Phonological decisions require both the left and right supramarginal gyri
Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make phonological word decisions. However, lesion studies typically report difficulties with phonological processing after left rather than right hemi...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 107; no. 38; pp. 16494 - 16499 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
21.09.2010
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1008121107 |
Cover
Abstract | Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make phonological word decisions. However, lesion studies typically report difficulties with phonological processing after left rather than right hemisphere damage. Here, we used a unique dual-site transcranial magnetic stimulation (TMS) approach to test whether the SMG in the right hemisphere contributes to modality-independent (i.e., auditory and visual) phonological decisions. To test task-specificity, we compared the effect of real or sham TMS during phonological, semantic, and perceptual decisions. To test laterality and anatomical specificity, we compared the effect of TMS over the left, right, or bilateral SMG and angular gyri. The accuracy and reaction times of phonological decisions were selectively disrupted relative to semantic and perceptual decisions when real TMS was applied over the left, right, or bilateral SMG. These effects were not observed for TMS over the angular gyri. A follow-up experiment indicated that the threshold-intensity for inducing a disruptive effect on phonological decisions was identical for unilateral TMS over the right or left SMG. Taken together, these findings provide converging evidence that the right SMG contributes to accurate and efficient phonological decisions in the healthy brain, with no evidence that the left and right SMG can compensate for one another during TMS. Our findings motivate detailed studies of phonological processing in patients with acute or long-term damage of the right SMG. |
---|---|
AbstractList | Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make phonological word decisions. However, lesion studies typically report difficulties with phonological processing after left rather than right hemisphere damage. Here, we used a unique dual-site transcranial magnetic stimulation (TMS) approach to test whether the SMG in the right hemisphere contributes to modality-independent (i.e., auditory and visual) phonological decisions. To test task-specificity, we compared the effect of real or sham TMS during phonological, semantic, and perceptual decisions. To test laterality and anatomical specificity, we compared the effect of TMS over the left, right, or bilateral SMG and angular gyri. The accuracy and reaction times of phonological decisions were selectively disrupted relative to semantic and perceptual decisions when real TMS was applied over the left, right, or bilateral SMG. These effects were not observed for TMS over the angular gyri. A follow-up experiment indicated that the threshold-intensity for inducing a disruptive effect on phonological decisions was identical for unilateral TMS over the right or left SMG. Taken together, these findings provide converging evidence that the right SMG contributes to accurate and efficient phonological decisions in the healthy brain, with no evidence that the left and right SMG can compensate for one another during TMS. Our findings motivate detailed studies of phonological processing in patients with acute or long-term damage of the right SMG.Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make phonological word decisions. However, lesion studies typically report difficulties with phonological processing after left rather than right hemisphere damage. Here, we used a unique dual-site transcranial magnetic stimulation (TMS) approach to test whether the SMG in the right hemisphere contributes to modality-independent (i.e., auditory and visual) phonological decisions. To test task-specificity, we compared the effect of real or sham TMS during phonological, semantic, and perceptual decisions. To test laterality and anatomical specificity, we compared the effect of TMS over the left, right, or bilateral SMG and angular gyri. The accuracy and reaction times of phonological decisions were selectively disrupted relative to semantic and perceptual decisions when real TMS was applied over the left, right, or bilateral SMG. These effects were not observed for TMS over the angular gyri. A follow-up experiment indicated that the threshold-intensity for inducing a disruptive effect on phonological decisions was identical for unilateral TMS over the right or left SMG. Taken together, these findings provide converging evidence that the right SMG contributes to accurate and efficient phonological decisions in the healthy brain, with no evidence that the left and right SMG can compensate for one another during TMS. Our findings motivate detailed studies of phonological processing in patients with acute or long-term damage of the right SMG. Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make phonological word decisions. However, lesion studies typically report difficulties with phonological processing after left rather than right hemisphere damage. Here, we used a unique dual-site transcranial magnetic stimulation (TMS) approach to test whether the SMG in the right hemisphere contributes to modality-independent (i.e., auditory and visual) phonological decisions. To test task-specificity, we compared the effect of real or sham TMS during phonological, semantic, and perceptual decisions. To test laterality and anatomical specificity, we compared the effect of TMS over the left, right, or bilateral SMG and angular gyri. The accuracy and reaction times of phonological decisions were selectively disrupted relative to semantic and perceptual decisions when real TMS was applied over the left, right, or bilateral SMG. These effects were not observed for TMS over the angular gyri. A follow-up experiment indicated that the threshold-intensity for inducing a disruptive effect on phonological decisions was identical for unilateral TMS over the right or left SMG. Taken together, these findings provide converging evidence that the right SMG contributes to accurate and efficient phonological decisions in the healthy brain, with no evidence that the left and right SMG can compensate for one another during TMS. Our findings motivate detailed studies of phonological processing in patients with acute or long-term damage of the right SMG. Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make phonological word decisions. However, lesion studies typically report difficulties with phonological processing after left rather than right hemisphere damage. Here, we used a unique dual-site transcranial magnetic stimulation (TMS) approach to test whether the SMG in the right hemisphere contributes to modality-independent (i.e., auditory and visual) phonological decisions. To test task-specificity, we compared the effect of real or sham TMS during phonological, semantic, and perceptual decisions. To test laterality and anatomical specificity, we compared the effect of TMS over the left, right, or bilateral SMG and angular gyri. The accuracy and reaction times of phonological decisions were selectively disrupted relative to semantic and perceptual decisions when real TMS was applied over the left, right, or bilateral SMG. These effects were not observed for TMS over the angular gyri. A follow-up experiment indicated that the threshold-intensity for inducing a disruptive effect on phonological decisions was identical for unilateral TMS over the right or left SMG. Taken together, these findings provide converging evidence that the right SMG contributes to accurate and efficient phonological decisions in the healthy brain, with no evidence that the left and right SMG can compensate for one another during TMS. Our findings motivate detailed studies of phonological processing in patients with acute or long-term damage of the right SMG. [PUBLICATION ABSTRACT] |
