The Task Decomposition and Dedicated Reward-System-Based Reinforcement Learning Algorithm for Pick-and-Place

This paper proposes a task decomposition and dedicated reward-system-based reinforcement learning algorithm for the Pick-and-Place task, which is one of the high-level tasks of robot manipulators. The proposed method decomposes the Pick-and-Place task into three subtasks: two reaching tasks and one...

Full description

Saved in:
Bibliographic Details
Published inBiomimetics (Basel, Switzerland) Vol. 8; no. 2; p. 240
Main Authors Kim, Byeongjun, Kwon, Gunam, Park, Chaneun, Kwon, Nam Kyu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.06.2023
MDPI
Subjects
Online AccessGet full text
ISSN2313-7673
2313-7673
DOI10.3390/biomimetics8020240

Cover

Abstract This paper proposes a task decomposition and dedicated reward-system-based reinforcement learning algorithm for the Pick-and-Place task, which is one of the high-level tasks of robot manipulators. The proposed method decomposes the Pick-and-Place task into three subtasks: two reaching tasks and one grasping task. One of the two reaching tasks is approaching the object, and the other is reaching the place position. These two reaching tasks are carried out using each optimal policy of the agents which are trained using Soft Actor-Critic (SAC). Different from the two reaching tasks, the grasping is implemented via simple logic which is easily designable but may result in improper gripping. To assist the grasping task properly, a dedicated reward system for approaching the object is designed through using individual axis-based weights. To verify the validity of the proposed method, wecarry out various experiments in the MuJoCo physics engine with the Robosuite framework. According to the simulation results of four trials, the robot manipulator picked up and released the object in the goal position with an average success rate of 93.2%.
AbstractList This paper proposes a task decomposition and dedicated reward-system-based reinforcement learning algorithm for the Pick-and-Place task, which is one of the high-level tasks of robot manipulators. The proposed method decomposes the Pick-and-Place task into three subtasks: two reaching tasks and one grasping task. One of the two reaching tasks is approaching the object, and the other is reaching the place position. These two reaching tasks are carried out using each optimal policy of the agents which are trained using Soft Actor-Critic (SAC). Different from the two reaching tasks, the grasping is implemented via simple logic which is easily designable but may result in improper gripping. To assist the grasping task properly, a dedicated reward system for approaching the object is designed through using individual axis-based weights. To verify the validity of the proposed method, wecarry out various experiments in the MuJoCo physics engine with the Robosuite framework. According to the simulation results of four trials, the robot manipulator picked up and released the object in the goal position with an average success rate of 93.2%.This paper proposes a task decomposition and dedicated reward-system-based reinforcement learning algorithm for the Pick-and-Place task, which is one of the high-level tasks of robot manipulators. The proposed method decomposes the Pick-and-Place task into three subtasks: two reaching tasks and one grasping task. One of the two reaching tasks is approaching the object, and the other is reaching the place position. These two reaching tasks are carried out using each optimal policy of the agents which are trained using Soft Actor-Critic (SAC). Different from the two reaching tasks, the grasping is implemented via simple logic which is easily designable but may result in improper gripping. To assist the grasping task properly, a dedicated reward system for approaching the object is designed through using individual axis-based weights. To verify the validity of the proposed method, wecarry out various experiments in the MuJoCo physics engine with the Robosuite framework. According to the simulation results of four trials, the robot manipulator picked up and released the object in the goal position with an average success rate of 93.2%.
This paper proposes a task decomposition and dedicated reward-system-based reinforcement learning algorithm for the Pick-and-Place task, which is one of the high-level tasks of robot manipulators. The proposed method decomposes the Pick-and-Place task into three subtasks: two reaching tasks and one grasping task. One of the two reaching tasks is approaching the object, and the other is reaching the place position. These two reaching tasks are carried out using each optimal policy of the agents which are trained using Soft Actor-Critic (SAC). Different from the two reaching tasks, the grasping is implemented via simple logic which is easily designable but may result in improper gripping. To assist the grasping task properly, a dedicated reward system for approaching the object is designed through using individual axis-based weights. To verify the validity of the proposed method, wecarry out various experiments in the MuJoCo physics engine with the Robosuite framework. According to the simulation results of four trials, the robot manipulator picked up and released the object in the goal position with an average success rate of 93.2%.
Audience Academic
Author Kwon, Gunam
Kwon, Nam Kyu
Park, Chaneun
Kim, Byeongjun
AuthorAffiliation 1 Department of Electronic Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; slim7928@ynu.ac.kr (B.K.); nineman@yu.ac.kr (G.K.)
2 School of Electronics Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; chaneun@knu.ac.kr
AuthorAffiliation_xml – name: 1 Department of Electronic Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; slim7928@ynu.ac.kr (B.K.); nineman@yu.ac.kr (G.K.)
– name: 2 School of Electronics Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; chaneun@knu.ac.kr
Author_xml – sequence: 1
  givenname: Byeongjun
  orcidid: 0009-0008-6486-6926
  surname: Kim
  fullname: Kim, Byeongjun
– sequence: 2
  givenname: Gunam
  surname: Kwon
  fullname: Kwon, Gunam
– sequence: 3
  givenname: Chaneun
  surname: Park
  fullname: Park, Chaneun
– sequence: 4
  givenname: Nam Kyu
  surname: Kwon
  fullname: Kwon, Nam Kyu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37366835$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhiNUREvpH-CAInHhkuLYTuKcUClflSpRwXK2JvZk19vEXuwsVf89s91SugUh5EOsmXceZ96Zp9meDx6z7HnJjoVo2evOhdGNODmTFOOMS_YoO-CiFEVTN2Lv3n0_O0ppyRgr27qSkj3J9kUj6lqJ6iAbZgvMZ5Au83dowrgKyU0u-By8pYh1Bia0-Re8gmiLr9dpwrF4C-km5nwfosER_ZSfI0Tv_Dw_GeYhumkx5pTML5y5LIhVXAxg8Fn2uIch4dHt9zD79uH97PRTcf7549npyXlhqlpORd_wqrWISoqmU72VCNAqNHWnulKwWvQWQFrR1J2xbcOUrGTHZFcxShoF4jA723JtgKVeRTdCvNYBnL4JhDjXEMm5ATWr67YDBC4rlKolZ9ueY4XQ2q40nSCW2LLWfgXXVzAMd8CS6c0o9J-joKo326rVuhvRGrIowrDzK7sZ7xZ6Hn4Qk7c1a0oivLolxPB9jWnSo0sGhwE8hnXSXAnGS7V97OUD6TKsoyeHScXbhkxl4rdqDtT3Znb0sNlA9UlTSZKxipPq-C8qOhZHZ2gFe0fxnYIX9zu9a_HXipFAbQUmhpQi9tq4CTZLRmQ3_NtF_qD0P6z_CbVq-1o
CitedBy_id crossref_primary_10_3389_frobt_2023_1280578
crossref_primary_10_3390_biomimetics9040196
crossref_primary_10_3390_bioengineering11020108
Cites_doi 10.1007/s00170-020-05997-1
10.1109/UPCON.2017.8251075
10.3390/ijerph18041927
10.1109/EECSI.2018.8752950
10.3390/app9020348
10.1109/SSCI47803.2020.9308468
10.1049/iet-its.2019.0317
10.1145/3453160
10.1109/ICRA40945.2020.9196850
10.1109/LRA.2020.3032104
10.1016/j.rcim.2020.101998
10.15607/RSS.2019.XV.073
10.1016/j.enbuild.2021.110860
10.1109/IROS40897.2019.8967899
10.1038/s41928-020-00523-3
10.1016/j.rcim.2020.101948
10.1109/IRC.2019.00120
10.3390/app10020575
10.1007/s12555-021-0642-7
10.23919/ECC.2018.8550363
10.1109/ICAR53236.2021.9659344
10.1016/j.compag.2021.106350
10.1109/IROS51168.2021.9635931
10.1109/ETFA.2016.7733585
10.1108/01439911211201627
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/biomimetics8020240
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2313-7673
ExternalDocumentID oai_doaj_org_article_0669baea245e4893909f2e5ea9db1cb3
10.3390/biomimetics8020240
PMC10296071
A754975052
37366835
10_3390_biomimetics8020240
