An algorithm to identify patients aged 0–3 with rare genetic disorders

Background With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and...

Full description

Saved in:
Bibliographic Details
Published inOrphanet journal of rare diseases Vol. 19; no. 1; pp. 183 - 8
Main Authors Webb, Bryn D., Lau, Lisa Y., Tsevdos, Despina, Shewcraft, Ryan A., Corrigan, David, Shi, Lisong, Lee, Seungwoo, Tyler, Jonathan, Li, Shilong, Wang, Zichen, Stolovitzky, Gustavo, Edelmann, Lisa, Chen, Rong, Schadt, Eric E., Li, Li
Format Journal Article
LanguageEnglish
Published London BioMed Central 02.05.2024
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1750-1172
1750-1172
DOI10.1186/s13023-024-03188-9

Cover

Abstract Background With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and procedures for specific disorders. We sought to develop a digital phenotyping algorithm ( PheIndex ) using electronic medical records to identify children aged 0–3 diagnosed with genetic disorders or who present with illness with an increased risk for genetic disorders. Results Through expert opinion, we established 13 criteria for the algorithm and derived a score and a classification. The performance of each criterion and the classification were validated by chart review. PheIndex identified 1,088 children out of 93,154 live births who may be at an increased risk for genetic disorders. Chart review demonstrated that the algorithm achieved 90% sensitivity, 97% specificity, and 94% accuracy. Conclusions The PheIndex algorithm can help identify when a rare genetic disorder may be present, alerting providers to consider ordering a diagnostic genetic test and/or referring a patient to a medical geneticist.
AbstractList Background With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and procedures for specific disorders. We sought to develop a digital phenotyping algorithm ( PheIndex ) using electronic medical records to identify children aged 0–3 diagnosed with genetic disorders or who present with illness with an increased risk for genetic disorders. Results Through expert opinion, we established 13 criteria for the algorithm and derived a score and a classification. The performance of each criterion and the classification were validated by chart review. PheIndex identified 1,088 children out of 93,154 live births who may be at an increased risk for genetic disorders. Chart review demonstrated that the algorithm achieved 90% sensitivity, 97% specificity, and 94% accuracy. Conclusions The PheIndex algorithm can help identify when a rare genetic disorder may be present, alerting providers to consider ordering a diagnostic genetic test and/or referring a patient to a medical geneticist.
With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and procedures for specific disorders. We sought to develop a digital phenotyping algorithm (PheIndex) using electronic medical records to identify children aged 0-3 diagnosed with genetic disorders or who present with illness with an increased risk for genetic disorders.BACKGROUNDWith over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and procedures for specific disorders. We sought to develop a digital phenotyping algorithm (PheIndex) using electronic medical records to identify children aged 0-3 diagnosed with genetic disorders or who present with illness with an increased risk for genetic disorders.Through expert opinion, we established 13 criteria for the algorithm and derived a score and a classification. The performance of each criterion and the classification were validated by chart review. PheIndex identified 1,088 children out of 93,154 live births who may be at an increased risk for genetic disorders. Chart review demonstrated that the algorithm achieved 90% sensitivity, 97% specificity, and 94% accuracy.RESULTSThrough expert opinion, we established 13 criteria for the algorithm and derived a score and a classification. The performance of each criterion and the classification were validated by chart review. PheIndex identified 1,088 children out of 93,154 live births who may be at an increased risk for genetic disorders. Chart review demonstrated that the algorithm achieved 90% sensitivity, 97% specificity, and 94% accuracy.The PheIndex algorithm can help identify when a rare genetic disorder may be present, alerting providers to consider ordering a diagnostic genetic test and/or referring a patient to a medical geneticist.CONCLUSIONSThe PheIndex algorithm can help identify when a rare genetic disorder may be present, alerting providers to consider ordering a diagnostic genetic test and/or referring a patient to a medical geneticist.
With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and procedures for specific disorders. We sought to develop a digital phenotyping algorithm (PheIndex) using electronic medical records to identify children aged 0-3 diagnosed with genetic disorders or who present with illness with an increased risk for genetic disorders. Through expert opinion, we established 13 criteria for the algorithm and derived a score and a classification. The performance of each criterion and the classification were validated by chart review. PheIndex identified 1,088 children out of 93,154 live births who may be at an increased risk for genetic disorders. Chart review demonstrated that the algorithm achieved 90% sensitivity, 97% specificity, and 94% accuracy. The PheIndex algorithm can help identify when a rare genetic disorder may be present, alerting providers to consider ordering a diagnostic genetic test and/or referring a patient to a medical geneticist.
Background With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and procedures for specific disorders. We sought to develop a digital phenotyping algorithm (PheIndex) using electronic medical records to identify children aged 0-3 diagnosed with genetic disorders or who present with illness with an increased risk for genetic disorders. Results Through expert opinion, we established 13 criteria for the algorithm and derived a score and a classification. The performance of each criterion and the classification were validated by chart review. PheIndex identified 1,088 children out of 93,154 live births who may be at an increased risk for genetic disorders. Chart review demonstrated that the algorithm achieved 90% sensitivity, 97% specificity, and 94% accuracy. Conclusions The PheIndex algorithm can help identify when a rare genetic disorder may be present, alerting providers to consider ordering a diagnostic genetic test and/or referring a patient to a medical geneticist. Keywords: Digital phenotyping, Algorithm, Pediatric genetic disorders, Clinical decision-making
With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and procedures for specific disorders. We sought to develop a digital phenotyping algorithm (PheIndex) using electronic medical records to identify children aged 0-3 diagnosed with genetic disorders or who present with illness with an increased risk for genetic disorders. Through expert opinion, we established 13 criteria for the algorithm and derived a score and a classification. The performance of each criterion and the classification were validated by chart review. PheIndex identified 1,088 children out of 93,154 live births who may be at an increased risk for genetic disorders. Chart review demonstrated that the algorithm achieved 90% sensitivity, 97% specificity, and 94% accuracy. The PheIndex algorithm can help identify when a rare genetic disorder may be present, alerting providers to consider ordering a diagnostic genetic test and/or referring a patient to a medical geneticist.
Abstract Background With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and procedures for specific disorders. We sought to develop a digital phenotyping algorithm (PheIndex) using electronic medical records to identify children aged 0–3 diagnosed with genetic disorders or who present with illness with an increased risk for genetic disorders. Results Through expert opinion, we established 13 criteria for the algorithm and derived a score and a classification. The performance of each criterion and the classification were validated by chart review. PheIndex identified 1,088 children out of 93,154 live births who may be at an increased risk for genetic disorders. Chart review demonstrated that the algorithm achieved 90% sensitivity, 97% specificity, and 94% accuracy. Conclusions The PheIndex algorithm can help identify when a rare genetic disorder may be present, alerting providers to consider ordering a diagnostic genetic test and/or referring a patient to a medical geneticist.
ArticleNumber 183
Audience Academic
Author Li, Li
Tsevdos, Despina
Tyler, Jonathan
Stolovitzky, Gustavo
Corrigan, David
Webb, Bryn D.
Shi, Lisong
Chen, Rong
Schadt, Eric E.
Lau, Lisa Y.
Shewcraft, Ryan A.
Wang, Zichen
Lee, Seungwoo
Li, Shilong
Edelmann, Lisa
Author_xml – sequence: 1
  givenname: Bryn D.
  orcidid: 0000-0001-6174-4677
  surname: Webb
  fullname: Webb, Bryn D.
  email: bdwebb@wisc.edu
  organization: Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.)
– sequence: 2
  givenname: Lisa Y.
  surname: Lau
  fullname: Lau, Lisa Y.
  organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.)
– sequence: 3
  givenname: Despina
  surname: Tsevdos
  fullname: Tsevdos, Despina
  organization: Department of Pediatrics, Icahn School of Medicine at Mount Sinai
– sequence: 4
  givenname: Ryan A.
  surname: Shewcraft
  fullname: Shewcraft, Ryan A.
  organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.)
– sequence: 5
  givenname: David
  surname: Corrigan
  fullname: Corrigan, David
  organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.)
– sequence: 6
  givenname: Lisong
  surname: Shi
  fullname: Shi, Lisong
  organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.)
– sequence: 7
  givenname: Seungwoo
  surname: Lee
  fullname: Lee, Seungwoo
  organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.)
– sequence: 8
  givenname: Jonathan
  surname: Tyler
  fullname: Tyler, Jonathan
  organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.)
– sequence: 9
  givenname: Shilong
  surname: Li
  fullname: Li, Shilong
  organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.)
– sequence: 10
  givenname: Zichen
  surname: Wang
  fullname: Wang, Zichen
  organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.)
– sequence: 11
  givenname: Gustavo
  surname: Stolovitzky
  fullname: Stolovitzky, Gustavo
  organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.)
– sequence: 12
  givenname: Lisa
  surname: Edelmann
  fullname: Edelmann, Lisa
  organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.)
– sequence: 13
  givenname: Rong
  surname: Chen
  fullname: Chen, Rong
  organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.)
– sequence: 14
  givenname: Eric E.
  surname: Schadt
  fullname: Schadt, Eric E.
  organization: Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai
– sequence: 15
  givenname: Li
  surname: Li
  fullname: Li, Li
  email: dlleely@gmail.com
  organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38698482$$D View this record in MEDLINE/PubMed
BookMark eNqNks2KFDEUhQsZcX70BVxIgRtd1JikklSykmZQp2FA8GcdUsmtmjTVSZtUzdg738E39ElMT7XDNIhIFgk33znJPdzT4sgHD0XxHKNzjAV_k3CNSF0hQitUYyEq-ag4wQ1DFcYNOXpwPi5OU1ohRFmNxJPiuBZcCirISXG58KUe-hDdeL0ux1A6C3503bbc6NHlYyp1D7ZEv378rMvbTJVRRyh78DA6U1qXQrQQ09PicaeHBM_2-1nx9f27LxeX1dXHD8uLxVVlGGdjRRkSpONEMsYaaCXlvAFDJe4Y6aztoOUcuLDYNkRzpkGCtZSYfN82um3qs2I5-9qgV2oT3VrHrQraqbtCiL3SMf9sAKWxEZzoBjojaHZpW82obADh_AI3KHvVs9fkN3p7q4fh3hAjtctYzRmrnLG6y1jJrHo7qzZTuwZrckhRDwdfObzx7lr14SYbIk4p2jm82jvE8G2CNKq1SwaGQXsIU1I1YpmiUu7afTmjvc4dOd-FbGl2uFo0ssYEYSkydf4XKi8La2fy1HQu1w8Erw8EmRnh-9jrKSW1_PzpkH3xsN_7Rv8MUQbIDJgYUorQ_V-K--xThn0PUa3CFH0enX-pfgMEsufA
Cites_doi 10.1016/j.gim.2022.08.002
10.1016/j.jbi.2017.11.011
10.4338/ACI-2016-01-RA-0015
10.1093/jamia/ocab161
10.1053/j.semperi.2015.09.009
10.1186/s13023-015-0251-8
10.3389/fgene.2019.01059
10.1186/s13023-021-02061-3
10.1038/s41436-021-01241-7
10.1093/jamia/ocv065
10.4137/BII.S38308
10.1016/j.kint.2019.11.037
10.3389/fpubh.2020.00058
10.1038/s41746-022-00612-x
10.1093/jamia/ocab181
10.1186/s13023-022-02337-2
10.1002/ajmg.a.61124
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s13023-024-03188-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals (OA)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE




Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1750-1172
EndPage 8
ExternalDocumentID oai_doaj_org_article_a1c862a7efc84dd4bba5497e01e686c0
10.1186/s13023-024-03188-9
PMC11064409
A793120198
38698482
10_1186_s13023_024_03188_9
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
0R~
123
29N
2WC
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AN0
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BNQBC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ISR
ITC
KQ8
M1P
M48
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
~8M
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
2VQ
4.4
ADTOC
AHSBF
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c565t-45082f6295557eb94667ec491f52fddfeb66e68d1d72a65ae9edd42c1f5b7ab73
IEDL.DBID M48
ISSN 1750-1172
IngestDate Fri Oct 03 12:45:17 EDT 2025
Sun Oct 26 04:16:58 EDT 2025
Tue Sep 30 17:09:01 EDT 2025
Thu Sep 04 17:00:23 EDT 2025
Mon Oct 20 22:49:36 EDT 2025
Mon Oct 20 16:56:33 EDT 2025
Thu Oct 16 16:22:18 EDT 2025
Mon Jul 21 06:07:18 EDT 2025
Wed Oct 01 03:02:52 EDT 2025
Sat Sep 06 07:29:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Digital phenotyping
Pediatric genetic disorders
Algorithm
Clinical decision-making
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c565t-45082f6295557eb94667ec491f52fddfeb66e68d1d72a65ae9edd42c1f5b7ab73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6174-4677
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13023-024-03188-9
PMID 38698482
PQID 3050934997
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_a1c862a7efc84dd4bba5497e01e686c0
unpaywall_primary_10_1186_s13023_024_03188_9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11064409
proquest_miscellaneous_3050934997
gale_infotracmisc_A793120198
gale_infotracacademiconefile_A793120198
gale_incontextgauss_ISR_A793120198
pubmed_primary_38698482
crossref_primary_10_1186_s13023_024_03188_9
springer_journals_10_1186_s13023_024_03188_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-02
PublicationDateYYYYMMDD 2024-05-02
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Orphanet journal of rare diseases
PublicationTitleAbbrev Orphanet J Rare Dis
PublicationTitleAlternate Orphanet J Rare Dis
PublicationYear 2024
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References AB Zheutlin (3188_CR18) 2022; 29
BH Shirts (3188_CR2) 2015; 22
S Li (3188_CR20) 2022; 5
N Garcelon (3188_CR1) 2020; 97
S Ayme (3188_CR15) 2015; 10
J Horsky (3188_CR9) 2017; 2017
AA Navarrete-Opazo (3188_CR16) 2021; 23
JE Petrikin (3188_CR10) 2015; 39
AB Zheutlin (3188_CR19) 2022; 29
T Lingren (3188_CR6) 2016; 7
G Zanello (3188_CR17) 2022; 17
MS Williams (3188_CR3) 2019; 10
CR Ferreira (3188_CR11) 2019; 179
KW Fung (3188_CR8) 2014; 2014
A Tisdale (3188_CR14) 2021; 16
KE Miller (3188_CR13) 2020; 8
S Tenny (3188_CR12) 2023
Z Yang (3188_CR4) 2022; 24
KB Cohen (3188_CR5) 2016; 8
Y Wang (3188_CR7) 2018; 77
References_xml – volume: 24
  start-page: 2329
  issue: 11
  year: 2022
  ident: 3188_CR4
  publication-title: Genet Med
  doi: 10.1016/j.gim.2022.08.002
– volume: 77
  start-page: 34
  year: 2018
  ident: 3188_CR7
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2017.11.011
– volume: 7
  start-page: 693
  issue: 3
  year: 2016
  ident: 3188_CR6
  publication-title: Appl Clin Inform
  doi: 10.4338/ACI-2016-01-RA-0015
– volume: 29
  start-page: 296
  issue: 2
  year: 2022
  ident: 3188_CR19
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocab161
– volume: 39
  start-page: 623
  issue: 8
  year: 2015
  ident: 3188_CR10
  publication-title: Semin Perinatol
  doi: 10.1053/j.semperi.2015.09.009
– volume: 2014
  start-page: 564
  year: 2014
  ident: 3188_CR8
  publication-title: AMIA Annu Symp Proc
– volume: 10
  start-page: 35
  year: 2015
  ident: 3188_CR15
  publication-title: Orphanet J Rare Dis
  doi: 10.1186/s13023-015-0251-8
– volume: 10
  start-page: 1059
  year: 2019
  ident: 3188_CR3
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.01059
– volume: 16
  start-page: 429
  issue: 1
  year: 2021
  ident: 3188_CR14
  publication-title: Orphanet J Rare Dis
  doi: 10.1186/s13023-021-02061-3
– volume: 23
  start-page: 2194
  issue: 11
  year: 2021
  ident: 3188_CR16
  publication-title: Genet Med
  doi: 10.1038/s41436-021-01241-7
– volume: 22
  start-page: 1231
  issue: 6
  year: 2015
  ident: 3188_CR2
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocv065
– volume: 8
  start-page: 11
  year: 2016
  ident: 3188_CR5
  publication-title: Biomed Inform Insights
  doi: 10.4137/BII.S38308
– volume: 97
  start-page: 676
  issue: 4
  year: 2020
  ident: 3188_CR1
  publication-title: Kidney Int
  doi: 10.1016/j.kint.2019.11.037
– volume: 8
  start-page: 58
  year: 2020
  ident: 3188_CR13
  publication-title: Front Public Health
  doi: 10.3389/fpubh.2020.00058
– volume: 2017
  start-page: 912
  year: 2017
  ident: 3188_CR9
  publication-title: AMIA Annu Symp Proc
– volume: 5
  start-page: 68
  issue: 1
  year: 2022
  ident: 3188_CR20
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-022-00612-x
– volume-title: Prevalence, in StatPearls
  year: 2023
  ident: 3188_CR12
– volume: 29
  start-page: 321
  issue: 2
  year: 2022
  ident: 3188_CR18
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocab181
– volume: 17
  start-page: 181
  issue: 1
  year: 2022
  ident: 3188_CR17
  publication-title: Orphanet J Rare Dis
  doi: 10.1186/s13023-022-02337-2
– volume: 179
  start-page: 885
  issue: 6
  year: 2019
  ident: 3188_CR11
  publication-title: Am J Med Genet A
  doi: 10.1002/ajmg.a.61124
SSID ssj0045308
Score 2.3972127
Snippet Background With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical...
With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is...
Background With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical...
Abstract Background With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 183
SubjectTerms Algorithm
Algorithms
Child, Preschool
Children
Clinical decision-making
Digital phenotyping
Electronic Health Records
Female
Genetic Diseases, Inborn - diagnosis
Genetic Diseases, Inborn - genetics
Genetic screening
Health aspects
Human Genetics
Humans
Infant
Infant, Newborn
Male
Medical records
Medicine
Medicine & Public Health
Methods
Pediatric genetic disorders
Pharmacology/Toxicology
Phenotype
Rare Diseases - diagnosis
Rare Diseases - genetics
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (OA)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiDeBggxC4kCj5uHYznFBVAtSOQCVerP8GLcrLUnVZFX11v_AP-SXMHayqw1IwIFrbEXyN-PxfLbnMyGveOEcc7VNeWaKlDGfpdKCSbXhAulB5SBuXRx-4vMj9vG4Ot566ivcCRvkgQfg9nVuMenWAryVDP9rjEZKIyDLgUtuI1vPZL0mU0MMZlWZyXWJjOT7XTieC-eVLA1OjFN8sgxFtf7fY_LWovTrhcnNqektcmPVnOnLC71cbi1MB3fI7TGjpLNhJHfJNWjukeuH45n5fTKfNVQvT9rzRX_6jfYtXcTaXH9JR03VjmJMcTT7cfW9pGFfliKBBoqeFQocqRv1ObsH5Ojg_dd383R8PyG1mKb1KcPkq_C8qKuqEmCCkrwAy-rcV4V3zoPhHEF0uROF5pWGGhDgwmK7EdqI8iHZadoGHhMqHAOdeV0wLxkIIQFJeAW11RI0ctyEvFnDqc4GmQwV6YXkagBfIfgqgq_qhLwNiG96Bonr-AENr0bDq78ZPiEvg71UELFowi2ZE73qOvXhy2c1w6CTY2ZTy4S8Hjv5Fi1n9Vh0gKMKuleTnruTnjjL7KT5xdotVGgKV9MaaFedKoOCTonEEUF4NLjJZmCl5LVkskiInDjQZOTTlmZxGkW-MS3DVDVDrPbWvqbG8NL9Edq9jT_-gyWe_A9LPCU3izi1Qq3_Ltnpz1fwDFO13jyPs_InueU5lQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSDwOiHcDBRmExIFGTRzHdo5LRbUglQNQqTfLscdtpSWpml2h3vgP_EN-CWOvd7UBhOAaO1E8L8-X8Xwh5KVgznHX2FwULcs590WuLLS5aYVEeFA7iJ8uDj-I6RF_f1wfJ5qc0AuzWb8vldgbQmEtVBp5HswPnfMquYablIiFWbG_irq8rgq1aor5432jjSfy8_8ehTe2oV-PSK7rpLfIjUV3bi6_mtlsYys6uENupxySTpZKv0uuQHePXD9MVfL7ZDrpqJmd9Ij7T7_QeU_PYjeuv6SJRXWgGEUcLX58-17R8CWWImQGirYUWhqpS4ycwwNydPD28_40T39MyC0mZvOcY7rFvGBNXdcS2sAdL8HypvQ18855aIUAoVzpJDOiNtAAqopZHG-laWX1kGx1fQfbhErHwRTeMO4VBykVIOyuobFGgUFUm5HXK3Hq8yUxho6AQgm9FL5G4esofN1k5E2Q-HpmILWOF1DXOvmINqVFfGUkeKs4vlfbGkSvEooS31nYIiMvgr50oK3owrmYE7MYBv3u00c9wTBTYi7TqIy8SpN8j5qzJrUZ4KoC09Vo5s5oJvqVHQ0_X5mFDkPhMFoH_WLQVeDMqRAqohAeLc1kvbBKiUZxxTKiRgY0Wvl4pDs7jbTemIhhclqgrHZXtqZTQBn-KtrdtT3-gyYe_9_Tn5CbLDpR6OPfIVvziwU8xTRs3j6L_vcTst8pCg
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgK_E48H4ECjIIiQNNSbKO7RwXRLUgtULASuVk-ZV21W1SNYlQOfEf-If8EsaOd7UpCJVrPJHsmc_2jMfzGaEXNDOGmELHNFFZTEiZxFxbFUtFGYQHubH-6GJ3j05n5MN-vh9oclwtzHr-PuX0deMSay7TSGIHP5icl9EGzcHvHqGN2d7HyVdf8ZgncQpb8bIq5q8_DnYeT9D_5zK8tg-dvyO5SpReR1e76kSefZOLxdpetHOzf9So8RSG7grK0XbXqm39_RzB48WGeQvdCC4pnvQYuo0u2eoOurIbku530XRSYbk4qE_n7eExbms898W95RkOpKwNhkXJ4OTXj59j7A52MUTgFgM0XYUkNoHgs7mHZjvvvrydxuEBhliDn9fGBLy3rKRZkec5s8pR0TOrSZGWeVYaU1pFqaXcpIZlkubSFhYsn2loV0wqNr6PRlVd2YcIM0OsTEqZkZITyxi3EMXnttCSWwlBcoReLY0jTnqeDeHjE05FrxwByhFeOaKI0Btnv5Wk48j2H0CnIkw5IVMN4ZpkttScQL-UkhAMM5uk0Geqkwg9d9YXjgWjctdsDmTXNOL9509iAqtWCq5RwSP0MgiVNeBAy1C1AKNyxFkDyc2BJExTPWh-tgSZcE3ubltl664RY0fBM4bIE5TwoAfdamBjTgtOeBYhPoDjYOTDlmp-6FnCwa8DXzcBXW0tkSvC-tT8U7VbK3RfwBKP_k_8MbqWeZA7WoBNNGpPO_sEvLpWPQ3T-TdsVEFv
  priority: 102
  providerName: Unpaywall
Title An algorithm to identify patients aged 0–3 with rare genetic disorders
URI https://link.springer.com/article/10.1186/s13023-024-03188-9
https://www.ncbi.nlm.nih.gov/pubmed/38698482
https://www.proquest.com/docview/3050934997
https://pubmed.ncbi.nlm.nih.gov/PMC11064409
https://doi.org/10.1186/s13023-024-03188-9
https://doaj.org/article/a1c862a7efc84dd4bba5497e01e686c0
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: RBZ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: ABDBF
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: M48
  dateStart: 20060401
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: AAJSJ
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: C6C
  dateStart: 20060112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZ2kbg8IO4rjMogJB5YRpo4tvOAUFZtKpVaTRuVypPl2E5XqUtG0wr6xn_gH_JLOHaTaoEJwVOlHKeKj8-xz-fj8xmh1zTQmuhYedRPA4-QzPe4MqknU8oAHkTauK2LwZD2RqQ_jsZbqL7uqFJgeSO0s_dJjeazw29fVh_A4d87h-f0XWmTbzYbSTxrouDA22gXVqrYXuUwIJusAolCn9eFMze-11icHIf_nzP1taXq92OUm1zqXXR7mV_J1Vc5m11brk7uo3tVnImTtWE8QFsmf4huDapM-iPUS3IsZ5NiPl1cXOJFgaeuYjdb4YpptcQw02js__z-I8R2txYDrDYY7M2WPWJdsXaWj9Ho5PhTt-dVtyp4CoK3hUcgJAsyGsRRFDGTWn55ZhSJO1kUZFpnJqXUUK47mgWSRtLEBoYzUCBPmUxZ-ATt5EVu9hBmmhjpZzIgGSeGMW4AmkcmVpIbCci3hd7W6hRXa_IM4UAHp2KtfAHKF075Im6hI6vxTUtLfO0eFPOJqPxIyI4CDCaZyRQn8F1pKgHhMuN34Jup8lvolR0vYaktcnt2ZiKXZSk-np-JBKaiDsQ7MW-hN1WjrICRU7IqRYBeWTasRsv9RkvwPdUQv6zNQliRPbCWm2JZitDy6oQAJ0EJT9dmsulYyGnMCQ9aiDcMqNHzpiSfXjjqbwjWIID1QVcHta2J2mf-qtqDjT3-w0g8-79_f47uBM6JbK3_PtpZzJfmBYRqi7SNttmYtdFukvTP-_B7dDw8PYOnXdptu-2PtvNQkIyGp8nnX2PSPyQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaglSgcEG8CBQxC4kAjso5jO8eAqLZLtwfaSr1Zjh_blZak2mSFeuM_8A_5JYyzzqoBhOAaO5E9L894Zr4g9JoRY6jJdcySksSUuiQW2paxKhmH8CAztru6mB6x8SmdnGVnoSms6avd-5RkZ6k7tRbsXeNTbD7nSGMviKCm19G2L7ICddwuisnxpLfANEsT0TfI_PHNwSHUYfX_bpGvHEm_lktucqa30M6qulCXX9ViceVY2r-Dbgd_EhdrAbiLrtnqHroxDRnz-2hcVFgtZvVy3p5_wW2N511nrrvEAVG1wWBRDE5-fPueYn8riyF8thjkyrc3YhPQOZsH6HT_48mHcRz-nhBrcNLamILrRRwjeZZl3JYeR55bTfORy4gzxtmSMcuEGRlOFMuUzS2wjWgYL7kqefoQbVV1ZR8jzA21KnGKUCeo5VxYCMEzm2slrIIIN0Jve3LKizVIhuyCC8HkmvgSiC874ss8Qu89xTczPcB196BezmTQF6lGGmItxa3TgsK6ylJBJMttMoI1M51E6JXnl_QQFpWvkZmpVdPIg-PPsgCTMwK_JhcRehMmuRo4p1VoOYBdedSrwczdwUzQMT0YftmLhfRDvjCtsvWqkanHz0khbAQiPFqLyWZjqWC5oIJESAwEaLDz4Ug1P-8gvsEpA0c1AVrt9bImg3Fp_kravY08_gMnnvzf11-gnfHJ9FAeHhx9eopukk6hfH__Ltpqlyv7DNyztnwetPEnsJAxYw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAUOiFchUMAgJA40auI4tnNcFlZboBUCKvVmOX5sV1qS1SYr1Bv_gX_IL2Gcx2oDCME140TxeJ4ez2eEnjNiDDWZDlmUk5BSF4VC2zxUOeOQHqTGNlsXxydsekrfnqVnW138zWn3viTZ9jR4lKaiPlwa16q4YIeVL7f5-iMNvVCCyl5GVyh4N3-HwZiNe1tM0yQSfavMH98buKMGtf9327zlnH49OLmpnl5HV9fFUl18VYvFloOa3EQ3usgSj1pRuIUu2eI22j3uaud30HRUYLWYlat5ff4F1yWeNz267gJ32KoVBtticPTj2_cE-_1ZDIm0xSBhvtERmw6ns7qLTidvPo-nYXePQqghXKtDCkEYcYxkaZpym3tEeW41zWKXEmeMszljlgkTG04US5XNLCwg0UDPucp5sod2irKw9xHmhloVOUWoE9RyLiwk46nNtBJWQa4boJc9O-WyhcuQTZohmGyZL4H5smG-zAL0ynN8M9JDXTcPytVMdpojVawh61LcOi0o_FeeK8hpuY1i-GemowA98-slPZhF4U_LzNS6quTRp49yBMYnhggnEwF60Q1yJaycVl3zAczK418NRu4PRoK26QH5aS8W0pP8EbXClutKJh5JJ4EEEphwrxWTzcQSwTJBBQmQGAjQYOZDSjE_b8C-ITyDkDUCXh30siY7M1P9lbUHG3n8h5V48H9ff4J2P7yeyPdHJ-8eomuk0Sff6L-PdurV2j6COK3OHzeq-BObYDRA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgK_E48H4ECjIIiQNNSbKO7RwXRLUgtULASuVk-ZV21W1SNYlQOfEf-If8EsaOd7UpCJVrPJHsmc_2jMfzGaEXNDOGmELHNFFZTEiZxFxbFUtFGYQHubH-6GJ3j05n5MN-vh9oclwtzHr-PuX0deMSay7TSGIHP5icl9EGzcHvHqGN2d7HyVdf8ZgncQpb8bIq5q8_DnYeT9D_5zK8tg-dvyO5SpReR1e76kSefZOLxdpetHOzf9So8RSG7grK0XbXqm39_RzB48WGeQvdCC4pnvQYuo0u2eoOurIbku530XRSYbk4qE_n7eExbms898W95RkOpKwNhkXJ4OTXj59j7A52MUTgFgM0XYUkNoHgs7mHZjvvvrydxuEBhliDn9fGBLy3rKRZkec5s8pR0TOrSZGWeVYaU1pFqaXcpIZlkubSFhYsn2loV0wqNr6PRlVd2YcIM0OsTEqZkZITyxi3EMXnttCSWwlBcoReLY0jTnqeDeHjE05FrxwByhFeOaKI0Btnv5Wk48j2H0CnIkw5IVMN4ZpkttScQL-UkhAMM5uk0Geqkwg9d9YXjgWjctdsDmTXNOL9509iAqtWCq5RwSP0MgiVNeBAy1C1AKNyxFkDyc2BJExTPWh-tgSZcE3ubltl664RY0fBM4bIE5TwoAfdamBjTgtOeBYhPoDjYOTDlmp-6FnCwa8DXzcBXW0tkSvC-tT8U7VbK3RfwBKP_k_8MbqWeZA7WoBNNGpPO_sEvLpWPQ3T-TdsVEFv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithm+to+identify+patients+aged+0%E2%80%933+with+rare+genetic+disorders&rft.jtitle=Orphanet+journal+of+rare+diseases&rft.au=Webb%2C+Bryn+D.&rft.au=Lau%2C+Lisa+Y.&rft.au=Tsevdos%2C+Despina&rft.au=Shewcraft%2C+Ryan+A.&rft.date=2024-05-02&rft.pub=BioMed+Central&rft.eissn=1750-1172&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs13023-024-03188-9&rft.externalDocID=10_1186_s13023_024_03188_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-1172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-1172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-1172&client=summon