Synthetic skull bone defects for automatic patient-specific craniofacial implant design

Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by third-party suppliers, which is usually time-consuming and expensive. Recent advances in additive manufacturing made the in-hospital or in-op...

Full description

Saved in:
Bibliographic Details
Published inScientific data Vol. 8; no. 1; pp. 36 - 8
Main Authors Li, Jianning, Gsaxner, Christina, Pepe, Antonio, Morais, Ana, Alves, Victor, von Campe, Gord, Wallner, Jürgen, Egger, Jan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.01.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2052-4463
2052-4463
DOI10.1038/s41597-021-00806-0

Cover

Abstract Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by third-party suppliers, which is usually time-consuming and expensive. Recent advances in additive manufacturing made the in-hospital or in-operation-room fabrication of personalized implants feasible. However, the implants are still manufactured by external companies. To facilitate an optimized workflow, fast and automatic implant manufacturing is highly desirable. Data-driven approaches, such as deep learning, show currently great potential towards automatic implant design. However, a considerable amount of data is needed to train such algorithms, which is, especially in the medical domain, often a bottleneck. Therefore, we present CT-imaging data of the craniofacial complex from 24 patients, in which we injected various artificial cranial defects, resulting in 240 data pairs and 240 corresponding implants. Based on this work, automatic implant design and manufacturing processes can be trained. Additionally, the data of this work build a solid base for researchers to work on automatic cranial implant designs. Measurement(s) Image Acquisition Matrix Size • Image Slice Thickness • craniofacial region Technology Type(s) imaging technique • computed tomography Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.13265225
AbstractList Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by third-party suppliers, which is usually time-consuming and expensive. Recent advances in additive manufacturing made the in-hospital or in-operation-room fabrication of personalized implants feasible. However, the implants are still manufactured by external companies. To facilitate an optimized workflow, fast and automatic implant manufacturing is highly desirable. Data-driven approaches, such as deep learning, show currently great potential towards automatic implant design. However, a considerable amount of data is needed to train such algorithms, which is, especially in the medical domain, often a bottleneck. Therefore, we present CT-imaging data of the craniofacial complex from 24 patients, in which we injected various artificial cranial defects, resulting in 240 data pairs and 240 corresponding implants. Based on this work, automatic implant design and manufacturing processes can be trained. Additionally, the data of this work build a solid base for researchers to work on automatic cranial implant designs. Measurement(s) Image Acquisition Matrix Size • Image Slice Thickness • craniofacial region Technology Type(s) imaging technique • computed tomography Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.13265225
Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by third-party suppliers, which is usually time-consuming and expensive. Recent advances in additive manufacturing made the in-hospital or in-operation-room fabrication of personalized implants feasible. However, the implants are still manufactured by external companies. To facilitate an optimized workflow, fast and automatic implant manufacturing is highly desirable. Data-driven approaches, such as deep learning, show currently great potential towards automatic implant design. However, a considerable amount of data is needed to train such algorithms, which is, especially in the medical domain, often a bottleneck. Therefore, we present CT-imaging data of the craniofacial complex from 24 patients, in which we injected various artificial cranial defects, resulting in 240 data pairs and 240 corresponding implants. Based on this work, automatic implant design and manufacturing processes can be trained. Additionally, the data of this work build a solid base for researchers to work on automatic cranial implant designs.
Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by third-party suppliers, which is usually time-consuming and expensive. Recent advances in additive manufacturing made the in-hospital or in-operation-room fabrication of personalized implants feasible. However, the implants are still manufactured by external companies. To facilitate an optimized workflow, fast and automatic implant manufacturing is highly desirable. Data-driven approaches, such as deep learning, show currently great potential towards automatic implant design. However, a considerable amount of data is needed to train such algorithms, which is, especially in the medical domain, often a bottleneck. Therefore, we present CT-imaging data of the craniofacial complex from 24 patients, in which we injected various artificial cranial defects, resulting in 240 data pairs and 240 corresponding implants. Based on this work, automatic implant design and manufacturing processes can be trained. Additionally, the data of this work build a solid base for researchers to work on automatic cranial implant designs.Measurement(s)Image Acquisition Matrix Size • Image Slice Thickness • craniofacial regionTechnology Type(s)imaging technique • computed tomographySample Characteristic - OrganismHomo sapiensMachine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.13265225
Measurement(s) Image Acquisition Matrix Size • Image Slice Thickness • craniofacial region Technology Type(s) imaging technique • computed tomography Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.13265225
Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by third-party suppliers, which is usually time-consuming and expensive. Recent advances in additive manufacturing made the in-hospital or in-operation-room fabrication of personalized implants feasible. However, the implants are still manufactured by external companies. To facilitate an optimized workflow, fast and automatic implant manufacturing is highly desirable. Data-driven approaches, such as deep learning, show currently great potential towards automatic implant design. However, a considerable amount of data is needed to train such algorithms, which is, especially in the medical domain, often a bottleneck. Therefore, we present CT-imaging data of the craniofacial complex from 24 patients, in which we injected various artificial cranial defects, resulting in 240 data pairs and 240 corresponding implants. Based on this work, automatic implant design and manufacturing processes can be trained. Additionally, the data of this work build a solid base for researchers to work on automatic cranial implant designs. Measurement(s) Image Acquisition Matrix Size • Image Slice Thickness • craniofacial region Technology Type(s) imaging technique • computed tomography Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.13265225
Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by third-party suppliers, which is usually time-consuming and expensive. Recent advances in additive manufacturing made the in-hospital or in-operation-room fabrication of personalized implants feasible. However, the implants are still manufactured by external companies. To facilitate an optimized workflow, fast and automatic implant manufacturing is highly desirable. Data-driven approaches, such as deep learning, show currently great potential towards automatic implant design. However, a considerable amount of data is needed to train such algorithms, which is, especially in the medical domain, often a bottleneck. Therefore, we present CT-imaging data of the craniofacial complex from 24 patients, in which we injected various artificial cranial defects, resulting in 240 data pairs and 240 corresponding implants. Based on this work, automatic implant design and manufacturing processes can be trained. Additionally, the data of this work build a solid base for researchers to work on automatic cranial implant designs.Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by third-party suppliers, which is usually time-consuming and expensive. Recent advances in additive manufacturing made the in-hospital or in-operation-room fabrication of personalized implants feasible. However, the implants are still manufactured by external companies. To facilitate an optimized workflow, fast and automatic implant manufacturing is highly desirable. Data-driven approaches, such as deep learning, show currently great potential towards automatic implant design. However, a considerable amount of data is needed to train such algorithms, which is, especially in the medical domain, often a bottleneck. Therefore, we present CT-imaging data of the craniofacial complex from 24 patients, in which we injected various artificial cranial defects, resulting in 240 data pairs and 240 corresponding implants. Based on this work, automatic implant design and manufacturing processes can be trained. Additionally, the data of this work build a solid base for researchers to work on automatic cranial implant designs.
