Effect of Resistant Starch on the Gut Microbiota and Its Metabolites in Patients with Coronary Artery Disease

Aim: Bacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could help patients with coronary artery disease (CAD). This study aimed to investigate the effect of resistant starch (RS) on the gut microbiota...

Full description

Saved in:
Bibliographic Details
Published inJournal of Atherosclerosis and Thrombosis Vol. 26; no. 8; pp. 705 - 719
Main Authors Kondo, Akihiko, Hirata, Ken-ichi, Sasaki, Kengo, Sasaki, Daisuke, Yamashita, Tomoya, Tabata, Tokiko, Osawa, Ro, Yoshida, Naofumi, Hayashi, Tomohiro, Fukuda, Hajime
Format Journal Article
LanguageEnglish
Published Japan Japan Atherosclerosis Society 01.08.2019
Subjects
Online AccessGet full text
ISSN1340-3478
1880-3873
1880-3873
DOI10.5551/jat.47415

Cover

Abstract Aim: Bacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could help patients with coronary artery disease (CAD). This study aimed to investigate the effect of resistant starch (RS) on the gut microbiota and its metabolites in fecal sample cultures from patients with CAD and individuals without CAD, using a single-batch fermentation system.Methods: Fecal samples from 11 patients with CAD and 10 individuals without CAD were fermented for 30 h with or without RS in the Kobe University Human Intestinal Microbiota Model (KUHIMM). Gut microbiota and the abundance of B. vulgatus and B. dorei were analyzed using 16S ribosomal ribonucleic acid (rRNA) gene sequencing and the quantitative polymerase chain reaction. Short-chain fatty acids were analyzed using high-performance liquid chromatography.Results: Gut microbial analysis showed significantly lower levels of B. vulgatus and B. dorei in the original fecal samples from patients with CAD, which was simulated after 30 h of fermentation in the KUHIMM. Although RS significantly increased the absolute numbers of B. vulgatus and B. dorei, and butyrate levels in CAD fecal sample cultures, the numbers varied among each patient.Conclusions: The effect of RS on gut microbiota and its metabolites in the KUHIMM varied between CAD and non-CAD fecal sample cultures. The KUHIMM may be useful for preclinical evaluations of the effects of RS on the gut microbiota and its metabolites.
AbstractList Bacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could help patients with coronary artery disease (CAD). This study aimed to investigate the effect of resistant starch (RS) on the gut microbiota and its metabolites in fecal sample cultures from patients with CAD and individuals without CAD, using a single-batch fermentation system. Fecal samples from 11 patients with CAD and 10 individuals without CAD were fermented for 30 h with or without RS in the Kobe University Human Intestinal Microbiota Model (KUHIMM). Gut microbiota and the abundance of B. vulgatus and B. dorei were analyzed using 16S ribosomal ribonucleic acid (rRNA) gene sequencing and the quantitative polymerase chain reaction. Short-chain fatty acids were analyzed using high-performance liquid chromatography. Gut microbial analysis showed significantly lower levels of B. vulgatus and B. dorei in the original fecal samples from patients with CAD, which was simulated after 30 h of fermentation in the KUHIMM. Although RS significantly increased the absolute numbers of B. vulgatus and B. dorei, and butyrate levels in CAD fecal sample cultures, the numbers varied among each patient. The effect of RS on gut microbiota and its metabolites in the KUHIMM varied between CAD and non-CAD fecal sample cultures. The KUHIMM may be useful for preclinical evaluations of the effects of RS on the gut microbiota and its metabolites.
Aim: Bacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could help patients with coronary artery disease (CAD). This study aimed to investigate the effect of resistant starch (RS) on the gut microbiota and its metabolites in fecal sample cultures from patients with CAD and individuals without CAD, using a single-batch fermentation system. Methods: Fecal samples from 11 patients with CAD and 10 individuals without CAD were fermented for 30 h with or without RS in the Kobe University Human Intestinal Microbiota Model (KUHIMM). Gut microbiota and the abundance of B. vulgatus and B. dorei were analyzed using 16S ribosomal ribonucleic acid (rRNA) gene sequencing and the quantitative polymerase chain reaction. Short-chain fatty acids were analyzed using high-performance liquid chromatography. Results: Gut microbial analysis showed significantly lower levels of B. vulgatus and B. dorei in the original fecal samples from patients with CAD, which was simulated after 30 h of fermentation in the KUHIMM. Although RS significantly increased the absolute numbers of B. vulgatus and B. dorei, and butyrate levels in CAD fecal sample cultures, the numbers varied among each patient. Conclusions: The effect of RS on gut microbiota and its metabolites in the KUHIMM varied between CAD and non-CAD fecal sample cultures. The KUHIMM may be useful for preclinical evaluations of the effects of RS on the gut microbiota and its metabolites.
Aim: Bacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could help patients with coronary artery disease (CAD). This study aimed to investigate the effect of resistant starch (RS) on the gut microbiota and its metabolites in fecal sample cultures from patients with CAD and individuals without CAD, using a single-batch fermentation system.Methods: Fecal samples from 11 patients with CAD and 10 individuals without CAD were fermented for 30 h with or without RS in the Kobe University Human Intestinal Microbiota Model (KUHIMM). Gut microbiota and the abundance of B. vulgatus and B. dorei were analyzed using 16S ribosomal ribonucleic acid (rRNA) gene sequencing and the quantitative polymerase chain reaction. Short-chain fatty acids were analyzed using high-performance liquid chromatography.Results: Gut microbial analysis showed significantly lower levels of B. vulgatus and B. dorei in the original fecal samples from patients with CAD, which was simulated after 30 h of fermentation in the KUHIMM. Although RS significantly increased the absolute numbers of B. vulgatus and B. dorei, and butyrate levels in CAD fecal sample cultures, the numbers varied among each patient.Conclusions: The effect of RS on gut microbiota and its metabolites in the KUHIMM varied between CAD and non-CAD fecal sample cultures. The KUHIMM may be useful for preclinical evaluations of the effects of RS on the gut microbiota and its metabolites.
Bacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could help patients with coronary artery disease (CAD). This study aimed to investigate the effect of resistant starch (RS) on the gut microbiota and its metabolites in fecal sample cultures from patients with CAD and individuals without CAD, using a single-batch fermentation system.AIMBacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could help patients with coronary artery disease (CAD). This study aimed to investigate the effect of resistant starch (RS) on the gut microbiota and its metabolites in fecal sample cultures from patients with CAD and individuals without CAD, using a single-batch fermentation system.Fecal samples from 11 patients with CAD and 10 individuals without CAD were fermented for 30 h with or without RS in the Kobe University Human Intestinal Microbiota Model (KUHIMM). Gut microbiota and the abundance of B. vulgatus and B. dorei were analyzed using 16S ribosomal ribonucleic acid (rRNA) gene sequencing and the quantitative polymerase chain reaction. Short-chain fatty acids were analyzed using high-performance liquid chromatography.METHODSFecal samples from 11 patients with CAD and 10 individuals without CAD were fermented for 30 h with or without RS in the Kobe University Human Intestinal Microbiota Model (KUHIMM). Gut microbiota and the abundance of B. vulgatus and B. dorei were analyzed using 16S ribosomal ribonucleic acid (rRNA) gene sequencing and the quantitative polymerase chain reaction. Short-chain fatty acids were analyzed using high-performance liquid chromatography.Gut microbial analysis showed significantly lower levels of B. vulgatus and B. dorei in the original fecal samples from patients with CAD, which was simulated after 30 h of fermentation in the KUHIMM. Although RS significantly increased the absolute numbers of B. vulgatus and B. dorei, and butyrate levels in CAD fecal sample cultures, the numbers varied among each patient.RESULTSGut microbial analysis showed significantly lower levels of B. vulgatus and B. dorei in the original fecal samples from patients with CAD, which was simulated after 30 h of fermentation in the KUHIMM. Although RS significantly increased the absolute numbers of B. vulgatus and B. dorei, and butyrate levels in CAD fecal sample cultures, the numbers varied among each patient.The effect of RS on gut microbiota and its metabolites in the KUHIMM varied between CAD and non-CAD fecal sample cultures. The KUHIMM may be useful for preclinical evaluations of the effects of RS on the gut microbiota and its metabolites.CONCLUSIONSThe effect of RS on gut microbiota and its metabolites in the KUHIMM varied between CAD and non-CAD fecal sample cultures. The KUHIMM may be useful for preclinical evaluations of the effects of RS on the gut microbiota and its metabolites.
Author Sasaki, Kengo
Tabata, Tokiko
Fukuda, Hajime
Kondo, Akihiko
Yoshida, Naofumi
Osawa, Ro
Hirata, Ken-ichi
Sasaki, Daisuke
Yamashita, Tomoya
Hayashi, Tomohiro
Author_xml – sequence: 1
  fullname: Kondo, Akihiko
  organization: RIKEN Center for Sustainable Resource Science, Yokohama, Japan
– sequence: 1
  fullname: Hirata, Ken-ichi
  organization: Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine
– sequence: 1
  fullname: Sasaki, Kengo
  organization: Graduate School of Science, Technology and Innovation, Kobe University
– sequence: 1
  fullname: Sasaki, Daisuke
  organization: Graduate School of Science, Technology and Innovation, Kobe University
– sequence: 1
  fullname: Yamashita, Tomoya
  organization: Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine
– sequence: 1
  fullname: Tabata, Tokiko
  organization: Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine
– sequence: 1
  fullname: Osawa, Ro
  organization: Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
– sequence: 1
  fullname: Yoshida, Naofumi
  organization: Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine
– sequence: 1
  fullname: Hayashi, Tomohiro
  organization: Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine
– sequence: 1
  fullname: Fukuda, Hajime
  organization: Nippon Starch Chemical Co., Ltd
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30587666$$D View this record in MEDLINE/PubMed
BookMark eNp9kVlvEzEQx1eoiB7wwBdAfoRKae31tXkBVaGUSq1AHM_WrHe2cbSxU9tL1W9fJynhEEKy7JHnN9d_Dqs9HzxW1UtGT6SU7HQB-URoweST6oA1DZ3wRvO9YnNRbKGb_eowpQWlnEtZP6v2OZWNVkodVMvzvkebSejJF0wuZfCZfM0Q7ZwET_IcycWYybWzMbQuZCDgO3KZE7nGDG0YXMZEnCefITv05f_O5TmZhRg8xHtyFjOW571LCAmfV097GBK-eHyPqu8fzr_NPk6uPl1czs6uJlYqmSc1ItW9nnZaUzW1FJRlElrGFdYAoK0VU6G4YD1H1omO9tgzQEnrjuqWaX5UHW_zjn4F93cwDGYV3bI0ZBg1a81M0cxsNCvw2y28GtsldrZMEeFXQABn_vR4Nzc34YdRmrFGiJLg9WOCGG5HTNksXbI4DOAxjMnUTDGqeDkFffV7rV2RnwspwOkWKHqnFLE31uUibViXdsM_23_zV8T_Rn23ZRdl0Te4IyFmZwfckLUyzfraROw8dg7RoOcP1w7EDw
CitedBy_id crossref_primary_10_12938_bmfh_2023_085
crossref_primary_10_1007_s00253_021_11217_x
crossref_primary_10_1097_MS9_0000000000002516
crossref_primary_10_3390_ani13243808
crossref_primary_10_1016_j_lwt_2024_116557
crossref_primary_10_1186_s12864_019_6251_7
crossref_primary_10_1039_D3FO00845B
crossref_primary_10_3390_microorganisms12112319
crossref_primary_10_3390_metabo12121165
crossref_primary_10_1007_s10528_024_10847_w
crossref_primary_10_1038_s41598_023_38849_5
crossref_primary_10_1111_jfbc_14376
crossref_primary_10_1186_s12879_021_06345_8
crossref_primary_10_30699_ijmm_17_3_301
crossref_primary_10_1016_j_eng_2020_05_025
crossref_primary_10_3390_nu16142321
crossref_primary_10_1080_10408398_2022_2119931
crossref_primary_10_1038_s41598_020_69983_z
crossref_primary_10_1016_j_cca_2020_03_033
crossref_primary_10_3389_fimmu_2020_588079
crossref_primary_10_1186_s12876_020_01516_4
crossref_primary_10_1139_apnm_2021_0288
crossref_primary_10_1016_j_atherosclerosis_2022_08_009
crossref_primary_10_3389_fmicb_2024_1369478
crossref_primary_10_1002_star_202200216
crossref_primary_10_3389_fimmu_2021_828887
crossref_primary_10_1002_fsn3_3046
crossref_primary_10_1016_j_isci_2021_103342
crossref_primary_10_1016_j_copbio_2024_103103
crossref_primary_10_1111_ijfs_15388
crossref_primary_10_61186_umj_35_5_404
crossref_primary_10_1016_j_medidd_2024_100184
Cites_doi 10.1126/science.aao5774
10.1056/NEJMoa0807646
10.5551/jat.38794
10.1038/nature09944
10.1073/pnas.1005963107
10.1016/j.jnutbio.2016.05.002
10.5551/jat.38265
10.3390/nu9020125
10.1194/jlr.R036012
10.1536/ihj.16-414
10.1161/JAHA.115.002699
10.1161/01.CIR.94.11.2720
10.1038/nature12721
10.1038/srep28797
10.1056/NEJM198503283121302
10.1056/NEJMoa1109400
10.1007/s00380-016-0841-y
10.3390/diseases6030056
10.1128/AEM.00062-07
10.1038/nature12480
10.1371/journal.pone.0180991
10.3390/nu10020179
10.1073/pnas.1016088108
10.1038/nature12726
10.1038/nature16504
10.1038/nature09922
10.1038/nmeth.f.303
10.1161/CIRCULATIONAHA.116.024545
10.1001/jama.275.6.447
10.5551/jat.RV17006
10.1371/journal.pone.0160533
10.5551/jat.32672
10.1056/NEJM200005113421903
10.1101/gr.112730.110
10.1186/s40168-016-0178-x
10.1161/CIRCULATIONAHA.118.033714
10.1038/sj.ejcn.1602505
10.1146/annurev-food-022814-015429
10.1038/nrgastro.2012.156
10.1017/S095442241700004X
10.1038/nature17626
10.1038/ncomms2266
10.1038/nrcardio.2016.183
10.1128/AEM.01106-08
10.1093/nar/gks808
10.1016/j.numecd.2014.01.002
10.1038/s41467-017-00900-1
10.1038/s41598-017-18877-8
10.1093/bioinformatics/btq461
ContentType Journal Article
Copyright 2019 This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.
2019 Japan Atherosclerosis Society 2019
Copyright_xml – notice: 2019 This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.
– notice: 2019 Japan Atherosclerosis Society 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.5551/jat.47415
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1880-3873
EndPage 719
ExternalDocumentID 10.5551/jat.47415
PMC6711844
30587666
10_5551_jat_47415
article_jat_26_8_26_47415_article_char_en
Genre Journal Article
GroupedDBID ---
.55
29J
2WC
53G
5GY
5VS
AAFWJ
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
DIK
DU5
E3Z
F5P
GX1
HYE
JMI
JSF
JSH
KQ8
OK1
OVT
P6G
RJT
RNS
RPM
RZJ
TR2
X7M
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
M~E
NPM
7X8
5PM
3O-
ADTOC
TKC
UNPAY
ID FETCH-LOGICAL-c565t-2ee07f79d77069c0a6c15ab136e2aaa7cc4946341f3e1d4d0fef1ae502d07b173
IEDL.DBID UNPAY
ISSN 1340-3478
1880-3873
IngestDate Sun Oct 26 04:04:02 EDT 2025
Tue Sep 30 16:25:48 EDT 2025
Thu Oct 02 11:15:45 EDT 2025
Thu Jan 02 23:00:02 EST 2025
Tue Jul 01 02:27:11 EDT 2025
Thu Apr 24 22:54:50 EDT 2025
Wed Sep 03 06:30:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 8
Keywords Gut microbiota
Resistant starch
Coronary artery disease
Bacteroides
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ja
This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.http://creativecommons.org/licenses/by-nc-sa/3.0
cc-by-nc-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c565t-2ee07f79d77069c0a6c15ab136e2aaa7cc4946341f3e1d4d0fef1ae502d07b173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/jat/26/8/26_47415/_pdf
PMID 30587666
PQID 2161063063
PQPubID 23479
PageCount 15
ParticipantIDs unpaywall_primary_10_5551_jat_47415
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6711844
proquest_miscellaneous_2161063063
pubmed_primary_30587666
crossref_citationtrail_10_5551_jat_47415
crossref_primary_10_5551_jat_47415
jstage_primary_article_jat_26_8_26_47415_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 8
  year: 2019
  text: 20190801
  day: 1
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of Atherosclerosis and Thrombosis
PublicationTitleAlternate JAT
PublicationYear 2019
Publisher Japan Atherosclerosis Society
Publisher_xml – name: Japan Atherosclerosis Society
References 39) Chandalia M, Garg A, Lutjohann D, von Bergmann K, Grundy SM, and Brinkley LJ: Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med, 2000; 342: 1392-1398
35) Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSantis TZ, Human Microbiome Consortium, Petrosino JF, Knight R, and Birren BW: Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res, 2011; 21: 494-504
33) Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, and Knight R: QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 2010; 7: 335-336
11) Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT, Zhu JJ, You C, Chen Q, Zhou L, Pan SY, and Zhou HW: Dysbi osis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc, 2015; 4. doi: 10.1161/JAHA.115.002699
19) De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, and Lionetti P: Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A, 2010; 107: 14691-14696
34) Edgar RC: Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010; 26: 2460-2461
32) Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, and Glöckner FO: Evaluation of general 16S ribosomal RNA gene PCR primers for classical and nextgeneration sequencing-based diversity studies. Nucleic Acids Res, 2013; 41: e1. doi: 10.1093/nar/gks808
17) Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, and Wingreen NS, Sonnenburg JL: Diet-induced extinction in the gut microbiota compounds over generations. Nature, 2016; 529: 212-215
26) Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, and Ohno H: Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 2013; 504: 446-450
12) Yoshida N, Emoto T, Yamashita T, Watanabe H, Hayashi T, Tabata T, Hoshi N, Hatano N, Ozawa G, Sasaki N, Mizoguchi T, Amin HZ, Hirota Y, Ogawa W, Yamada T, and Hirata KI: Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation, 2018; 138: 2486-2498
31) Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, Tan JK, Kuruppu S, Rajapakse NW, El-Osta A, Mackay CR, and Kaye DM: High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation, 2017; 135: 964-977
36) Wang Q, Garrity GM, Tiedje JM, and Cole JR: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol, 2007; 73: 5261-5267
30) Sasaki D, Sasaki K, Ikuta N, Yasuda T, Fukuda I, Kondo A, and Osawa R: Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human colonic microbiota structure. Sci Rep, 2018; 8: 435. doi: 10.1038/s41598-017-18877-8
9) Emoto T, Yamashita T, Sasaki N, Hirota Y, Hayashi T, So A, Kasahara K, Yodoi K, Matsumoto T, Mizoguchi T, Ogawa W, and Hirata K: Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J Atheroscler Thromb, 2016; 23: 908-921
49) den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, and Bakker BM: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res, 2013; 54: 2325-2340
21) Kushi LH, Lew RA, Stare FJ, Ellison CR, el Lozy M, Bourke G, Daly L, Graham I, Hickey N, Mulcahy R, and Kevaney J: Diet and 20-year mortality from coronary heart disease. The Ireland-Boston Diet-Heart Study. N Engl J Med, 1985; 312: 811-818
4) Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, and Hazen SL: Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med, 2013; 368: 1575-1584
14) Yamashita T: Intestinal Immunity and Gut Microbiota in Atherogenesis. J Atheroscler Thromb, 2017; 24: 110-119.
22) Pietinen P, Rimm EB, Korhonen P, Hartman AM, Willett WC, Albanes D, and Virtamo J: Intake of dietary fiber and risk of coronary heart disease in a cohort of Finnish men. The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Circulation, 1996; 94: 2720-2727
42) Stephen AM, Champ MM, Cloran SJ, Fleith M, van Lieshout L, Mejborn H, and Burley VJ: Dietary fibre in Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr Res Rev, 2017; 30: 149-190
44) Ohira H, Tsutsui W, and Fujioka Y: Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J Atheroscler Thromb, 2017; 24: 660-772
40) Williams CF, Walton GE, Jiang L, Plummer S, Garaiova I, Gibson GR: Comparative Analysis of Intestinal Tract Models. Annu Rev Food Sci Technol, 2015; 6: 329-350
37) Odamaki T, Xiao JZ, Sakamoto M, Kondo S, Yaeshima T, Iwatsuki K, Togashi H, Enomoto T, and Benno Y: Distribution of different species of the Bacteroides fragilis group in individuals with Japanese cedar pollinosis. Appl Environ Microbiol, 2008; 74: 6814-6817
7) Yoshida N, Yamashita T, and Hirata KI: Gut microbiome and cardiovascular diseases. Diseases, 2018; 6: 56. doi:10.3390/diseases6030056
5) Jonsson AL and Bäckhed F: Role of gut microbiota in atherosclerosis. Nat Rev Cardiol, 2017; 14: 79-87
15) Flint HJ, Scott KP, Louis P, and Duncan SH: The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol, 2012; 9: 577-589
43) Fukuda S, Saito H, Nakaji S, Yamada M, Ebine N, Tsushima E, Oka E, Kumeta K, Tsukamoto T, and Tokunaga S: Pattern of dietary fiber intake among the Japanese general population. Eur J Clin Nutr, 2007; 61: 99-103
6) Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, Zhong H, Liu Z, Gao Y, Zhao H, Zhang D, Su Z, Fang Z, Lan Z, Li J, Xiao L, Li J, Li R, Li X, Li F, Ren H, Huang Y, Peng Y, Li G, Wen B, Dong B, Chen JY, Geng QS, Zhang ZW, Yang H, Wang J, Wang J, Zhang X, Madsen L, Brix S, Ning G, Xu X, Liu X, Hou Y, Jia H, He K, and Kristiansen K: The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun, 2017; 8: 845. doi: 10.1038/s41467-017-00900-1
16) Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto JM, Renault P, ANR MicroObes consortium, Doré J, Zucker JD, Clément K, and Ehrlich SD: Dietary intervention impact on gut microbial gene richness. Nature, 2013; 500: 585-588
3) Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, and Hazen SL: Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 2011; 472: 57-63
25) Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, and Rudensky AY: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013; 504: 451-455
13) Yamashita T, Emoto T, Sasaki N, and Hirata KI: Gut microbiota and coronary artery disease. Int Heart J, 2016; 57: 663-671
46) Herrmann E, Young W, Reichert-Grimm V, Weis S, Riedel C, Rosendale D, Stoklosinski H, Hunt M, and Egert M: In vivo assessment of resistant starch degradation by the caecal microbiota of mice using RNA-based stable isotope probing-a proof-of-principle study. Nutrients, 2018; 10: E179. doi:10.3390/nu10020179
27) Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, and Tsujimoto G: Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A, 2011; 108: 8030-8035
18) Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma J, Yu L, Xu C, Ren Z, Xu Y, Xu S, Shen H, Zhu X, Shi Y, Shen Q, Dong W, Liu R, Ling Y, Zeng Y, Wang X, Zhang Q, Wang J, Wang L, Wu Y, Zeng B, Wei H, Zhang M, Peng Y, and Zhang C: Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 2018; 359: 1151-1156
10) Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Bäckhed F, and Nielsen J: Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun, 2012; 3: 1245. doi: 10.1038/ncomms2266
38) Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J; MetaHIT Consortium, Antolín M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Mérieux A, Melo Minardi R, M'rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsk
44
45
46
47
48
49
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: 43) Fukuda S, Saito H, Nakaji S, Yamada M, Ebine N, Tsushima E, Oka E, Kumeta K, Tsukamoto T, and Tokunaga S: Pattern of dietary fiber intake among the Japanese general population. Eur J Clin Nutr, 2007; 61: 99-103
– reference: 8) Emoto T, Yamashita T, Kobayashi T, Sasaki N, Hirota Y, Hayashi T, So A, Kasahara K, Yodoi K, Matsumoto T, Mizoguchi T, Ogawa W, and Hirata KI: Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessels, 2017; 32: 39-46
– reference: 26) Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, and Ohno H: Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 2013; 504: 446-450
– reference: 19) De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, and Lionetti P: Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A, 2010; 107: 14691-14696
– reference: 15) Flint HJ, Scott KP, Louis P, and Duncan SH: The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol, 2012; 9: 577-589
– reference: 9) Emoto T, Yamashita T, Sasaki N, Hirota Y, Hayashi T, So A, Kasahara K, Yodoi K, Matsumoto T, Mizoguchi T, Ogawa W, and Hirata K: Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J Atheroscler Thromb, 2016; 23: 908-921
– reference: 42) Stephen AM, Champ MM, Cloran SJ, Fleith M, van Lieshout L, Mejborn H, and Burley VJ: Dietary fibre in Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr Res Rev, 2017; 30: 149-190
– reference: 22) Pietinen P, Rimm EB, Korhonen P, Hartman AM, Willett WC, Albanes D, and Virtamo J: Intake of dietary fiber and risk of coronary heart disease in a cohort of Finnish men. The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Circulation, 1996; 94: 2720-2727
– reference: 18) Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma J, Yu L, Xu C, Ren Z, Xu Y, Xu S, Shen H, Zhu X, Shi Y, Shen Q, Dong W, Liu R, Ling Y, Zeng Y, Wang X, Zhang Q, Wang J, Wang L, Wu Y, Zeng B, Wei H, Zhang M, Peng Y, and Zhang C: Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 2018; 359: 1151-1156
– reference: 45) Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR, and Schmidt TM: Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome, 2016; 4: 33. doi: 10.1186/s40168-016-0178-x
– reference: 21) Kushi LH, Lew RA, Stare FJ, Ellison CR, el Lozy M, Bourke G, Daly L, Graham I, Hickey N, Mulcahy R, and Kevaney J: Diet and 20-year mortality from coronary heart disease. The Ireland-Boston Diet-Heart Study. N Engl J Med, 1985; 312: 811-818
– reference: 30) Sasaki D, Sasaki K, Ikuta N, Yasuda T, Fukuda I, Kondo A, and Osawa R: Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human colonic microbiota structure. Sci Rep, 2018; 8: 435. doi: 10.1038/s41598-017-18877-8
– reference: 49) den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, and Bakker BM: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res, 2013; 54: 2325-2340
– reference: 41) Rakoff-Nahoum S, Foster KR, and Comstock LE: The evolution of cooperation within the gut microbiota. Nature, 2016; 533: 255-259
– reference: 24) Sawicki CM, Livingston KA, Obin M, Roberts SB, Chung M, and McKeown NM: Dietary fiber and the human gut microbiota: application of evidence mapping methodology. Nutrients, 2017; 9: E125. doi: 10.3390/nu9020125
– reference: 35) Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSantis TZ, Human Microbiome Consortium, Petrosino JF, Knight R, and Birren BW: Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res, 2011; 21: 494-504
– reference: 2) Suwa S, Ogita M, Miyauchi K, Sonoda T, Konishi H, Tsuboi S, Wada H, Naito R, Dohi T, Kasai T, Okazaki S, Isoda K, Daida H: Impact of Lipoprotein (a) on Long-Term Outcomes in Patients with Coronary Artery Disease Treated with Statin After a First Percutaneous Coronary Intervention. J Atheroscler Thromb, 2017; 24: 1125- 1131
– reference: 29) Sasaki K, Sasaki D, Okai N, Tanaka K, Nomoto R, Fukuda I, Yoshida KI, Kondo A, and Osawa R: Taurine does not affect the composition, diversity, or metabolism of human colonic microbiota simulated in a single-batch fermentation system. PLoS One, 2017; 12: e0180991. doi: 10.1371/journal.pone.0180991
– reference: 28) Takagi R, Sasaki K, Sasaki D, Fukuda I, Tanaka K, Yoshida K, Kondo A, and Osawa R: A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of prebiotics. PLoS One, 2016; 11: e0160533. doi: 10.1371/journal.pone.0160533.