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Korea Institute for Advancement of Technology
  grantid: P0008473
GroupedDBID 53G
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c564t-f7259dee8437b8fd4eaa98ec6b8b13063fdaa4d376bcd9708454b04b50306c8a3
IEDL.DBID UNPAY
ISSN 2313-7673
IngestDate Fri Oct 03 12:46:32 EDT 2025
Sun Oct 26 04:17:38 EDT 2025
Tue Sep 30 17:13:54 EDT 2025
Thu Sep 04 17:40:06 EDT 2025
Fri Jul 25 11:54:20 EDT 2025
Mon Oct 20 22:21:19 EDT 2025
Mon Oct 20 16:19:28 EDT 2025
Thu Jan 02 22:52:54 EST 2025
Thu Oct 16 04:46:17 EDT 2025
Thu Apr 24 23:02:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords robot manipulator
Soft Actor-Critic
deep reinforcement learning
Pick-and-Place
task decomposition
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-f7259dee8437b8fd4eaa98ec6b8b13063fdaa4d376bcd9708454b04b50306c8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0008-6486-6926
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2313-7673/8/2/240/pdf?version=1686057959
PMID 37366835
PQID 2829756403
PQPubID 2055439
ParticipantIDs doaj_primary_oai_doaj_org_article_0669baea245e4893909f2e5ea9db1cb3
unpaywall_primary_10_3390_biomimetics8020240
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10296071
proquest_miscellaneous_2830218240
proquest_journals_2829756403
gale_infotracmisc_A754975052
gale_infotracacademiconefile_A754975052
pubmed_primary_37366835
crossref_citationtrail_10_3390_biomimetics8020240
crossref_primary_10_3390_biomimetics8020240
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biomimetics (Basel, Switzerland)
PublicationTitleAlternate Biomimetics (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Deng (ref_15) 2021; 238
ref_13
ref_12
ref_33
ref_32
ref_31
ref_30
Pateria (ref_25) 2021; 54
ref_19
Nascimento (ref_10) 2020; 6
Chen (ref_11) 2020; 64
ref_17
Lin (ref_18) 2021; 188
Gualtieri (ref_6) 2021; 67
Solanes (ref_9) 2020; 111
Duan (ref_26) 2020; 14
ref_24
ref_23
ref_22
ref_21
ref_20
ref_1
Dalgaty (ref_14) 2021; 4
Luan (ref_3) 2012; 39
ref_2
Knudsen (ref_4) 2020; 3
ref_29
ref_28
ref_27
ref_8
Li (ref_16) 2023; 21
ref_5
ref_7
References_xml – volume: 111
  start-page: 1077
  year: 2020
  ident: ref_9
  article-title: Teleoperation of industrial robot manipulators based on augmented reality
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-020-05997-1
– ident: ref_28
– ident: ref_2
  doi: 10.1109/UPCON.2017.8251075
– ident: ref_7
  doi: 10.3390/ijerph18041927
– ident: ref_30
– ident: ref_1
  doi: 10.1109/EECSI.2018.8752950
– ident: ref_5
– ident: ref_32
– ident: ref_22
  doi: 10.3390/app9020348
– volume: 3
  start-page: 13
  year: 2020
  ident: ref_4
  article-title: Collaborative robots: Frontiers of current literature
  publication-title: J. Intell. Syst. Theory Appl.
– ident: ref_13
  doi: 10.1109/SSCI47803.2020.9308468
– volume: 14
  start-page: 297
  year: 2020
  ident: ref_26
  article-title: Hierarchical reinforcement learning for self-driving decision-making without reliance on labelled driving data
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2019.0317
– volume: 54
  start-page: 1
  year: 2021
  ident: ref_25
  article-title: Hierarchical reinforcement learning: A comprehensive survey
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3453160
– ident: ref_21
– ident: ref_8
  doi: 10.1109/ICRA40945.2020.9196850
– volume: 6
  start-page: 88
  year: 2020
  ident: ref_10
  article-title: Collision avoidance interaction between human and a hidden robot based on kinect and robot data fusion
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.3032104
– volume: 67
  start-page: 101998
  year: 2021
  ident: ref_6
  article-title: Emerging research fields in safety and ergonomics in industrial collaborative robotics: A systematic literature review
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2020.101998
– ident: ref_20
  doi: 10.15607/RSS.2019.XV.073
– volume: 238
  start-page: 110860
  year: 2021
  ident: ref_15
  article-title: Reinforcement learning of occupant behavior model for cross-building transfer learning to various HVAC control systems
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2021.110860
– ident: ref_24
  doi: 10.1109/IROS40897.2019.8967899
– ident: ref_29
– ident: ref_33
– volume: 4
  start-page: 151
  year: 2021
  ident: ref_14
  article-title: In situ learning using intrinsic memristor variability via Markov chain Monte Carlo sampling
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-00523-3
– volume: 64
  start-page: 101948
  year: 2020
  ident: ref_11
  article-title: A virtual-physical collision detection interface for AR-based interactive teaching of robot
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2020.101948
– ident: ref_12
  doi: 10.1109/IRC.2019.00120
– ident: ref_31
  doi: 10.3390/app10020575
– volume: 21
  start-page: 563
  year: 2023
  ident: ref_16
  article-title: Navigation of Mobile Robots Based on Deep Reinforcement Learning: Reward Function Optimization and Knowledge Transfer
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-021-0642-7
– ident: ref_17
  doi: 10.23919/ECC.2018.8550363
– ident: ref_27
  doi: 10.1109/ICAR53236.2021.9659344
– volume: 188
  start-page: 106350
  year: 2021
  ident: ref_18