Author | Price, Cathy J. Koehnke, Maria Ulmer, Stephan Baumgaertner, Annette Siebner, Hartwig R. Hartwigsen, Gesa |
Author_xml | – sequence: 1 givenname: Gesa surname: Hartwigsen fullname: Hartwigsen, Gesa – sequence: 2 givenname: Annette surname: Baumgaertner fullname: Baumgaertner, Annette – sequence: 3 givenname: Cathy J. surname: Price fullname: Price, Cathy J. – sequence: 4 givenname: Maria surname: Koehnke fullname: Koehnke, Maria – sequence: 5 givenname: Stephan surname: Ulmer fullname: Ulmer, Stephan – sequence: 6 givenname: Hartwig R. surname: Siebner fullname: Siebner, Hartwig R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20807747$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UkFvFCEYJabGbqtnT5qJF72M5WNggEsT01Rt0kQPeiYMw8ywmYUtMCb997Ldta099AT5vvfe9_geJ-jIB28Regv4M2DenG29TuWGBRAohRdoBVhC3VKJj9AKY8JrQQk9RicprTHGkgn8Ch0TLDDnlK_Q1c8p-DCH0Rk9V701LrngUxXtzeKirbqQpypPtprtkCvt-yq6ccpVWrZRb3QcnS-88Ta61-jloOdk3xzOU_T76-Wvi-_19Y9vVxdfrmvDWpbrpsyFrmFGdL3UPXTASGtJN1gOhLWS2YF1pc5FZwkdOAFhgA69NLzn1tLmFJ3vdbdLt7G9sT5HPattdMXOrQraqf873k1qDH8UkZRyBkXg40EghpvFpqw2Lhk7z9rbsCTFGQMpeMsL8tOzSBCEURBStgX64Ql0HZZYdnOnhynQZjf5_WPr957_xVEAZ3uAiSGlaId7CGC1C1ztAlcPgRcGe8IwLutcMixvd_MzvOpgZdd4mMJVIxSU_7Nb9Ls9ZJ1yiI_Mci5LTs1fYqXEFA |
CitedBy_id | crossref_primary_10_1073_pnas_1310190110 crossref_primary_10_1080_23273798_2016_1257816 crossref_primary_10_1111_psyp_13999 crossref_primary_10_3389_fnhum_2015_00044 crossref_primary_10_1007_s00429_011_0309_x crossref_primary_10_1016_j_neuroimage_2015_11_068 crossref_primary_10_3233_JAD_240368 crossref_primary_10_1093_cercor_bht098 crossref_primary_10_1186_s11689_015_9124_7 crossref_primary_10_1371_journal_pone_0064553 crossref_primary_10_1523_JNEUROSCI_3891_10_2011 crossref_primary_10_1016_j_nic_2020_09_007 crossref_primary_10_1162_jocn_a_00872 crossref_primary_10_1016_j_bbr_2015_05_050 crossref_primary_10_1016_j_cortex_2014_08_027 crossref_primary_10_1002_hbm_21504 crossref_primary_10_1142_S0129065722500125 crossref_primary_10_1016_j_neuroimage_2012_12_033 crossref_primary_10_1093_cercor_bhv026 crossref_primary_10_1016_j_bandc_2016_02_006 crossref_primary_10_1371_journal_pbio_3002610 crossref_primary_10_3389_fnhum_2022_890483 crossref_primary_10_3389_fpsyg_2020_00685 crossref_primary_10_1097_RMR_0000000000000074 crossref_primary_10_1002_hbm_25416 crossref_primary_10_1002_hbm_24206 crossref_primary_10_1371_journal_pone_0289735 crossref_primary_10_1016_j_bandl_2012_09_009 crossref_primary_10_1002_hbm_22821 crossref_primary_10_1371_journal_pone_0149583 crossref_primary_10_1016_j_neuroimage_2023_120373 crossref_primary_10_1093_cercor_bhad288 crossref_primary_10_1038_s44220_024_00341_y crossref_primary_10_14789_jmj_JMJ23_0022_OA crossref_primary_10_1016_j_neuron_2011_09_013 crossref_primary_10_1007_s11682_022_00746_2 crossref_primary_10_3389_fnins_2019_00206 crossref_primary_10_1007_s00221_021_06222_5 crossref_primary_10_1016_j_cortex_2015_11_015 crossref_primary_10_1002_hbm_24916 crossref_primary_10_1007_s00429_022_02608_5 crossref_primary_10_1080_23273798_2018_1476727 crossref_primary_10_1016_j_bandl_2013_12_004 crossref_primary_10_1002_hbm_22734 crossref_primary_10_1038_s41380_018_0273_4 crossref_primary_10_1007_s00429_014_0947_x crossref_primary_10_1371_journal_pone_0185571 crossref_primary_10_1007_s40429_015_0048_9 crossref_primary_10_1016_j_nicl_2015_11_014 crossref_primary_10_1093_brain_awae077 crossref_primary_10_1016_j_neuroimage_2023_120025 crossref_primary_10_1523_JNEUROSCI_0194_24_2024 crossref_primary_10_3389_fnhum_2014_00768 crossref_primary_10_1002_brb3_1288 crossref_primary_10_1016_j_neuroimage_2023_119955 crossref_primary_10_1002_ajmg_b_32633 crossref_primary_10_1093_cercor_bhu198 crossref_primary_10_1111_pan_12884 crossref_primary_10_3390_brainsci12020127 crossref_primary_10_1162_nol_a_00069 crossref_primary_10_1371_journal_pone_0093548 crossref_primary_10_1016_j_neuropsychologia_2022_108430 crossref_primary_10_1093_brain_awac208 