ArticleNumber 36
Author Morais, Ana
von Campe, Gord
Wallner, Jürgen
Li, Jianning
Pepe, Antonio
Egger, Jan
Gsaxner, Christina
Alves, Victor
Author_xml – sequence: 1
  givenname: Jianning
  surname: Li
  fullname: Li, Jianning
  organization: Institute for Computer Graphics and Vision, Graz University of Technology, Computer Algorithms for Medicine Laboratory
– sequence: 2
  givenname: Christina
  orcidid: 0000-0002-2227-3523
  surname: Gsaxner
  fullname: Gsaxner, Christina
  organization: Institute for Computer Graphics and Vision, Graz University of Technology, Computer Algorithms for Medicine Laboratory, Department of Oral and Maxillofacial Surgery, Medical University of Graz
– sequence: 3
  givenname: Antonio
  surname: Pepe
  fullname: Pepe, Antonio
  organization: Institute for Computer Graphics and Vision, Graz University of Technology, Computer Algorithms for Medicine Laboratory
– sequence: 4
  givenname: Ana
  surname: Morais
  fullname: Morais, Ana
  organization: Department of Informatics, School of Engineering, University of Minho, Algoritmi Centre, University of Minho
– sequence: 5
  givenname: Victor
  orcidid: 0000-0003-1819-7051
  surname: Alves
  fullname: Alves, Victor
  organization: Algoritmi Centre, University of Minho
– sequence: 6
  givenname: Gord
  surname: von Campe
  fullname: von Campe, Gord
  organization: Department of Neurosurgery, Medical University of Graz
– sequence: 7
  givenname: Jürgen
  surname: Wallner
  fullname: Wallner, Jürgen
  email: j.wallner@medunigraz.at
  organization: Department of Oral and Maxillofacial Surgery, Medical University of Graz
– sequence: 8
  givenname: Jan
  surname: Egger
  fullname: Egger, Jan
  email: egger@tugraz.at
  organization: Institute for Computer Graphics and Vision, Graz University of Technology, Computer Algorithms for Medicine Laboratory, Department of Oral and Maxillofacial Surgery, Medical University of Graz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33514740$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1TAUjFARLaU_wAJFYsMm4HecDRKqeFSqxAIQS-vEOb518Y2DnYDu3-P7oLRdVGxs63hmzpyxn1ZHYxyxqp5T8poSrt9kQWXXNoTRhhBNVEMeVSeMSNYIofjRrfNxdZbzNSGEckFkS55Ux5xLKlpBTqrvXzbjfIWzt3X-sYRQ96VNPaBDO-faxVTDMsc1bAFTWXGcmzyh9a4UbILRRwfWQ6j9egowzoWb_Wp8Vj12EDKeHfbT6tuH91_PPzWXnz9enL-7bKxUcm7agQs3WN33BMEyzmRn2SCFVtBqjkrQoesBnXQKHCeEK8VFj84yBUQNPT-tLva6Q4RrMyW_hrQxEbzZFWJaGUjFfEDDOQXgndUUW9GCBQkUpR6Ya1ERi0WL77WWcYLNbwjhRpASs03d7FM3JXWzS92Qwnq7Z01Lv8bBloQShDtW7t6M_sqs4i_TaqHaThWBVweBFH8umGez9tliKGliXLJhQnNNueayQF_eg17HJY0l4B1KUNYpXVAvbju6sfL31QuA7QE2xZwTuv-bU98jWT-XHxG3U_nwMPUQbC59xhWmf7YfYP0BneLi1w
CitedBy_id crossref_primary_10_1097_SCS_0000000000010294
crossref_primary_10_1097_SCS_0000000000009661
crossref_primary_10_1007_s00784_022_04706_4
crossref_primary_10_1145_3615862
crossref_primary_10_1016_j_jmbbm_2023_105791
crossref_primary_10_1016_j_softx_2023_101432
crossref_primary_10_1016_j_jcms_2025_02_018
crossref_primary_10_1016_j_actbio_2022_10_030
crossref_primary_10_1016_j_dib_2021_107524
crossref_primary_10_1021_acsbiomaterials_3c01171
crossref_primary_10_1021_acsabm_1c00979
crossref_primary_10_1007_s41870_022_00956_3
crossref_primary_10_1016_j_bonr_2021_101154
crossref_primary_10_1016_j_media_2023_102865
crossref_primary_10_3390_bioengineering10050544
crossref_primary_10_1097_JS9_0000000000000201
crossref_primary_10_3390_pharmaceutics15010150
crossref_primary_10_1007_s12008_024_01979_9
crossref_primary_10_1038_s41598_024_61879_6
crossref_primary_10_3389_fbioe_2023_1297933
crossref_primary_10_1007_s10916_024_02066_y
crossref_primary_10_1080_25740881_2024_2307351
crossref_primary_10_1016_j_jneumeth_2023_109851
crossref_primary_10_3390_jcm11082265
crossref_primary_10_1038_s41598_023_30117_w
crossref_primary_10_1016_j_anplas_2023_07_003
Cites_doi 10.1097/MOO.0b013e328363003e
10.6084/m9.figshare.12423872
10.1007/s11548-017-1674-6
10.1117/12.2580719
10.1016/j.clineuro.2018.03.004
10.1097/SCS.0000000000003025
10.3171/2010.9.FOCUS10201
10.1038/s41598-017-04454-6
10.1016/j.jcms.2014.07.006
10.1016/j.joms.2011.09.036
10.1590/rbeb.2014.024
10.5281/zenodo.3715953
10.1007/978-3-030-60946-7_8
10.1007/s11517-010-0720-0
10.4103/2231-0746.133065
10.1016/S0001-2092(06)61763-8
10.1115/IMECE2015-51979
10.1038/srep01364
10.1007/978-3-030-16187-3_15
10.1007/978-3-540-39899-8_13
10.1016/j.msec.2016.04.101
10.1371/journal.pone.0172694
10.1063/1.4915636
10.1016/j.medengphy.2017.10.008
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41597-021-00806-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Publicly Available Content Database


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2052-4463
EndPage 8
ExternalDocumentID oai_doaj_org_article_331aa39c81e747aca5a1e58d2f7e60ce
oai:repositorium.uminho.pt:1822/78113
PMC7846796
33514740
10_1038_s41597_021_00806_0
Genre Research Support, Non-U.S. Gov't
Dataset
Journal Article
GrantInformation_xml – fundername: CAMed (COMET K-Project 871132)
– fundername: Austrian Science Fund (FWF) KLI 678-B31
– fundername: TU Graz LEAD Project "Mechanics, Modeling and Simulation of Aortic Dissection"
– fundername: Erasmus+
– fundername: Austrian Science Fund FWF
  grantid: KLI 678
– fundername: ;
GroupedDBID 0R~
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSFO
ACSMW
ADBBV
ADRAZ
AFKRA
AGHDO
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M1P
M48
M7P
M~E
NAO
OK1
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c565t-7d34fdc8bb0eac23259c2d5486a783e641d9baef5f6af30036634befc26a06db3
IEDL.DBID M48
ISSN 2052-4463
IngestDate Fri Oct 03 12:51:09 EDT 2025
Sun Oct 26 04:12:15 EDT 2025
Tue Sep 30 16:08:49 EDT 2025
Thu Sep 04 16:43:11 EDT 2025
Tue Oct 07 06:35:42 EDT 2025
Mon Jul 21 05:35:31 EDT 2025
Wed Oct 01 04:29:07 EDT 2025
Thu Apr 24 22:50:54 EDT 2025
Fri Feb 21 02:37:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c565t-7d34fdc8bb0eac23259c2d5486a783e641d9baef5f6af30036634befc26a06db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0002-2227-3523
0000-0003-1819-7051
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41597-021-00806-0
PMID 33514740
PQID 2483412968
PQPubID 2041912
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_331aa39c81e747aca5a1e58d2f7e60ce
unpaywall_primary_10_1038_s41597_021_00806_0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7846796
proquest_miscellaneous_2483813835
proquest_journals_2483412968
pubmed_primary_33514740
crossref_primary_10_1038_s41597_021_00806_0
crossref_citationtrail_10_1038_s41597_021_00806_0
springer_journals_10_1038_s41597_021_00806_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-29
PublicationDateYYYYMMDD 2021-01-29
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific data
PublicationTitleAbbrev Sci Data
PublicationTitleAlternate Sci Data
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References RotaruHCranioplasty with custom-made implants: analyzing the cases of 10 patientsJournal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons2012702e1697610.1016/j.joms.2011.09.036
Li, J., Pepe, A., Gsaxner, C. & Egger, J. An online platform for automatic skull defect restoration and cranial implant design. ArXivabs/2006.00980 (2020).
Castelan, J. et al. Manufacture of custom-made cranial implants from dicom® images using 3d printing, cad/cam technology and incremental sheet forming (2014).
Grabowski, T. Principles of anatomy and physiology vol. 2 support and movement. (Biological Sciences Textbooks, 2003).
Morais, A. Automated Computer-aided Design of Cranial Implants-A Deep Learning Approach. Master’s thesis, Universidade do Minho (2018).
Min, K.-J. & Dean, D. Highly accurate cad tools for cranial implants. In MICCAI (2003).
Li, J., Pepe, A., Gsaxner, C., von Campe, G. & Egger, J. A baseline approach for autoimplant: the miccai 2020 cranial implant design challenge. arXiv preprint arXiv:2006.12449 (2020).
Morais, A., Egger, J. & Alves, V. Automated Computer-aided Design of Cranial Implants Using a Deep Volumetric Convolutional Denoising Autoencoder, 151–160 (2019).
JardiniALCranial reconstruction: 3d biomodel and custom-built implant created using additive manufacturingJournal of cranio-maxillofacial surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery201442818778410.1016/j.jcms.2014.07.006
EggerJTowards the automatization of cranial implant design in cranioplasty202010.5281/zenodo.3715953Zenodo
ZanottiBTCranioplasty: Review of materialsThe Journal of craniofacial surgery20162782061207210.1097/SCS.0000000000003025
SzpalskiCBarrJWetterauMSaadehPBWarrenSMCranial bone defects: current and future strategiesNeurosurgical focus2010296E810.3171/2010.9.FOCUS10201
ChenXXuLLiXEggerJComputer-aided implant design for the restoration of cranial defectsScientific Reports201771101:CAS:528:DC%2BC1cXhtlKgt7vO10.1038/s41598-017-04454-6
GoldsteinJAPaligaJTBartlettSPCranioplasty: indications and advancesCurrent opinion in otolaryngology & head and neck surgery2013214400910.1097/MOO.0b013e328363003e
KhaderBATowlerMRMaterials and techniques used in cranioplasty fixation: A review. Materials science & engineering. CMaterials for biological applications2016663153221:CAS:528:DC%2BC28XnvFKqurY%3D10.1016/j.msec.2016.04.101
EggerJInteractive reconstructions of cranial 3d implants under mevislab as an alternative to commercial planning softwarePLoS ONE201712201:CAS:528:DC%2BC2sXhtVSltL%2FI10.1371/journal.pone.0172694
ChengC-HChuangH-YLinH-LLiuC-LYaoC-HSurgical results of cranioplasty using three-dimensional printing technologyClinical Neurology and Neurosurgery201816811812310.1016/j.clineuro.2018.03.004
Parthasarathy, J. 3d modeling, custom implants and its future perspectives in craniofacial surgery. In Annals of maxillofacial surgery (2014).
Egger, J. et al. Gbm volumetry using the 3d slicer medical image computing platform. In Scientific reports (2013).
Li, J. Deep Learning for Cranial Defect Reconstruction. Master’s thesis, Graz University of Technology (2020).
Chaurasia, B. D. Human anatomy regional and applied, dissection and clinical volume 3: head, neck and brain (CBS publishers, 2004).
FuessingerMAPlanning of skull reconstruction based on a statistical shape model combined with geometric morphometricsInternational Journal of Computer Assisted Radiology and Surgery20171351952910.1007/s11548-017-1674-6
Bilodi, A. K. & Gangadhar, M. A study on human skulls and its anthropological importance. vol. 3(9), 496–502 (2014).
LiJHead ct collection for patient-specific craniofacial implant (psi) design202010.6084/m9.figshare.12423872figshare
Mohamed, N., Majid, A. A. A., Piah, A. R. M. & Rajion, Z. A. Designing of skull defect implants using c1 rational cubic bezier and offset curves (2015).
van EijnattenMCt image segmentation methods for bone used in medical additive manufacturingMedical engineering & physics20185161610.1016/j.medengphy.2017.10.008
College, O. Anatomy and physiologyl (Rice University, 2013).
EufingerHSaylorBComputer-assisted prefabrication of individualcraniofacial implantsAORN journal2001745648541:STN:280:DC%2BD3MnnvFGqug%3D%3D10.1016/S0001-2092(06)61763-8quiz 655–6, 658–62
Ranslow, A. N. et al. Microstructural analysis of porcine skull bone subjected to impact loading (2015).
LiaoY-LThree-dimensional reconstruction of cranial defect using active contour model and image registrationMedical & Biological Engineering & Computing20104920321110.1007/s11517-010-0720-0
806_CR30
M van Eijnatten (806_CR18) 2018; 51
806_CR9
J Li (806_CR27) 2020
BA Khader (806_CR17) 2016; 66
806_CR2
806_CR3
806_CR1
806_CR4
806_CR5
JA Goldstein (806_CR10) 2013; 21
806_CR19
C-H Cheng (806_CR20) 2018; 168
MA Fuessinger (806_CR24) 2017; 13
806_CR15
H Eufinger (806_CR11) 2001; 74
806_CR12
J Egger (806_CR29) 2020
Y-L Liao (806_CR14) 2010; 49
C Szpalski (806_CR8) 2010; 29
806_CR26
AL Jardini (806_CR7) 2014; 42
H Rotaru (806_CR21) 2012; 70
J Egger (806_CR13) 2017; 12
806_CR28
806_CR23
806_CR22
BT Zanotti (806_CR16) 2016; 27
806_CR25
X Chen (806_CR6) 2017; 7
References_xml – reference: EggerJTowards the automatization of cranial implant design in cranioplasty202010.5281/zenodo.3715953Zenodo
– reference: Morais, A., Egger, J. & Alves, V. Automated Computer-aided Design of Cranial Implants Using a Deep Volumetric Convolutional Denoising Autoencoder, 151–160 (2019).
– reference: EggerJInteractive reconstructions of cranial 3d implants under mevislab as an alternative to commercial planning softwarePLoS ONE201712201:CAS:528:DC%2BC2sXhtVSltL%2FI10.1371/journal.pone.0172694
– reference: EufingerHSaylorBComputer-assisted prefabrication of individualcraniofacial implantsAORN journal2001745648541:STN:280:DC%2BD3MnnvFGqug%3D%3D10.1016/S0001-2092(06)61763-8quiz 655–6, 658–62
– reference: Bilodi, A. K. & Gangadhar, M. A study on human skulls and its anthropological importance. vol. 3(9), 496–502 (2014).
– reference: KhaderBATowlerMRMaterials and techniques used in cranioplasty fixation: A review. Materials science & engineering. CMaterials for biological applications2016663153221:CAS:528:DC%2BC28XnvFKqurY%3D10.1016/j.msec.2016.04.101
– reference: FuessingerMAPlanning of skull reconstruction based on a statistical shape model combined with geometric morphometricsInternational Journal of Computer Assisted Radiology and Surgery20171351952910.1007/s11548-017-1674-6
– reference: Parthasarathy, J. 3d modeling, custom implants and its future perspectives in craniofacial surgery. In Annals of maxillofacial surgery (2014).
– reference: RotaruHCranioplasty with custom-made implants: analyzing the cases of 10 patientsJournal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons2012702e1697610.1016/j.joms.2011.09.036
– reference: Egger, J. et al. Gbm volumetry using the 3d slicer medical image computing platform. In Scientific reports (2013).