  article-title: Collision-free path planning for a guava-harvesting robot based on recurrent deep reinforcement learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106350
– ident: ref_23
  doi: 10.1109/IROS51168.2021.9635931
– ident: ref_19
  doi: 10.1109/ETFA.2016.7733585
– volume: 39
  start-page: 162
  year: 2012
  ident: ref_3
  article-title: Optimum motion control of palletizing robots based on iterative learning
  publication-title: Ind. Robot. Int. J.
  doi: 10.1108/01439911211201627
SSID ssj0001965440
Score 2.2711575
Snippet This paper proposes a task decomposition and dedicated reward-system-based reinforcement learning algorithm for the Pick-and-Place task, which is one of the...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 240
SubjectTerms Algorithms
Artificial intelligence
Assembly lines
Collaboration
Control algorithms
Decomposition
deep reinforcement learning
Grasping
Pick-and-Place
Reinforcement
robot manipulator
Robots
Soft Actor-Critic
Success
task decomposition
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBQHkECjISggNYTWLHcY5boKqQQBVqpd4iP9ul2WzV3VXVf98ZJ40SKgEHrn4l87Bnxpr5TMg7b1RQZRlYGixnwnnNNJyBLPDcFrlwRYh1a99_yINj8e2kOBk99YU5YR08cMe4XTCJldFe56LwCJRSpVXIfeF15UxmTcT5TFU1CqZ-daAvhRBpVyXDYdIuVrPPF1gYuFLgIuV42zGyRBGw_-6xPLJLv-dM3t-0F_r6SjfNyCDtPyIPe0-SzjoKHpN7vn1CtmctRNGLa_qextzOeGm-TRrQBnqkV-f0i8ck8j5Ti-rWQYuLdXCO_vQxhbYDMWd7YN-wLUKr2niLSHs01lM6a06Xl_P12YJCJz2c23MGa7FDvJR_So73vx59PmD9OwvMFlKsWSghBnLeK8FLEJ0TXutKeSuNMmDiJA9Oa-HgKDLWVWWqRCFMKkyB8YZVmj8jW-2y9S8IlboqA3cSlpICIj1tswA-EAgoVyrLbEKyW57Xtgchx7cwmhqCEZRTfVdOCfk4zLnoIDj-OHoPRTmMRPjs2ABKVfdKVf9NqRLyARWhRg7D71nd1yoAkQiXVc9KCKtLfAMwITuTkbA57bT7VpXq_nBY1XksZ5Yihe-8HbpxJia8tX65wTE8gusjQc87zRtI4iWXEjznhKiJTk5onva087MIHQ7uZIWIggn5NKjvPzD15f9g6ivyABbjXZ7dDtlaX278a_Do1uZN3Lw3nVJMWQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7gFe0GB8hA1kJAQPYC2NncR5QKiFTRMSVTVt0t4ix3a6amla1lZo_z13Ttq1TJp4tZ0oPp_vK3e_A_jgClWqNC15WBrBpXWaa5SBvBSRiSNp49LXrf0aJKcX8udlfLkDg1UtDKVVrmSiF9R2aihGfhT5GtBEhuLb7DenrlH0d3XVQkO3rRXsVw8x9gh2I0LG6sBu_3gwPLuLumRJLGXYVM8I9PePqMp9PKGCwblC0ymiKMiGhvJA_vfF9Ya--jeX8vGynunbP7qqNhTVyR48bS1M1mtY4hnsuPo57Pdq9K4nt-wj8zmfPpi-DxVyCTvX82v2w1FyeZvBxXRtccT6-jjLzpxPrW3AzXkf9R6NechV46OLrEVpHbFeNUKiLa4mDCfZcGyuOb6LDylY_wIuTo7Pv5_ytv8CN0joBS9T9I2sc0qKFI_USqd1ppxJClWg6ktEabWWFkVUYWyWhkrGsghlEZMfYpQWL6FTT2v3Gliis7QUNsFXJRI9QG26JdpGocoipbpdE0B3RfPctODk1COjytFJoXPK759TAJ_Xz8waaI4HV_fpKNcrCVbbD0xvRnl7S3O0v7JCOx3J2BEqTxZmZeRipzNbdE0hAvhEjJAThfHzjG5rGHCTBKOV91J0t1PqDRjA4dZKvLRme3rFSnkrNOb5HYsH8H49TU9SIlztpktaIzzoPm3oVcN56y2JVCQJWtQBqC2e3Nrz9kw9vvKQ4mhmZoQ0GMCXNfv-B1HfPLyNA3iCy0STWXcIncXN0r1FG25RvGsv5l98-Une
  priority: 102
  providerName: ProQuest
Title The Task Decomposition and Dedicated Reward-System-Based Reinforcement Learning Algorithm for Pick-and-Place
URI https://www.ncbi.nlm.nih.gov/pubmed/37366835
https://www.proquest.com/docview/2829756403
https://www.proquest.com/docview/2830218240
https://pubmed.ncbi.nlm.nih.gov/PMC10296071
https://www.mdpi.com/2313-7673/8/2/240/pdf?version=1686057959
https://doaj.org/article/0669baea245e4893909f2e5ea9db1cb3
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: ABDBF
  dateStart: 20220601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: RPM
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: BENPR
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegfYAXvgYjMCojIXiALB92HOcJpWzVhERVTas0niLHdrqqbVr1AzT-es6OV7WbhICnSPY5zaWX-9Ld7xB6p0te8TSt_LCSxKdKC1-ADvQrEsskpiqpbN_atz47G9Kvl8mlq81ZubJKCMXHVkmD70H8lKUk4EEcgO0JFqr6_MMlkiLGmWmlTLL7qM0ScMVbqD3sD_LvdqCcO9o0yhAI7QPT0D6emd7AFQcvKTYJjx1jZDH772rmHdN0u2zywaZeiOufYjrdsUm9x83g1ZWFMjSlKJPjzbo8lr9uAT3-N7tP0CPnreK8Ea-n6J6un6GDvIZIfXaN32NbP2oT8wdoChKHL8Rqgk-0KVR31WBY1ApWlO21U_hc2zLdBijd74INNWsWvlXaTCV2iK8jnE9H8-V4fTXDsIkHYznx4V7-wCT-n6Nh7_Tiy5nvZjn4MmF07VcpxFlKa05JCuKhqBYi41qykpdgRhmplBBUgborpcrSkNOEliEtExPTSC7IC9Sq57V-iTATWVoRxeBWjEI0KWRUgZ8V8izmPIqkh6KbP7WQDujczNuYFhDwGEEo7gqChz5uzywamI8_UneNrGwpDUS3XZgvR4X74gvw5bJSaBHTRBuEnyzMqlgnWmSqjGRJPPTBSFph3jA8nhSuHwKYNJBcRZ5C6J6aOYMeOtqjBAUg97dvZLVwCmhVxLZlmtEQfuftdtucNEV1tZ5vDA2xAP6GocNGtLcskZQwBt65h_ie0O_xvL9Tj68sPDm4rJlBLfTQp-338Rcv9dW_kb9GD-FKmqq9I9RaLzf6DfiH67KD2nn3pNuDa_e0Pzjv2DxLx-mG3y0UZ7Y
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELcYPLCXaRv7yMY2T9rHwxaRxk5iP6CpHaAyoKpQkXgLju2UijbtaCvUf25_2-6ctLRDQnvh1V-Kfefz3eXud4R8spnIRZLkfpBr5nNjla9ABvo5C3UUchPlLm_tpBU3z_iv8-h8jfyZ58JgWOVcJjpBbYYafeQ7ocsBjXnAfox--1g1Cv-uzktoqKq0gtl1EGNVYseRnd2ACTfePdwDen8Ow4P9zs-mX1UZ8DUsN_HzBCwAY63gLIEPN9wqJYXVcSYyEPAxy41S3MBFzLSRSSB4xLOAZxFq21ooBus-IhuccQnG30Zjv9U-vfXyyDjiPCizdRiTwQ5m1fcGmKA4FqCqheh1WXoRXeGAu8_D0vv4b-zm5rQYqdmN6veXHsaDp-RJpdHSesmCz8iaLZ6TrXoB1vxgRr9QF2PqnPdbpA9cSTtqfEX3LAazVxFjVBUGWozLxzP01LpQ3hJM3W_AO4ttDuJVO28mrVBhu7Te7wKRJpcDCp203dNXPqzlt_HnwAty9iCUeEnWi2FhXxMaK5nkzMSwVMzB4lS6loMuFggZClGraY_U5mee6goMHWty9FMwipBO6V06eeTbYs6ohAK5d3QDSbkYiTDermF43U0rqZCCviczZVXII4soQDKQeWgjq6TJajpjHvmKjJDiCcPnaVXlTMAmEbYrrSdg3idYi9Aj2ysjQUjo1e45K6WVkBqnt1fKIx8X3TgTA-8KO5ziGOZA_nFDr0rOW2yJJSyOQYP3iFjhyZU9r_YUvUsHYQ5qrURkQ498X7Dvfxzqm_u38YFsNjsnx-nxYevoLXkMU1gZ1bdN1ifXU_sO9MdJ9r66pJRcPLRc-AsgDIdw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJgEvCBgfgQFG4uOBRU1jJ3EeJtTSVRuDqpo2aW_BsZ2uWpuWtdXUf5G_ijvH7VomTbzsNf5Qznc-39l3vyPkg8lFIZKk8INCMZ9rI30JOtAvWKiikOuosHlrPzvxwSn_fhadbZA_i1wYDKtc6ESrqPVI4R15LbQ5oDEPWK1wYRHdVvvr-LePFaTwpXVRTkO6Mgt6z8KNuSSPIzO_AndusnfYAt5_DMP2_sm3A99VHPAVTD31iwS8AW2M4CwBIjQ3UqbCqDgXOSj7mBVaSq5hU-ZKp0kgeMTzgOcRWt5KSAbz3iNb-PgFSmKrud_pHl_f-KRxxHlQZe4wlgY1zLDvDzFZcSLAbAvxBmbldLRFBG4eFStn5b9xnA9m5VjOr-RgsHJIth-TR866pY1KHJ-QDVM-JduNEjz74Zx-ojbe1F7kb5MBSCg9kZML2jIY2O6ix6gsNXzRNjdP02Njw3orYHW_CWcufrNwr8rebFKHENujjUEPmDQ9H1JopN2-uvBhLr-LDwXPyOmdcOI52SxHpXlJaCzTpGA6hqliDt6nVPUC7LJApKEQ9brySH2x5plywOhYn2OQgYOEfMpu8skjX5ZjxhUsyK29m8jKZU-E9LYfRpe9zGmIDGy_NJdGhjwyiAiUBmkRmsjIVOd1lTOPfEZByHCF4feUdPkTQCRCeGWNBFz9BOsSemRnrScoDLXevBClzCmsSXa9vTzyftmMIzEIrzSjGfZhFvAfCXpRSd6SJJawOAZr3iNiTSbXaF5vKfvnFs4cTNwUUQ49srsU3_9Y1Fe3k_GO3Af9kP047By9Jg9hBKsC_HbI5vRyZt6AKTnN37o9Ssmvu1YLfwEv94uf
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4AXvgYjMJCREDxA1iR2bOcJdcA0ITFVaJPGU-TYTle1Tat-gMZfz53jVe0mIeApkn1OeunlvnT3O0Jeu0rVSso6TmrDYm6djjXowLhmmckzbvPa9619PRHHZ_zLeX4eanMWoawSQvGhV9Lge7BYCsm6qpt1wfZ0Z7b-8CMkklKhBLZS5sVtsiNycMU7ZOfspN_77gfKhaNtowyD0L6LDe3DCfYGLhR4SRkmPDaMkcfsv6mZN0zT9bLJO6tmpi9_6vF4wyYd3W8Hry48lCGWoowOVsvqwPy6BvT43-w-IPeCt0p7rXg9JLdc84js9hqI1CeX9A319aM-Mb9LxiBx9FQvRvSTw0L1UA1GdWNhxfpeO0u_OV-m2wKlx4dgQ3HNw7can6mkAfF1QHvjwXQ-XF5MKGzS_tCMYrhX3MfE_2NydvT59ONxHGY5xCYXfBnXEuIs65ziTIJ4WO60LpQzolIVmFHBaqs1t6DuKmMLmSie8yrhVY4xjVGaPSGdZtq4p4QKXciaWQG3EhyiSW3SGvysRBWZUmlqIpJe_amlCUDnOG9jXELAg4JQ3hSEiLxbn5m1MB9_pD5EWVlTIkS3X5jOB2X44kvw5YpKO53x3CHCT5EUdeZypwtbpaZiEXmLklbiG4afZ3TohwAmEZKr7EkI3SXOGYzI_hYlKACzvX0lq2VQQIsy8y3TgifwnFfrbTyJRXWNm66QhnkAf2RorxXtNUtMMiHAO4-I2hL6LZ63d5rhhYcnB5e1QNTCiLxffx9_8VKf_Rv5c3IXrqyt2tsnneV85V6Af7isXgYt8Bt1m2O1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Task+Decomposition+and+Dedicated+Reward-System-Based+Reinforcement+Learning+Algorithm+for+Pick-and-Place&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Kim%2C+Byeongjun&rft.au=Kwon%2C+Gunam&rft.au=Park%2C+Chaneun&rft.au=Kwon%2C+Nam+Kyu&rft.date=2023-06-01&rft.issn=2313-7673&rft.eissn=2313-7673&rft.volume=8&rft.issue=2&rft_id=info:doi/10.3390%2Fbiomimetics8020240&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon