An algorithm to identify patients aged 0–3 with rare genetic disorders
Background With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and...
Saved in:
| Published in | Orphanet journal of rare diseases Vol. 19; no. 1; pp. 183 - 8 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
02.05.2024
BioMed Central Ltd BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1750-1172 1750-1172 |
| DOI | 10.1186/s13023-024-03188-9 |
Cover
| Abstract | Background
With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and procedures for specific disorders. We sought to develop a digital phenotyping algorithm (
PheIndex
) using electronic medical records to identify children aged 0–3 diagnosed with genetic disorders or who present with illness with an increased risk for genetic disorders.
Results
Through expert opinion, we established 13 criteria for the algorithm and derived a score and a classification. The performance of each criterion and the classification were validated by chart review.
PheIndex
identified 1,088 children out of 93,154 live births who may be at an increased risk for genetic disorders. Chart review demonstrated that the algorithm achieved 90% sensitivity, 97% specificity, and 94% accuracy.
Conclusions
The
PheIndex
algorithm can help identify when a rare genetic disorder may be present, alerting providers to consider ordering a diagnostic genetic test and/or referring a patient to a medical geneticist. |
|---|---|
| AbstractList | Background
With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and procedures for specific disorders. We sought to develop a digital phenotyping algorithm (
PheIndex
) using electronic medical records to identify children aged 0–3 diagnosed with genetic disorders or who present with illness with an increased risk for genetic disorders.
Results
Through expert opinion, we established 13 criteria for the algorithm and derived a score and a classification. The performance of each criterion and the classification were validated by chart review.
PheIndex
identified 1,088 children out of 93,154 live births who may be at an increased risk for genetic disorders. Chart review demonstrated that the algorithm achieved 90% sensitivity, 97% specificity, and 94% accuracy.
Conclusions
The
PheIndex
algorithm can help identify when a rare genetic disorder may be present, alerting providers to consider ordering a diagnostic genetic test and/or referring a patient to a medical geneticist. With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and procedures for specific disorders. We sought to develop a digital phenotyping algorithm (PheIndex) using electronic medical records to identify children aged 0-3 diagnosed with genetic disorders or who present with illness with an increased risk for genetic disorders.BACKGROUNDWith over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and procedures for specific disorders. We sought to develop a digital phenotyping algorithm (PheIndex) using electronic medical records to identify children aged 0-3 diagnosed with genetic disorders or who present with illness with an increased risk for genetic disorders.Through expert opinion, we established 13 criteria for the algorithm and derived a score and a classification. The performance of each criterion and the classification were validated by chart review. PheIndex identified 1,088 children out of 93,154 live births who may be at an increased risk for genetic disorders. Chart review demonstrated that the algorithm achieved 90% sensitivity, 97% specificity, and 94% accuracy.RESULTSThrough expert opinion, we established 13 criteria for the algorithm and derived a score and a classification. The performance of each criterion and the classification were validated by chart review. PheIndex identified 1,088 children out of 93,154 live births who may be at an increased risk for genetic disorders. Chart review demonstrated that the algorithm achieved 90% sensitivity, 97% specificity, and 94% accuracy.The PheIndex algorithm can help identify when a rare genetic disorder may be present, alerting providers to consider ordering a diagnostic genetic test and/or referring a patient to a medical geneticist.CONCLUSIONSThe PheIndex algorithm can help identify when a rare genetic disorder may be present, alerting providers to consider ordering a diagnostic genetic test and/or referring a patient to a medical geneticist. With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and procedures for specific disorders. We sought to develop a digital phenotyping algorithm (PheIndex) using electronic medical records to identify children aged 0-3 diagnosed with genetic disorders or who present with illness with an increased risk for genetic disorders. Through expert opinion, we established 13 criteria for the algorithm and derived a score and a classification. The performance of each criterion and the classification were validated by chart review. PheIndex identified 1,088 children out of 93,154 live births who may be at an increased risk for genetic disorders. Chart review demonstrated that the algorithm achieved 90% sensitivity, 97% specificity, and 94% accuracy. The PheIndex algorithm can help identify when a rare genetic disorder may be present, alerting providers to consider ordering a diagnostic genetic test and/or referring a patient to a medical geneticist. Background With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and procedures for specific disorders. We sought to develop a digital phenotyping algorithm (PheIndex) using electronic medical records to identify children aged 0-3 diagnosed with genetic disorders or who present with illness with an increased risk for genetic disorders. Results Through expert opinion, we established 13 criteria for the algorithm and derived a score and a classification. The performance of each criterion and the classification were validated by chart review. PheIndex identified 1,088 children out of 93,154 live births who may be at an increased risk for genetic disorders. Chart review demonstrated that the algorithm achieved 90% sensitivity, 97% specificity, and 94% accuracy. Conclusions The PheIndex algorithm can help identify when a rare genetic disorder may be present, alerting providers to consider ordering a diagnostic genetic test and/or referring a patient to a medical geneticist. Keywords: Digital phenotyping, Algorithm, Pediatric genetic disorders, Clinical decision-making With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and procedures for specific disorders. We sought to develop a digital phenotyping algorithm (PheIndex) using electronic medical records to identify children aged 0-3 diagnosed with genetic disorders or who present with illness with an increased risk for genetic disorders. Through expert opinion, we established 13 criteria for the algorithm and derived a score and a classification. The performance of each criterion and the classification were validated by chart review. PheIndex identified 1,088 children out of 93,154 live births who may be at an increased risk for genetic disorders. Chart review demonstrated that the algorithm achieved 90% sensitivity, 97% specificity, and 94% accuracy. The PheIndex algorithm can help identify when a rare genetic disorder may be present, alerting providers to consider ordering a diagnostic genetic test and/or referring a patient to a medical geneticist. Abstract Background With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and procedures for specific disorders. We sought to develop a digital phenotyping algorithm (PheIndex) using electronic medical records to identify children aged 0–3 diagnosed with genetic disorders or who present with illness with an increased risk for genetic disorders. Results Through expert opinion, we established 13 criteria for the algorithm and derived a score and a classification. The performance of each criterion and the classification were validated by chart review. PheIndex identified 1,088 children out of 93,154 live births who may be at an increased risk for genetic disorders. Chart review demonstrated that the algorithm achieved 90% sensitivity, 97% specificity, and 94% accuracy. Conclusions The PheIndex algorithm can help identify when a rare genetic disorder may be present, alerting providers to consider ordering a diagnostic genetic test and/or referring a patient to a medical geneticist. |
| ArticleNumber | 183 |
| Audience | Academic |
| Author | Li, Li Tsevdos, Despina Tyler, Jonathan Stolovitzky, Gustavo Corrigan, David Webb, Bryn D. Shi, Lisong Chen, Rong Schadt, Eric E. Lau, Lisa Y. Shewcraft, Ryan A. Wang, Zichen Lee, Seungwoo Li, Shilong Edelmann, Lisa |
| Author_xml | – sequence: 1 givenname: Bryn D. orcidid: 0000-0001-6174-4677 surname: Webb fullname: Webb, Bryn D. email: bdwebb@wisc.edu organization: Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.) – sequence: 2 givenname: Lisa Y. surname: Lau fullname: Lau, Lisa Y. organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.) – sequence: 3 givenname: Despina surname: Tsevdos fullname: Tsevdos, Despina organization: Department of Pediatrics, Icahn School of Medicine at Mount Sinai – sequence: 4 givenname: Ryan A. surname: Shewcraft fullname: Shewcraft, Ryan A. organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.) – sequence: 5 givenname: David surname: Corrigan fullname: Corrigan, David organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.) – sequence: 6 givenname: Lisong surname: Shi fullname: Shi, Lisong organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.) – sequence: 7 givenname: Seungwoo surname: Lee fullname: Lee, Seungwoo organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.) – sequence: 8 givenname: Jonathan surname: Tyler fullname: Tyler, Jonathan organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.) – sequence: 9 givenname: Shilong surname: Li fullname: Li, Shilong organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.) – sequence: 10 givenname: Zichen surname: Wang fullname: Wang, Zichen organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.) – sequence: 11 givenname: Gustavo surname: Stolovitzky fullname: Stolovitzky, Gustavo organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.) – sequence: 12 givenname: Lisa surname: Edelmann fullname: Edelmann, Lisa organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.) – sequence: 13 givenname: Rong surname: Chen fullname: Chen, Rong organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.) – sequence: 14 givenname: Eric E. surname: Schadt fullname: Schadt, Eric E. organization: Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai – sequence: 15 givenname: Li surname: Li fullname: Li, Li email: dlleely@gmail.com organization: GeneDx Holdings Corp, (formerly known as Sema4 Holdings Corp.) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38698482$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks2KFDEUhQsZcX70BVxIgRtd1JikklSykmZQp2FA8GcdUsmtmjTVSZtUzdg738E39ElMT7XDNIhIFgk33znJPdzT4sgHD0XxHKNzjAV_k3CNSF0hQitUYyEq-ag4wQ1DFcYNOXpwPi5OU1ohRFmNxJPiuBZcCirISXG58KUe-hDdeL0ux1A6C3503bbc6NHlYyp1D7ZEv378rMvbTJVRRyh78DA6U1qXQrQQ09PicaeHBM_2-1nx9f27LxeX1dXHD8uLxVVlGGdjRRkSpONEMsYaaCXlvAFDJe4Y6aztoOUcuLDYNkRzpkGCtZSYfN82um3qs2I5-9qgV2oT3VrHrQraqbtCiL3SMf9sAKWxEZzoBjojaHZpW82obADh_AI3KHvVs9fkN3p7q4fh3hAjtctYzRmrnLG6y1jJrHo7qzZTuwZrckhRDwdfObzx7lr14SYbIk4p2jm82jvE8G2CNKq1SwaGQXsIU1I1YpmiUu7afTmjvc4dOd-FbGl2uFo0ssYEYSkydf4XKi8La2fy1HQu1w8Erw8EmRnh-9jrKSW1_PzpkH3xsN_7Rv8MUQbIDJgYUorQ_V-K--xThn0PUa3CFH0enX-pfgMEsufA |
| Cites_doi | 10.1016/j.gim.2022.08.002 10.1016/j.jbi.2017.11.011 10.4338/ACI-2016-01-RA-0015 10.1093/jamia/ocab161 10.1053/j.semperi.2015.09.009 10.1186/s13023-015-0251-8 10.3389/fgene.2019.01059 10.1186/s13023-021-02061-3 10.1038/s41436-021-01241-7 10.1093/jamia/ocv065 10.4137/BII.S38308 10.1016/j.kint.2019.11.037 10.3389/fpubh.2020.00058 10.1038/s41746-022-00612-x 10.1093/jamia/ocab181 10.1186/s13023-022-02337-2 10.1002/ajmg.a.61124 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). COPYRIGHT 2024 BioMed Central Ltd. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: COPYRIGHT 2024 BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s13023-024-03188-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals (OA) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1750-1172 |
| EndPage | 8 |
| ExternalDocumentID | oai_doaj_org_article_a1c862a7efc84dd4bba5497e01e686c0 10.1186/s13023-024-03188-9 PMC11064409 A793120198 38698482 10_1186_s13023_024_03188_9 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --- 0R~ 123 29N 2WC 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AN0 AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BNQBC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EBD EBLON EBS EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR INH INR ISR ITC KQ8 M1P M48 MK0 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP WOQ WOW ~8M AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM 2VQ 4.4 ADTOC AHSBF EJD H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c565t-45082f6295557eb94667ec491f52fddfeb66e68d1d72a65ae9edd42c1f5b7ab73 |
| IEDL.DBID | M48 |
| ISSN | 1750-1172 |
| IngestDate | Fri Oct 03 12:45:17 EDT 2025 Sun Oct 26 04:16:58 EDT 2025 Tue Sep 30 17:09:01 EDT 2025 Thu Sep 04 17:00:23 EDT 2025 Mon Oct 20 22:49:36 EDT 2025 Mon Oct 20 16:56:33 EDT 2025 Thu Oct 16 16:22:18 EDT 2025 Mon Jul 21 06:07:18 EDT 2025 Wed Oct 01 03:02:52 EDT 2025 Sat Sep 06 07:29:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Digital phenotyping Pediatric genetic disorders Algorithm Clinical decision-making |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c565t-45082f6295557eb94667ec491f52fddfeb66e68d1d72a65ae9edd42c1f5b7ab73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6174-4677 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13023-024-03188-9 |
