Synthetic skull bone defects for automatic patient-specific craniofacial implant design
Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by third-party suppliers, which is usually time-consuming and expensive. Recent advances in additive manufacturing made the in-hospital or in-op...
Saved in:
| Published in | Scientific data Vol. 8; no. 1; pp. 36 - 8 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
29.01.2021
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2052-4463 2052-4463 |
| DOI | 10.1038/s41597-021-00806-0 |
Cover
| Abstract | Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by third-party suppliers, which is usually time-consuming and expensive. Recent advances in additive manufacturing made the in-hospital or in-operation-room fabrication of personalized implants feasible. However, the implants are still manufactured by external companies. To facilitate an optimized workflow, fast and automatic implant manufacturing is highly desirable. Data-driven approaches, such as deep learning, show currently great potential towards automatic implant design. However, a considerable amount of data is needed to train such algorithms, which is, especially in the medical domain, often a bottleneck. Therefore, we present CT-imaging data of the craniofacial complex from 24 patients, in which we injected various artificial cranial defects, resulting in 240 data pairs and 240 corresponding implants. Based on this work, automatic implant design and manufacturing processes can be trained. Additionally, the data of this work build a solid base for researchers to work on automatic cranial implant designs.
Measurement(s)
Image Acquisition Matrix Size • Image Slice Thickness • craniofacial region
Technology Type(s)
imaging technique • computed tomography
Sample Characteristic - Organism
Homo sapiens
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.13265225 |
|---|---|
| AbstractList | Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by third-party suppliers, which is usually time-consuming and expensive. Recent advances in additive manufacturing made the in-hospital or in-operation-room fabrication of personalized implants feasible. However, the implants are still manufactured by external companies. To facilitate an optimized workflow, fast and automatic implant manufacturing is highly desirable. Data-driven approaches, such as deep learning, show currently great potential towards automatic implant design. However, a considerable amount of data is needed to train such algorithms, which is, especially in the medical domain, often a bottleneck. Therefore, we present CT-imaging data of the craniofacial complex from 24 patients, in which we injected various artificial cranial defects, resulting in 240 data pairs and 240 corresponding implants. Based on this work, automatic implant design and manufacturing processes can be trained. Additionally, the data of this work build a solid base for researchers to work on automatic cranial implant designs.
Measurement(s)
Image Acquisition Matrix Size • Image Slice Thickness • craniofacial region
Technology Type(s)
imaging technique • computed tomography
Sample Characteristic - Organism
Homo sapiens
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.13265225 Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by third-party suppliers, which is usually time-consuming and expensive. Recent advances in additive manufacturing made the in-hospital or in-operation-room fabrication of personalized implants feasible. However, the implants are still manufactured by external companies. To facilitate an optimized workflow, fast and automatic implant manufacturing is highly desirable. Data-driven approaches, such as deep learning, show currently great potential towards automatic implant design. However, a considerable amount of data is needed to train such algorithms, which is, especially in the medical domain, often a bottleneck. Therefore, we present CT-imaging data of the craniofacial complex from 24 patients, in which we injected various artificial cranial defects, resulting in 240 data pairs and 240 corresponding implants. Based on this work, automatic implant design and manufacturing processes can be trained. Additionally, the data of this work build a solid base for researchers to work on automatic cranial implant designs. Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by third-party suppliers, which is usually time-consuming and expensive. Recent advances in additive manufacturing made the in-hospital or in-operation-room fabrication of personalized implants feasible. However, the implants are still manufactured by external companies. To facilitate an optimized workflow, fast and automatic implant manufacturing is highly desirable. Data-driven approaches, such as deep learning, show currently great potential towards automatic implant design. However, a considerable amount of data is needed to train such algorithms, which is, especially in the medical domain, often a bottleneck. Therefore, we present CT-imaging data of the craniofacial complex from 24 patients, in which we injected various artificial cranial defects, resulting in 240 data pairs and 240 corresponding implants. Based on this work, automatic implant design and manufacturing processes can be trained. Additionally, the data of this work build a solid base for researchers to work on automatic cranial implant designs.Measurement(s)Image Acquisition Matrix Size • Image Slice Thickness • craniofacial regionTechnology Type(s)imaging technique • computed tomographySample Characteristic - OrganismHomo sapiensMachine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.13265225 Measurement(s) Image Acquisition Matrix Size • Image Slice Thickness • craniofacial region Technology Type(s) imaging technique • computed tomography Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.13265225 Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by third-party suppliers, which is usually time-consuming and expensive. Recent advances in additive manufacturing made the in-hospital or in-operation-room fabrication of personalized implants feasible. However, the implants are still manufactured by external companies. To facilitate an optimized workflow, fast and automatic implant manufacturing is highly desirable. Data-driven approaches, such as deep learning, show currently great potential towards automatic implant design. However, a considerable amount of data is needed to train such algorithms, which is, especially in the medical domain, often a bottleneck. Therefore, we present CT-imaging data of the craniofacial complex from 24 patients, in which we injected various artificial cranial defects, resulting in 240 data pairs and 240 corresponding implants. Based on this work, automatic implant design and manufacturing processes can be trained. Additionally, the data of this work build a solid base for researchers to work on automatic cranial implant designs. Measurement(s) Image Acquisition Matrix Size • Image Slice Thickness • craniofacial region Technology Type(s) imaging technique • computed tomography Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.13265225 Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by third-party suppliers, which is usually time-consuming and expensive. Recent advances in additive manufacturing made the in-hospital or in-operation-room fabrication of personalized implants feasible. However, the implants are still manufactured by external companies. To facilitate an optimized workflow, fast and automatic implant manufacturing is highly desirable. Data-driven approaches, such as deep learning, show currently great potential towards automatic implant design. However, a considerable amount of data is needed to train such algorithms, which is, especially in the medical domain, often a bottleneck. Therefore, we present CT-imaging data of the craniofacial complex from 24 patients, in which we injected various artificial cranial defects, resulting in 240 data pairs and 240 corresponding implants. Based on this work, automatic implant design and manufacturing processes can be trained. Additionally, the data of this work build a solid base for researchers to work on automatic cranial implant designs.Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by third-party suppliers, which is usually time-consuming and expensive. Recent advances in additive manufacturing made the in-hospital or in-operation-room fabrication of personalized implants feasible. However, the implants are still manufactured by external companies. To facilitate an optimized workflow, fast and automatic implant manufacturing is highly desirable. Data-driven approaches, such as deep learning, show currently great potential towards automatic implant design. However, a considerable amount of data is needed to train such algorithms, which is, especially in the medical domain, often a bottleneck. Therefore, we present CT-imaging data of the craniofacial complex from 24 patients, in which we injected various artificial cranial defects, resulting in 240 data pairs and 240 corresponding implants. Based on this work, automatic implant design and manufacturing processes can be trained. Additionally, the data of this work build a solid base for researchers to work on automatic cranial implant designs. |
| ArticleNumber | 36 |
| Author | Morais, Ana von Campe, Gord Wallner, Jürgen Li, Jianning Pepe, Antonio Egger, Jan Gsaxner, Christina Alves, Victor |
| Author_xml | – sequence: 1 givenname: Jianning surname: Li fullname: Li, Jianning organization: Institute for Computer Graphics and Vision, Graz University of Technology, Computer Algorithms for Medicine Laboratory – sequence: 2 givenname: Christina orcidid: 0000-0002-2227-3523 surname: Gsaxner fullname: Gsaxner, Christina organization: Institute for Computer Graphics and Vision, Graz University of Technology, Computer Algorithms for Medicine Laboratory, Department of Oral and Maxillofacial Surgery, Medical University of Graz – sequence: 3 givenname: Antonio surname: Pepe fullname: Pepe, Antonio organization: Institute for Computer Graphics and Vision, Graz University of Technology, Computer Algorithms for Medicine Laboratory – sequence: 4 givenname: Ana surname: Morais fullname: Morais, Ana organization: Department of Informatics, School of Engineering, University of Minho, Algoritmi Centre, University of Minho – sequence: 5 givenname: Victor orcidid: 0000-0003-1819-7051 surname: Alves fullname: Alves, Victor organization: Algoritmi Centre, University of Minho – sequence: 6 givenname: Gord surname: von Campe fullname: von Campe, Gord organization: Department of Neurosurgery, Medical University of Graz – sequence: 7 givenname: Jürgen surname: Wallner fullname: Wallner, Jürgen email: j.wallner@medunigraz.at organization: Department of Oral and Maxillofacial Surgery, Medical University of Graz – sequence: 8 givenname: Jan surname: Egger fullname: Egger, Jan email: egger@tugraz.at organization: Institute for Computer Graphics and Vision, Graz University of Technology, Computer Algorithms for Medicine Laboratory, Department of Oral and Maxillofacial Surgery, Medical University of Graz |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33514740$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUstu1TAUjFARLaU_wAJFYsMm4HecDRKqeFSqxAIQS-vEOb518Y2DnYDu3-P7oLRdVGxs63hmzpyxn1ZHYxyxqp5T8poSrt9kQWXXNoTRhhBNVEMeVSeMSNYIofjRrfNxdZbzNSGEckFkS55Ux5xLKlpBTqrvXzbjfIWzt3X-sYRQ96VNPaBDO-faxVTDMsc1bAFTWXGcmzyh9a4UbILRRwfWQ6j9egowzoWb_Wp8Vj12EDKeHfbT6tuH91_PPzWXnz9enL-7bKxUcm7agQs3WN33BMEyzmRn2SCFVtBqjkrQoesBnXQKHCeEK8VFj84yBUQNPT-tLva6Q4RrMyW_hrQxEbzZFWJaGUjFfEDDOQXgndUUW9GCBQkUpR6Ya1ERi0WL77WWcYLNbwjhRpASs03d7FM3JXWzS92Qwnq7Z01Lv8bBloQShDtW7t6M_sqs4i_TaqHaThWBVweBFH8umGez9tliKGliXLJhQnNNueayQF_eg17HJY0l4B1KUNYpXVAvbju6sfL31QuA7QE2xZwTuv-bU98jWT-XHxG3U_nwMPUQbC59xhWmf7YfYP0BneLi1w |
| CitedBy_id | crossref_primary_10_1097_SCS_0000000000010294 crossref_primary_10_1097_SCS_0000000000009661 crossref_primary_10_1007_s00784_022_04706_4 crossref_primary_10_1145_3615862 crossref_primary_10_1016_j_jmbbm_2023_105791 crossref_primary_10_1016_j_softx_2023_101432 crossref_primary_10_1016_j_jcms_2025_02_018 crossref_primary_10_1016_j_actbio_2022_10_030 crossref_primary_10_1016_j_dib_2021_107524 crossref_primary_10_1021_acsbiomaterials_3c01171 crossref_primary_10_1021_acsabm_1c00979 crossref_primary_10_1007_s41870_022_00956_3 crossref_primary_10_1016_j_bonr_2021_101154 crossref_primary_10_1016_j_media_2023_102865 crossref_primary_10_3390_bioengineering10050544 crossref_primary_10_1097_JS9_0000000000000201 crossref_primary_10_3390_pharmaceutics15010150 crossref_primary_10_1007_s12008_024_01979_9 crossref_primary_10_1038_s41598_024_61879_6 crossref_primary_10_3389_fbioe_2023_1297933 crossref_primary_10_1007_s10916_024_02066_y crossref_primary_10_1080_25740881_2024_2307351 crossref_primary_10_1016_j_jneumeth_2023_109851 crossref_primary_10_3390_jcm11082265 crossref_primary_10_1038_s41598_023_30117_w crossref_primary_10_1016_j_anplas_2023_07_003 |
| Cites_doi | 10.1097/MOO.0b013e328363003e 10.6084/m9.figshare.12423872 10.1007/s11548-017-1674-6 10.1117/12.2580719 10.1016/j.clineuro.2018.03.004 10.1097/SCS.0000000000003025 10.3171/2010.9.FOCUS10201 10.1038/s41598-017-04454-6 10.1016/j.jcms.2014.07.006 10.1016/j.joms.2011.09.036 10.1590/rbeb.2014.024 10.5281/zenodo.3715953 10.1007/978-3-030-60946-7_8 10.1007/s11517-010-0720-0 10.4103/2231-0746.133065 10.1016/S0001-2092(06)61763-8 10.1115/IMECE2015-51979 10.1038/srep01364 10.1007/978-3-030-16187-3_15 10.1007/978-3-540-39899-8_13 10.1016/j.msec.2016.04.101 10.1371/journal.pone.0172694 10.1063/1.4915636 10.1016/j.medengphy.2017.10.008 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41597-021-00806-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2052-4463 |
| EndPage | 8 |
| ExternalDocumentID | oai_doaj_org_article_331aa39c81e747aca5a1e58d2f7e60ce oai:repositorium.uminho.pt:1822/78113 PMC7846796 33514740 10_1038_s41597_021_00806_0 |
| Genre | Research Support, Non-U.S. Gov't Dataset Journal Article |
| GrantInformation_xml | – fundername: CAMed (COMET K-Project 871132) – fundername: Austrian Science Fund (FWF) KLI 678-B31 – fundername: TU Graz LEAD Project "Mechanics, Modeling and Simulation of Aortic Dissection" – fundername: Erasmus+ – fundername: Austrian Science Fund FWF grantid: KLI 678 – fundername: ; |
| GroupedDBID | 0R~ 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSFO ACSMW ADBBV ADRAZ AFKRA AGHDO AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M1P M48 M7P M~E NAO OK1 PGMZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c565t-7d34fdc8bb0eac23259c2d5486a783e641d9baef5f6af30036634befc26a06db3 |
| IEDL.DBID | M48 |
| ISSN | 2052-4463 |
| IngestDate | Fri Oct 03 12:51:09 EDT 2025 Sun Oct 26 04:12:15 EDT 2025 Tue Sep 30 16:08:49 EDT 2025 Thu Sep 04 16:43:11 EDT 2025 Tue Oct 07 06:35:42 EDT 2025 Mon Jul 21 05:35:31 EDT 2025 Wed Oct 01 04:29:07 EDT 2025 Thu Apr 24 22:50:54 EDT 2025 Fri Feb 21 02:37:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c565t-7d34fdc8bb0eac23259c2d5486a783e641d9baef5f6af30036634befc26a06db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| ORCID | 0000-0002-2227-3523 0000-0003-1819-7051 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41597-021-00806-0 |
| PMID | 33514740 |
| PQID | 2483412968 |
| PQPubID | 2041912 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_331aa39c81e747aca5a1e58d2f7e60ce unpaywall_primary_10_1038_s41597_021_00806_0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7846796 proquest_miscellaneous_2483813835 proquest_journals_2483412968 pubmed_primary_33514740 crossref_primary_10_1038_s41597_021_00806_0 crossref_citationtrail_10_1038_s41597_021_00806_0 springer_journals_10_1038_s41597_021_00806_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-29 |
| PublicationDateYYYYMMDD | 2021-01-29 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific data |
| PublicationTitleAbbrev | Sci Data |
| PublicationTitleAlternate | Sci Data |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | RotaruHCranioplasty with custom-made implants: analyzing the cases of 10 patientsJournal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons2012702e1697610.1016/j.joms.2011.09.036 Li, J., Pepe, A., Gsaxner, C. & Egger, J. An online platform for automatic skull defect restoration and cranial implant design. ArXivabs/2006.00980 (2020). Castelan, J. et al. Manufacture of custom-made cranial implants from dicom® images using 3d printing, cad/cam technology and incremental sheet forming (2014). Grabowski, T. Principles of anatomy and physiology vol. 2 support and movement. (Biological Sciences Textbooks, 2003). Morais, A. Automated Computer-aided Design of Cranial Implants-A Deep Learning Approach. Master’s thesis, Universidade do Minho (2018). Min, K.-J. & Dean, D. Highly accurate cad tools for cranial implants. In MICCAI (2003). Li, J., Pepe, A., Gsaxner, C., von Campe, G. & Egger, J. A baseline approach for autoimplant: the miccai 2020 cranial implant design challenge. arXiv preprint arXiv:2006.12449 (2020). Morais, A., Egger, J. & Alves, V. Automated Computer-aided Design of Cranial Implants Using a Deep Volumetric Convolutional Denoising Autoencoder, 151–160 (2019). JardiniALCranial reconstruction: 3d biomodel and custom-built implant created using additive manufacturingJournal of cranio-maxillofacial surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery201442818778410.1016/j.jcms.2014.07.006 EggerJTowards the automatization of cranial implant design in cranioplasty202010.5281/zenodo.3715953Zenodo ZanottiBTCranioplasty: Review of materialsThe Journal of craniofacial surgery20162782061207210.1097/SCS.0000000000003025 SzpalskiCBarrJWetterauMSaadehPBWarrenSMCranial bone defects: current and future strategiesNeurosurgical focus2010296E810.3171/2010.9.FOCUS10201 ChenXXuLLiXEggerJComputer-aided implant design for the restoration of cranial defectsScientific Reports201771101:CAS:528:DC%2BC1cXhtlKgt7vO10.1038/s41598-017-04454-6 GoldsteinJAPaligaJTBartlettSPCranioplasty: indications and advancesCurrent opinion in otolaryngology & head and neck surgery2013214400910.1097/MOO.0b013e328363003e KhaderBATowlerMRMaterials and techniques used in cranioplasty fixation: A review. Materials science & engineering. CMaterials for biological applications2016663153221:CAS:528:DC%2BC28XnvFKqurY%3D10.1016/j.msec.2016.04.101 EggerJInteractive reconstructions of cranial 3d implants under mevislab as an alternative to commercial planning softwarePLoS ONE201712201:CAS:528:DC%2BC2sXhtVSltL%2FI10.1371/journal.pone.0172694 ChengC-HChuangH-YLinH-LLiuC-LYaoC-HSurgical results of cranioplasty using three-dimensional printing technologyClinical Neurology and Neurosurgery201816811812310.1016/j.clineuro.2018.03.004 Parthasarathy, J. 3d modeling, custom