crossref_primary_10_1016_j_nicl_2018_01_023 crossref_primary_10_1007_s00429_022_02576_w crossref_primary_10_1162_nol_a_00067 crossref_primary_10_1016_j_neuroscience_2021_03_002 crossref_primary_10_1002_hbm_26529 crossref_primary_10_1016_j_neuropsychologia_2023_108618 crossref_primary_10_1016_j_bandc_2019_103592 crossref_primary_10_1093_cercor_bhw161 crossref_primary_10_1002_hbm_25993 crossref_primary_10_1016_j_neuroimage_2017_01_013 crossref_primary_10_1002_hbm_26284 crossref_primary_10_1016_j_jneuroling_2018_08_005 crossref_primary_10_1093_brain_awu286 crossref_primary_10_1097_AUD_0000000000001186 crossref_primary_10_1002_hbm_24534 crossref_primary_10_1007_s10548_017_0594_7 crossref_primary_10_1016_j_cortex_2023_01_014 crossref_primary_10_1093_brain_aws300 crossref_primary_10_3389_fnhum_2020_00072 crossref_primary_10_1016_j_tine_2017_08_001 crossref_primary_10_1002_hbm_22111 crossref_primary_10_1177_1367006912456585 crossref_primary_10_3389_fpsyg_2020_553970 crossref_primary_10_1016_j_bandl_2013_06_005 crossref_primary_10_1038_s41598_022_14959_4 crossref_primary_10_1097_NMD_0000000000000368 crossref_primary_10_1162_jocn_a_00721 crossref_primary_10_1007_s00429_019_01891_z crossref_primary_10_1162_jocn_a_02224 crossref_primary_10_1002_hbm_22109 crossref_primary_10_1162_jocn_a_00726 crossref_primary_10_1038_mp_2011_177 crossref_primary_10_1093_cercor_bhv092 crossref_primary_10_3390_brainsci12020273 crossref_primary_10_1016_j_cortex_2021_02_033 crossref_primary_10_1016_j_neuroimage_2022_119619 crossref_primary_10_3389_fnins_2018_00677 crossref_primary_10_3389_fneur_2023_1153563 crossref_primary_10_1016_j_neuropsychologia_2017_09_008 crossref_primary_10_3233_JAD_231040 crossref_primary_10_3389_fnins_2018_00797 crossref_primary_10_1044_2019_JSLHR_L_RSNP_19_0032 crossref_primary_10_1016_j_neuroimage_2018_08_061 crossref_primary_10_1016_j_neuroimage_2016_08_026 crossref_primary_10_3389_fnagi_2021_650371 crossref_primary_10_1007_s10548_021_00875_9 crossref_primary_10_1093_cercor_bhad373 crossref_primary_10_1093_brain_awaa074 crossref_primary_10_1152_jn_00214_2024 crossref_primary_10_1038_s41598_021_97927_8 crossref_primary_10_17250_khisli_33_3_201612_007 crossref_primary_10_1002_hbm_23341 crossref_primary_10_1016_j_bandl_2014_10_007 crossref_primary_10_1016_j_neubiorev_2015_06_014 crossref_primary_10_4103_2152_7806_71985 crossref_primary_10_1162_nol_a_00140 crossref_primary_10_1162_jocn_a_01591 crossref_primary_10_3389_fnhum_2021_744489 crossref_primary_10_1016_j_brainres_2015_12_046 crossref_primary_10_1163_22134808_bja10060 crossref_primary_10_1002_hbm_24788 crossref_primary_10_1002_hbm_26603 crossref_primary_10_1007_s00406_022_01454_0 crossref_primary_10_1152_jn_00964_2014 crossref_primary_10_1093_cercor_bhac049 crossref_primary_10_1162_jocn_a_01915 crossref_primary_10_1093_cercor_bhad258 crossref_primary_10_3389_fnhum_2021_649578 crossref_primary_10_3389_fnins_2016_00307 crossref_primary_10_1016_j_jocn_2011_04_038 crossref_primary_10_1016_j_brs_2019_06_021 crossref_primary_10_1007_s00221_018_5296_1 crossref_primary_10_1093_jrsssc_qlad033 crossref_primary_10_1080_02687038_2011_589892 crossref_primary_10_1111_jsr_12403 crossref_primary_10_1016_j_neuroimage_2016_02_012 crossref_primary_10_1186_2194_7511_1_3 crossref_primary_10_1016_j_jml_2015_03_004 crossref_primary_10_1016_j_bandl_2016_07_003 crossref_primary_10_1016_j_clinph_2019_12_349 crossref_primary_10_3174_ajnr_A6306 crossref_primary_10_26599_BDMA_2024_9020004 crossref_primary_10_1089_brain_2021_0154 crossref_primary_10_1093_cercor_bhae087 crossref_primary_10_1038_s41467_024_48342_w crossref_primary_10_1002_brb3_1421 crossref_primary_10_1093_cercor_bhy131 crossref_primary_10_1093_brain_awy270 crossref_primary_10_1016_j_jneumeth_2019_108567 crossref_primary_10_1162_jocn_a_01698 crossref_primary_10_1016_j_neuropsychologia_2013_10_015 crossref_primary_10_1016_j_bandl_2013_05_007 crossref_primary_10_3389_fnhum_2021_737742 crossref_primary_10_1007_s12264_022_00918_6 crossref_primary_10_1080_02699052_2021_1972455 crossref_primary_10_1093_brain_awv323 crossref_primary_10_1212_WNL_0000000000002358 crossref_primary_10_1002_brb3_503 crossref_primary_10_1523_JNEUROSCI_2999_15_2016 crossref_primary_10_1016_j_apmr_2011_03_036 crossref_primary_10_1016_j_neuroimage_2014_06_016 crossref_primary_10_1111_j_1460_9568_2011_07889_x crossref_primary_10_1016_j_jneuroling_2011_12_002 crossref_primary_10_1016_j_bandl_2020_104838 crossref_primary_10_1016_j_cortex_2014_11_011 crossref_primary_10_1016_j_nicl_2018_101619 crossref_primary_10_1177_0165025417727872 crossref_primary_10_1016_j_neuropsychologia_2011_11_022 crossref_primary_10_1186_s42466_020_00058_0 crossref_primary_10_3389_fnhum_2017_00606 crossref_primary_10_3390_sym13112077 crossref_primary_10_1002_brb3_1202 crossref_primary_10_1186_1866_1955_5_3 crossref_primary_10_1371_journal_pcbi_1009837 crossref_primary_10_3390_ijerph20196841 crossref_primary_10_1162_jocn_a_00342 crossref_primary_10_1177_1545968318780351 crossref_primary_10_1016_j_cortex_2021_05_001 crossref_primary_10_1016_j_neuroimage_2020_117279 crossref_primary_10_1093_brain_awx087 crossref_primary_10_1371_journal_pone_0145489 crossref_primary_10_1016_j_neuroimage_2019_01_025 crossref_primary_10_1002_brb3_407 crossref_primary_10_3389_fnhum_2019_00154 crossref_primary_10_1038_s41598_018_27898_w crossref_primary_10_3390_brainsci11091190 crossref_primary_10_1016_j_dadm_2018_03_001 crossref_primary_10_1007_s10162_018_0661_0 crossref_primary_10_1080_02687038_2021_1959015 crossref_primary_10_1177_1545968318812726 crossref_primary_10_1080_02687038_2011_590573 crossref_primary_10_1016_j_neurobiolaging_2012_05_021 crossref_primary_10_1007_s00221_020_05886_9 crossref_primary_10_1016_j_neuroimage_2015_06_072 crossref_primary_10_1093_cercor_bhz145 crossref_primary_10_1111_epi_18009 crossref_primary_10_1002_hbm_25464 crossref_primary_10_1002_sta4_402 crossref_primary_10_3389_fnhum_2021_635750 crossref_primary_10_1080_02699931_2014_917609 crossref_primary_10_1007_s11682_019_00080_0 crossref_primary_10_1016_j_neuropsychologia_2012_03_008 crossref_primary_10_1016_j_jml_2020_104144 crossref_primary_10_1371_journal_pone_0050590 crossref_primary_10_1109_TCDS_2020_3002765 crossref_primary_10_1016_j_bandl_2013_04_003 crossref_primary_10_3389_fnhum_2016_00435 crossref_primary_10_1080_1357650X_2015_1096939 crossref_primary_10_7554_eLife_25964 crossref_primary_10_1016_j_bandl_2018_04_005 crossref_primary_10_1016_j_neuroimage_2022_119227 crossref_primary_10_1155_2017_8740353 crossref_primary_10_1016_j_neuropsychologia_2013_09_002 crossref_primary_10_3389_fnhum_2016_00551 crossref_primary_10_1093_braincomms_fcae129 crossref_primary_10_1155_2021_8840452 crossref_primary_10_3389_fnimg_2024_1473399 crossref_primary_10_1093_brain_awt374 crossref_primary_10_1162_jocn_a_00779 crossref_primary_10_3389_fnhum_2021_719461 crossref_primary_10_1002_hbm_23504 crossref_primary_10_1038_s41598_020_67551_z crossref_primary_10_3389_fpsyg_2022_1067561 crossref_primary_10_3389_fnhum_2021_584560 crossref_primary_10_1093_cercor_bhae188 crossref_primary_10_7554_eLife_54277 crossref_primary_10_1371_journal_pone_0139453 crossref_primary_10_1016_j_neuroimage_2015_11_037 crossref_primary_10_3390_s23084078 crossref_primary_10_1007_s10803_023_06004_8 crossref_primary_10_1007_s00702_014_1347_3 crossref_primary_10_1016_j_jneumeth_2011_08_016 crossref_primary_10_1016_j_neuropsychologia_2023_108657 crossref_primary_10_1038_s42003_024_07224_z crossref_primary_10_1002_hbm_26569 crossref_primary_10_1371_journal_pone_0242941 crossref_primary_10_1016_j_bandl_2020_104862 |
Cites_doi | 10.1016/j.neuroimage.2008.09.003 10.1161/01.STR.0000259632.04324.6c 10.1002/hbm.20871 10.1162/jocn.1997.9.6.727 10.1162/jocn.2006.18.7.1147 10.1162/089892904322984490 10.1111/j.1749-6632.2010.05444.x 10.1162/089892903321107837 10.1016/S1364-6613(02)01976-9 10.1016/j.cortex.2009.02.007 10.1523/JNEUROSCI.2307-05.2005 10.1007/s00415-009-5137-z 10.1093/cercor/bhm013 10.1016/0304-3940(94)90196-1 10.1016/S0028-3932(02)00162-8 10.1113/jphysiol.2006.108563 10.1016/0028-3932(71)90067-4 10.1177/1073858407305726 10.1097/00001756-200109170-00007 10.1016/j.cortex.2008.12.004 10.1162/089892904322984571 10.1016/j.cognition.2003.10.011 10.1016/j.neuroimage.2006.02.004 10.1152/jn.00067.2005 10.1016/S0168-5597(97)00096-8 10.1152/jn.1998.79.2.1102 10.1016/S1474-4422(03)00321-1 10.1093/cercor/bhn186 10.1016/j.tics.2006.09.002 10.1016/S0022-510X(97)00227-X 10.1080/13854040902984505 10.1016/S0010-9452(08)70416-7 10.1093/brain/awl090 10.1038/sj.jcbfm.9600350 10.1113/jphysiol.1993.sp019912 10.1113/jphysiol.1992.sp019243 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Sep 21, 2010 |
Copyright_xml | – notice: Copyright National Academy of Sciences Sep 21, 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.1008121107 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 16499 |
ExternalDocumentID | PMC2944751 2147620351 20807747 10_1073_pnas_1008121107 107_38_16494 20779695 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 082420 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c565t-37741b35c8bd9ad1b1526e2bfe7125695ef5bad178be24f7218c14fd9c7d7ee43 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:29:17 EDT 2025 Fri Sep 05 08:32:35 EDT 2025 Fri Sep 05 10:14:59 EDT 2025 Mon Jun 30 08:31:11 EDT 2025 Thu Apr 03 07:02:33 EDT 2025 Tue Jul 01 00:46:59 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Wed Nov 11 00:30:50 EST 2020 Thu May 29 08:42:34 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c565t-37741b35c8bd9ad1b1526e2bfe7125695ef5bad178be24f7218c14fd9c7d7ee43 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Edited by Edward E. Smith, Columbia University, New York, NY, and approved August 11, 2010 (received for review June 11, 2010) Author contributions: G.H., A.B., and H.R.S. designed research; G.H., M.K., and S.U. performed research; G.H., C.J.P., and H.R.S. analyzed data; and G.H., C.J.P., and H.R.S. wrote the paper. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2944751 |
PMID | 20807747 |
PQID | 755041431 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_107_38_16494 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2944751 proquest_miscellaneous_755198767 pubmed_primary_20807747 proquest_journals_755041431 crossref_primary_10_1073_pnas_1008121107 proquest_miscellaneous_1825418996 jstor_primary_20779695 crossref_citationtrail_10_1073_pnas_1008121107 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09-21 |
PublicationDateYYYYMMDD | 2010-09-21 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2010 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 Vandervliet EJ (e_1_3_3_5_2) 2008; 108 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 Sharp DJ (e_1_3_3_19_2) 2010; 31 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 Walsh V (e_1_3_3_15_2) 1999; 37 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 9474057 - Electroencephalogr Clin Neurophysiol. 1998 Jan;108(1):1-16 15068598 - J Cogn Neurosci. 2004 Mar;16(2):289-300 5146491 - Neuropsychologia. 1971 Mar;9(1):97-113 16135758 - J Neurosci. 2005 Aug 31;25(35):8010-6 19777554 - Hum Brain Mapp. 2010 Mar;31(3):365-77 18987393 - Cereb Cortex. 2009 Jun;19(6):1474-85 18848630 - Neuroimage. 2009 Jan 15;44(2):563-8 16581858 - J Physiol. 2006 Aug 1;574(Pt 3):917-28 9562309 - J Neurol Sci. 1998 Feb 5;154(2):182-93 16135552 - J Neurophysiol. 2005 Dec;94(6):4520-7 15068590 - J Cogn Neurosci. 2004 Mar;16(2):178-88 1464843 - J Physiol. 1992;453:525-46 19363625 - J Neurol. 2009 Sep;256(9):1461-7 15037127 - Cognition. 2004 May-Jun;92(1-2):67-99 16909638 - Cortex. 2006 Jul;42(5):774-81 23964595 - J Cogn Neurosci. 1997 Nov;9(6):727-33 17911215 - Neuroscientist. 2008 Feb;14(1):119-27 9463466 - J Neurophysiol. 1998 Feb;79(2):1102-7 16638796 - Brain. 2006 Jun;129(Pt 6):1371-84 17337745 - Cereb Cortex. 2007 Dec;17(12):2841-52 8120818 - J Physiol. 1993 Nov;471:501-19 19557656 - Clin Neuropsychol. 2010 Jan;24(1):57-69 16757978 - J Cereb Blood Flow Metab. 2006 Sep;26(9):1122-7 12457755 - Neuropsychologia. 2003;41(3):293-303 12849236 - Lancet Neurol. 2003 Mar;2(3):145-56 20392276 - Ann N Y Acad Sci. 2010 Mar;1191:62-88 19371866 - Cortex. 2009 Oct;45(9):1035-42 12413574 - Trends Cogn Sci. 2002 Oct 1;6(10):416-421 12590844 - J Cogn Neurosci. 2003 Jan 1;15(1):71-84 10080370 - Neuropsychologia. 1999 Feb;37(2):125-35 16997610 - Trends Cogn Sci. 2006 Nov;10(11):480-6 16571375 - Neuroimage. 2006 Jul 15;31(4):1453-74 7891880 - Neurosci Lett. 1994 Nov 21;182(1):25-8 17322084 - Stroke. 2007 Apr;38(4):1286-92 11588577 - Neuroreport. 2001 Sep 17;12(13):2785-90 16839288 - J Cogn Neurosci. 2006 Jul;18(7):1147-55 19239047 - Acta Neurol Belg. 2008 Dec;108(4):161-6 19232583 - Cortex. 2009 Oct;45(9):1091-6 |
References_xml | – ident: e_1_3_3_31_2 doi: 10.1016/j.neuroimage.2008.09.003 – ident: e_1_3_3_22_2 doi: 10.1161/01.STR.0000259632.04324.6c – volume: 31 start-page: 365 year: 2010 ident: e_1_3_3_19_2 article-title: The neural response to changing semantic and perceptual complexity during language processing publication-title: Hum Brain Mapp doi: 10.1002/hbm.20871 – ident: e_1_3_3_3_2 doi: 10.1162/jocn.1997.9.6.727 – ident: e_1_3_3_12_2 doi: 10.1162/jocn.2006.18.7.1147 – ident: e_1_3_3_34_2 doi: 10.1162/089892904322984490 – ident: e_1_3_3_33_2 doi: 10.1111/j.1749-6632.2010.05444.x – ident: e_1_3_3_1_2 doi: 10.1162/089892903321107837 – volume: 108 start-page: 161 year: 2008 ident: e_1_3_3_5_2 article-title: fMRI findings in an aphasic patient with reversed cerebral dominance for language publication-title: Acta Neurol Belg – ident: e_1_3_3_11_2 doi: 10.1016/S1364-6613(02)01976-9 – ident: e_1_3_3_14_2 doi: 10.1016/j.cortex.2009.02.007 – ident: e_1_3_3_16_2 doi: 10.1523/JNEUROSCI.2307-05.2005 – volume: 37 start-page: 125 year: 1999 ident: e_1_3_3_15_2 article-title: A primer of magnetic stimulation as a tool for neuropsychology publication-title: Neuropsychologia – ident: e_1_3_3_8_2 doi: 10.1007/s00415-009-5137-z – ident: e_1_3_3_32_2 doi: 10.1093/cercor/bhm013 – ident: e_1_3_3_18_2 doi: 10.1016/0304-3940(94)90196-1 – ident: e_1_3_3_2_2 doi: 10.1016/S0028-3932(02)00162-8 – ident: e_1_3_3_24_2 doi: 10.1113/jphysiol.2006.108563 – ident: e_1_3_3_35_2 doi: 10.1016/0028-3932(71)90067-4 – ident: e_1_3_3_9_2 doi: 10.1177/1073858407305726 – ident: e_1_3_3_23_2 doi: 10.1097/00001756-200109170-00007 – ident: e_1_3_3_13_2 doi: 10.1016/j.cortex.2008.12.004 – ident: e_1_3_3_17_2 doi: 10.1162/089892904322984571 – ident: e_1_3_3_10_2 doi: 10.1016/j.cognition.2003.10.011 – ident: e_1_3_3_36_2 doi: 10.1016/j.neuroimage.2006.02.004 – ident: e_1_3_3_37_2 doi: 10.1152/jn.00067.2005 – ident: e_1_3_3_38_2 doi: 10.1016/S0168-5597(97)00096-8 – ident: e_1_3_3_26_2 doi: 10.1152/jn.1998.79.2.1102 – ident: e_1_3_3_27_2 doi: 10.1016/S1474-4422(03)00321-1 – ident: e_1_3_3_4_2 doi: 10.1093/cercor/bhn186 – ident: e_1_3_3_20_2 doi: 10.1016/j.tics.2006.09.002 – ident: e_1_3_3_6_2 doi: 10.1016/S0022-510X(97)00227-X – ident: e_1_3_3_7_2 doi: 10.1080/13854040902984505 – ident: e_1_3_3_30_2 doi: 10.1016/S0010-9452(08)70416-7 – ident: e_1_3_3_21_2 doi: 10.1093/brain/awl090 – ident: e_1_3_3_25_2 doi: 10.1038/sj.jcbfm.9600350 – ident: e_1_3_3_28_2 doi: 10.1113/jphysiol.1993.sp019912 – ident: e_1_3_3_29_2 doi: 10.1113/jphysiol.1992.sp019243 – reference: 19232583 - Cortex. 2009 Oct;45(9):1091-6 – reference: 17337745 - Cereb Cortex. 2007 Dec;17(12):2841-52 – reference: 18987393 - Cereb Cortex. 2009 Jun;19(6):1474-85 – reference: 12457755 - Neuropsychologia. 2003;41(3):293-303 – reference: 9474057 - Electroencephalogr Clin Neurophysiol. 1998 Jan;108(1):1-16 – reference: 12413574 - Trends Cogn Sci. 2002 Oct 1;6(10):416-421 – reference: 20392276 - Ann N Y Acad Sci. 2010 Mar;1191:62-88 – reference: 15068590 - J Cogn Neurosci. 2004 Mar;16(2):178-88 – reference: 17322084 - Stroke. 2007 Apr;38(4):1286-92 – reference: 15037127 - Cognition. 2004 May-Jun;92(1-2):67-99 – reference: 11588577 - Neuroreport. 2001 Sep 17;12(13):2785-90 – reference: 16638796 - Brain. 2006 Jun;129(Pt 6):1371-84 – reference: 16581858 - J Physiol. 2006 Aug 1;574(Pt 3):917-28 – reference: 12590844 - J Cogn Neurosci. 2003 Jan 1;15(1):71-84 – reference: 19363625 - J Neurol. 2009 Sep;256(9):1461-7 – reference: 9463466 - J Neurophysiol. 1998 Feb;79(2):1102-7 – reference: 16757978 - J Cereb Blood Flow Metab. 2006 Sep;26(9):1122-7 – reference: 7891880 - Neurosci Lett. 1994 Nov 21;182(1):25-8 – reference: 12849236 - Lancet Neurol. 2003 Mar;2(3):145-56 – reference: 16135552 - J Neurophysiol. 2005 Dec;94(6):4520-7 – reference: 16839288 - J Cogn Neurosci. 2006 Jul;18(7):1147-55 – reference: 19371866 - Cortex. 2009 Oct;45(9):1035-42 – reference: 19239047 - Acta Neurol Belg. 2008 Dec;108(4):161-6 – reference: 16997610 - Trends Cogn Sci. 2006 Nov;10(11):480-6 – reference: 16909638 - Cortex. 2006 Jul;42(5):774-81 – reference: 16571375 - Neuroimage. 2006 Jul 15;31(4):1453-74 – reference: 16135758 - J Neurosci. 2005 Aug 31;25(35):8010-6 – reference: 23964595 - J Cogn Neurosci. 1997 Nov;9(6):727-33 – reference: 17911215 - Neuroscientist. 2008 Feb;14(1):119-27 – reference: 10080370 - Neuropsychologia. 1999 Feb;37(2):125-35 – reference: 19777554 - Hum Brain Mapp. 2010 Mar;31(3):365-77 – reference: 9562309 - J Neurol Sci. 1998 Feb 5;154(2):182-93 – reference: 1464843 - J Physiol. 1992;453:525-46 – reference: 18848630 - Neuroimage. 2009 Jan 15;44(2):563-8 – reference: 5146491 - Neuropsychologia. 1971 Mar;9(1):97-113 – reference: 19557656 - Clin Neuropsychol. 2010 Jan;24(1):57-69 – reference: 8120818 - J Physiol. 1993 Nov;471:501-19 – reference: 15068598 - J Cogn Neurosci. 2004 Mar;16(2):289-300 |
SSID | ssj0009580 |
Score | 2.4830563 |
Snippet | Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16494 |
SubjectTerms | Adult Anatomy Articulation disorders Auditory Perception Auditory stimulation Brain Brain Mapping Cerebral hemispheres Decision Making Female Functional Laterality - physiology Humans image analysis Information processing Language Lateral stability Lesions Magnetic Resonance Imaging Male NMR Nuclear magnetic resonance Parietal Lobe - physiology Patients Phonetics Reaction Time - physiology Semantics Social Sciences Transcranial Magnetic Stimulation Visual stimulation Young Adult |
Title | Phonological decisions require both the left and right supramarginal gyri |
URI | https://www.jstor.org/stable/20779695 http://www.pnas.org/content/107/38/16494.abstract https://www.ncbi.nlm.nih.gov/pubmed/20807747 https://www.proquest.com/docview/755041431 https://www.proquest.com/docview/1825418996 https://www.proquest.com/docview/755198767 https://pubmed.ncbi.nlm.nih.gov/PMC2944751 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBhkA2QkDkNVypI4dXysEFAmrephk3aLnMRpK23J1KRC47_gP-a92HHSqUXAJWoTx3X9fnlfeR-EfEi5p3jEMjeXIXOZyjxXijRwFVc5CzBOoclKu5iNp1fs_Dq8Hgx-9aKWNnUySn_uzCv5H6rCOaArZsn-A2XtpHACPgN94QgUhuNf0Xi-LAvLvDLTLQffA2B4rxomJfpYAQc3Km8DycEUH1abu7W8lWvdEWtxv171VdS5FWlVG0Awaz2Gky7_xDCFaugO57Oum_EUlvljtTB-nW-q6gx-ubldSLWuTYrNBBOCaosr238ecxLvh-cjKwpKtSx0CNGF1EHR1k-Br9iF63d-ij-ttM-gfRCaTKdVWwat--IaJOpiMIbfgrGneyQb4Y3fxU7JAKwM2xkXssLAkMhrDN9OCNrQRP-MczEW4SPy2OegjrUOIFvHOdJZTWadbbUoHnx6MPeWoqNjXbGALgzaZcw8jMntKTmXz8hTY53QiYbaIRmo4jk5bDeQnpoi5R9fkO997FGLPWqwRxF7FLBDEXsUsEcb7NEt7FHE3kty9fXL5eepa9pyuClo_zWIJNBCkyBMoyQTMvMSUAHHyk_gsQZtGbZO5WEC53mUKJ_lHJTI1GN5JlKecaVYcEQOirJQrwlN80ACt0hCIUAtz0Lpg7hQTKlQejI6ixwyavcwTk3NemydchM3sRM8iHE_427THXJqb7jT5Vr2Dz1qiGLHtZR3iNMM7e7ncRDFDdQcctKSLjaMoIo5WPkM7A7PIe_tVeDS-OpNFqrcwM-iI8aLhBg7hO4ZA9OgB3AMK3ulsdBbWgSLY3CFb6HEDsAi8dtXitWyKRbvCyzp6R3v-7cn5En3tL4hB_V6o96Cnl0n7xrk_wZt9NYH |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phonological+decisions+require+both+the+left+and+right+supramarginal+gyri&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hartwigsen%2C+Gesa&rft.au=Baumgaertner%2C+Annette&rft.au=Price%2C+Cathy+J.&rft.au=Koehnke%2C+Maria&rft.date=2010-09-21&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=107&rft.issue=38&rft.spage=16494&rft.epage=16499&rft_id=info:doi/10.1073%2Fpnas.1008121107&rft.externalDocID=20779695 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F38.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F38.cover.gif |