| PMID | 38698482 |
| PQID | 3050934997 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a1c862a7efc84dd4bba5497e01e686c0 unpaywall_primary_10_1186_s13023_024_03188_9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11064409 proquest_miscellaneous_3050934997 gale_infotracmisc_A793120198 gale_infotracacademiconefile_A793120198 gale_incontextgauss_ISR_A793120198 pubmed_primary_38698482 crossref_primary_10_1186_s13023_024_03188_9 springer_journals_10_1186_s13023_024_03188_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-02 |
| PublicationDateYYYYMMDD | 2024-05-02 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Orphanet journal of rare diseases |
| PublicationTitleAbbrev | Orphanet J Rare Dis |
| PublicationTitleAlternate | Orphanet J Rare Dis |
| PublicationYear | 2024 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | AB Zheutlin (3188_CR18) 2022; 29 BH Shirts (3188_CR2) 2015; 22 S Li (3188_CR20) 2022; 5 N Garcelon (3188_CR1) 2020; 97 S Ayme (3188_CR15) 2015; 10 J Horsky (3188_CR9) 2017; 2017 AA Navarrete-Opazo (3188_CR16) 2021; 23 JE Petrikin (3188_CR10) 2015; 39 AB Zheutlin (3188_CR19) 2022; 29 T Lingren (3188_CR6) 2016; 7 G Zanello (3188_CR17) 2022; 17 MS Williams (3188_CR3) 2019; 10 CR Ferreira (3188_CR11) 2019; 179 KW Fung (3188_CR8) 2014; 2014 A Tisdale (3188_CR14) 2021; 16 KE Miller (3188_CR13) 2020; 8 S Tenny (3188_CR12) 2023 Z Yang (3188_CR4) 2022; 24 KB Cohen (3188_CR5) 2016; 8 Y Wang (3188_CR7) 2018; 77 |
| References_xml | – volume: 24 start-page: 2329 issue: 11 year: 2022 ident: 3188_CR4 publication-title: Genet Med doi: 10.1016/j.gim.2022.08.002 – volume: 77 start-page: 34 year: 2018 ident: 3188_CR7 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2017.11.011 – volume: 7 start-page: 693 issue: 3 year: 2016 ident: 3188_CR6 publication-title: Appl Clin Inform doi: 10.4338/ACI-2016-01-RA-0015 – volume: 29 start-page: 296 issue: 2 year: 2022 ident: 3188_CR19 publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocab161 – volume: 39 start-page: 623 issue: 8 year: 2015 ident: 3188_CR10 publication-title: Semin Perinatol doi: 10.1053/j.semperi.2015.09.009 – volume: 2014 start-page: 564 year: 2014 ident: 3188_CR8 publication-title: AMIA Annu Symp Proc – volume: 10 start-page: 35 year: 2015 ident: 3188_CR15 publication-title: Orphanet J Rare Dis doi: 10.1186/s13023-015-0251-8 – volume: 10 start-page: 1059 year: 2019 ident: 3188_CR3 publication-title: Front Genet doi: 10.3389/fgene.2019.01059 – volume: 16 start-page: 429 issue: 1 year: 2021 ident: 3188_CR14 publication-title: Orphanet J Rare Dis doi: 10.1186/s13023-021-02061-3 – volume: 23 start-page: 2194 issue: 11 year: 2021 ident: 3188_CR16 publication-title: Genet Med doi: 10.1038/s41436-021-01241-7 – volume: 22 start-page: 1231 issue: 6 year: 2015 ident: 3188_CR2 publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocv065 – volume: 8 start-page: 11 year: 2016 ident: 3188_CR5 publication-title: Biomed Inform Insights doi: 10.4137/BII.S38308 – volume: 97 start-page: 676 issue: 4 year: 2020 ident: 3188_CR1 publication-title: Kidney Int doi: 10.1016/j.kint.2019.11.037 – volume: 8 start-page: 58 year: 2020 ident: 3188_CR13 publication-title: Front Public Health doi: 10.3389/fpubh.2020.00058 – volume: 