ds4FosZClgeY_00S4K3P0wjoa9qIscmZ4zwThcuO-W7S_991tjKtqlLSJoivGrc-KRp10zDoBpcKWdr2qZDLSIeAQqNrbXDcQiJgCbQ-dizSo7ASQSX28pJ-OaUBxUwioHHjno7PeP-u_9q-AjcgtPm1dWfdKrLlb2MQRxlXriNus3xL4-_Q priority: 102 providerName: Unpaywall |
| Title | Short-Time Wind Speed Forecast Using Artificial Learning-Based Algorithms |
| URI | https://search.emarefa.net/detail/BIM-1138837 https://dx.doi.org/10.1155/2020/8439719 https://www.ncbi.nlm.nih.gov/pubmed/32377179 https://www.proquest.com/docview/2397487066 https://www.proquest.com/docview/2399837252 https://pubmed.ncbi.nlm.nih.gov/PMC7197004 https://downloads.hindawi.com/journals/cin/2020/8439719.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2020 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070625 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1687-5273 dateEnd: 20230628 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: ABDBF dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 7X7 dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1687-5273 dateEnd: 20250430 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: M48 dateStart: 20070101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 24P dateStart: 20070101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfGpgleJmB8BEplpLEXFEjiOE4eEEphpSCtmjYqylNkO-5aKU27fmj0v-cuX1AY4yWJ4ott-e5yd_Hld4QcBSZgqcuUrSO_KGEmbRWm3NaITKKUkmKEO7qn_aA38L8M-XCH1NVGqwVc3hjaYT2pwSJ78-Nq8x4U_l2h8Jxj_O68DdGyIv7nHtioCIs4nPrNfgL4JGX2YQAqhYDwdQr8H09vGad9M5VwIZuX9f4Yw-TryU3O6N85lXfX-VxurmWW_WawuvfJQeVp0rgUjQdkx-QPyWGcQ5Q93dBjWuR-Fh_VD8nnizGsgI3_g9BvMDy9mINVo1i3U8vlihaJBUVXJeAErWBZL-0OWMGUxtnlbDFZjafLR2TQPfn6oWdXRRZsDb7cyo40i0Jv5PJQQTAcsABCRsMiYzyHaUcYkSrwGrTmkuk04jKNXCmUDjxjjOKuYI_Jbj7LzVNC3ZFWPheOUmnku6lUTKS-8B2ljfAYUxZ5Xa9uoisEciyEkSVFJMJ5grxIKl5Y5FVDPS-RN_5B96Ri1C8yl4UQeFukhYxLUHhgHA2Ko5MYYZkjwTg8eFQx9D_9t2puJ7V4Jh40-bhFHFjkZdOMA2DOWm5m64Imgll43IMplsLRDMQ8JiCQhs7Fltg0BIj6vd2ST8YF-jdMCUsSWOS4EbBb5__s9lV4Tu4hdflVqUV2V4u1eQF-1kq1yR0xFHAMu5_aZC_ufOx04dw56Z-dtwv1guN5bwj3Bv2z-PtPd_ImRQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LU9swEN6hYRh66Ys-3NLWnYFcOobYsiz70EMKpUl5XICBm5FkhTBNnLRxJpP-qP6V_qXu-gX0QU8cevOM19Ja3qe0_hZgLTABS1ymHB35eQsz6agw4Y4mZBKllBQ9OtHdPwg6x_6nU366AN-rf2GorLKyibmhTkaa9sg3PXScPh3KBWUF5a6ZzzA_m7zrbuPHXPe8nQ9HWx2nbCHgaIxUMifSLAq9nstDhalewAJMiAyLjPFaTLeEEYlCn6g1l0wnEZdJ5EqhdOAZYxR3BcNxm-MvDnWpotPcsmXHHVhEVlyvAYtbJ9sfO5Xtx9inqHIMUHUJeL4qteecdhlamyH5f0L1ueIEl8xQ4oWsncJSn9Lx2cWfgt7fazeXp-lYzmdyMLjiGHfuw49qSYt6mM8b00xt6G-_oE3-P2v-AO6VMbrdLpTqISyY9BGstFOZjYZzu2nnVbP5ccQKdA_7mMA49CeNfYILah-OMR6wqeOplpPMzksy8qEKqA67BLQ9d95j_JDY7cE5cpD1h5PHcHwr7_kEGukoNc_Adnta-Vy0lEoi302kYiLxhd9S2giPMWXB20peYl1it1MLkUGc53CcxyRdcSldFqzX1OMCs-QvdE9L0bskc1kYMmHBKoliTEYO59FocnTcJkDrSDCOD66VIvqP8VcrsYpLyziJL2XKgjf1bZqAqv1SM5rmNBFy4XEPWSzEvZ6IeUwI9CIWiGuKUBMQXvr1O-lFP8dNR5aomYMFzVplbuT_-c38v4blztH-XrzXPdh9AXfpyWJvbhUa2depeYnRaqZelSbChrPbVpqfZVyeUg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVgUuvMrDEMBIbS_ITez1eu0DQqElJBQqpFK1N7O73jQViROIoyj8NP4Kf4YZv9ryKKceuFnyeHe8nufu-BuA9cAELHGZcnTk5y3MpKPChDuakEmUUlL06UT3_V7QPfDfHvGjJfhe_QtDZZWVTcwNdTLWtEfe9NBx-nQoFzT7ZVnEh53Oy8kXhzpI0Ulr1U6jEJFds5hj-jZ90dvBb73heZ3XH7e7TtlhwNEYyGROpFkUen2XhwozwYAFmC8ZFhnjtZhuCSMShS5Tay6ZTiIuk8iVQunAM8Yo7gqG416BlTAQARqFle3DnTfdyg9gHFRUPAaoxgRCX5Xdc047Dq1mSLEAIfyccYirZiTxQtYOYnVAqfn85E8B8O91nNdm6UQu5nI4POMkOzfhR7W8RW3M561Zprb0t1-QJ__P9b8FN8rY3W4XynYblkx6B9baqczGo4W9aefVtPkxxRr09geY2Dj0h419iItr708wTrCpE6qW08zOSzXyoQoID7sEuj12XmFckdjt4TG-cTYYTe_CwaW81D1YTsepeQC229fK56KlVBL5biIVE4kv_JbSRniMKQueV7IT6xLTnVqLDOM8t-M8JkmLS0mzYKOmnhRYJn-hu1-K4SmZy8KQCQsaJJYxGT-cR6Mp0nGbgK4jwTg-uF6K6z_Gb1QiFpcWcxqfypcFz-rbNAFVAaZmPMtpIuTC4x6yWIh-PRHzmBDoXSwQ55SiJiAc9fN30pNBjqeOLFGTBws2a_W5kP-HF_P_FK6iZsTvenu7j-A6PVhs2TVgOfs6M48xiM3Uk9Ja2PDpshXkJ4zepxo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGpwlexscYZBRkpLEXlC6J4zgRTwExDSQmpFExJKTIX10r2rRaU03jr-cucTLKt3hL5It9sc-5-yWX3xGyn9iEmZApX2dxXcJM-io13NfITKKUkmKEX3TfnSTHw_jtGT_bIC_af2EMUsTPpVkOxohJLyf109rN6_JQA1oEuB4cpuhIw2ywMKMbZDPhEIj3yObw5H3-CSFWAlsHid-vjwVr0945X-tizSFt2ZmEA9k9oLecGr8KQH_Oo7y5Khfy6lJOp985qaPb5HN7e01uypfBqlID_fUH5sf_vP87ZNsFrzRvrO0u2bDlPbKTlwDcZ1f0gNbppPV7-h3y5nQMkb2Pv5jQjzAIPV2Ao6RYClTLZUXrXIW6q4bDgjqm13P_JThWQ_Pp-fxiUo1ny_tkePT6w6tj39Vt8DWEh5WfaZal0SjkqQJ8nbAEUKhlmbVRwHQgrDAKAhGtuWTaZFyaLJRC6SSy1ioeCrZLeuW8tA8JDUdaxVwESpksDo1UTJhYxIHSVkSMKY88bxev0I7UHGtrTIsa3HBe4GwVbrY88qyTXjRkHr-Re-Ds4FosZClgeY_00S4K3P0wjoa9qIscmZ4zwThcuO-W7S_991tjKtqlLSJoivGrc-KRp10zDoBpcKWdr2qZDLSIeAQqNrbXDcQiJgCbQ-dizSo7ASQSX28pJ-OaUBxUwioHHjno7PeP-u_9q-AjcgtPm1dWfdKrLlb2MQRxlXriNus3xL4-_Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Time+Wind+Speed+Forecast+Using+Artificial+Learning-Based+Algorithms&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Ibrahim%2C+Mariam&rft.au=Alsheikh%2C+Ahmad&rft.au=Hindawi%2C+Qays+Al&rft.au=Dahidi%2C+Sameer+Al&rft.date=2020&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-5265&rft_id=info:doi/10.1155%2F2020%2F8439719&rft.externalDocID=A627597359 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon |