Effect of Resistant Starch on the Gut Microbiota and Its Metabolites in Patients with Coronary Artery Disease
Aim: Bacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could help patients with coronary artery disease (CAD). This study aimed to investigate the effect of resistant starch (RS) on the gut microbiota...
Saved in:
| Published in | Journal of Atherosclerosis and Thrombosis Vol. 26; no. 8; pp. 705 - 719 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Japan
Japan Atherosclerosis Society
01.08.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1340-3478 1880-3873 1880-3873 |
| DOI | 10.5551/jat.47415 |
Cover
| Abstract | Aim: Bacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could help patients with coronary artery disease (CAD). This study aimed to investigate the effect of resistant starch (RS) on the gut microbiota and its metabolites in fecal sample cultures from patients with CAD and individuals without CAD, using a single-batch fermentation system.Methods: Fecal samples from 11 patients with CAD and 10 individuals without CAD were fermented for 30 h with or without RS in the Kobe University Human Intestinal Microbiota Model (KUHIMM). Gut microbiota and the abundance of B. vulgatus and B. dorei were analyzed using 16S ribosomal ribonucleic acid (rRNA) gene sequencing and the quantitative polymerase chain reaction. Short-chain fatty acids were analyzed using high-performance liquid chromatography.Results: Gut microbial analysis showed significantly lower levels of B. vulgatus and B. dorei in the original fecal samples from patients with CAD, which was simulated after 30 h of fermentation in the KUHIMM. Although RS significantly increased the absolute numbers of B. vulgatus and B. dorei, and butyrate levels in CAD fecal sample cultures, the numbers varied among each patient.Conclusions: The effect of RS on gut microbiota and its metabolites in the KUHIMM varied between CAD and non-CAD fecal sample cultures. The KUHIMM may be useful for preclinical evaluations of the effects of RS on the gut microbiota and its metabolites. |
|---|---|
| AbstractList | Bacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could help patients with coronary artery disease (CAD). This study aimed to investigate the effect of resistant starch (RS) on the gut microbiota and its metabolites in fecal sample cultures from patients with CAD and individuals without CAD, using a single-batch fermentation system.
Fecal samples from 11 patients with CAD and 10 individuals without CAD were fermented for 30 h with or without RS in the Kobe University Human Intestinal Microbiota Model (KUHIMM). Gut microbiota and the abundance of B. vulgatus and B. dorei were analyzed using 16S ribosomal ribonucleic acid (rRNA) gene sequencing and the quantitative polymerase chain reaction. Short-chain fatty acids were analyzed using high-performance liquid chromatography.
Gut microbial analysis showed significantly lower levels of B. vulgatus and B. dorei in the original fecal samples from patients with CAD, which was simulated after 30 h of fermentation in the KUHIMM. Although RS significantly increased the absolute numbers of B. vulgatus and B. dorei, and butyrate levels in CAD fecal sample cultures, the numbers varied among each patient.
The effect of RS on gut microbiota and its metabolites in the KUHIMM varied between CAD and non-CAD fecal sample cultures. The KUHIMM may be useful for preclinical evaluations of the effects of RS on the gut microbiota and its metabolites. Aim: Bacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could help patients with coronary artery disease (CAD). This study aimed to investigate the effect of resistant starch (RS) on the gut microbiota and its metabolites in fecal sample cultures from patients with CAD and individuals without CAD, using a single-batch fermentation system. Methods: Fecal samples from 11 patients with CAD and 10 individuals without CAD were fermented for 30 h with or without RS in the Kobe University Human Intestinal Microbiota Model (KUHIMM). Gut microbiota and the abundance of B. vulgatus and B. dorei were analyzed using 16S ribosomal ribonucleic acid (rRNA) gene sequencing and the quantitative polymerase chain reaction. Short-chain fatty acids were analyzed using high-performance liquid chromatography. Results: Gut microbial analysis showed significantly lower levels of B. vulgatus and B. dorei in the original fecal samples from patients with CAD, which was simulated after 30 h of fermentation in the KUHIMM. Although RS significantly increased the absolute numbers of B. vulgatus and B. dorei, and butyrate levels in CAD fecal sample cultures, the numbers varied among each patient. Conclusions: The effect of RS on gut microbiota and its metabolites in the KUHIMM varied between CAD and non-CAD fecal sample cultures. The KUHIMM may be useful for preclinical evaluations of the effects of RS on the gut microbiota and its metabolites. Aim: Bacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could help patients with coronary artery disease (CAD). This study aimed to investigate the effect