Phonological decisions require both the left and right supramarginal gyri

Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make phonological word decisions. However, lesion studies typically report difficulties with phonological processing after left rather than right hemi...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 107; no. 38; pp. 16494 - 16499
Main Authors Hartwigsen, Gesa, Baumgaertner, Annette, Price, Cathy J., Koehnke, Maria, Ulmer, Stephan, Siebner, Hartwig R.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 21.09.2010
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1008121107

Cover

Abstract Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make phonological word decisions. However, lesion studies typically report difficulties with phonological processing after left rather than right hemisphere damage. Here, we used a unique dual-site transcranial magnetic stimulation (TMS) approach to test whether the SMG in the right hemisphere contributes to modality-independent (i.e., auditory and visual) phonological decisions. To test task-specificity, we compared the effect of real or sham TMS during phonological, semantic, and perceptual decisions. To test laterality and anatomical specificity, we compared the effect of TMS over the left, right, or bilateral SMG and angular gyri. The accuracy and reaction times of phonological decisions were selectively disrupted relative to semantic and perceptual decisions when real TMS was applied over the left, right, or bilateral SMG. These effects were not observed for TMS over the angular gyri. A follow-up experiment indicated that the threshold-intensity for inducing a disruptive effect on phonological decisions was identical for unilateral TMS over the right or left SMG. Taken together, these findings provide converging evidence that the right SMG contributes to accurate and efficient phonological decisions in the healthy brain, with no evidence that the left and right SMG can compensate for one another during TMS. Our findings motivate detailed studies of phonological processing in patients with acute or long-term damage of the right SMG.
AbstractList Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make phonological word decisions. However, lesion studies typically report difficulties with phonological processing after left rather than right hemisphere damage. Here, we used a unique dual-site transcranial magnetic stimulation (TMS) approach to test whether the SMG in the right hemisphere contributes to modality-independent (i.e., auditory and visual) phonological decisions. To test task-specificity, we compared the effect of real or sham TMS during phonological, semantic, and perceptual decisions. To test laterality and anatomical specificity, we compared the effect of TMS over the left, right, or bilateral SMG and angular gyri. The accuracy and reaction times of phonological decisions were selectively disrupted relative to semantic and perceptual decisions when real TMS was applied over the left, right, or bilateral SMG. These effects were not observed for TMS over the angular gyri. A follow-up experiment indicated that the threshold-intensity for inducing a disruptive effect on phonological decisions was identical for unilateral TMS over the right or left SMG. Taken together, these findings provide converging evidence that the right SMG contributes to accurate and efficient phonological decisions in the healthy brain, with no evidence that the left and right SMG can compensate for one another during TMS. Our findings motivate detailed studies of phonological processing in patients with acute or long-term damage of the right SMG.Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make phonological word decisions. However, lesion studies typically report difficulties with phonological processing after left rather than right hemisphere damage. Here, we used a unique dual-site transcranial magnetic stimulation (TMS) approach to test whether the SMG in the right hemisphere contributes to modality-independent (i.e., auditory and visual) phonological decisions. To test task-specificity, we compared the effect of real or sham TMS during phonological, semantic, and perceptual decisions. To test laterality and anatomical specificity, we compared the effect of TMS over the left, right, or bilateral SMG and angular gyri. The accuracy and reaction times of phonological decisions were selectively disrupted relative to semantic and perceptual decisions when real TMS was applied over the left, right, or bilateral SMG. These effects were not observed for TMS over the angular gyri. A follow-up experiment indicated that the threshold-intensity for inducing a disruptive effect on phonological decisions was identical for unilateral TMS over the right or left SMG. Taken together, these findings provide converging evidence that the right SMG contributes to accurate and efficient phonological decisions in the healthy brain, with no evidence that the left and right SMG can compensate for one another during TMS. Our findings motivate detailed studies of phonological processing in patients with acute or long-term damage of the right SMG.
Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make phonological word decisions. However, lesion studies typically report difficulties with phonological processing after left rather than right hemisphere damage. Here, we used a unique dual-site transcranial magnetic stimulation (TMS) approach to test whether the SMG in the right hemisphere contributes to modality-independent (i.e., auditory and visual) phonological decisions. To test task-specificity, we compared the effect of real or sham TMS during phonological, semantic, and perceptual decisions. To test laterality and anatomical specificity, we compared the effect of TMS over the left, right, or bilateral SMG and angular gyri. The accuracy and reaction times of phonological decisions were selectively disrupted relative to semantic and perceptual decisions when real TMS was applied over the left, right, or bilateral SMG. These effects were not observed for TMS over the angular gyri. A follow-up experiment indicated that the threshold-intensity for inducing a disruptive effect on phonological decisions was identical for unilateral TMS over the right or left SMG. Taken together, these findings provide converging evidence that the right SMG contributes to accurate and efficient phonological decisions in the healthy brain, with no evidence that the left and right SMG can compensate for one another during TMS. Our findings motivate detailed studies of phonological processing in patients with acute or long-term damage of the right SMG.
Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make phonological word decisions. However, lesion studies typically report difficulties with phonological processing after left rather than right hemisphere damage. Here, we used a unique dual-site transcranial magnetic stimulation (TMS) approach to test whether the SMG in the right hemisphere contributes to modality-independent (i.e., auditory and visual) phonological decisions. To test task-specificity, we compared the effect of real or sham TMS during phonological, semantic, and perceptual decisions. To test laterality and anatomical specificity, we compared the effect of TMS over the left, right, or bilateral SMG and angular gyri. The accuracy and reaction times of phonological decisions were selectively disrupted relative to semantic and perceptual decisions when real TMS was applied over the left, right, or bilateral SMG. These effects were not observed for TMS over the angular gyri. A follow-up experiment indicated that the threshold-intensity for inducing a disruptive effect on phonological decisions was identical for unilateral TMS over the right or left SMG. Taken together, these findings provide converging evidence that the right SMG contributes to accurate and efficient phonological decisions in the healthy brain, with no evidence that the left and right SMG can compensate for one another during TMS. Our findings motivate detailed studies of phonological processing in patients with acute or long-term damage of the right SMG. [PUBLICATION ABSTRACT]
Author Price, Cathy J.
Koehnke, Maria
Ulmer, Stephan
Baumgaertner, Annette
Siebner, Hartwig R.
Hartwigsen, Gesa
Author_xml – sequence: 1
  givenname: Gesa
  surname: Hartwigsen
  fullname: Hartwigsen, Gesa
– sequence: 2
  givenname: Annette
  surname: Baumgaertner
  fullname: Baumgaertner, Annette
– sequence: 3
  givenname: Cathy J.
  surname: Price
  fullname: Price, Cathy J.
– sequence: 4
  givenname: Maria
  surname: Koehnke
  fullname: Koehnke, Maria
– sequence: 5
  givenname: Stephan
  surname: Ulmer
  fullname: Ulmer, Stephan
– sequence: 6
  givenname: Hartwig R.
  surname: Siebner
  fullname: Siebner, Hartwig R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20807747$$D View this record in MEDLINE/PubMed
BookMark eNp9UkFvFCEYJabGbqtnT5qJF72M5WNggEsT01Rt0kQPeiYMw8ywmYUtMCb997Ldta099AT5vvfe9_geJ-jIB28Regv4M2DenG29TuWGBRAohRdoBVhC3VKJj9AKY8JrQQk9RicprTHGkgn8Ch0TLDDnlK_Q1c8p-DCH0Rk9V701LrngUxXtzeKirbqQpypPtprtkCvt-yq6ccpVWrZRb3QcnS-88Ta61-jloOdk3xzOU_T76-Wvi-_19Y9vVxdfrmvDWpbrpsyFrmFGdL3UPXTASGtJN1gOhLWS2YF1pc5FZwkdOAFhgA69NLzn1tLmFJ3vdbdLt7G9sT5HPattdMXOrQraqf873k1qDH8UkZRyBkXg40EghpvFpqw2Lhk7z9rbsCTFGQMpeMsL8tOzSBCEURBStgX64Ql0HZZYdnOnhynQZjf5_WPr957_xVEAZ3uAiSGlaId7CGC1C1ztAlcPgRcGe8IwLutcMixvd_MzvOpgZdd4mMJVIxSU_7Nb9Ls9ZJ1yiI_Mci5LTs1fYqXEFA
CitedBy_id crossref_primary_10_1073_pnas_1310190110
crossref_primary_10_1080_23273798_2016_1257816
crossref_primary_10_1111_psyp_13999
crossref_primary_10_3389_fnhum_2015_00044
crossref_primary_10_1007_s00429_011_0309_x
crossref_primary_10_1016_j_neuroimage_2015_11_068
crossref_primary_10_3233_JAD_240368
crossref_primary_10_1093_cercor_bht098
crossref_primary_10_1186_s11689_015_9124_7
crossref_primary_10_1371_journal_pone_0064553
crossref_primary_10_1523_JNEUROSCI_3891_10_2011
crossref_primary_10_1016_j_nic_2020_09_007
crossref_primary_10_1162_jocn_a_00872
crossref_primary_10_1016_j_bbr_2015_05_050
crossref_primary_10_1016_j_cortex_2014_08_027
crossref_primary_10_1002_hbm_21504
crossref_primary_10_1142_S0129065722500125
crossref_primary_10_1016_j_neuroimage_2012_12_033
crossref_primary_10_1093_cercor_bhv026
crossref_primary_10_1016_j_bandc_2016_02_006