implants and its future perspectives in craniofacial surgery. In Annals of maxillofacial surgery (2014). Egger, J. et al. Gbm volumetry using the 3d slicer medical image computing platform. In Scientific reports (2013). Li, J. Deep Learning for Cranial Defect Reconstruction. Master’s thesis, Graz University of Technology (2020). Chaurasia, B. D. Human anatomy regional and applied, dissection and clinical volume 3: head, neck and brain (CBS publishers, 2004). FuessingerMAPlanning of skull reconstruction based on a statistical shape model combined with geometric morphometricsInternational Journal of Computer Assisted Radiology and Surgery20171351952910.1007/s11548-017-1674-6 Bilodi, A. K. & Gangadhar, M. A study on human skulls and its anthropological importance. vol. 3(9), 496–502 (2014). LiJHead ct collection for patient-specific craniofacial implant (psi) design202010.6084/m9.figshare.12423872figshare Mohamed, N., Majid, A. A. A., Piah, A. R. M. & Rajion, Z. A. Designing of skull defect implants using c1 rational cubic bezier and offset curves (2015). van EijnattenMCt image segmentation methods for bone used in medical additive manufacturingMedical engineering & physics20185161610.1016/j.medengphy.2017.10.008 College, O. Anatomy and physiologyl (Rice University, 2013). EufingerHSaylorBComputer-assisted prefabrication of individualcraniofacial implantsAORN journal2001745648541:STN:280:DC%2BD3MnnvFGqug%3D%3D10.1016/S0001-2092(06)61763-8quiz 655–6, 658–62 Ranslow, A. N. et al. Microstructural analysis of porcine skull bone subjected to impact loading (2015). LiaoY-LThree-dimensional reconstruction of cranial defect using active contour model and image registrationMedical & Biological Engineering & Computing20104920321110.1007/s11517-010-0720-0 806_CR30 M van Eijnatten (806_CR18) 2018; 51 806_CR9 J Li (806_CR27) 2020 BA Khader (806_CR17) 2016; 66 806_CR2 806_CR3 806_CR1 806_CR4 806_CR5 JA Goldstein (806_CR10) 2013; 21 806_CR19 C-H Cheng (806_CR20) 2018; 168 MA Fuessinger (806_CR24) 2017; 13 806_CR15 H Eufinger (806_CR11) 2001; 74 806_CR12 J Egger (806_CR29) 2020 Y-L Liao (806_CR14) 2010; 49 C Szpalski (806_CR8) 2010; 29 806_CR26 AL Jardini (806_CR7) 2014; 42 H Rotaru (806_CR21) 2012; 70 J Egger (806_CR13) 2017; 12 806_CR28 806_CR23 806_CR22 BT Zanotti (806_CR16) 2016; 27 806_CR25 X Chen (806_CR6) 2017; 7 |
| References_xml | – reference: EggerJTowards the automatization of cranial implant design in cranioplasty202010.5281/zenodo.3715953Zenodo – reference: Morais, A., Egger, J. & Alves, V. Automated Computer-aided Design of Cranial Implants Using a Deep Volumetric Convolutional Denoising Autoencoder, 151–160 (2019). – reference: EggerJInteractive reconstructions of cranial 3d implants under mevislab as an alternative to commercial planning softwarePLoS ONE201712201:CAS:528:DC%2BC2sXhtVSltL%2FI10.1371/journal.pone.0172694 – reference: EufingerHSaylorBComputer-assisted prefabrication of individualcraniofacial implantsAORN journal2001745648541:STN:280:DC%2BD3MnnvFGqug%3D%3D10.1016/S0001-2092(06)61763-8quiz 655–6, 658–62 – reference: Bilodi, A. K. & Gangadhar, M. A study on human skulls and its anthropological importance. vol. 3(9), 496–502 (2014). – reference: KhaderBATowlerMRMaterials and techniques used in cranioplasty fixation: A review. Materials science & engineering. CMaterials for biological applications2016663153221:CAS:528:DC%2BC28XnvFKqurY%3D10.1016/j.msec.2016.04.101 – reference: FuessingerMAPlanning of skull reconstruction based on a statistical shape model combined with geometric morphometricsInternational Journal of Computer Assisted Radiology and Surgery20171351952910.1007/s11548-017-1674-6 – reference: Parthasarathy, J. 3d modeling, custom implants and its future perspectives in craniofacial surgery. In Annals of maxillofacial surgery (2014). – reference: RotaruHCranioplasty with custom-made implants: analyzing the cases of 10 patientsJournal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons2012702e1697610.1016/j.joms.2011.09.036 – reference: Egger, J. et al. Gbm volumetry using the 3d slicer medical image computing platform. In Scientific reports (2013). – reference: LiJHead ct collection for patient-specific craniofacial implant (psi) design202010.6084/m9.figshare.12423872figshare – reference: ChengC-HChuangH-YLinH-LLiuC-LYaoC-HSurgical results of cranioplasty using three-dimensional printing technologyClinical Neurology and Neurosurgery201816811812310.1016/j.clineuro.2018.03.004 – reference: College, O. Anatomy and physiologyl (Rice University, 2013). – reference: LiaoY-LThree-dimensional reconstruction of cranial defect using active contour model and image registrationMedical & Biological Engineering & Computing20104920321110.1007/s11517-010-0720-0 – reference: Chaurasia, B. D. Human anatomy regional and applied, dissection and clinical volume 3: head, neck and brain (CBS publishers, 2004). – reference: Li, J. Deep Learning for Cranial Defect Reconstruction. Master’s thesis, Graz University of Technology (2020). – reference: JardiniALCranial reconstruction: 3d biomodel and custom-built implant created using additive manufacturingJournal of cranio-maxillofacial surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery201442818778410.1016/j.jcms.2014.07.006 – reference: SzpalskiCBarrJWetterauMSaadehPBWarrenSMCranial bone defects: current and future strategiesNeurosurgical focus2010296E810.3171/2010.9.FOCUS10201 – reference: GoldsteinJAPaligaJTBartlettSPCranioplasty: indications and advancesCurrent opinion in otolaryngology & head and neck surgery2013214400910.1097/MOO.0b013e328363003e – reference: Li, J., Pepe, A., Gsaxner, C. & Egger, J. An online platform for automatic skull defect restoration and cranial implant design. ArXivabs/2006.00980 (2020). – reference: ZanottiBTCranioplasty: Review of materialsThe Journal of craniofacial surgery20162782061207210.1097/SCS.0000000000003025 – reference: Min, K.-J. & Dean, D. Highly accurate cad tools for cranial implants. In MICCAI (2003). – reference: ChenXXuLLiXEggerJComputer-aided implant design for the restoration of cranial defectsScientific Reports201771101:CAS:528:DC%2BC1cXhtlKgt7vO10.1038/s41598-017-04454-6 – reference: Castelan, J. et al. Manufacture of custom-made cranial implants from dicom® images using 3d printing, cad/cam technology and incremental sheet forming (2014). – reference: Mohamed, N., Majid, A. A. A., Piah, A. R. M. & Rajion, Z. A. Designing of skull defect implants using c1 rational cubic bezier and offset curves (2015). – reference: Ranslow, A. N. et al. Microstructural analysis of porcine skull bone subjected to impact loading (2015). – reference: van EijnattenMCt image segmentation methods for bone used in medical additive manufacturingMedical engineering & physics20185161610.1016/j.medengphy.2017.10.008 – reference: Grabowski, T. Principles of anatomy and physiology vol. 2 support and movement. (Biological Sciences Textbooks, 2003). – reference: Morais, A. Automated Computer-aided Design of Cranial Implants-A Deep Learning Approach. Master’s thesis, Universidade do Minho (2018). – reference: Li, J., Pepe, A., Gsaxner, C., von Campe, G. & Egger, J. A baseline approach for autoimplant: the miccai 2020 cranial implant design challenge. arXiv preprint arXiv:2006.12449 (2020). – volume: 21 start-page: 400 issue: 4 year: 2013 ident: 806_CR10 publication-title: Current opinion in otolaryngology & head and neck surgery doi: 10.1097/MOO.0b013e328363003e – year: 2020 ident: 806_CR27 doi: 10.6084/m9.figshare.12423872 – volume: 13 start-page: 519 year: 2017 ident: 806_CR24 publication-title: International Journal of Computer Assisted Radiology and Surgery doi: 10.1007/s11548-017-1674-6 – ident: 806_CR26 – ident: 806_CR28 doi: 10.1117/12.2580719 – ident: 806_CR3 – ident: 806_CR5 – volume: 168 start-page: 118 year: 2018 ident: 806_CR20 publication-title: Clinical Neurology and Neurosurgery doi: 10.1016/j.clineuro.2018.03.004 – ident: 806_CR1 – ident: 806_CR23 – volume: 27 start-page: 2061 issue: 8 year: 2016 ident: 806_CR16 publication-title: The Journal of craniofacial surgery doi: 10.1097/SCS.0000000000003025 – volume: 29 start-page: E8 issue: 6 year: 2010 ident: 806_CR8 publication-title: Neurosurgical focus doi: 10.3171/2010.9.FOCUS10201 – volume: 7 start-page: 1 year: 2017 ident: 806_CR6 publication-title: Scientific Reports doi: 10.1038/s41598-017-04454-6 – volume: 42 start-page: 1877 issue: 8 year: 2014 ident: 806_CR7 publication-title: Journal of cranio-maxillofacial surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery doi: 10.1016/j.jcms.2014.07.006 – volume: 70 start-page: e169 issue: 2 year: 2012 ident: 806_CR21 publication-title: Journal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons doi: 10.1016/j.joms.2011.09.036 – ident: 806_CR9 doi: 10.1590/rbeb.2014.024 – year: 2020 ident: 806_CR29 doi: 10.5281/zenodo.3715953 – ident: 806_CR30 doi: 10.1007/978-3-030-60946-7_8 – volume: 49 start-page: 203 year: 2010 ident: 806_CR14 publication-title: Medical & Biological Engineering & Computing doi: 10.1007/s11517-010-0720-0 – ident: 806_CR19 doi: 10.4103/2231-0746.133065 – volume: 74 start-page: 648 issue: 5 year: 2001 ident: 806_CR11 publication-title: AORN journal doi: 10.1016/S0001-2092(06)61763-8 – ident: 806_CR4 doi: 10.1115/IMECE2015-51979 – ident: 806_CR25 doi: 10.1038/srep01364 – ident: 806_CR22 doi: 10.1007/978-3-030-16187-3_15 – ident: 806_CR12 doi: 10.1007/978-3-540-39899-8_13 – ident: 806_CR2 – volume: 66 start-page: 315 year: 2016 ident: 806_CR17 publication-title: Materials for biological applications doi: 10.1016/j.msec.2016.04.101 – volume: 12 start-page: 20 year: 2017 ident: 806_CR13 publication-title: PLoS ONE doi: 10.1371/journal.pone.0172694 – ident: 806_CR15 doi: 10.1063/1.4915636 – volume: 51 start-page: 6 year: 2018 ident: 806_CR18 publication-title: Medical engineering & physics doi: 10.1016/j.medengphy.2017.10.008 |