of resistant starch (RS) on the gut microbiota and its metabolites in fecal sample cultures from patients with CAD and individuals without CAD, using a single-batch fermentation system.Methods: Fecal samples from 11 patients with CAD and 10 individuals without CAD were fermented for 30 h with or without RS in the Kobe University Human Intestinal Microbiota Model (KUHIMM). Gut microbiota and the abundance of B. vulgatus and B. dorei were analyzed using 16S ribosomal ribonucleic acid (rRNA) gene sequencing and the quantitative polymerase chain reaction. Short-chain fatty acids were analyzed using high-performance liquid chromatography.Results: Gut microbial analysis showed significantly lower levels of B. vulgatus and B. dorei in the original fecal samples from patients with CAD, which was simulated after 30 h of fermentation in the KUHIMM. Although RS significantly increased the absolute numbers of B. vulgatus and B. dorei, and butyrate levels in CAD fecal sample cultures, the numbers varied among each patient.Conclusions: The effect of RS on gut microbiota and its metabolites in the KUHIMM varied between CAD and non-CAD fecal sample cultures. The KUHIMM may be useful for preclinical evaluations of the effects of RS on the gut microbiota and its metabolites. Bacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could help patients with coronary artery disease (CAD). This study aimed to investigate the effect of resistant starch (RS) on the gut microbiota and its metabolites in fecal sample cultures from patients with CAD and individuals without CAD, using a single-batch fermentation system.AIMBacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could help patients with coronary artery disease (CAD). This study aimed to investigate the effect of resistant starch (RS) on the gut microbiota and its metabolites in fecal sample cultures from patients with CAD and individuals without CAD, using a single-batch fermentation system.Fecal samples from 11 patients with CAD and 10 individuals without CAD were fermented for 30 h with or without RS in the Kobe University Human Intestinal Microbiota Model (KUHIMM). Gut microbiota and the abundance of B. vulgatus and B. dorei were analyzed using 16S ribosomal ribonucleic acid (rRNA) gene sequencing and the quantitative polymerase chain reaction. Short-chain fatty acids were analyzed using high-performance liquid chromatography.METHODSFecal samples from 11 patients with CAD and 10 individuals without CAD were fermented for 30 h with or without RS in the Kobe University Human Intestinal Microbiota Model (KUHIMM). Gut microbiota and the abundance of B. vulgatus and B. dorei were analyzed using 16S ribosomal ribonucleic acid (rRNA) gene sequencing and the quantitative polymerase chain reaction. Short-chain fatty acids were analyzed using high-performance liquid chromatography.Gut microbial analysis showed significantly lower levels of B. vulgatus and B. dorei in the original fecal samples from patients with CAD, which was simulated after 30 h of fermentation in the KUHIMM. Although RS significantly increased the absolute numbers of B. vulgatus and B. dorei, and butyrate levels in CAD fecal sample cultures, the numbers varied among each patient.RESULTSGut microbial analysis showed significantly lower levels of B. vulgatus and B. dorei in the original fecal samples from patients with CAD, which was simulated after 30 h of fermentation in the KUHIMM. Although RS significantly increased the absolute numbers of B. vulgatus and B. dorei, and butyrate levels in CAD fecal sample cultures, the numbers varied among each patient.The effect of RS on gut microbiota and its metabolites in the KUHIMM varied between CAD and non-CAD fecal sample cultures. The KUHIMM may be useful for preclinical evaluations of the effects of RS on the gut microbiota and its metabolites.CONCLUSIONSThe effect of RS on gut microbiota and its metabolites in the KUHIMM varied between CAD and non-CAD fecal sample cultures. The KUHIMM may be useful for preclinical evaluations of the effects of RS on the gut microbiota and its metabolites. |
| Author | Sasaki, Kengo Tabata, Tokiko Fukuda, Hajime Kondo, Akihiko Yoshida, Naofumi Osawa, Ro Hirata, Ken-ichi Sasaki, Daisuke Yamashita, Tomoya Hayashi, Tomohiro |
| Author_xml | – sequence: 1 fullname: Kondo, Akihiko organization: RIKEN Center for Sustainable Resource Science, Yokohama, Japan – sequence: 1 fullname: Hirata, Ken-ichi organization: Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine – sequence: 1 fullname: Sasaki, Kengo organization: Graduate School of Science, Technology and Innovation, Kobe University – sequence: 1 fullname: Sasaki, Daisuke organization: Graduate School of Science, Technology and Innovation, Kobe University – sequence: 1 fullname: Yamashita, Tomoya organization: Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine – sequence: 1 fullname: Tabata, Tokiko organization: Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine – sequence: 1 fullname: Osawa, Ro organization: Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University – sequence: 1 fullname: Yoshida, Naofumi organization: Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine – sequence: 1 fullname: Hayashi, Tomohiro organization: Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine – sequence: 1 fullname: Fukuda, Hajime organization: Nippon Starch Chemical Co., Ltd |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30587666$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kVlvEzEQx1eoiB7wwBdAfoRKae31tXkBVaGUSq1AHM_WrHe2cbSxU9tL1W9fJynhEEKy7JHnN9d_Dqs9HzxW1UtGT6SU7HQB-URoweST6oA1DZ3wRvO9YnNRbKGb_eowpQWlnEtZP6v2OZWNVkodVMvzvkebSejJF0wuZfCZfM0Q7ZwET_IcycWYybWzMbQuZCDgO3KZE7nGDG0YXMZEnCefITv05f_O5TmZhRg8xHtyFjOW571LCAmfV097GBK-eHyPqu8fzr_NPk6uPl1czs6uJlYqmSc1ItW9nnZaUzW1FJRlElrGFdYAoK0VU6G4YD1H1omO9tgzQEnrjuqWaX5UHW_zjn4F93cwDGYV3bI0ZBg1a81M0cxsNCvw2y28GtsldrZMEeFXQABn_vR4Nzc34YdRmrFGiJLg9WOCGG5HTNksXbI4DOAxjMnUTDGqeDkFffV7rV2RnwspwOkWKHqnFLE31uUibViXdsM_23_zV8T_Rn23ZRdl0Te4IyFmZwfckLUyzfraROw8dg7RoOcP1w7EDw |
| CitedBy_id | crossref_primary_10_12938_bmfh_2023_085 crossref_primary_10_1007_s00253_021_11217_x crossref_primary_10_1097_MS9_0000000000002516 crossref_primary_10_3390_ani13243808 crossref_primary_10_1016_j_lwt_2024_116557 crossref_primary_10_1186_s12864_019_6251_7 crossref_primary_10_1039_D3FO00845B crossref_primary_10_3390_microorganisms12112319 crossref_primary_10_3390_metabo12121165 crossref_primary_10_1007_s10528_024_10847_w crossref_primary_10_1038_s41598_023_38849_5 crossref_primary_10_1111_jfbc_14376 crossref_primary_10_1186_s12879_021_06345_8 crossref_primary_10_30699_ijmm_17_3_301 crossref_primary_10_1016_j_eng_2020_05_025 crossref_primary_10_3390_nu16142321 crossref_primary_10_1080_10408398_2022_2119931 crossref_primary_10_1038_s41598_020_69983_z crossref_primary_10_1016_j_cca_2020_03_033 crossref_primary_10_3389_fimmu_2020_588079 crossref_primary_10_1186_s12876_020_01516_4 crossref_primary_10_1139_apnm_2021_0288 crossref_primary_10_1016_j_atherosclerosis_2022_08_009 crossref_primary_10_3389_fmicb_2024_1369478 crossref_primary_10_1002_star_202200216 crossref_primary_10_3389_fimmu_2021_828887 crossref_primary_10_1002_fsn3_3046 crossref_primary_10_1016_j_isci_2021_103342 crossref_primary_10_1016_j_copbio_2024_103103 crossref_primary_10_1111_ijfs_15388 crossref_primary_10_61186_umj_35_5_404 crossref_primary_10_1016_j_medidd_2024_100184 |
| Cites_doi | 10.1126/science.aao5774 10.1056/NEJMoa0807646 10.5551/jat.38794 10.1038/nature09944 10.1073/pnas.1005963107 10.1016/j.jnutbio.2016.05.002 10.5551/jat.38265 10.3390/nu9020125 10.1194/jlr.R036012 10.1536/ihj.16-414 10.1161/JAHA.115.002699 10.1161/01.CIR.94.11.2720 10.1038/nature12721 10.1038/srep28797 10.1056/NEJM198503283121302 10.1056/NEJMoa1109400 10.1007/s00380-016-0841-y 10.3390/diseases6030056 10.1128/AEM.00062-07 10.1038/nature12480 10.1371/journal.pone.0180991 10.3390/nu10020179 10.1073/pnas.1016088108 10.1038/nature12726 10.1038/nature16504 10.1038/nature09922 10.1038/nmeth.f.303 10.1161/CIRCULATIONAHA.116.024545 10.1001/jama.275.6.447 10.5551/jat.RV17006 10.1371/journal.pone.0160533 10.5551/jat.32672 10.1056/NEJM200005113421903 10.1101/gr.112730.110 10.1186/s40168-016-0178-x 10.1161/CIRCULATIONAHA.118.033714 10.1038/sj.ejcn.1602505 10.1146/annurev-food-022814-015429 10.1038/nrgastro.2012.156 10.1017/S095442241700004X 10.1038/nature17626 10.1038/ncomms2266 10.1038/nrcardio.2016.183 10.1128/AEM.01106-08 10.1093/nar/gks808 10.1016/j.numecd.2014.01.002 10.1038/s41467-017-00900-1 10.1038/s41598-017-18877-8 10.1093/bioinformatics/btq461 |
| ContentType | Journal Article |
| Copyright | 2019 This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License. 2019 Japan Atherosclerosis Society 2019 |
| Copyright_xml | – notice: 2019 This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License. – notice: 2019 Japan Atherosclerosis Society 2019 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.5551/jat.47415 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1880-3873 |
| EndPage | 719 |
| ExternalDocumentID | 10.5551/jat.47415 PMC6711844 30587666 10_5551_jat_47415 article_jat_26_8_26_47415_article_char_en |
| Genre | Journal Article |
| GroupedDBID | --- .55 29J 2WC 53G 5GY 5VS AAFWJ ACGFO ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL DIK DU5 E3Z F5P GX1 HYE JMI JSF JSH KQ8 OK1 OVT P6G RJT RNS RPM RZJ TR2 X7M AAYXX CITATION CGR CUY CVF ECM EIF GROUPED_DOAJ M~E NPM 7X8 5PM 3O- ADTOC TKC UNPAY |
| ID | FETCH-LOGICAL-c565t-2ee07f79d77069c0a6c15ab136e2aaa7cc4946341f3e1d4d0fef1ae502d07b173 |
| IEDL.DBID | UNPAY |
| ISSN | 1340-3478 1880-3873 |
| IngestDate | Sun Oct 26 04:04:02 EDT 2025 Tue Sep 30 16:25:48 EDT 2025 Thu Oct 02 11:15:45 EDT 2025 Thu Jan 02 23:00:02 EST 2025 Tue Jul 01 02:27:11 EDT 2025 Thu Apr 24 22:54:50 EDT 2025 Wed Sep 03 06:30:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Gut microbiota Resistant starch Coronary artery disease Bacteroides |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ja This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.http://creativecommons.org/licenses/by-nc-sa/3.0 cc-by-nc-sa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c565t-2ee07f79d77069c0a6c15ab136e2aaa7cc4946341f3e1d4d0fef1ae502d07b173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/jat/26/8/26_47415/_pdf |
| PMID | 30587666 |
| PQID | 2161063063 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | unpaywall_primary_10_5551_jat_47415 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6711844 proquest_miscellaneous_2161063063 pubmed_primary_30587666 crossref_citationtrail_10_5551_jat_47415 crossref_primary_10_5551_jat_47415 jstage_primary_article_jat_26_8_26_47415_article_char_en |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20190801 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 8 year: 2019 text: 20190801 day: 1 |
| PublicationDecade | 2010 |
| PublicationPlace | Japan |
| PublicationPlace_xml | – name: Japan |
| PublicationTitle | Journal of Atherosclerosis and Thrombosis |
| PublicationTitleAlternate | JAT |
| PublicationYear | 2019 |
| Publisher | Japan Atherosclerosis Society |
| Publisher_xml | – name: Japan Atherosclerosis Society |
| References | 39) Chandalia M, Garg A, Lutjohann D, von Bergmann K, Grundy SM, and Brinkley LJ: Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med, 2000; 342: 1392-1398 35) Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSantis TZ, Human Microbiome Consortium, Petrosino JF, Knight R, and Birren BW: Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res, 2011; 21: 494-504 33) Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, and Knight R: QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 2010; 7: 335-336 11) Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT, Zhu JJ, You C, Chen Q, Zhou L, Pan SY, and Zhou HW: Dysbi osis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc, 2015; 4. doi: 10.1161/JAHA.115.002699 19) De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, and Lionetti P: Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A, 2010; 107: 14691-14696 34) Edgar RC: Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010; 26: 2460-2461 32) Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, and Glöckner FO: Evaluation of general 16S ribosomal RNA gene PCR primers for classical and nextgeneration sequencing-based diversity studies. Nucleic Acids Res, 2013; 41: e1. doi: 10.1093/nar/gks808 17) Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, and Wingreen NS, Sonnenburg JL: Diet-induced extinction in the gut microbiota compounds over generations. Nature, 2016; 529: 212-215 26) Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, and Ohno H: Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 2013; 504: 446-450 12) Yoshida N, Emoto T, Yamashita T, Watanabe H, Hayashi T, Tabata T, Hoshi N, Hatano N, Ozawa G, Sasaki N, Mizoguchi T, Amin HZ, Hirota Y, Ogawa W, Yamada T, and Hirata KI: Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation, 2018; 138: 2486-2498 31) Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, Tan JK, Kuruppu S, Rajapakse NW, El-Osta A, Mackay CR, and Kaye DM: High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation, 2017; 135: 964-977 36) Wang Q, Garrity GM, Tiedje JM, and Cole JR: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol, 2007; 73: 5261-5267 30) Sasaki D, Sasaki K, Ikuta N, Yasuda T, Fukuda I, Kondo A, and Osawa R: Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human colonic microbiota structure. Sci Rep, 2018; 8: 435. doi: 10.1038/s41598-017-18877-8 9) Emoto T, Yamashita T, Sasaki N, Hirota Y, Hayashi T, So A, Kasahara K, Yodoi K, Matsumoto T, Mizoguchi T, Ogawa W, and Hirata K: Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J Atheroscler Thromb, 2016; 23: 908-921 49) den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, and Bakker BM: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res, 2013; 54: 2325-2340 21) Kushi LH, Lew RA, Stare FJ, Ellison CR, el Lozy M, Bourke G, Daly L, Graham I, Hickey N, Mulcahy R, and Kevaney J: Diet and 20-year mortality from coronary heart disease. The Ireland-Boston Diet-Heart Study. N Engl J Med, 1985; 312: 811-818 4) Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, and Hazen SL: Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med, 2013; 368: 1575-1584 14) Yamashita T: Intestinal Immunity and Gut Microbiota in Atherogenesis. J Atheroscler Thromb, 2017; 24: 110-119. 22) Pietinen P, Rimm EB, Korhonen P, Hartman AM, Willett WC, Albanes D, and Virtamo J: Intake of dietary fiber and risk of coronary heart disease in a cohort of Finnish men. The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Circulation, 1996; 94: 2720-2727 42) Stephen AM, Champ MM, Cloran SJ, Fleith M, van Lieshout L, Mejborn H, and Burley VJ: Dietary fibre in Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr Res Rev, 2017; 30: 149-190 44) Ohira H, Tsutsui W, and Fujioka Y: Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J Atheroscler Thromb, 2017; 24: 660-772 40) Williams CF, Walton GE, Jiang L, Plummer S, Garaiova I, Gibson GR: Comparative Analysis of Intestinal Tract Models. Annu Rev Food Sci Technol, 2015; 6: 329-350 37) Odamaki T, Xiao JZ, Sakamoto M, Kondo S, Yaeshima T, Iwatsuki K, Togashi H, Enomoto T, and Benno Y: Distribution of different species of the Bacteroides fragilis group in individuals with Japanese cedar pollinosis. Appl Environ Microbiol, 2008; 74: 6814-6817 7) Yoshida N, Yamashita T, and Hirata KI: Gut microbiome and cardiovascular diseases. Diseases, 2018; 6: 56. doi:10.3390/diseases6030056 5) Jonsson AL and Bäckhed F: Role of gut microbiota in atherosclerosis. Nat Rev Cardiol, 2017; 14: 79-87 15) Flint HJ, Scott KP, Louis P, and Duncan SH: The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol, 2012; 9: 577-589 43) Fukuda S, Saito H, Nakaji S, Yamada M, Ebine N, Tsushima E, Oka E, Kumeta K, Tsukamoto T, and Tokunaga S: Pattern of dietary fiber intake among the Japanese general population. Eur J Clin Nutr, 2007; 61: 99-103 6) Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, Zhong H, Liu Z, Gao Y, Zhao H, Zhang D, Su Z, Fang Z, Lan Z, Li J, Xiao L, Li J, Li R, Li X, Li F, Ren H, Huang Y, Peng Y, Li G, Wen B, Dong B, Chen JY, Geng QS, Zhang ZW, Yang H, Wang J, Wang J, Zhang X, Madsen L, Brix S, Ning G, Xu X, Liu X, Hou Y, Jia H, He K, and Kristiansen K: The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun, 2017; 8: 845. doi: 10.1038/s41467-017-00900-1 16) Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto JM, Renault P, ANR MicroObes consortium, Doré J, Zucker JD, Clément K, and Ehrlich SD: Dietary intervention impact on gut microbial gene richness. Nature, 2013; 500: 585-588 3) Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, and Hazen SL: Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 2011; 472: 57-63 25) Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, and Rudensky AY: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013; 504: 451-455 13) Yamashita T, Emoto T, Sasaki N, and Hirata KI: Gut microbiota and coronary artery disease. Int Heart J, 2016; 57: 663-671 46) Herrmann E, Young W, Reichert-Grimm V, Weis S, Riedel C, Rosendale D, Stoklosinski H, Hunt M, and Egert M: In vivo assessment of resistant starch degradation by the caecal microbiota of mice using RNA-based stable isotope probing-a proof-of-principle study. Nutrients, 2018; 10: E179. doi:10.3390/nu10020179 27) Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, and Tsujimoto G: Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A, 2011; 108: 8030-8035 18) Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma J, Yu L, Xu C, Ren Z, Xu Y, Xu S, Shen H, Zhu X, Shi Y, Shen Q, Dong W, Liu R, Ling Y, Zeng Y, Wang X, Zhang Q, Wang J, Wang L, Wu Y, Zeng B, Wei H, Zhang M, Peng Y, and Zhang C: Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 2018; 359: 1151-1156 10) Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Bäckhed F, and Nielsen J: Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun, 2012; 3: 1245. doi: 10.1038/ncomms2266 38) Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J; MetaHIT Consortium, Antolín M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Mérieux A, Melo Minardi R, M'rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsk 44 45 46 47 48 49 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
| References_xml | – reference: 43) Fukuda S, Saito H, Nakaji S, Yamada M, Ebine N, Tsushima E, Oka E, Kumeta K, Tsukamoto T, and Tokunaga S: Pattern of dietary fiber intake among the Japanese general population. Eur J Clin Nutr, 2007; 61: 99-103 – reference: 8) Emoto T, Yamashita T, Kobayashi T, Sasaki N, Hirota Y, Hayashi T, So A, Kasahara K, Yodoi K, Matsumoto T, Mizoguchi T, Ogawa W, and Hirata KI: Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessels, 2017; 32: 39-46 – reference: 26) Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, and Ohno H: Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 2013; 504: 446-450 – reference: 19) De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, and Lionetti P: Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A, 2010; 107: 14691-14696 – reference: 15) Flint HJ, Scott KP, Louis P, and Duncan SH: The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol, 2012; 9: 577-589 – reference: 9) Emoto T, Yamashita T, Sasaki N, Hirota Y, Hayashi T, So A, Kasahara K, Yodoi K, Matsumoto T, Mizoguchi T, Ogawa W, and Hirata K: Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J Atheroscler Thromb, 2016; 23: 908-921 – reference: 42) Stephen AM, Champ MM, Cloran SJ, Fleith M, van Lieshout L, Mejborn H, and Burley VJ: Dietary fibre in Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr Res Rev, 2017; 30: 149-190 – reference: 22) Pietinen P, Rimm EB, Korhonen P, Hartman AM, Willett WC, Albanes D, and Virtamo J: Intake of dietary fiber and risk of coronary heart disease in a cohort of Finnish men. The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Circulation, 1996; 94: 2720-2727 – reference: 18) Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma J, Yu L, Xu C, Ren Z, Xu Y, Xu S, Shen H, Zhu X, Shi Y, Shen Q, Dong W, Liu R, Ling Y, Zeng Y, Wang X, Zhang Q, Wang J, Wang L, Wu Y, Zeng B, Wei H, Zhang M, Peng Y, and Zhang C: Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 2018; 359: 1151-1156 – reference: 45) Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR, and Schmidt TM: Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome, 2016; 4: 33. doi: 10.1186/s40168-016-0178-x – reference: 21) Kushi LH, Lew RA, Stare FJ, Ellison CR, el Lozy M, Bourke G, Daly L, Graham I, Hickey N, Mulcahy R, and Kevaney J: Diet and 20-year mortality from coronary heart disease. The Ireland-Boston Diet-Heart Study. N Engl J Med, 1985; 312: 811-818 – reference: 30) Sasaki D, Sasaki K, Ikuta N, Yasuda T, Fukuda I, Kondo A, and Osawa R: Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human colonic microbiota structure. Sci Rep, 2018; 8: 435. doi: 10.1038/s41598-017-18877-8 – reference: 49) den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, and Bakker BM: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res, 2013; 54: 2325-2340 – reference: 41) Rakoff-Nahoum S, Foster KR, and Comstock LE: The evolution of cooperation within the gut microbiota. Nature, 2016; 533: 255-259 – reference: 24) Sawicki CM, Livingston KA, Obin M, Roberts SB, Chung M, and McKeown NM: Dietary fiber and the human gut microbiota: application of evidence mapping methodology. Nutrients, 2017; 9: E125. doi: 10.3390/nu9020125 – reference: 35) Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSantis TZ, Human Microbiome Consortium, Petrosino JF, Knight R, and Birren BW: Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res, 2011; 21: 494-504 – reference: 2) Suwa S, Ogita M, Miyauchi K, Sonoda T, Konishi H, Tsuboi S, Wada H, Naito R, Dohi T, Kasai T, Okazaki S, Isoda K, Daida H: Impact of Lipoprotein (a) on Long-Term Outcomes in Patients with Coronary Artery Disease Treated with Statin After a First Percutaneous Coronary Intervention. J Atheroscler Thromb, 2017; 24: 1125- 1131 – reference: 29) Sasaki K, Sasaki D, Okai N, Tanaka K, Nomoto R, Fukuda I, Yoshida KI, Kondo A, and Osawa R: Taurine does not affect the composition, diversity, or metabolism of human colonic microbiota simulated in a single-batch fermentation system. PLoS One, 2017; 12: e0180991. doi: 10.1371/journal.pone.0180991 – reference: 28) Takagi R, Sasaki K, Sasaki D, Fukuda I, Tanaka K, Yoshida K, Kondo A, and Osawa R: A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of prebiotics. PLoS One, 2016; 11: e0160533. doi: 10.1371/journal.pone.0160533. – reference: 13) Yamashita T, Emoto T, Sasaki N, and Hirata KI: Gut microbiota and coronary artery disease. Int Heart J, 2016; 57: 663-671 – reference: 31) Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, Tan JK, Kuruppu S, Rajapakse NW, El-Osta A, Mackay CR, and Kaye DM: High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation, 2017; 135: 964-977 – reference: 10) Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Bäckhed F, and Nielsen J: Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun, 2012; 3: 1245. doi: 10.1038/ncomms2266 – reference: 12) Yoshida N, Emoto T, Yamashita T, Watanabe H, Hayashi T, Tabata T, Hoshi N, Hatano N, Ozawa G, Sasaki N, Mizoguchi T, Amin HZ, Hirota Y, Ogawa W, Yamada T, and Hirata KI: Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation, 2018; 138: 2486-2498 – reference: 46) Herrmann E, Young W, Reichert-Grimm V, Weis S, Riedel C, Rosendale D, Stoklosinski H, Hunt M, and Egert M: In vivo assessment of resistant starch degradation by the caecal microbiota of mice using RNA-based stable isotope probing-a proof-of-principle study. Nutrients, 2018; 10: E179. doi:10.3390/nu10020179 – reference: 36) Wang Q, Garrity GM, Tiedje JM, and Cole JR: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol, 2007; 73: 5261-5267 – reference: 48) Aguilar EC, Santos LC, Leonel AJ, de Oliveira JS, Santos EA, Navia-Pelaez JM, da Silva JF, Mendes BP, Capettini LS, Teixeira LG, Lemos VS, and Alvarez-Leite J: Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase downregulation in endothelial cells. J Nutr Biochem, 2016; 34: 99-105 – reference: 5) Jonsson AL and Bäckhed F: Role of gut microbiota in atherosclerosis. Nat Rev Cardiol, 2017; 14: 79-87 – reference: 47) Aguilar EC, Leonel AJ, Teixeira LG, Silva AR, Silva JF, Pelaez JM, Capettini LS, Lemos VS, Santos RA, and Alvarez-Leite JI: Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutr Metab Cardiovasc Dis, 2014; 24: 606-613 – reference: 27) Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, and Tsujimoto G: Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A, 2011; 108: 8030-8035 – reference: 32) Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, and Glöckner FO: Evaluation of general 16S ribosomal RNA gene PCR primers for classical and nextgeneration sequencing-based diversity studies. Nucleic Acids Res, 2013; 41: e1. doi: 10.1093/nar/gks808 – reference: 40) Williams CF, Walton GE, Jiang L, Plummer S, Garaiova I, Gibson GR: Comparative Analysis of Intestinal Tract Models. Annu Rev Food Sci Technol, 2015; 6: 329-350 – reference: 4) Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, and Hazen SL: Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med, 2013; 368: 1575-1584 – reference: 7) Yoshida N, Yamashita T, and Hirata KI: Gut microbiome and cardiovascular diseases. Diseases, 2018; 6: 56. doi:10.3390/diseases6030056 – reference: 39) Chandalia M, Garg A, Lutjohann D, von Bergmann K, Grundy SM, and Brinkley LJ: Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med, 2000; 342: 1392-1398 – reference: 33) Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, and Knight R: QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 2010; 7: 335-336 – reference: 44) Ohira H, Tsutsui W, and Fujioka Y: Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J Atheroscler Thromb, 2017; 24: 660-772 – reference: 14) Yamashita T: Intestinal Immunity and Gut Microbiota in Atherogenesis. J Atheroscler Thromb, 2017; 24: 110-119. – reference: 6) Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, Zhong H, Liu Z, Gao Y, Zhao H, Zhang D, Su Z, Fang Z, Lan Z, Li J, Xiao L, Li J, Li R, Li X, Li F, Ren H, Huang Y, Peng Y, Li G, Wen B, Dong B, Chen JY, Geng QS, Zhang ZW, Yang H, Wang J, Wang J, Zhang X, Madsen L, Brix S, Ning G, Xu X, Liu X, Hou Y, Jia H, He K, and Kristiansen K: The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun, 2017; 8: 845. doi: 10.1038/s41467-017-00900-1 – reference: 20) Upadhyaya B, McCormack L, Fardin-Kia AR, Juenemann R, Nichenametla S, Clapper J, Specker B, and Dey M: Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions. Sci Rep, 2016; 6: 28797. doi: 10.1038/srep28797 – reference: 38) Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J; MetaHIT Consortium, Antolín M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Mérieux A, Melo Minardi R, M'rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, and Bork P: Enterotypes of the human gut microbiome. Nature, 2011; 473: 174-180 – reference: 34) Edgar RC: Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010; 26: 2460-2461 – reference: 17) Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, and Wingreen NS, Sonnenburg JL: Diet-induced extinction in the gut microbiota compounds over generations. Nature, 2016; 529: 212-215 – reference: 37) Odamaki T, Xiao JZ, Sakamoto M, Kondo S, Yaeshima T, Iwatsuki K, Togashi H, Enomoto T, and Benno Y: Distribution of different species of the Bacteroides fragilis group in individuals with Japanese cedar pollinosis. Appl Environ Microbiol, 2008; 74: 6814-6817 – reference: 25) Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, and Rudensky AY: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013; 504: 451-455 – reference: 11) Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT, Zhu JJ, You C, Chen Q, Zhou L, Pan SY, and Zhou HW: Dysbi osis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc, 2015; 4. doi: 10.1161/JAHA.115.002699 – reference: 1) Ridker PM, Danielson E, Fonseca FAH, Genest J, Gotto AM, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, Mac-Fadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ, and JUPITER Study Group: Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med, 2008; 359: 2195-2207 – reference: 3) Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, and Hazen SL: Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 2011; 472: 57-63 – reference: 16) Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto JM, Renault P, ANR MicroObes consortium, Doré J, Zucker JD, Clément K, and Ehrlich SD: Dietary intervention impact on gut microbial gene richness. Nature, 2013; 500: 585-588 – reference: 23) Rimm EB, Ascherio A, Giovannucci E, Spiegelman D, Stampfer MJ, and Willett WC: Vegetable, fruit, and cereal fiber intake and risk of coronary heart disease among men. JAMA, 1996; 275: 447-451 – ident: 18 doi: 10.1126/science.aao5774 – ident: 1 doi: 10.1056/NEJMoa0807646 – ident: 2 doi: 10.5551/jat.38794 – ident: 38 doi: 10.1038/nature09944 – ident: 19 doi: 10.1073/pnas.1005963107 – ident: 48 doi: 10.1016/j.jnutbio.2016.05.002 – ident: 14 doi: 10.5551/jat.38265 – ident: 24 doi: 10.3390/nu9020125 – ident: 49 doi: 10.1194/jlr.R036012 – ident: 13 doi: 10.1536/ihj.16-414 – ident: 11 doi: 10.1161/JAHA.115.002699 – ident: 22 doi: 10.1161/01.CIR.94.11.2720 – ident: 26 doi: 10.1038/nature12721 – ident: 20 doi: 10.1038/srep28797 – ident: 21 doi: 10.1056/NEJM198503283121302 – ident: 4 doi: 10.1056/NEJMoa1109400 – ident: 8 doi: 10.1007/s00380-016-0841-y – ident: 7 doi: 10.3390/diseases6030056 – ident: 36 doi: 10.1128/AEM.00062-07 – ident: 16 doi: 10.1038/nature12480 – ident: 29 doi: 10.1371/journal.pone.0180991 – ident: 46 doi: 10.3390/nu10020179 – ident: 27 doi: 10.1073/pnas.1016088108 – ident: 25 doi: 10.1038/nature12726 – ident: 17 doi: 10.1038/nature16504 – ident: 3 doi: 10.1038/nature09922 – ident: 33 doi: 10.1038/nmeth.f.303 – ident: 31 doi: 10.1161/CIRCULATIONAHA.116.024545 – ident: 23 doi: 10.1001/jama.275.6.447 – ident: 44 doi: 10.5551/jat.RV17006 – ident: 28 doi: 10.1371/journal.pone.0160533 – ident: 9 doi: 10.5551/jat.32672 – ident: 39 doi: 10.1056/NEJM200005113421903 – ident: 35 doi: 10.1101/gr.112730.110 – ident: 45 doi: 10.1186/s40168-016-0178-x – ident: 12 doi: 10.1161/CIRCULATIONAHA.118.033714 – ident: 43 doi: 10.1038/sj.ejcn.1602505 – ident: 40 doi: 10.1146/annurev-food-022814-015429 – ident: 15 doi: 10.1038/nrgastro.2012.156 – ident: 42 doi: 10.1017/S095442241700004X – ident: 41 doi: 10.1038/nature17626 – ident: 10 doi: 10.1038/ncomms2266 – ident: 5 doi: 10.1038/nrcardio.2016.183 – ident: 37 doi: 10.1128/AEM.01106-08 – ident: 32 doi: 10.1093/nar/gks808 – ident: 47 doi: 10.1016/j.numecd.2014.01.002 – ident: 6 doi: 10.1038/s41467-017-00900-1 – ident: 30 doi: 10.1038/s41598-017-18877-8 – ident: 34 doi: 10.1093/bioinformatics/btq461 |
| SSID | ssj0033552 |
| Score | 2.39472 |
| Snippet | Aim: Bacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could... Bacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could help... Aim: Bacteroides vulgatus and B. dorei have a protective effect against atherosclerosis, suggesting that expansion of these species in the gut microbiota could... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref jstage |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 705 |
| SubjectTerms | Aged Bacteria - classification Bacteria - drug effects Bacteria - genetics Bacteroides Coronary artery disease Coronary Artery Disease - drug therapy Coronary Artery Disease - metabolism Coronary Artery Disease - microbiology Fatty Acids, Volatile - metabolism Feces - microbiology Female Follow-Up Studies Gastrointestinal Microbiome - drug effects Gut microbiota Humans Male Middle Aged Original Prognosis Resistant starch RNA, Ribosomal, 16S - genetics Starch - administration & dosage Starch - pharmacology |
| Title | Effect of Resistant Starch on the Gut Microbiota and Its Metabolites in Patients with Coronary Artery Disease |
| URI | https://www.jstage.jst.go.jp/article/jat/26/8/26_47415/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/30587666 https://www.proquest.com/docview/2161063063 https://pubmed.ncbi.nlm.nih.gov/PMC6711844 https://www.jstage.jst.go.jp/article/jat/26/8/26_47415/_pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Journal of Atherosclerosis and Thrombosis, 2019/08/01, Vol.26(8), pp.705-719 |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1880-3873 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033552 issn: 1880-3873 databaseCode: KQ8 dateStart: 20160101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1880-3873 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033552 issn: 1880-3873 databaseCode: KQ8 dateStart: 20020101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1880-3873 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033552 issn: 1880-3873 databaseCode: KQ8 dateStart: 19940101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1880-3873 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033552 issn: 1880-3873 databaseCode: DIK dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1880-3873 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033552 issn: 1880-3873 databaseCode: GX1 dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central (PMC) customDbUrl: eissn: 1880-3873 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033552 issn: 1880-3873 databaseCode: RPM dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WwRceFPCozKPA5fN5uHYjjhVhbYgbVUhVlokpMhJnLLbxVk1iVD59YzjJGKhSIhLcvDIlj3jmW_i8ReAV2HsFyIzNVWSYoLCcSuKwFdjP0xVKih6QNlW-Z6w4xn9MI_mW_CmvwtjyiqXiIvOlHm5Z6W7XE-6RZwsJSbrbCLwkVATCifJOi-2YYdFCMRHsDM7Od3_3KZYFL0Lbf2wIRwzDLKh5RWKECKYjty2g41odM0OfBXW_LNk8kaj1_Lyu1ytfolHh7fhSz8TW4Zy7jZ16mY_fiN5_M-p3oFbHU4l-1bwLmwpfQ-uT7uT-PvwzdIek7IgH1VlQKiuCSJX3Dak1ARhJTlqajJdWKKnWhKpc_K-rshU1Wh45upzRRaanFpi14qYL8LkwBAqyItLM7DC11t7fvQAZofvPh0cj7tfN4wzRIj1OFDK4wWPc849FmeeZJkfydQPmQqklDzLaEwZRtAiVH5Oc69QhS9V5AW5x1Ofhw9hpEutHgGhKmRCshQTr5jmYSREXqQoHXCWiiKnDrzuVZhkHa-5-b3GKsH8xmg7wbW0a-jAi0F0bck8rhISViuDSKeTVgTVIZJeJ0OLuSGHbsaB573lJLhLzdGL1KpsqiRAYG3YzVjowK61pKF79LgYkhhzgG_Y2CBgGMA3W_Tia8sEzjjmhxSX4OVgjX-f2ON_knoCNxETxrbG8SmM6otGPUPcVad7sH009_e6XfYTg_kvxQ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VLYJeeJY2vGQeBy6bzcOxHfVUFUpB2qpCrFQkpMhJnLLL1lk1iVD59R3HScRCkRCX5OCRLXvGM9_E4y8Ar8PYL0RmaqokxQSF41YUga_GfpiqVFD0gLKt8j1mRzP68TQ63YC9_i6MKatcIC46U-blnpXuYjXpFnGykJiss4nAR0JNKJwkq7y4AZssQiA-gs3Z8cn-lzbFouhdaOuHDeGYYZANLa9QhBDBdOS2HaxFo5t24Ouw5p8lk7cbvZKXP-Ry-Us8OrwLX_uZ2DKU725Tp2728zeSx_-c6j240-FUsm8F78OG0g_g1rQ7iX8I55b2mJQF-aQqA0J1TRC54rYhpSYIK8n7pibTuSV6qiWROicf6opMVY2GZ64-V2SuyYkldq2I-SJMDgyhgry4NAMrfL2150fbMDt89_ngaNz9umGcIUKsx4FSHi94nHPusTjzJMv8SKZ-yFQgpeRZRmPKMIIWofJzmnuFKnypIi_IPZ76PHwEI11qtQuEqpAJyVJMvGKah5EQeZGidMBZKoqcOvCmV2GSdbzm5vcaywTzG6PtBNfSrqEDLwfRlSXzuE5IWK0MIp1OWhFUh0h6nQwt5oYcuhkHXvSWk-AuNUcvUquyqZIAgbVhN2OhAzvWkobu0eNiSGLMAb5mY4OAYQBfb9Hzby0TOOOYH1JcgleDNf59Yo__SeoJbCEmjG2N41MY1ReNeoa4q06fd_vrCmsULtQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Resistant+Starch+on+the+Gut+Microbiota+and+Its+Metabolites+in+Patients+with+Coronary+Artery+Disease&rft.jtitle=Journal+of+atherosclerosis+and+thrombosis&rft.au=Yoshida%2C+Naofumi&rft.au=Sasaki%2C+Kengo&rft.au=Sasaki%2C+Daisuke&rft.au=Yamashita%2C+Tomoya&rft.date=2019-08-01&rft.issn=1880-3873&rft.eissn=1880-3873&rft.volume=26&rft.issue=8&rft.spage=705&rft_id=info:doi/10.5551%2Fjat.47415&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1340-3478&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1340-3478&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1340-3478&client=summon |