crossref_primary_10_1371_journal_pbio_3002610
crossref_primary_10_3389_fnhum_2022_890483
crossref_primary_10_3389_fpsyg_2020_00685
crossref_primary_10_1097_RMR_0000000000000074
crossref_primary_10_1002_hbm_25416
crossref_primary_10_1002_hbm_24206
crossref_primary_10_1371_journal_pone_0289735
crossref_primary_10_1016_j_bandl_2012_09_009
crossref_primary_10_1002_hbm_22821
crossref_primary_10_1371_journal_pone_0149583
crossref_primary_10_1016_j_neuroimage_2023_120373
crossref_primary_10_1093_cercor_bhad288
crossref_primary_10_1038_s44220_024_00341_y
crossref_primary_10_14789_jmj_JMJ23_0022_OA
crossref_primary_10_1016_j_neuron_2011_09_013
crossref_primary_10_1007_s11682_022_00746_2
crossref_primary_10_3389_fnins_2019_00206
crossref_primary_10_1007_s00221_021_06222_5
crossref_primary_10_1016_j_cortex_2015_11_015
crossref_primary_10_1002_hbm_24916
crossref_primary_10_1007_s00429_022_02608_5
crossref_primary_10_1080_23273798_2018_1476727
crossref_primary_10_1016_j_bandl_2013_12_004
crossref_primary_10_1002_hbm_22734
crossref_primary_10_1038_s41380_018_0273_4
crossref_primary_10_1007_s00429_014_0947_x
crossref_primary_10_1371_journal_pone_0185571
crossref_primary_10_1007_s40429_015_0048_9
crossref_primary_10_1016_j_nicl_2015_11_014
crossref_primary_10_1093_brain_awae077
crossref_primary_10_1016_j_neuroimage_2023_120025
crossref_primary_10_1523_JNEUROSCI_0194_24_2024
crossref_primary_10_3389_fnhum_2014_00768
crossref_primary_10_1002_brb3_1288
crossref_primary_10_1016_j_neuroimage_2023_119955
crossref_primary_10_1002_ajmg_b_32633
crossref_primary_10_1093_cercor_bhu198
crossref_primary_10_1111_pan_12884
crossref_primary_10_3390_brainsci12020127
crossref_primary_10_1162_nol_a_00069
crossref_primary_10_1371_journal_pone_0093548
crossref_primary_10_1016_j_neuropsychologia_2022_108430
crossref_primary_10_1093_brain_awac208
crossref_primary_10_1016_j_nicl_2018_01_023
crossref_primary_10_1007_s00429_022_02576_w
crossref_primary_10_1162_nol_a_00067
crossref_primary_10_1016_j_neuroscience_2021_03_002
crossref_primary_10_1002_hbm_26529
crossref_primary_10_1016_j_neuropsychologia_2023_108618
crossref_primary_10_1016_j_bandc_2019_103592
crossref_primary_10_1093_cercor_bhw161
crossref_primary_10_1002_hbm_25993
crossref_primary_10_1016_j_neuroimage_2017_01_013
crossref_primary_10_1002_hbm_26284
crossref_primary_10_1016_j_jneuroling_2018_08_005
crossref_primary_10_1093_brain_awu286
crossref_primary_10_1097_AUD_0000000000001186
crossref_primary_10_1002_hbm_24534
crossref_primary_10_1007_s10548_017_0594_7
crossref_primary_10_1016_j_cortex_2023_01_014
crossref_primary_10_1093_brain_aws300
crossref_primary_10_3389_fnhum_2020_00072
crossref_primary_10_1016_j_tine_2017_08_001
crossref_primary_10_1002_hbm_22111
crossref_primary_10_1177_1367006912456585
crossref_primary_10_3389_fpsyg_2020_553970
crossref_primary_10_1016_j_bandl_2013_06_005
crossref_primary_10_1038_s41598_022_14959_4
crossref_primary_10_1097_NMD_0000000000000368
crossref_primary_10_1162_jocn_a_00721
crossref_primary_10_1007_s00429_019_01891_z
crossref_primary_10_1162_jocn_a_02224
crossref_primary_10_1002_hbm_22109
crossref_primary_10_1162_jocn_a_00726
crossref_primary_10_1038_mp_2011_177
crossref_primary_10_1093_cercor_bhv092
crossref_primary_10_3390_brainsci12020273
crossref_primary_10_1016_j_cortex_2021_02_033
crossref_primary_10_1016_j_neuroimage_2022_119619
crossref_primary_10_3389_fnins_2018_00677
crossref_primary_10_3389_fneur_2023_1153563
crossref_primary_10_1016_j_neuropsychologia_2017_09_008
crossref_primary_10_3233_JAD_231040
crossref_primary_10_3389_fnins_2018_00797
crossref_primary_10_1044_2019_JSLHR_L_RSNP_19_0032
crossref_primary_10_1016_j_neuroimage_2018_08_061
crossref_primary_10_1016_j_neuroimage_2016_08_026