| SSID | ssj0001340570 |
| Score | 2.383604 |
| Snippet | Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by... Measurement(s) Image Acquisition Matrix Size • Image Slice Thickness • craniofacial region Technology Type(s) imaging technique • computed tomography Sample... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 36 |
| SubjectTerms | 631/378/116/2396 692/308/575 692/698 692/700/1421/1846/2771 Algorithms Bone implants Bone surgery Computed tomography Computer-Aided Design Data Descriptor Deep learning Design Humanities and Social Sciences Humans Image processing Imaging, Three-Dimensional Manufacturing multidisciplinary Patients Prostheses and Implants Prosthesis Design Science Science (multidisciplinary) Skull Skull - anatomy & histology Skull - diagnostic imaging Skull - pathology Tomography, X-Ray Computed Transplants & implants Trauma |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQL8AB0fJaWiojcQDRVe21148jIKoKCS5Q0Zvl14qoYRORRFX_PWOvsyQClR56zdrayTzW39gznxF6ZR2kycSFugk-1lwFWWvLfe2pcIF6r7lP3cifv4jTM_7pvD3fuOor1YQN9MCD4o4Zo9Yy7RWNgHytt62lsVWh6WQUxMf09SVKbyRTeXeFJSBCSpcMYep4AStVIh5tIHsGlARp9NZKlAn7_4Uy_y6WHE9M76O7q35ury7tdLqxKJ08RA8KmsTvhn-xi-7Efg_tlnhd4NeFVPrNI_T961UPWA_G4cUFpJ3YzfqIQ8zVHBiQK7ar5Szzt-LCtVqnLsxUSYQ9LGiTWWfT9jqe_JxPwRwwN9V-PEZnJx-_fTity6UKtQfstqxlYLwLXjlH4JsLeKrVvgmQtwgrFYuC06CdjV3bCduxRFcjGHex842wRATHnqCdHiR8hrBSnYMZNPXicuKltkwy2WpmW0bgJRWiawUbXxjH08UXU5NPvpkyg1EMGMVkoxhSobfjnPnAt3Ht6PfJbuPIxJWdfwAPMsWDzP88qEIHa6ubEsAL06RNVsBCQlXo5fgYQi-dp9g-zlbDGEUhxW8r9HRwklESljokJAcJ5Zb7bIm6_aSf_Mj03jJBQi0qdLR2tD9iXaeKo9EZb6C557ehuX10r8kBRetGH6Cd5a9VfAEYbekOczj-Bg3AN2Y priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfG7QF4QIyPURgoSDyAWLW2adP0ASGGNk1InBAwsbcoX4UTR3vs7oT232P30h4n0InXNlHd2I7txP4Z4Jk2GCYnxsWZsz7OpSvjSuc2tqkwLrW2yi1VI78fi7Pz_N1FcbED474WhtIq-z2x26hda-mM_CijUy80TkK-nv2MqWsU3a72LTR0aK3gXnUQY9dgNyNkrBHsHp-MP3xcn7pwclCSUD2TcHk0RwtGgKQZRtXoPWF4vWGhOiD_f3mffydRDjepN-H6spnpq196Ov3DWJ3ehlvBy2RvVmKxBzu-uQN7QY_n7HkAm35xF758umrQB8RxbP4dw1Fm2sYz57ssD4YeLdPLRdvhurKAwRpTdSZlGDGLhm7S1pqO3dnkx2yKbMK5lBNyD85PTz6_PYtDs4XYok-3iEvH89pZaUyCezH6WUVlM4fxjNCl5F7kqauM9nVRC11zgrERPDe-tpnQiXCG34dRgxQ-ACZlbXBGSjW6eWLLSvOSl0XFdcET_EgEab_AygYkcmqIMVXdjTiXasUUhUxRHVNUEsHLYc5shcOxdfQx8W0YSRja3YP28qsKKqk4T7XmlZWpx5hKW13o1BfSZXXpRWJ9BAc911VQ7Llai2EET4fXqJJ0z6Ib3y5XY2SKoX8Rwf5KSAZKOFVOlDlSWG6Izwapm2-aybcO9rskV7ESERz2grYma9tSHA7C-B8r93D7Tz-CG1mnKmmcVQcwWlwu_WP0yhbmSVC135yzNKU priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QF6QC2vBlpkJA4gNiKOE9s5LoiqWgkupaI3y6-oK5bsit0V6r9nnHjTRkVVucaeZOSZib-xPZ8B3mqDaXJmXJo769NCOpFWurCppdw4am1V2FCN_PUbPz0vphflxQ6Mt7Uwg_37lrp7hVNMYAzNMe1FeIP57wPYleiYcgS7k8n0bHq9psIC_MhibQyKf7wtPJh_Wpr-f2HL20ck-33SPXi4aZb66o-ez29MRSf78DhiSDLpjH4AO755AgcxSlfkXaSSfv8UfpxdNYjwsB9Z_cRkk5hF44nz7RkOgniV6M160bK2ksiwmobay3B-iFicxmaLWodFdTL7tZyjEVA2nPh4BucnX75_Pk3jVQqpRcS2ToVjRe2sNCbDPy2iqLKyucNshWshmecFdZXRvi5rrmsWSGo4K4yvbc51xp1hz2HUoIaHQKSsDUrQUIFbZFZUmgkmyorpkmX4kQTodoCVjTzj4bqLuWr3u5lUnVEUGkW1RlFZAh96mWXHsnFn70_Bbn3PwJDdPkDHUTHgFGNUa1ZZST1mTNrqUlNfSpfXwvPM-gSOtlZXMWxXKg9Lq4iAuEzgTd-MARd2UXTjF5uuj6SY2JcJvOicpNeEhboIUaCGYuA-A1WHLc3ssiX1FgEIVjyB8dbRrtW6ayjGvTPeY-Re_t_bX8GjvA0dmubVEYzWvzf-GDHY2ryOofcXQOkotg priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOQHkGCjISBxB1iePEdo4FUVVIVEiwopwsvyJWXbIrkgiVX8848aZErQpck7EyGc_E38QznxF6rg2kyalxJHPWk1w6QUqdW2IpN45aW-Y2dCN_OOKH8_z9cXF8RhY92b5n8nUD60ugC80g5wVsA8nvVbTFC4DdM7Q1P_q4_zUcHpcWGYG0hsWmmIsHThaenp__IlB5vjZy3CC9ga519Vqf_tTL5R9r0MGtoXqr6akLQ-nJyV7Xmj376zyx499f7za6GZEo3h9cZxtd8fUdtB1jvcEvIiH1y7voy6fTGnAiyOHmBFJWbFa1x873lSAYUC_WXbvquV9x5GkloYMzVCFhC4vhYlXp8GseL76vlzCVMDbUjdxD84N3n98eknggA7GA-1oiHMsrZ6UxKXyvAYsVpc0c5DxcC8k8z6krjfZVUXFdsUB1w1lufGUzrlPuDLuPZjVo-BBhKSsDI2jo481TK0rNBBNFyXTBUnhIguhmtpSNbOXh0Iyl6nfNmVSD7RTYTvW2U2mCXo1j1gNXx6XSb4ITjJKBZ7u_ABOkYtgqxqjWrLSSesi7tNWFpr6QLquE56n1CdrZuJCKwd-oLPygBRzFZYKejbchbMNejK79qhtkJGWAfxP0YPC4URMWuitEDhqKiS9OVJ3eqRffempwEeBkyRO0u_HaM7UuM8Xu6Nn_YLlH_yf-GF3Peg-nJCt30Kz90fkngORa8zTG8G-3sj3G priority: 102 providerName: Unpaywall |
| Title | Synthetic skull bone defects for automatic patient-specific craniofacial implant design |
| URI | https://link.springer.com/article/10.1038/s41597-021-00806-0 https://www.ncbi.nlm.nih.gov/pubmed/33514740 https://www.proquest.com/docview/2483412968 https://www.proquest.com/docview/2483813835 https://pubmed.ncbi.nlm.nih.gov/PMC7846796 http://doi.org/10.1038/s41597-021-00806-0 https://doaj.org/article/331aa39c81e747aca5a1e58d2f7e60ce |
| UnpaywallVersion | submittedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: DIK dateStart: 20140101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: RPM dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: NAO dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2052-4463 dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Complete customDbUrl: eissn: 2052-4463 dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2052-4463 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: M48 dateStart: 20141101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: AAJSJ dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: C6C dateStart: 20141201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ4LxgBifgVEZiQcQy0jixHYeEOqqTVOlVROjYjxFju1ARUlLPwT97zk7H6yimhBPkWJbOfnucr87--4AXsoc3eQg136klfFjobmfylj5KmS5DpVKY2Wzkc8H7GwY96-Sqy1o2h3VGzjf6NrZflLD2fjo14_Ve1T4d1XKuHg7RyNka4pG6BgjAEIPeRt20VKltpXDeQ33XcyFWngS1Lkzm5fuwS1qb7dzGw65ZqpcRf9NMPTv25TtkeoduL0sp3L1U47H16zW6T24W8NN0q3kYx-2THkf9muFnpNXddXp1w_g0-WqRDCI88j8G_qlJJ-UhmjjrnsQhLZELhcTV-CV1MVYfZumaa8aEYUWbzQppI2_k9H36Rj5hWvt5ZCHMDw9-dg78-uuC75CcLfwuaZxoZXI8wB_ygi4klRFGh0bJrmghsWhTnNpiqRgsqC2ng2jcW4KFTEZMJ3TR7BTIoVPgAhR5LgitMm6caB4KimnPEmpTGiAH_EgbDY4U3VJctsZY5y5o3Eqsoo_GfInc_zJAg_etGumVUGOG2cfW761M20xbfdiMvuS1bqZURpKSVMlQoPOlVQykaFJhI4KbligjAcHDdezRkCzyEZhESwx4cGLdhh10x64yNJMltUcEVIEuR48roSkpaQRMg_4mviskbo-Uo6-uvrf3GLGlHlw2AjaH7Ju2orDVhj_Yeee_jddz2AvcgoV-lF6ADuL2dI8R-S2yDuwza94B3a73f5lH5_HJ4OLD_i2x3odFw3pOIXFkeHgovv5Nz3MRiI |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jB4QIzPwAAjgQRi0ZLYcZyHCTHY1LGtQrBpezP-ClSUpKytpv5z_G2cEyelAlW87DWxm6vvfPc7-z4Qei4VuMmRMmFitA0pN1mYS6pDHTNlYq1zql028nGf9U7ph_P0fAX9anNhXFhlqxNrRW0q7c7ItxN36gXGifE3o5-h6xrlblfbFhrSt1YwO3WJMZ_YcWhnl-DCjXcO3gO_XyTJ_t7Ju17ouwyEGsDMJMwMoYXRXKkIlBAAjDTXiQEgz2TGiWU0NrmStkgLJgvi6rcwQpUtdMJkxIwi8LvX0BolNAfnb213r__x0_yUhzhAFPlsnYjw7TFYTFcANQEvHtAauPMLFrFuHPAvtPt30GZ3c3sDrU_LkZxdyuHwD-O4fwvd9KgWv23EcAOt2PI22vB6Y4xf-uLWr-6gs8-zEjAnjMPj7-D-YlWVFhtbR5VgQNBYTidVXUcW-5qvocsGdRFNWINhHVSFdMf8ePBjNASxgLkuBuUuOr2SZb-HVkug8AHCnBcKZsQuJ5hGOsslyUiW5kSmJIKPBChuF1hoX_ncNeAYivoGnnDRMEUAU0TNFBEF6HU3Z9TU_Vg6etfxrRvpanbXD6qLr8KrAEFILCXJNY8t-HBSy1TGNuUmKTLLIm0DtNlyXXhFMhZzsQ_Qs-41qAB3ryNLW02bMTwmgKUDdL8Rko4S4jI1MgoUZgvis0Dq4pty8K0uM545aJqzAG21gjYna9lSbHXC-B8r93D5n36K1nsnx0fi6KB_-AhdT-ptE4dJvolWJxdT-xgQ4UQ98dsOoy9XvdN_A6sVcts |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwED-NIfH4gBjPwAAjgQRiUZM4sZ0PCAFj2hhMSDDRb8avQEVJytpq6r_GX8c5r1KBKr7sa2I313v4fmffnQEeKY1hcqRtmFjjwlRYHuYqNaGJmbaxMXlqfDXy-yO2f5y-HWbDDfjV1cL4tMpuTawXalsZv0c-SPyuFzonJgZFmxbxYXfvxeRn6G-Q8iet3XUajYocusUphm_T5we7KOvHSbL35tPr_bC9YSA0CGRmIbc0LawRWke4ACG4yHKTWATxTHFBHUtjm2vliqxgqqC-dwujqXaFSZiKmNUUf_ccnOeU5j6dkA_5cn-HeigUtXU6ERWDKfpK3_o0wfgdcRoG8iu-sL4y4F849-90zf7M9jJcnJcTtThV4_EfbnHvKlxp8Sx52SjgFmy48hpstSvGlDxp21o_vQ6fPy5KRJs4jky_I2-JrkpHrKvzSQhiZ6Lms6ruIEvabq-hrwP1uUzEoEsdVYXyG_xk9GMyRoXAuT775AYcnwnTb8JmiRTeBiJEoXFG7KuB08jwXFFOeZZTldEIPxJA3DFYmrbnub96Yyzrs3cqZCMUiUKRtVBkFMCzfs6k6fixdvQrL7d-pO_WXT-oTr7K1vglpbFSNDcidhi9KaMyFbtM2KTgjkXGBbDdSV22S8hULhU-gIf9azR-f6KjSlfNmzEipoiiA7jVKElPCfU1GjxFCvmK-qyQuvqmHH2rG4xzD0pzFsBOp2hLstaxYqdXxv_g3J31f_oBXED7lu8Ojg7vwqWktpo4TPJt2JydzN09hIIzfb-2OQJfztrIfwN8xHB1 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOQHkGCjISBxB1iePEdo4FUVVIVEiwopwsvyJWXbIrkgiVX8848aZErQpck7EyGc_E38QznxF6rg2kyalxJHPWk1w6QUqdW2IpN45aW-Y2dCN_OOKH8_z9cXF8RhY92b5n8nUD60ugC80g5wVsA8nvVbTFC4DdM7Q1P_q4_zUcHpcWGYG0hsWmmIsHThaenp__IlB5vjZy3CC9ga519Vqf_tTL5R9r0MGtoXqr6akLQ-nJyV7Xmj376zyx499f7za6GZEo3h9cZxtd8fUdtB1jvcEvIiH1y7voy6fTGnAiyOHmBFJWbFa1x873lSAYUC_WXbvquV9x5GkloYMzVCFhC4vhYlXp8GseL76vlzCVMDbUjdxD84N3n98eknggA7GA-1oiHMsrZ6UxKXyvAYsVpc0c5DxcC8k8z6krjfZVUXFdsUB1w1lufGUzrlPuDLuPZjVo-BBhKSsDI2jo481TK0rNBBNFyXTBUnhIguhmtpSNbOXh0Iyl6nfNmVSD7RTYTvW2U2mCXo1j1gNXx6XSb4ITjJKBZ7u_ABOkYtgqxqjWrLSSesi7tNWFpr6QLquE56n1CdrZuJCKwd-oLPygBRzFZYKejbchbMNejK79qhtkJGWAfxP0YPC4URMWuitEDhqKiS9OVJ3eqRffempwEeBkyRO0u_HaM7UuM8Xu6Nn_YLlH_yf-GF3Peg-nJCt30Kz90fkngORa8zTG8G-3sj3G |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+skull+bone+defects+for+automatic+patient-specific+craniofacial+implant+design&rft.jtitle=Scientific+data&rft.au=Li%2C+Jianning&rft.au=Gsaxner%2C+Christina&rft.au=Pepe%2C+Antonio&rft.au=Morais%2C+Ana&rft.date=2021-01-29&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2052-4463&rft.volume=8&rft_id=info:doi/10.1038%2Fs41597-021-00806-0&rft_id=info%3Apmid%2F33514740&rft.externalDocID=PMC7846796 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon |