Application of Machine Learning Techniques for Clinical Predictive Modeling: A Cross-Sectional Study on Nonalcoholic Fatty Liver Disease in China

Background. Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases. Machine learning techniques were introduced to evaluate the optimal predictive clinical model of NAFLD. Methods. A cross-sectional study was performed with subjects who attended a health examinatio...

Full description

Saved in:
Bibliographic Details
Published inBioMed research international Vol. 2018; no. 2018; pp. 1 - 9
Main Authors Yu, Chaohui, Shen, Zhe, Li, Youming, Ma, Han, Li, You-ming
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2018
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN2314-6133
2314-6141
2314-6141
DOI10.1155/2018/4304376

Cover

More Information
Summary:Background. Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases. Machine learning techniques were introduced to evaluate the optimal predictive clinical model of NAFLD. Methods. A cross-sectional study was performed with subjects who attended a health examination at the First Affiliated Hospital, Zhejiang University. Questionnaires, laboratory tests, physical examinations, and liver ultrasonography were employed. Machine learning techniques were then implemented using the open source software Weka. The tasks included feature selection and classification. Feature selection techniques built a screening model by removing the redundant features. Classification was used to build a prediction model, which was evaluated by the F-measure. 11 state-of-the-art machine learning techniques were investigated. Results. Among the 10,508 enrolled subjects, 2,522 (24%) met the diagnostic criteria of NAFLD. By leveraging a set of statistical testing techniques, BMI, triglycerides, gamma-glutamyl transpeptidase (γGT), the serum alanine aminotransferase (ALT), and uric acid were the top 5 features contributing to NAFLD. A 10-fold cross-validation was used in the classification. According to the results, the Bayesian network model demonstrated the best performance from among the 11 different techniques. It achieved accuracy, specificity, sensitivity, and F-measure scores of up to 83%, 0.878, 0.675, and 0.655, respectively. Compared with logistic regression, the Bayesian network model improves the F-measure score by 9.17%. Conclusion. Novel machine learning techniques may have screening and predictive value for NAFLD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Academic Editor: Fumio Imazeki
ISSN:2314-6133
2314-6141
2314-6141
DOI:10.1155/2018/4304376