crossref_primary_10_3389_fnagi_2021_650371
crossref_primary_10_1007_s10548_021_00875_9
crossref_primary_10_1093_cercor_bhad373
crossref_primary_10_1093_brain_awaa074
crossref_primary_10_1152_jn_00214_2024
crossref_primary_10_1038_s41598_021_97927_8
crossref_primary_10_17250_khisli_33_3_201612_007
crossref_primary_10_1002_hbm_23341
crossref_primary_10_1016_j_bandl_2014_10_007
crossref_primary_10_1016_j_neubiorev_2015_06_014
crossref_primary_10_4103_2152_7806_71985
crossref_primary_10_1162_nol_a_00140
crossref_primary_10_1162_jocn_a_01591
crossref_primary_10_3389_fnhum_2021_744489
crossref_primary_10_1016_j_brainres_2015_12_046
crossref_primary_10_1163_22134808_bja10060
crossref_primary_10_1002_hbm_24788
crossref_primary_10_1002_hbm_26603
crossref_primary_10_1007_s00406_022_01454_0
crossref_primary_10_1152_jn_00964_2014
crossref_primary_10_1093_cercor_bhac049
crossref_primary_10_1162_jocn_a_01915
crossref_primary_10_1093_cercor_bhad258
crossref_primary_10_3389_fnhum_2021_649578
crossref_primary_10_3389_fnins_2016_00307
crossref_primary_10_1016_j_jocn_2011_04_038
crossref_primary_10_1016_j_brs_2019_06_021
crossref_primary_10_1007_s00221_018_5296_1
crossref_primary_10_1093_jrsssc_qlad033
crossref_primary_10_1080_02687038_2011_589892
crossref_primary_10_1111_jsr_12403
crossref_primary_10_1016_j_neuroimage_2016_02_012
crossref_primary_10_1186_2194_7511_1_3
crossref_primary_10_1016_j_jml_2015_03_004
crossref_primary_10_1016_j_bandl_2016_07_003
crossref_primary_10_1016_j_clinph_2019_12_349
crossref_primary_10_3174_ajnr_A6306
crossref_primary_10_26599_BDMA_2024_9020004
crossref_primary_10_1089_brain_2021_0154
crossref_primary_10_1093_cercor_bhae087
crossref_primary_10_1038_s41467_024_48342_w
crossref_primary_10_1002_brb3_1421
crossref_primary_10_1093_cercor_bhy131
crossref_primary_10_1093_brain_awy270
crossref_primary_10_1016_j_jneumeth_2019_108567
crossref_primary_10_1162_jocn_a_01698
crossref_primary_10_1016_j_neuropsychologia_2013_10_015
crossref_primary_10_1016_j_bandl_2013_05_007
crossref_primary_10_3389_fnhum_2021_737742
crossref_primary_10_1007_s12264_022_00918_6
crossref_primary_10_1080_02699052_2021_1972455
crossref_primary_10_1093_brain_awv323
crossref_primary_10_1212_WNL_0000000000002358
crossref_primary_10_1002_brb3_503
crossref_primary_10_1523_JNEUROSCI_2999_15_2016
crossref_primary_10_1016_j_apmr_2011_03_036
crossref_primary_10_1016_j_neuroimage_2014_06_016
crossref_primary_10_1111_j_1460_9568_2011_07889_x
crossref_primary_10_1016_j_jneuroling_2011_12_002
crossref_primary_10_1016_j_bandl_2020_104838
crossref_primary_10_1016_j_cortex_2014_11_011
crossref_primary_10_1016_j_nicl_2018_101619
crossref_primary_10_1177_0165025417727872
crossref_primary_10_1016_j_neuropsychologia_2011_11_022
crossref_primary_10_1186_s42466_020_00058_0
crossref_primary_10_3389_fnhum_2017_00606
crossref_primary_10_3390_sym13112077
crossref_primary_10_1002_brb3_1202
crossref_primary_10_1186_1866_1955_5_3
crossref_primary_10_1371_journal_pcbi_1009837
crossref_primary_10_3390_ijerph20196841
crossref_primary_10_1162_jocn_a_00342
crossref_primary_10_1177_1545968318780351
crossref_primary_10_1016_j_cortex_2021_05_001
crossref_primary_10_1016_j_neuroimage_2020_117279
crossref_primary_10_1093_brain_awx087
crossref_primary_10_1371_journal_pone_0145489
crossref_primary_10_1016_j_neuroimage_2019_01_025
crossref_primary_10_1002_brb3_407
crossref_primary_10_3389_fnhum_2019_00154
crossref_primary_10_1038_s41598_018_27898_w
crossref_primary_10_3390_brainsci11091190
crossref_primary_10_1016_j_dadm_2018_03_001
crossref_primary_10_1007_s10162_018_0661_0
crossref_primary_10_1080_02687038_2021_1959015
crossref_primary_10_1177_1545968318812726
crossref_primary_10_1080_02687038_2011_590573
crossref_primary_10_1016_j_neurobiolaging_2012_05_021
crossref_primary_10_1007_s00221_020_05886_9
crossref_primary_10_1016_j_neuroimage_2015_06_072
crossref_primary_10_1093_cercor_bhz145
crossref_primary_10_1111_epi_18009
crossref_primary_10_1002_hbm_25464
crossref_primary_10_1002_sta4_402
crossref_primary_10_3389_fnhum_2021_635750
crossref_primary_10_1080_02699931_2014_917609
crossref_primary_10_1007_s11682_019_00080_0
crossref_primary_10_1016_j_neuropsychologia_2012_03_008
crossref_primary_10_1016_j_jml_2020_104144
crossref_primary_10_1371_journal_pone_0050590
crossref_primary_10_1109_TCDS_2020_3002765
crossref_primary_10_1016_j_bandl_2013_04_003
crossref_primary_10_3389_fnhum_2016_00435
crossref_primary_10_1080_1357650X_2015_1096939
crossref_primary_10_7554_eLife_25964
crossref_primary_10_1016_j_bandl_2018_04_005
crossref_primary_10_1016_j_neuroimage_2022_119227
crossref_primary_10_1155_2017_8740353
crossref_primary_10_1016_j_neuropsychologia_2013_09_002
crossref_primary_10_3389_fnhum_2016_00551
crossref_primary_10_1093_braincomms_fcae129
crossref_primary_10_1155_2021_8840452
crossref_primary_10_3389_fnimg_2024_1473399
crossref_primary_10_1093_brain_awt374
crossref_primary_10_1162_jocn_a_00779
crossref_primary_10_3389_fnhum_2021_719461
crossref_primary_10_1002_hbm_23504
crossref_primary_10_1038_s41598_020_67551_z
crossref_primary_10_3389_fpsyg_2022_1067561
crossref_primary_10_3389_fnhum_2021_584560
crossref_primary_10_1093_cercor_bhae188
crossref_primary_10_7554_eLife_54277
crossref_primary_10_1371_journal_pone_0139453
crossref_primary_10_1016_j_neuroimage_2015_11_037
crossref_primary_10_3390_s23084078
crossref_primary_10_1007_s10803_023_06004_8
crossref_primary_10_1007_s00702_014_1347_3
crossref_primary_10_1016_j_jneumeth_2011_08_016
crossref_primary_10_1016_j_neuropsychologia_2023_108657
crossref_primary_10_1038_s42003_024_07224_z
crossref_primary_10_1002_hbm_26569
crossref_primary_10_1371_journal_pone_0242941
crossref_primary_10_1016_j_bandl_2020_104862
Cites_doi 10.1016/j.neuroimage.2008.09.003
10.1161/01.STR.0000259632.04324.6c
10.1002/hbm.20871
10.1162/jocn.1997.9.6.727
10.1162/jocn.2006.18.7.1147
10.1162/089892904322984490
10.1111/j.1749-6632.2010.05444.x
10.1162/089892903321107837
10.1016/S1364-6613(02)01976-9
10.1016/j.cortex.2009.02.007
10.1523/JNEUROSCI.2307-05.2005
10.1007/s00415-009-5137-z
10.1093/cercor/bhm013
10.1016/0304-3940(94)90196-1
10.1016/S0028-3932(02)00162-8
10.1113/jphysiol.2006.108563
10.1016/0028-3932(71)90067-4
10.1177/1073858407305726
10.1097/00001756-200109170-00007
10.1016/j.cortex.2008.12.004
10.1162/089892904322984571
10.1016/j.cognition.2003.10.011
10.1016/j.neuroimage.2006.02.004
10.1152/jn.00067.2005
10.1016/S0168-5597(97)00096-8
10.1152/jn.1998.79.2.1102
10.1016/S1474-4422(03)00321-1
10.1093/cercor/bhn186
10.1016/j.tics.2006.09.002
10.1016/S0022-510X(97)00227-X
10.1080/13854040902984505
10.1016/S0010-9452(08)70416-7
10.1093/brain/awl090
10.1038/sj.jcbfm.9600350
10.1113/jphysiol.1993.sp019912
10.1113/jphysiol.1992.sp019243
ContentType Journal Article
Copyright Copyright National Academy of Sciences Sep 21, 2010
Copyright_xml – notice: Copyright National Academy of Sciences Sep 21, 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.1008121107
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
MEDLINE


Virology and AIDS Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 16499
ExternalDocumentID PMC2944751
2147620351
20807747
10_1073_pnas_1008121107
107_38_16494
20779695
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 082420
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c565t-37741b35c8bd9ad1b1526e2bfe7125695ef5bad178be24f7218c14fd9c7d7ee43
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:29:17 EDT 2025
Fri Sep 05 08:32:35 EDT 2025
Fri Sep 05 10:14:59 EDT 2025
Mon Jun 30 08:31:11 EDT 2025
Thu Apr 03 07:02:33 EDT 2025
Tue Jul 01 00:46:59 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Wed Nov 11 00:30:50 EST 2020
Thu May 29 08:42:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c565t-37741b35c8bd9ad1b1526e2bfe7125695ef5bad178be24f7218c14fd9c7d7ee43
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited by Edward E. Smith, Columbia University, New York, NY, and approved August 11, 2010 (received for review June 11, 2010)
Author contributions: G.H., A.B., and H.R.S. designed research; G.H., M.K., and S.U. performed research; G.H., C.J.P., and H.R.S. analyzed data; and G.H., C.J.P., and H.R.S. wrote the paper.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2944751
PMID 20807747
PQID 755041431
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_107_38_16494
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2944751
proquest_miscellaneous_755198767
pubmed_primary_20807747
proquest_journals_755041431
crossref_primary_10_1073_pnas_1008121107
proquest_miscellaneous_1825418996
jstor_primary_20779695
crossref_citationtrail_10_1073_pnas_1008121107
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-21
PublicationDateYYYYMMDD 2010-09-21
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2010
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
Vandervliet EJ (e_1_3_3_5_2) 2008; 108
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
Sharp DJ (e_1_3_3_19_2) 2010; 31
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
Walsh V (e_1_3_3_15_2) 1999; 37
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
9474057 - Electroencephalogr Clin Neurophysiol. 1998 Jan;108(1):1-16
15068598 - J Cogn Neurosci. 2004 Mar;16(2):289-300
5146491 - Neuropsychologia. 1971 Mar;9(1):97-113
16135758 - J Neurosci. 2005 Aug 31;25(35):8010-6
19777554 - Hum Brain Mapp. 2010 Mar;31(3):365-77
18987393 - Cereb Cortex. 2009 Jun;19(6):1474-85
18848630 - Neuroimage. 2009 Jan 15;44(2):563-8
16581858 - J Physiol. 2006 Aug 1;574(Pt 3):917-28
9562309 - J Neurol Sci. 1998 Feb 5;154(2):182-93
16135552 - J Neurophysiol. 2005 Dec;94(6):4520-7
15068590 - J Cogn Neurosci. 2004 Mar;16(2):178-88
1464843 - J Physiol. 1992;453:525-46
19363625 - J Neurol. 2009 Sep;256(9):1461-7
15037127 - Cognition. 2004 May-Jun;92(1-2):67-99
16909638 - Cortex. 2006 Jul;42(5):774-81
23964595 - J Cogn Neurosci. 1997 Nov;9(6):727-33
17911215 - Neuroscientist. 2008 Feb;14(1):119-27
9463466 - J Neurophysiol. 1998 Feb;79(2):1102-7
16638796 - Brain. 2006 Jun;129(Pt 6):1371-84
17337745 - Cereb Cortex. 2007 Dec;17(12):2841-52
8120818 - J Physiol. 1993 Nov;471:501-19
19557656 - Clin Neuropsychol. 2010 Jan;24(1):57-69
16757978 - J Cereb Blood Flow Metab. 2006 Sep;26(9):1122-7
12457755 - Neuropsychologia. 2003;41(3):293-303
12849236 - Lancet Neurol. 2003 Mar;2(3):145-56
20392276 - Ann N Y Acad Sci. 2010 Mar;1191:62-88
19371866 - Cortex. 2009 Oct;45(9):1035-42
12413574 - Trends Cogn Sci. 2002 Oct 1;6(10):416-421
12590844 - J Cogn Neurosci. 2003 Jan 1;15(1):71-84
10080370 - Neuropsychologia. 1999 Feb;37(2):125-35
16997610 - Trends Cogn Sci. 2006 Nov;10(11):480-6
16571375 - Neuroimage. 2006 Jul 15;31(4):1453-74
7891880 - Neurosci Lett. 1994 Nov 21;182(1):25-8
17322084 - Stroke. 2007 Apr;38(4):1286-92
11588577 - Neuroreport. 2001 Sep 17;12(13):2785-90
16839288 - J Cogn Neurosci. 2006 Jul;18(7):1147-55
19239047 - Acta Neurol Belg. 2008 Dec;108(4):161-6
19232583 - Cortex. 2009 Oct;45(9):1091-6
References_xml – ident: e_1_3_3_31_2
  doi: 10.1016/j.neuroimage.2008.09.003
– ident: e_1_3_3_22_2
  doi: 10.1161/01.STR.0000259632.04324.6c
– volume: 31
  start-page: 365
  year: 2010
  ident: e_1_3_3_19_2
  article-title: The neural response to changing semantic and perceptual complexity during language processing
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20871
– ident: e_1_3_3_3_2
  doi: 10.1162/jocn.1997.9.6.727
– ident: e_1_3_3_12_2
  doi: 10.1162/jocn.2006.18.7.1147
– ident: e_1_3_3_34_2
  doi: 10.1162/089892904322984490
– ident: e_1_3_3_33_2
  doi: 10.1111/j.1749-6632.2010.05444.x
– ident: e_1_3_3_1_2
  doi: 10.1162/089892903321107837
– volume: 108
  start-page: 161
  year: 2008
  ident: e_1_3_3_5_2
  article-title: fMRI findings in an aphasic patient with reversed cerebral dominance for language
  publication-title: Acta Neurol Belg
– ident: e_1_3_3_11_2
  doi: 10.1016/S1364-6613(02)01976-9
– ident: e_1_3_3_14_2
  doi: 10.1016/j.cortex.2009.02.007
– ident: e_1_3_3_16_2
  doi: 10.1523/JNEUROSCI.2307-05.2005
– volume: 37
  start-page: 125
  year: 1999
  ident: e_1_3_3_15_2
  article-title: A primer of magnetic stimulation as a tool for neuropsychology
  publication-title: Neuropsychologia
– ident: e_1_3_3_8_2
  doi: 10.1007/s00415-009-5137-z
– ident: e_1_3_3_32_2
  doi: 10.1093/cercor/bhm013
– ident: e_1_3_3_18_2
  doi: 10.1016/0304-3940(94)90196-1
– ident: e_1_3_3_2_2
  doi: 10.1016/S0028-3932(02)00162-8
– ident: e_1_3_3_24_2
  doi: 10.1113/jphysiol.2006.108563
– ident: e_1_3_3_35_2
  doi: 10.1016/0028-3932(71)90067-4
– ident: e_1_3_3_9_2
  doi: 10.1177/1073858407305726
– ident: e_1_3_3_23_2
  doi: 10.1097/00001756-200109170-00007
– ident: e_1_3_3_13_2
  doi: 10.1016/j.cortex.2008.12.004
– ident: e_1_3_3_17_2
  doi: 10.1162/089892904322984571
– ident: e_1_3_3_10_2
  doi: 10.1016/j.cognition.2003.10.011
– ident: e_1_3_3_36_2
  doi: 10.1016/j.neuroimage.2006.02.004
– ident: e_1_3_3_37_2
  doi: 10.1152/jn.00067.2005
– ident: e_1_3_3_38_2
  doi: 10.1016/S0168-5597(97)00096-8
– ident: e_1_3_3_26_2
  doi: 10.1152/jn.1998.79.2.1102
– ident: e_1_3_3_27_2
  doi: 10.1016/S1474-4422(03)00321-1
– ident: e_1_3_3_4_2
  doi: 10.1093/cercor/bhn186
– ident: e_1_3_3_20_2
  doi: 10.1016/j.tics.2006.09.002
– ident: e_1_3_3_6_2
  doi: 10.1016/S0022-510X(97)00227-X
– ident: e_1_3_3_7_2
  doi: 10.1080/13854040902984505
– ident: e_1_3_3_30_2
  doi: 10.1016/S0010-9452(08)70416-7
– ident: e_1_3_3_21_2
  doi: 10.1093/brain/awl090
– ident: e_1_3_3_25_2
  doi: 10.1038/sj.jcbfm.9600350
– ident: e_1_3_3_28_2
  doi: 10.1113/jphysiol.1993.sp019912
– ident: e_1_3_3_29_2
  doi: 10.1113/jphysiol.1992.sp019243
– reference: 19232583 - Cortex. 2009 Oct;45(9):1091-6
– reference: 17337745 - Cereb Cortex. 2007 Dec;17(12):2841-52
– reference: 18987393 - Cereb Cortex. 2009 Jun;19(6):1474-85
– reference: 12457755 - Neuropsychologia. 2003;41(3):293-303
– reference: 9474057 - Electroencephalogr Clin Neurophysiol. 1998 Jan;108(1):1-16
– reference: 12413574 - Trends Cogn Sci. 2002 Oct 1;6(10):416-421
– reference: 20392276 - Ann N Y Acad Sci. 2010 Mar;1191:62-88
– reference: 15068590 - J Cogn Neurosci. 2004 Mar;16(2):178-88
– reference: 17322084 - Stroke. 2007 Apr;38(4):1286-92
– reference: 15037127 - Cognition. 2004 May-Jun;92(1-2):67-99
– reference: 11588577 - Neuroreport. 2001 Sep 17;12(13):2785-90
– reference: 16638796 - Brain. 2006 Jun;129(Pt 6):1371-84
– reference: 16581858 - J Physiol. 2006 Aug 1;574(Pt 3):917-28
– reference: 12590844 - J Cogn Neurosci. 2003 Jan 1;15(1):71-84
– reference: 19363625 - J Neurol. 2009 Sep;256(9):1461-7
– reference: 9463466 - J Neurophysiol. 1998 Feb;79(2):1102-7
– reference: 16757978 - J Cereb Blood Flow Metab. 2006 Sep;26(9):1122-7
– reference: 7891880 - Neurosci Lett. 1994 Nov 21;182(1):25-8
– reference: 12849236 - Lancet Neurol. 2003 Mar;2(3):145-56
– reference: 16135552 - J Neurophysiol. 2005 Dec;94(6):4520-7
– reference: 16839288 - J Cogn Neurosci. 2006 Jul;18(7):1147-55
– reference: 19371866 - Cortex. 2009 Oct;45(9):1035-42
– reference: 19239047 - Acta Neurol Belg. 2008 Dec;108(4):161-6
– reference: 16997610 - Trends Cogn Sci. 2006 Nov;10(11):480-6
– reference: 16909638 - Cortex. 2006 Jul;42(5):774-81
– reference: 16571375 - Neuroimage. 2006 Jul 15;31(4):1453-74
– reference: 16135758 - J Neurosci. 2005 Aug 31;25(35):8010-6
– reference: 23964595 - J Cogn Neurosci. 1997 Nov;9(6):727-33
– reference: 17911215 - Neuroscientist. 2008 Feb;14(1):119-27
– reference: 10080370 - Neuropsychologia. 1999 Feb;37(2):125-35
– reference: 19777554 - Hum Brain Mapp. 2010 Mar;31(3):365-77
– reference: 9562309 - J Neurol Sci. 1998 Feb 5;154(2):182-93
– reference: 1464843 - J Physiol. 1992;453:525-46
– reference: 18848630 - Neuroimage. 2009 Jan 15;44(2):563-8
– reference: 5146491 - Neuropsychologia. 1971 Mar;9(1):97-113
– reference: 19557656 - Clin Neuropsychol. 2010 Jan;24(1):57-69
– reference: 8120818 - J Physiol. 1993 Nov;471:501-19
– reference: 15068598 - J Cogn Neurosci. 2004 Mar;16(2):289-300
SSID ssj0009580
Score 2.4830563
Snippet Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16494
SubjectTerms Adult
Anatomy
Articulation disorders
Auditory Perception
Auditory stimulation
Brain
Brain Mapping
Cerebral hemispheres
Decision Making
Female
Functional Laterality - physiology
Humans
image analysis
Information processing
Language
Lateral stability
Lesions
Magnetic Resonance Imaging
Male
NMR
Nuclear magnetic resonance
Parietal Lobe - physiology
Patients
Phonetics
Reaction Time - physiology
Semantics
Social Sciences
Transcranial Magnetic Stimulation
Visual stimulation
Young Adult
Title Phonological decisions require both the left and right supramarginal gyri
URI https://www.jstor.org/stable/20779695
http://www.pnas.org/content/107/38/16494.abstract
https://www.ncbi.nlm.nih.gov/pubmed/20807747
https://www.proquest.com/docview/755041431
https://www.proquest.com/docview/1825418996
https://www.proquest.com/docview/755198767
https://pubmed.ncbi.nlm.nih.gov/PMC2944751
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBhkA2QkDkNVypI4dXysEFAmrephk3aLnMRpK23J1KRC47_gP-a92HHSqUXAJWoTx3X9fnlfeR-EfEi5p3jEMjeXIXOZyjxXijRwFVc5CzBOoclKu5iNp1fs_Dq8Hgx-9aKWNnUySn_uzCv5H6rCOaArZsn-A2XtpHACPgN94QgUhuNf0Xi-LAvLvDLTLQffA2B4rxomJfpYAQc3Km8DycEUH1abu7W8lWvdEWtxv171VdS5FWlVG0Awaz2Gky7_xDCFaugO57Oum_EUlvljtTB-nW-q6gx-ubldSLWuTYrNBBOCaosr238ecxLvh-cjKwpKtSx0CNGF1EHR1k-Br9iF63d-ij-ttM-gfRCaTKdVWwat--IaJOpiMIbfgrGneyQb4Y3fxU7JAKwM2xkXssLAkMhrDN9OCNrQRP-MczEW4SPy2OegjrUOIFvHOdJZTWadbbUoHnx6MPeWoqNjXbGALgzaZcw8jMntKTmXz8hTY53QiYbaIRmo4jk5bDeQnpoi5R9fkO997FGLPWqwRxF7FLBDEXsUsEcb7NEt7FHE3kty9fXL5eepa9pyuClo_zWIJNBCkyBMoyQTMvMSUAHHyk_gsQZtGbZO5WEC53mUKJ_lHJTI1GN5JlKecaVYcEQOirJQrwlN80ACt0hCIUAtz0Lpg7hQTKlQejI6ixwyavcwTk3NemydchM3sRM8iHE_427THXJqb7jT5Vr2Dz1qiGLHtZR3iNMM7e7ncRDFDdQcctKSLjaMoIo5WPkM7A7PIe_tVeDS-OpNFqrcwM-iI8aLhBg7hO4ZA9OgB3AMK3ulsdBbWgSLY3CFb6HEDsAi8dtXitWyKRbvCyzp6R3v-7cn5En3tL4hB_V6o96Cnl0n7xrk_wZt9NYH
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phonological+decisions+require+both+the+left+and+right+supramarginal+gyri&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hartwigsen%2C+Gesa&rft.au=Baumgaertner%2C+Annette&rft.au=Price%2C+Cathy+J.&rft.au=Koehnke%2C+Maria&rft.date=2010-09-21&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=107&rft.issue=38&rft.spage=16494&rft.epage=16499&rft_id=info:doi/10.1073%2Fpnas.1008121107&rft.externalDocID=20779695
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F38.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F38.cover.gif