– reference: LiJHead ct collection for patient-specific craniofacial implant (psi) design202010.6084/m9.figshare.12423872figshare
– reference: ChengC-HChuangH-YLinH-LLiuC-LYaoC-HSurgical results of cranioplasty using three-dimensional printing technologyClinical Neurology and Neurosurgery201816811812310.1016/j.clineuro.2018.03.004
– reference: College, O. Anatomy and physiologyl (Rice University, 2013).
– reference: LiaoY-LThree-dimensional reconstruction of cranial defect using active contour model and image registrationMedical & Biological Engineering & Computing20104920321110.1007/s11517-010-0720-0
– reference: Chaurasia, B. D. Human anatomy regional and applied, dissection and clinical volume 3: head, neck and brain (CBS publishers, 2004).
– reference: Li, J. Deep Learning for Cranial Defect Reconstruction. Master’s thesis, Graz University of Technology (2020).
– reference: JardiniALCranial reconstruction: 3d biomodel and custom-built implant created using additive manufacturingJournal of cranio-maxillofacial surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery201442818778410.1016/j.jcms.2014.07.006
– reference: SzpalskiCBarrJWetterauMSaadehPBWarrenSMCranial bone defects: current and future strategiesNeurosurgical focus2010296E810.3171/2010.9.FOCUS10201
– reference: GoldsteinJAPaligaJTBartlettSPCranioplasty: indications and advancesCurrent opinion in otolaryngology & head and neck surgery2013214400910.1097/MOO.0b013e328363003e
– reference: Li, J., Pepe, A., Gsaxner, C. & Egger, J. An online platform for automatic skull defect restoration and cranial implant design. ArXivabs/2006.00980 (2020).
– reference: ZanottiBTCranioplasty: Review of materialsThe Journal of craniofacial surgery20162782061207210.1097/SCS.0000000000003025
– reference: Min, K.-J. & Dean, D. Highly accurate cad tools for cranial implants. In MICCAI (2003).
– reference: ChenXXuLLiXEggerJComputer-aided implant design for the restoration of cranial defectsScientific Reports201771101:CAS:528:DC%2BC1cXhtlKgt7vO10.1038/s41598-017-04454-6
– reference: Castelan, J. et al. Manufacture of custom-made cranial implants from dicom® images using 3d printing, cad/cam technology and incremental sheet forming (2014).
– reference: Mohamed, N., Majid, A. A. A., Piah, A. R. M. & Rajion, Z. A. Designing of skull defect implants using c1 rational cubic bezier and offset curves (2015).
– reference: Ranslow, A. N. et al. Microstructural analysis of porcine skull bone subjected to impact loading (2015).
– reference: van EijnattenMCt image segmentation methods for bone used in medical additive manufacturingMedical engineering & physics20185161610.1016/j.medengphy.2017.10.008
– reference: Grabowski, T. Principles of anatomy and physiology vol. 2 support and movement. (Biological Sciences Textbooks, 2003).
– reference: Morais, A. Automated Computer-aided Design of Cranial Implants-A Deep Learning Approach. Master’s thesis, Universidade do Minho (2018).
– reference: Li, J., Pepe, A., Gsaxner, C., von Campe, G. & Egger, J. A baseline approach for autoimplant: the miccai 2020 cranial implant design challenge. arXiv preprint arXiv:2006.12449 (2020).
– volume: 21
  start-page: 400
  issue: 4
  year: 2013
  ident: 806_CR10
  publication-title: Current opinion in otolaryngology & head and neck surgery
  doi: 10.1097/MOO.0b013e328363003e
– year: 2020
  ident: 806_CR27
  doi: 10.6084/m9.figshare.12423872
– volume: 13
  start-page: 519
  year: 2017
  ident: 806_CR24
  publication-title: International Journal of Computer Assisted Radiology and Surgery
  doi: 10.1007/s11548-017-1674-6
– ident: 806_CR26
– ident: 806_CR28
  doi: 10.1117/12.2580719
– ident: 806_CR3
– ident: 806_CR5
– volume: 168
  start-page: 118
  year: 2018
  ident: 806_CR20
  publication-title: Clinical Neurology and Neurosurgery
  doi: 10.1016/j.clineuro.2018.03.004
– ident: 806_CR1
– ident: 806_CR23
– volume: 27
  start-page: 2061
  issue: 8
  year: 2016
  ident: 806_CR16
  publication-title: The Journal of craniofacial surgery
  doi: 10.1097/SCS.0000000000003025
– volume: 29
  start-page: E8
  issue: 6
  year: 2010
  ident: 806_CR8
  publication-title: Neurosurgical focus
  doi: 10.3171/2010.9.FOCUS10201
– volume: 7
  start-page: 1
  year: 2017
  ident: 806_CR6
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-04454-6
– volume: 42
  start-page: 1877
  issue: 8
  year: 2014
  ident: 806_CR7
  publication-title: Journal of cranio-maxillofacial surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery
  doi: 10.1016/j.jcms.2014.07.006
– volume: 70
  start-page: e169
  issue: 2
  year: 2012
  ident: 806_CR21
  publication-title: Journal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons
  doi: 10.1016/j.joms.2011.09.036
– ident: 806_CR9
  doi: 10.1590/rbeb.2014.024
– year: 2020
  ident: 806_CR29
  doi: 10.5281/zenodo.3715953
– ident: 806_CR30
  doi: 10.1007/978-3-030-60946-7_8
– volume: 49
  start-page: 203
  year: 2010
  ident: 806_CR14
  publication-title: Medical & Biological Engineering & Computing
  doi: 10.1007/s11517-010-0720-0
– ident: 806_CR19
  doi: 10.4103/2231-0746.133065
– volume: 74
  start-page: 648
  issue: 5
  year: 2001
  ident: 806_CR11
  publication-title: AORN journal
  doi: 10.1016/S0001-2092(06)61763-8
– ident: 806_CR4
  doi: 10.1115/IMECE2015-51979
– ident: 806_CR25
  doi: 10.1038/srep01364
– ident: 806_CR22
  doi: 10.1007/978-3-030-16187-3_15
– ident: 806_CR12
  doi: 10.1007/978-3-540-39899-8_13
– ident: 806_CR2
– volume: 66
  start-page: 315
  year: 2016
  ident: 806_CR17
  publication-title: Materials for biological applications
  doi: 10.1016/j.msec.2016.04.101
– volume: 12
  start-page: 20
  year: 2017
  ident: 806_CR13
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0172694
– ident: 806_CR15
  doi: 10.1063/1.4915636
– volume: 51
  start-page: 6
  year: 2018
  ident: 806_CR18
  publication-title: Medical engineering & physics
  doi: 10.1016/j.medengphy.2017.10.008
SSID ssj0001340570
Score 2.383604
Snippet Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by...
Measurement(s) Image Acquisition Matrix Size • Image Slice Thickness • craniofacial region Technology Type(s) imaging technique • computed tomography Sample...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 36
SubjectTerms 631/378/116/2396
692/308/575
692/698
692/700/1421/1846/2771
Algorithms
Bone implants
Bone surgery
Computed tomography
Computer-Aided Design
Data Descriptor
Deep learning
Design
Humanities and Social Sciences
Humans
Image processing
Imaging, Three-Dimensional
Manufacturing
multidisciplinary
Patients
Prostheses and Implants
Prosthesis Design
Science
Science (multidisciplinary)
Skull
Skull - anatomy & histology
Skull - diagnostic imaging
Skull - pathology
Tomography, X-Ray Computed
Transplants & implants
Trauma
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQL8AB0fJaWiojcQDRVe21148jIKoKCS5Q0Zvl14qoYRORRFX_PWOvsyQClR56zdrayTzW39gznxF6ZR2kycSFugk-1lwFWWvLfe2pcIF6r7lP3cifv4jTM_7pvD3fuOor1YQN9MCD4o4Zo9Yy7RWNgHytt62lsVWh6WQUxMf09SVKbyRTeXeFJSBCSpcMYep4AStVIh5tIHsGlARp9NZKlAn7_4Uy_y6WHE9M76O7q35ury7tdLqxKJ08RA8KmsTvhn-xi-7Efg_tlnhd4NeFVPrNI_T961UPWA_G4cUFpJ3YzfqIQ8zVHBiQK7ar5Szzt-LCtVqnLsxUSYQ9LGiTWWfT9jqe_JxPwRwwN9V-PEZnJx-_fTity6UKtQfstqxlYLwLXjlH4JsLeKrVvgmQtwgrFYuC06CdjV3bCduxRFcjGHex842wRATHnqCdHiR8hrBSnYMZNPXicuKltkwy2WpmW0bgJRWiawUbXxjH08UXU5NPvpkyg1EMGMVkoxhSobfjnPnAt3Ht6PfJbuPIxJWdfwAPMsWDzP88qEIHa6ubEsAL06RNVsBCQlXo5fgYQi-dp9g-zlbDGEUhxW8r9HRwklESljokJAcJ5Zb7bIm6_aSf_Mj03jJBQi0qdLR2tD9iXaeKo9EZb6C557ehuX10r8kBRetGH6Cd5a9VfAEYbekOczj-Bg3AN2Y
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfG7QF4QIyPURgoSDyAWLW2adP0ASGGNk1InBAwsbcoX4UTR3vs7oT232P30h4n0InXNlHd2I7txP4Z4Jk2GCYnxsWZsz7OpSvjSuc2tqkwLrW2yi1VI78fi7Pz_N1FcbED474WhtIq-z2x26hda-mM_CijUy80TkK-nv2MqWsU3a72LTR0aK3gXnUQY9dgNyNkrBHsHp-MP3xcn7pwclCSUD2TcHk0RwtGgKQZRtXoPWF4vWGhOiD_f3mffydRDjepN-H6spnpq196Ov3DWJ3ehlvBy2RvVmKxBzu-uQN7QY_n7HkAm35xF758umrQB8RxbP4dw1Fm2sYz57ssD4YeLdPLRdvhurKAwRpTdSZlGDGLhm7S1pqO3dnkx2yKbMK5lBNyD85PTz6_PYtDs4XYok-3iEvH89pZaUyCezH6WUVlM4fxjNCl5F7kqauM9nVRC11zgrERPDe-tpnQiXCG34dRgxQ-ACZlbXBGSjW6eWLLSvOSl0XFdcET_EgEab_AygYkcmqIMVXdjTiXasUUhUxRHVNUEsHLYc5shcOxdfQx8W0YSRja3YP28qsKKqk4T7XmlZWpx5hKW13o1BfSZXXpRWJ9BAc911VQ7Llai2EET4fXqJJ0z6Ib3y5XY2SKoX8Rwf5KSAZKOFVOlDlSWG6Izwapm2-aybcO9rskV7ESERz2grYma9tSHA7C-B8r93D7Tz-CG1mnKmmcVQcwWlwu_WP0yhbmSVC135yzNKU
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QF6QC2vBlpkJA4gNiKOE9s5LoiqWgkupaI3y6-oK5bsit0V6r9nnHjTRkVVucaeZOSZib-xPZ8B3mqDaXJmXJo769NCOpFWurCppdw4am1V2FCN_PUbPz0vphflxQ6Mt7Uwg_37lrp7hVNMYAzNMe1FeIP57wPYleiYcgS7k8n0bHq9psIC_MhibQyKf7wtPJh_Wpr-f2HL20ck-33SPXi4aZb66o-ez29MRSf78DhiSDLpjH4AO755AgcxSlfkXaSSfv8UfpxdNYjwsB9Z_cRkk5hF44nz7RkOgniV6M160bK2ksiwmobay3B-iFicxmaLWodFdTL7tZyjEVA2nPh4BucnX75_Pk3jVQqpRcS2ToVjRe2sNCbDPy2iqLKyucNshWshmecFdZXRvi5rrmsWSGo4K4yvbc51xp1hz2HUoIaHQKSsDUrQUIFbZFZUmgkmyorpkmX4kQTodoCVjTzj4bqLuWr3u5lUnVEUGkW1RlFZAh96mWXHsnFn70_Bbn3PwJDdPkDHUTHgFGNUa1ZZST1mTNrqUlNfSpfXwvPM-gSOtlZXMWxXKg9Lq4iAuEzgTd-MARd2UXTjF5uuj6SY2JcJvOicpNeEhboIUaCGYuA-A1WHLc3ssiX1FgEIVjyB8dbRrtW6ayjGvTPeY-Re_t_bX8GjvA0dmubVEYzWvzf-GDHY2ryOofcXQOkotg
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOQHkGCjISBxB1iePEdo4FUVVIVEiwopwsvyJWXbIrkgiVX8848aZErQpck7EyGc_E38QznxF6rg2kyalxJHPWk1w6QUqdW2IpN45aW-Y2dCN_OOKH8_z9cXF8RhY92b5n8nUD60ugC80g5wVsA8nvVbTFC4DdM7Q1P_q4_zUcHpcWGYG0hsWmmIsHThaenp__IlB5vjZy3CC9ga519Vqf_tTL5R9r0MGtoXqr6akLQ-nJyV7Xmj376zyx499f7za6GZEo3h9cZxtd8fUdtB1jvcEvIiH1y7voy6fTGnAiyOHmBFJWbFa1x873lSAYUC_WXbvquV9x5GkloYMzVCFhC4vhYlXp8GseL76vlzCVMDbUjdxD84N3n98eknggA7GA-1oiHMsrZ6UxKXyvAYsVpc0c5DxcC8k8z6krjfZVUXFdsUB1w1lufGUzrlPuDLuPZjVo-BBhKSsDI2jo481TK0rNBBNFyXTBUnhIguhmtpSNbOXh0Iyl6nfNmVSD7RTYTvW2U2mCXo1j1gNXx6XSb4ITjJKBZ7u_ABOkYtgqxqjWrLSSesi7tNWFpr6QLquE56n1CdrZuJCKwd-oLPygBRzFZYKejbchbMNejK79qhtkJGWAfxP0YPC4URMWuitEDhqKiS9OVJ3eqRffempwEeBkyRO0u_HaM7UuM8Xu6Nn_YLlH_yf-GF3Peg-nJCt30Kz90fkngORa8zTG8G-3sj3G
  priority: 102
  providerName: Unpaywall
Title Synthetic skull bone defects for automatic patient-specific craniofacial implant design
URI https://link.springer.com/article/10.1038/s41597-021-00806-0
https://www.ncbi.nlm.nih.gov/pubmed/33514740
https://www.proquest.com/docview/2483412968
https://www.proquest.com/docview/2483813835
https://pubmed.ncbi.nlm.nih.gov/PMC7846796
http://doi.org/10.1038/s41597-021-00806-0
https://doaj.org/article/331aa39c81e747aca5a1e58d2f7e60ce
UnpaywallVersion submittedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: DIK
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: RPM
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: NAO
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2052-4463
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Complete
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: M48
  dateStart: 20141101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: AAJSJ
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: C6C
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ4LxgBifgVEZiQcQy0jixHYeEOqqTVOlVROjYjxFju1ARUlLPwT97zk7H6yimhBPkWJbOfnucr87--4AXsoc3eQg136klfFjobmfylj5KmS5DpVKY2Wzkc8H7GwY96-Sqy1o2h3VGzjf6NrZflLD2fjo14_Ve1T4d1XKuHg7RyNka4pG6BgjAEIPeRt20VKltpXDeQ33XcyFWngS1Lkzm5fuwS1qb7dzGw65ZqpcRf9NMPTv25TtkeoduL0sp3L1U47H16zW6T24W8NN0q3kYx-2THkf9muFnpNXddXp1w_g0-WqRDCI88j8G_qlJJ-UhmjjrnsQhLZELhcTV-CV1MVYfZumaa8aEYUWbzQppI2_k9H36Rj5hWvt5ZCHMDw9-dg78-uuC75CcLfwuaZxoZXI8wB_ygi4klRFGh0bJrmghsWhTnNpiqRgsqC2ng2jcW4KFTEZMJ3TR7BTIoVPgAhR5LgitMm6caB4KimnPEmpTGiAH_EgbDY4U3VJctsZY5y5o3Eqsoo_GfInc_zJAg_etGumVUGOG2cfW761M20xbfdiMvuS1bqZURpKSVMlQoPOlVQykaFJhI4KbligjAcHDdezRkCzyEZhESwx4cGLdhh10x64yNJMltUcEVIEuR48roSkpaQRMg_4mviskbo-Uo6-uvrf3GLGlHlw2AjaH7Ju2orDVhj_Yeee_jddz2AvcgoV-lF6ADuL2dI8R-S2yDuwza94B3a73f5lH5_HJ4OLD_i2x3odFw3pOIXFkeHgovv5Nz3MRiI