– reference: 13) Yamashita T, Emoto T, Sasaki N, and Hirata KI: Gut microbiota and coronary artery disease. Int Heart J, 2016; 57: 663-671
– reference: 31) Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, Tan JK, Kuruppu S, Rajapakse NW, El-Osta A, Mackay CR, and Kaye DM: High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation, 2017; 135: 964-977
– reference: 10) Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Bäckhed F, and Nielsen J: Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun, 2012; 3: 1245. doi: 10.1038/ncomms2266
– reference: 12) Yoshida N, Emoto T, Yamashita T, Watanabe H, Hayashi T, Tabata T, Hoshi N, Hatano N, Ozawa G, Sasaki N, Mizoguchi T, Amin HZ, Hirota Y, Ogawa W, Yamada T, and Hirata KI: Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation, 2018; 138: 2486-2498
– reference: 46) Herrmann E, Young W, Reichert-Grimm V, Weis S, Riedel C, Rosendale D, Stoklosinski H, Hunt M, and Egert M: In vivo assessment of resistant starch degradation by the caecal microbiota of mice using RNA-based stable isotope probing-a proof-of-principle study. Nutrients, 2018; 10: E179. doi:10.3390/nu10020179
– reference: 36) Wang Q, Garrity GM, Tiedje JM, and Cole JR: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol, 2007; 73: 5261-5267
– reference: 48) Aguilar EC, Santos LC, Leonel AJ, de Oliveira JS, Santos EA, Navia-Pelaez JM, da Silva JF, Mendes BP, Capettini LS, Teixeira LG, Lemos VS, and Alvarez-Leite J: Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase downregulation in endothelial cells. J Nutr Biochem, 2016; 34: 99-105
– reference: 5) Jonsson AL and Bäckhed F: Role of gut microbiota in atherosclerosis. Nat Rev Cardiol, 2017; 14: 79-87
– reference: 47) Aguilar EC, Leonel AJ, Teixeira LG, Silva AR, Silva JF, Pelaez JM, Capettini LS, Lemos VS, Santos RA, and Alvarez-Leite JI: Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutr Metab Cardiovasc Dis, 2014; 24: 606-613
– reference: 27) Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, and Tsujimoto G: Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A, 2011; 108: 8030-8035
– reference: 32) Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, and Glöckner FO: Evaluation of general 16S ribosomal RNA gene PCR primers for classical and nextgeneration sequencing-based diversity studies. Nucleic Acids Res, 2013; 41: e1. doi: 10.1093/nar/gks808
– reference: 40) Williams CF, Walton GE, Jiang L, Plummer S, Garaiova I, Gibson GR: Comparative Analysis of Intestinal Tract Models. Annu Rev Food Sci Technol, 2015; 6: 329-350
– reference: 4) Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, and Hazen SL: Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med, 2013; 368: 1575-1584
– reference: 7) Yoshida N, Yamashita T, and Hirata KI: Gut microbiome and cardiovascular diseases. Diseases, 2018; 6: 56. doi:10.3390/diseases6030056
– reference: 39) Chandalia M, Garg A, Lutjohann D, von Bergmann K, Grundy SM, and Brinkley LJ: Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med, 2000; 342: 1392-1398
– reference: 33) Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, and Knight R: QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 2010; 7: 335-336
– reference: 44) Ohira H, Tsutsui W, and Fujioka Y: Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J Atheroscler Thromb, 2017; 24: 660-772
– reference: 14) Yamashita T: Intestinal Immunity and Gut Microbiota in Atherogenesis. J Atheroscler Thromb, 2017; 24: 110-119.
– reference: 6) Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, Zhong H, Liu Z, Gao Y, Zhao H, Zhang D, Su Z, Fang Z, Lan Z, Li J, Xiao L, Li J, Li R, Li X, Li F, Ren H, Huang Y, Peng Y, Li G, Wen B, Dong B, Chen JY, Geng QS, Zhang ZW, Yang H, Wang J, Wang J, Zhang X, Madsen L, Brix S, Ning G, Xu X, Liu X, Hou Y, Jia H, He K, and Kristiansen K: The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun, 2017; 8: 845. doi: 10.1038/s41467-017-00900-1
– reference: 20) Upadhyaya B, McCormack L, Fardin-Kia AR, Juenemann R, Nichenametla S, Clapper J, Specker B, and Dey M: Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions. Sci Rep, 2016; 6: 28797. doi: 10.1038/srep28797
– reference: 38) Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J; MetaHIT Consortium, Antolín M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Mérieux A, Melo Minardi R, M'rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, and Bork P: Enterotypes of the human gut microbiome. Nature, 2011; 473: 174-180
– reference: 34) Edgar RC: Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010; 26: 2460-2461
– reference: 17) Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, and Wingreen NS, Sonnenburg JL: Diet-induced extinction in the gut microbiota compounds over generations. Nature, 2016; 529: 212-215
– reference: 37) Odamaki T, Xiao JZ, Sakamoto M, Kondo S, Yaeshima T, Iwatsuki K, Togashi H, Enomoto T, and Benno Y: Distribution of different species of the Bacteroides fragilis group in individuals with Japanese cedar pollinosis. Appl Environ Microbiol, 2008; 74: 6814-6817
– reference: 25) Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, and Rudensky AY: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013; 504: 451-455
– reference: 11) Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT, Zhu JJ, You C, Chen Q, Zhou L, Pan SY, and Zhou HW: Dysbi osis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc, 2015; 4. doi: 10.1161/JAHA.115.002699
– reference: 1) Ridker PM, Danielson E, Fonseca FAH, Genest J, Gotto AM, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, Mac-Fadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ, and JUPITER Study Group: Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med, 2008; 359: 2195-2207
– reference: 3) Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, and Hazen SL: Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 2011; 472: 57-63
– reference: 16) Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto JM, Renault P, ANR MicroObes consortium, Doré J, Zucker JD, Clément K, and Ehrlich SD: Dietary intervention impact on gut microbial gene richness. Nature, 2013; 500: 585-588
– reference: 23) Rimm EB, Ascherio A, Giovannucci E, Spiegelman D, Stampfer MJ, and Willett WC: Vegetable, fruit, and cereal fiber intake and risk of coronary heart disease among men. JAMA, 1996; 275: 447-451
– ident: 18
  doi: 10.1126/science.aao5774
– ident: 1
  doi: 10.1056/NEJMoa0807646
– ident: 2
  doi: 10.5551/jat.38794
– ident: 38
  doi: 10.1038/nature09944
– ident: 19
  doi: 10.1073/pnas.1005963107
– ident: 48
  doi: 10.1016/j.jnutbio.2016.05.002
– ident: 14
  doi: 10.5551/jat.38265
– ident: 24
  doi: 10.3390/nu9020125
– ident: 49
  doi: 10.1194/jlr.R036012
– ident: 13
  doi: 10.1536/ihj.16-414
– ident: 11
  doi: 10.1161/JAHA.115.002699
– ident: 22
  doi: 10.1161/01.CIR.94.11.2720
– ident: 26
  doi: 10.1038/nature12721
– ident: 20
  doi: 10.1038/srep28797
– ident: 21
  doi: 10.1056/NEJM198503283121302
– ident: 4
  doi: 10.1056/NEJMoa1109400
– ident: 8
  doi: 10.1007/s00380-016-0841-y
– ident: 7
  doi: 10.3390/diseases6030056
– ident: 36
  doi: 10.1128/AEM.00062-07
– ident: 16
  doi: 10.1038/nature12480
– ident: 29
  doi: 10.1371/journal.pone.0180991
– ident: 46
  doi: 10.3390/nu10020179
– ident: 27
  doi: 10.1073/pnas.1016088108
– ident: 25
  doi: 10.1038/nature12726
– ident: 17
  doi: 10.1038/nature16504
– ident: 3
  doi: 10.1038/nature09922
– ident: 33
  doi: 10.1038/nmeth.f.303
– ident: 31
  doi: 10.1161/CIRCULATIONAHA.116.024545
– ident: 23
  doi: 10.1001/jama.275.6.447
– ident: 44
  doi: 10.5551/jat.RV17006
– ident: 28
  doi: 10.1371/journal.pone.0160533
– ident: 9
  doi: 10.5551/jat.32672
– ident: 39
  doi: 10.1056/NEJM200005113421903
– ident: 35
  doi: 10.1101/gr.112730.110
– ident: 45
  doi: 10.1186/s40168-016-0178-x
– ident: 12
  doi: 10.1161/CIRCULATIONAHA.118.033714
– ident: 43
  doi: 10.1038/sj.ejcn.1602505
– ident: 40
  doi: 10.1146/annurev-food-022814-015429
– ident: 15
  doi: 10.1038/nrgastro.2012.156
– ident: 42
  doi: 10.1017/S095442241700004X
– ident: 41
  doi: 10.1038/nature17626
– ident: 10
  doi: 10.1038/ncomms2266
– ident: 5
  doi: 10.1038/nrcardio.2016.183
– ident: 37
  doi: 10.1128/AEM.01106-08
– ident: 32
  doi: 10.1093/nar/gks808
– ident: 47
  doi: 10.1016/j.numecd.2014.01.002
– ident: 6
  doi: 10.1038/s41467-017-00900-1
– ident: 30
  doi: 10.1038/s41598-017-18877-8
– ident: 34
  doi: 10.1093/bioinformatics/btq461
SSID ssj0033552
Score 2.39472
Snippet Aim: Bacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could...
Bacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could help...
Aim: Bacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 705
SubjectTerms Aged
Bacteria - classification
Bacteria - drug effects
Bacteria - genetics
Bacteroides
Coronary artery disease
Coronary Artery Disease - drug therapy
Coronary Artery Disease - metabolism
Coronary Artery Disease - microbiology
Fatty Acids, Volatile - metabolism
Feces - microbiology
Female
Follow-Up Studies
Gastrointestinal Microbiome - drug effects
Gut microbiota
Humans
Male
Middle Aged
Original
Prognosis
Resistant starch
RNA, Ribosomal, 16S - genetics
Starch - administration & dosage
Starch - pharmacology
Title Effect of Resistant Starch on the Gut Microbiota and Its Metabolites in Patients with Coronary Artery Disease
URI https://www.jstage.jst.go.jp/article/jat/26/8/26_47415/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/30587666
https://www.proquest.com/docview/2161063063
https://pubmed.ncbi.nlm.nih.gov/PMC6711844
https://www.jstage.jst.go.jp/article/jat/26/8/26_47415/_pdf
UnpaywallVersion publishedVersion
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Atherosclerosis and Thrombosis, 2019/08/01, Vol.26(8), pp.705-719
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1880-3873
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033552
  issn: 1880-3873
  databaseCode: KQ8
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1880-3873
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033552
  issn: 1880-3873
  databaseCode: KQ8
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1880-3873
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033552
  issn: 1880-3873
  databaseCode: KQ8
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1880-3873
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033552
  issn: 1880-3873
  databaseCode: DIK
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1880-3873
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033552
  issn: 1880-3873
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central (PMC)
  customDbUrl:
  eissn: 1880-3873
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033552
  issn: 1880-3873
  databaseCode: RPM
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WwRceFPCozKPA5fN5uHYjjhVhbYgbVUhVlokpMhJnLLbxVk1iVD59YzjJGKhSIhLcvDIlj3jmW_i8ReAV2HsFyIzNVWSYoLCcSuKwFdjP0xVKih6QNlW-Z6w4xn9MI_mW_CmvwtjyiqXiIvOlHm5Z6W7XE-6RZwsJSbrbCLwkVATCifJOi-2YYdFCMRHsDM7Od3_3KZYFL0Lbf2wIRwzDLKh5RWKECKYjty2g41odM0OfBXW_LNk8kaj1_Lyu1ytfolHh7fhSz8TW4Zy7jZ16mY_fiN5_M-p3oFbHU4l-1bwLmwpfQ-uT7uT-PvwzdIek7IgH1VlQKiuCSJX3Dak1ARhJTlqajJdWKKnWhKpc_K-rshU1Wh45upzRRaanFpi14qYL8LkwBAqyItLM7DC11t7fvQAZofvPh0cj7tfN4wzRIj1OFDK4wWPc849FmeeZJkfydQPmQqklDzLaEwZRtAiVH5Oc69QhS9V5AW5x1Ofhw9hpEutHgGhKmRCshQTr5jmYSREXqQoHXCWiiKnDrzuVZhkHa-5-b3GKsH8xmg7wbW0a-jAi0F0bck8rhISViuDSKeTVgTVIZJeJ0OLuSGHbsaB573lJLhLzdGL1KpsqiRAYG3YzVjowK61pKF79LgYkhhzgG_Y2CBgGMA3W_Tia8sEzjjmhxSX4OVgjX-f2ON_knoCNxETxrbG8SmM6otGPUPcVad7sH009_e6XfYTg_kvxQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VLYJeeJY2vGQeBy6bzcOxHfVUFUpB2qpCrFQkpMhJnLLL1lk1iVD59R3HScRCkRCX5OCRLXvGM9_E4y8Ar8PYL0RmaqokxQSF41YUga_GfpiqVFD0gLKt8j1mRzP68TQ63YC9_i6MKatcIC46U-blnpXuYjXpFnGykJiss4nAR0JNKJwkq7y4AZssQiA-gs3Z8cn-lzbFouhdaOuHDeGYYZANLa9QhBDBdOS2HaxFo5t24Ouw5p8lk7cbvZKXP-Ry-Us8OrwLX_uZ2DKU725Tp2728zeSx_-c6j240-FUsm8F78OG0g_g1rQ7iX8I55b2mJQF-aQqA0J1TRC54rYhpSYIK8n7pibTuSV6qiWROicf6opMVY2GZ64-V2SuyYkldq2I-SJMDgyhgry4NAMrfL2150fbMDt89_ngaNz9umGcIUKsx4FSHi94nHPusTjzJMv8SKZ-yFQgpeRZRmPKMIIWofJzmnuFKnypIi_IPZ76PHwEI11qtQuEqpAJyVJMvGKah5EQeZGidMBZKoqcOvCmV2GSdbzm5vcaywTzG6PtBNfSrqEDLwfRlSXzuE5IWK0MIp1OWhFUh0h6nQwt5oYcuhkHXvSWk-AuNUcvUquyqZIAgbVhN2OhAzvWkobu0eNiSGLMAb5mY4OAYQBfb9Hzby0TOOOYH1JcgleDNf59Yo__SeoJbCEmjG2N41MY1ReNeoa4q06fd_vrCmsULtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Resistant+Starch+on+the+Gut+Microbiota+and+Its+Metabolites+in+Patients+with+Coronary+Artery+Disease&rft.jtitle=Journal+of+atherosclerosis+and+thrombosis&rft.au=Yoshida%2C+Naofumi&rft.au=Sasaki%2C+Kengo&rft.au=Sasaki%2C+Daisuke&rft.au=Yamashita%2C+Tomoya&rft.date=2019-08-01&rft.issn=1880-3873&rft.eissn=1880-3873&rft.volume=26&rft.issue=8&rft.spage=705&rft_id=info:doi/10.5551%2Fjat.47415&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1340-3478&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1340-3478&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1340-3478&client=summon