2017 start-page: 912 year: 2017 ident: 3188_CR9 publication-title: AMIA Annu Symp Proc – volume: 5 start-page: 68 issue: 1 year: 2022 ident: 3188_CR20 publication-title: NPJ Digit Med doi: 10.1038/s41746-022-00612-x – volume-title: Prevalence, in StatPearls year: 2023 ident: 3188_CR12 – volume: 29 start-page: 321 issue: 2 year: 2022 ident: 3188_CR18 publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocab181 – volume: 17 start-page: 181 issue: 1 year: 2022 ident: 3188_CR17 publication-title: Orphanet J Rare Dis doi: 10.1186/s13023-022-02337-2 – volume: 179 start-page: 885 issue: 6 year: 2019 ident: 3188_CR11 publication-title: Am J Med Genet A doi: 10.1002/ajmg.a.61124 |
| SSID | ssj0045308 |
| Score | 2.3972127 |
| Snippet | Background
With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical... With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is... Background With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical... Abstract Background With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 183 |
| SubjectTerms | Algorithm Algorithms Child, Preschool Children Clinical decision-making Digital phenotyping Electronic Health Records Female Genetic Diseases, Inborn - diagnosis Genetic Diseases, Inborn - genetics Genetic screening Health aspects Human Genetics Humans Infant Infant, Newborn Male Medical records Medicine Medicine & Public Health Methods Pediatric genetic disorders Pharmacology/Toxicology Phenotype Rare Diseases - diagnosis Rare Diseases - genetics |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (OA) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiDeBggxC4kCj5uHYznFBVAtSOQCVerP8GLcrLUnVZFX11v_AP-SXMHayqw1IwIFrbEXyN-PxfLbnMyGveOEcc7VNeWaKlDGfpdKCSbXhAulB5SBuXRx-4vMj9vG4Ot566ivcCRvkgQfg9nVuMenWAryVDP9rjEZKIyDLgUtuI1vPZL0mU0MMZlWZyXWJjOT7XTieC-eVLA1OjFN8sgxFtf7fY_LWovTrhcnNqektcmPVnOnLC71cbi1MB3fI7TGjpLNhJHfJNWjukeuH45n5fTKfNVQvT9rzRX_6jfYtXcTaXH9JR03VjmJMcTT7cfW9pGFfliKBBoqeFQocqRv1ObsH5Ojg_dd383R8PyG1mKb1KcPkq_C8qKuqEmCCkrwAy-rcV4V3zoPhHEF0uROF5pWGGhDgwmK7EdqI8iHZadoGHhMqHAOdeV0wLxkIIQFJeAW11RI0ctyEvFnDqc4GmQwV6YXkagBfIfgqgq_qhLwNiG96Bonr-AENr0bDq78ZPiEvg71UELFowi2ZE73qOvXhy2c1w6CTY2ZTy4S8Hjv5Fi1n9Vh0gKMKuleTnruTnjjL7KT5xdotVGgKV9MaaFedKoOCTonEEUF4NLjJZmCl5LVkskiInDjQZOTTlmZxGkW-MS3DVDVDrPbWvqbG8NL9Edq9jT_-gyWe_A9LPCU3izi1Qq3_Ltnpz1fwDFO13jyPs_InueU5lQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSDwOiHcDBRmExIFGTRzHdo5LRbUglQNQqTfLscdtpSWpml2h3vgP_EN-CWOvd7UBhOAaO1E8L8-X8Xwh5KVgznHX2FwULcs590WuLLS5aYVEeFA7iJ8uDj-I6RF_f1wfJ5qc0AuzWb8vldgbQmEtVBp5HswPnfMquYablIiFWbG_irq8rgq1aor5432jjSfy8_8ehTe2oV-PSK7rpLfIjUV3bi6_mtlsYys6uENupxySTpZKv0uuQHePXD9MVfL7ZDrpqJmd9Ij7T7_QeU_PYjeuv6SJRXWgGEUcLX58-17R8CWWImQGirYUWhqpS4ycwwNydPD28_40T39MyC0mZvOcY7rFvGBNXdcS2sAdL8HypvQ18855aIUAoVzpJDOiNtAAqopZHG-laWX1kGx1fQfbhErHwRTeMO4VBykVIOyuobFGgUFUm5HXK3Hq8yUxho6AQgm9FL5G4esofN1k5E2Q-HpmILWOF1DXOvmINqVFfGUkeKs4vlfbGkSvEooS31nYIiMvgr50oK3owrmYE7MYBv3u00c9wTBTYi7TqIy8SpN8j5qzJrUZ4KoC09Vo5s5oJvqVHQ0_X5mFDkPhMFoH_WLQVeDMqRAqohAeLc1kvbBKiUZxxTKiRgY0Wvl4pDs7jbTemIhhclqgrHZXtqZTQBn-KtrdtT3-gyYe_9_Tn5CbLDpR6OPfIVvziwU8xTRs3j6L_vcTst8pCg priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgK_E48H4ECjIIiQNNSbKO7RwXRLUgtULASuVk-ZV21W1SNYlQOfEf-If8EsaOd7UpCJVrPJHsmc_2jMfzGaEXNDOGmELHNFFZTEiZxFxbFUtFGYQHubH-6GJ3j05n5MN-vh9oclwtzHr-PuX0deMSay7TSGIHP5icl9EGzcHvHqGN2d7HyVdf8ZgncQpb8bIq5q8_DnYeT9D_5zK8tg-dvyO5SpReR1e76kSefZOLxdpetHOzf9So8RSG7grK0XbXqm39_RzB48WGeQvdCC4pnvQYuo0u2eoOurIbku530XRSYbk4qE_n7eExbms898W95RkOpKwNhkXJ4OTXj59j7A52MUTgFgM0XYUkNoHgs7mHZjvvvrydxuEBhliDn9fGBLy3rKRZkec5s8pR0TOrSZGWeVYaU1pFqaXcpIZlkubSFhYsn2loV0wqNr6PRlVd2YcIM0OsTEqZkZITyxi3EMXnttCSWwlBcoReLY0jTnqeDeHjE05FrxwByhFeOaKI0Btnv5Wk48j2H0CnIkw5IVMN4ZpkttScQL-UkhAMM5uk0Geqkwg9d9YXjgWjctdsDmTXNOL9509iAqtWCq5RwSP0MgiVNeBAy1C1AKNyxFkDyc2BJExTPWh-tgSZcE3ubltl664RY0fBM4bIE5TwoAfdamBjTgtOeBYhPoDjYOTDlmp-6FnCwa8DXzcBXW0tkSvC-tT8U7VbK3RfwBKP_k_8MbqWeZA7WoBNNGpPO_sEvLpWPQ3T-TdsVEFv priority: 102 providerName: Unpaywall |
| Title | An algorithm to identify patients aged 0–3 with rare genetic disorders |
| URI | https://link.springer.com/article/10.1186/s13023-024-03188-9 https://www.ncbi.nlm.nih.gov/pubmed/38698482 https://www.proquest.com/docview/3050934997 https://pubmed.ncbi.nlm.nih.gov/PMC11064409 https://doi.org/10.1186/s13023-024-03188-9 https://doaj.org/article/a1c862a7efc84dd4bba5497e01e686c0 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1750-1172 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0045308 issn: 1750-1172 databaseCode: RBZ dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1750-1172 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0045308 issn: 1750-1172 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1750-1172 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0045308 issn: 1750-1172 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1750-1172 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0045308 issn: 1750-1172 databaseCode: ABDBF dateStart: 20060101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1750-1172 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0045308 issn: 1750-1172 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1750-1172 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0045308 issn: 1750-1172 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1750-1172 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0045308 issn: 1750-1172 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1750-1172 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0045308 issn: 1750-1172 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1750-1172 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0045308 issn: 1750-1172 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1750-1172 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0045308 issn: 1750-1172 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1750-1172 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0045308 issn: 1750-1172 databaseCode: M48 dateStart: 20060401 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1750-1172 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0045308 issn: 1750-1172 databaseCode: AAJSJ dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1750-1172 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0045308 issn: 1750-1172 databaseCode: C6C dateStart: 20060112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZ2kbg8IO4rjMogJB5YRpo4tvOAUFZtKpVaTRuVypPl2E5XqUtG0wr6xn_gH_JLOHaTaoEJwVOlHKeKj8-xz-fj8xmh1zTQmuhYedRPA4-QzPe4MqknU8oAHkTauK2LwZD2RqQ_jsZbqL7uqFJgeSO0s_dJjeazw29fVh_A4d87h-f0XWmTbzYbSTxrouDA22gXVqrYXuUwIJusAolCn9eFMze-11icHIf_nzP1taXq92OUm1zqXXR7mV_J1Vc5m11brk7uo3tVnImTtWE8QFsmf4huDapM-iPUS3IsZ5NiPl1cXOJFgaeuYjdb4YpptcQw02js__z-I8R2txYDrDYY7M2WPWJdsXaWj9Ho5PhTt-dVtyp4CoK3hUcgJAsyGsRRFDGTWn55ZhSJO1kUZFpnJqXUUK47mgWSRtLEBoYzUCBPmUxZ-ATt5EVu9hBmmhjpZzIgGSeGMW4AmkcmVpIbCci3hd7W6hRXa_IM4UAHp2KtfAHKF075Im6hI6vxTUtLfO0eFPOJqPxIyI4CDCaZyRQn8F1pKgHhMuN34Jup8lvolR0vYaktcnt2ZiKXZSk-np-JBKaiDsQ7MW-hN1WjrICRU7IqRYBeWTasRsv9RkvwPdUQv6zNQliRPbCWm2JZitDy6oQAJ0EJT9dmsulYyGnMCQ9aiDcMqNHzpiSfXjjqbwjWIID1QVcHta2J2mf-qtqDjT3-w0g8-79_f47uBM6JbK3_PtpZzJfmBYRqi7SNttmYtdFukvTP-_B7dDw8PYOnXdptu-2PtvNQkIyGp8nnX2PSPyQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaglSgcEG8CBQxC4kAjso5jO8eAqLZLtwfaSr1Zjh_blZak2mSFeuM_8A_5JYyzzqoBhOAaO5E9L894Zr4g9JoRY6jJdcySksSUuiQW2paxKhmH8CAztru6mB6x8SmdnGVnoSms6avd-5RkZ6k7tRbsXeNTbD7nSGMviKCm19G2L7ICddwuisnxpLfANEsT0TfI_PHNwSHUYfX_bpGvHEm_lktucqa30M6qulCXX9ViceVY2r-Dbgd_EhdrAbiLrtnqHroxDRnz-2hcVFgtZvVy3p5_wW2N511nrrvEAVG1wWBRDE5-fPueYn8riyF8thjkyrc3YhPQOZsH6HT_48mHcRz-nhBrcNLamILrRRwjeZZl3JYeR55bTfORy4gzxtmSMcuEGRlOFMuUzS2wjWgYL7kqefoQbVV1ZR8jzA21KnGKUCeo5VxYCMEzm2slrIIIN0Jve3LKizVIhuyCC8HkmvgSiC874ss8Qu89xTczPcB196BezmTQF6lGGmItxa3TgsK6ylJBJMttMoI1M51E6JXnl_QQFpWvkZmpVdPIg-PPsgCTMwK_JhcRehMmuRo4p1VoOYBdedSrwczdwUzQMT0YftmLhfRDvjCtsvWqkanHz0khbAQiPFqLyWZjqWC5oIJESAwEaLDz4Ug1P-8gvsEpA0c1AVrt9bImg3Fp_kravY08_gMnnvzf11-gnfHJ9FAeHhx9eopukk6hfH__Ltpqlyv7DNyztnwetPEnsJAxYw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAUOiFchUMAgJA40auI4tnNcFlZboBUCKvVmOX5sV1qS1SYr1Bv_gX_IL2Gcx2oDCME140TxeJ4ez2eEnjNiDDWZDlmUk5BSF4VC2zxUOeOQHqTGNlsXxydsekrfnqVnW138zWn3viTZ9jR4lKaiPlwa16q4YIeVL7f5-iMNvVCCyl5GVyh4N3-HwZiNe1tM0yQSfavMH98buKMGtf9327zlnH49OLmpnl5HV9fFUl18VYvFloOa3EQ3usgSj1pRuIUu2eI22j3uaud30HRUYLWYlat5ff4F1yWeNz267gJ32KoVBtticPTj2_cE-_1ZDIm0xSBhvtERmw6ns7qLTidvPo-nYXePQqghXKtDCkEYcYxkaZpym3tEeW41zWKXEmeMszljlgkTG04US5XNLCwg0UDPucp5sod2irKw9xHmhloVOUWoE9RyLiwk46nNtBJWQa4boJc9O-WyhcuQTZohmGyZL4H5smG-zAL0ynN8M9JDXTcPytVMdpojVawh61LcOi0o_FeeK8hpuY1i-GemowA98-slPZhF4U_LzNS6quTRp49yBMYnhggnEwF60Q1yJaycVl3zAczK418NRu4PRoK26QH5aS8W0pP8EbXClutKJh5JJ4EEEphwrxWTzcQSwTJBBQmQGAjQYOZDSjE_b8C-ITyDkDUCXh30siY7M1P9lbUHG3n8h5V48H9ff4J2P7yeyPdHJ-8eomuk0Sff6L-PdurV2j6COK3OHzeq-BObYDRA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgK_E48H4ECjIIiQNNSbKO7RwXRLUgtULASuVk-ZV21W1SNYlQOfEf-If8EsaOd7UpCJVrPJHsmc_2jMfzGaEXNDOGmELHNFFZTEiZxFxbFUtFGYQHubH-6GJ3j05n5MN-vh9oclwtzHr-PuX0deMSay7TSGIHP5icl9EGzcHvHqGN2d7HyVdf8ZgncQpb8bIq5q8_DnYeT9D_5zK8tg-dvyO5SpReR1e76kSefZOLxdpetHOzf9So8RSG7grK0XbXqm39_RzB48WGeQvdCC4pnvQYuo0u2eoOurIbku530XRSYbk4qE_n7eExbms898W95RkOpKwNhkXJ4OTXj59j7A52MUTgFgM0XYUkNoHgs7mHZjvvvrydxuEBhliDn9fGBLy3rKRZkec5s8pR0TOrSZGWeVYaU1pFqaXcpIZlkubSFhYsn2loV0wqNr6PRlVd2YcIM0OsTEqZkZITyxi3EMXnttCSWwlBcoReLY0jTnqeDeHjE05FrxwByhFeOaKI0Btnv5Wk48j2H0CnIkw5IVMN4ZpkttScQL-UkhAMM5uk0Geqkwg9d9YXjgWjctdsDmTXNOL9509iAqtWCq5RwSP0MgiVNeBAy1C1AKNyxFkDyc2BJExTPWh-tgSZcE3ubltl664RY0fBM4bIE5TwoAfdamBjTgtOeBYhPoDjYOTDlmp-6FnCwa8DXzcBXW0tkSvC-tT8U7VbK3RfwBKP_k_8MbqWeZA7WoBNNGpPO_sEvLpWPQ3T-TdsVEFv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithm+to+identify+patients+aged+0%E2%80%933+with+rare+genetic+disorders&rft.jtitle=Orphanet+journal+of+rare+diseases&rft.au=Webb%2C+Bryn+D.&rft.au=Lau%2C+Lisa+Y.&rft.au=Tsevdos%2C+Despina&rft.au=Shewcraft%2C+Ryan+A.&rft.date=2024-05-02&rft.pub=BioMed+Central&rft.eissn=1750-1172&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs13023-024-03188-9&rft.externalDocID=10_1186_s13023_024_03188_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-1172&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-1172&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-1172&client=summon |