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jB4QIzPwAAjgQRi0ZLYcZyHCTHY1LGtQrBpezP-ClSUpKytpv5z_G2cEyelAlW87DWxm6vvfPc7-z4Qei4VuMmRMmFitA0pN1mYS6pDHTNlYq1zql028nGf9U7ph_P0fAX9anNhXFhlqxNrRW0q7c7ItxN36gXGifE3o5-h6xrlblfbFhrSt1YwO3WJMZ_YcWhnl-DCjXcO3gO_XyTJ_t7Ju17ouwyEGsDMJMwMoYXRXKkIlBAAjDTXiQEgz2TGiWU0NrmStkgLJgvi6rcwQpUtdMJkxIwi8LvX0BolNAfnb213r__x0_yUhzhAFPlsnYjw7TFYTFcANQEvHtAauPMLFrFuHPAvtPt30GZ3c3sDrU_LkZxdyuHwD-O4fwvd9KgWv23EcAOt2PI22vB6Y4xf-uLWr-6gs8-zEjAnjMPj7-D-YlWVFhtbR5VgQNBYTidVXUcW-5qvocsGdRFNWINhHVSFdMf8ePBjNASxgLkuBuUuOr2SZb-HVkug8AHCnBcKZsQuJ5hGOsslyUiW5kSmJIKPBChuF1hoX_ncNeAYivoGnnDRMEUAU0TNFBEF6HU3Z9TU_Vg6etfxrRvpanbXD6qLr8KrAEFILCXJNY8t-HBSy1TGNuUmKTLLIm0DtNlyXXhFMhZzsQ_Qs-41qAB3ryNLW02bMTwmgKUDdL8Rko4S4jI1MgoUZgvis0Dq4pty8K0uM545aJqzAG21gjYna9lSbHXC-B8r93D5n36K1nsnx0fi6KB_-AhdT-ptE4dJvolWJxdT-xgQ4UQ98dsOoy9XvdN_A6sVcts
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwED-NIfH4gBjPwAAjgQRiUZM4sZ0PCAFj2hhMSDDRb8avQEVJytpq6r_GX8c5r1KBKr7sa2I313v4fmffnQEeKY1hcqRtmFjjwlRYHuYqNaGJmbaxMXlqfDXy-yO2f5y-HWbDDfjV1cL4tMpuTawXalsZv0c-SPyuFzonJgZFmxbxYXfvxeRn6G-Q8iet3XUajYocusUphm_T5we7KOvHSbL35tPr_bC9YSA0CGRmIbc0LawRWke4ACG4yHKTWATxTHFBHUtjm2vliqxgqqC-dwujqXaFSZiKmNUUf_ccnOeU5j6dkA_5cn-HeigUtXU6ERWDKfpK3_o0wfgdcRoG8iu-sL4y4F849-90zf7M9jJcnJcTtThV4_EfbnHvKlxp8Sx52SjgFmy48hpstSvGlDxp21o_vQ6fPy5KRJs4jky_I2-JrkpHrKvzSQhiZ6Lms6ruIEvabq-hrwP1uUzEoEsdVYXyG_xk9GMyRoXAuT775AYcnwnTb8JmiRTeBiJEoXFG7KuB08jwXFFOeZZTldEIPxJA3DFYmrbnub96Yyzrs3cqZCMUiUKRtVBkFMCzfs6k6fixdvQrL7d-pO_WXT-oTr7K1vglpbFSNDcidhi9KaMyFbtM2KTgjkXGBbDdSV22S8hULhU-gIf9azR-f6KjSlfNmzEipoiiA7jVKElPCfU1GjxFCvmK-qyQuvqmHH2rG4xzD0pzFsBOp2hLstaxYqdXxv_g3J31f_oBXED7lu8Ojg7vwqWktpo4TPJt2JydzN09hIIzfb-2OQJfztrIfwN8xHB1
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOQHkGCjISBxB1iePEdo4FUVVIVEiwopwsvyJWXbIrkgiVX8848aZErQpck7EyGc_E38QznxF6rg2kyalxJHPWk1w6QUqdW2IpN45aW-Y2dCN_OOKH8_z9cXF8RhY92b5n8nUD60ugC80g5wVsA8nvVbTFC4DdM7Q1P_q4_zUcHpcWGYG0hsWmmIsHThaenp__IlB5vjZy3CC9ga519Vqf_tTL5R9r0MGtoXqr6akLQ-nJyV7Xmj376zyx499f7za6GZEo3h9cZxtd8fUdtB1jvcEvIiH1y7voy6fTGnAiyOHmBFJWbFa1x873lSAYUC_WXbvquV9x5GkloYMzVCFhC4vhYlXp8GseL76vlzCVMDbUjdxD84N3n98eknggA7GA-1oiHMsrZ6UxKXyvAYsVpc0c5DxcC8k8z6krjfZVUXFdsUB1w1lufGUzrlPuDLuPZjVo-BBhKSsDI2jo481TK0rNBBNFyXTBUnhIguhmtpSNbOXh0Iyl6nfNmVSD7RTYTvW2U2mCXo1j1gNXx6XSb4ITjJKBZ7u_ABOkYtgqxqjWrLSSesi7tNWFpr6QLquE56n1CdrZuJCKwd-oLPygBRzFZYKejbchbMNejK79qhtkJGWAfxP0YPC4URMWuitEDhqKiS9OVJ3eqRffempwEeBkyRO0u_HaM7UuM8Xu6Nn_YLlH_yf-GF3Peg-nJCt30Kz90fkngORa8zTG8G-3sj3G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+skull+bone+defects+for+automatic+patient-specific+craniofacial+implant+design&rft.jtitle=Scientific+data&rft.au=Li%2C+Jianning&rft.au=Gsaxner%2C+Christina&rft.au=Pepe%2C+Antonio&rft.au=Morais%2C+Ana&rft.date=2021-01-29&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2052-4463&rft.volume=8&rft_id=info:doi/10.1038%2Fs41597-021-00806-0&rft_id=info%3Apmid%2F33514740&rft.externalDocID=PMC7846796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon