The Task Decomposition and Dedicated Reward-System-Based Reinforcement Learning Algorithm for Pick-and-Place
This paper proposes a task decomposition and dedicated reward-system-based reinforcement learning algorithm for the Pick-and-Place task, which is one of the high-level tasks of robot manipulators. The proposed method decomposes the Pick-and-Place task into three subtasks: two reaching tasks and one...
Saved in:
| Published in | Biomimetics (Basel, Switzerland) Vol. 8; no. 2; p. 240 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
01.06.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2313-7673 2313-7673 |
| DOI | 10.3390/biomimetics8020240 |
Cover
| Abstract | This paper proposes a task decomposition and dedicated reward-system-based reinforcement learning algorithm for the Pick-and-Place task, which is one of the high-level tasks of robot manipulators. The proposed method decomposes the Pick-and-Place task into three subtasks: two reaching tasks and one grasping task. One of the two reaching tasks is approaching the object, and the other is reaching the place position. These two reaching tasks are carried out using each optimal policy of the agents which are trained using Soft Actor-Critic (SAC). Different from the two reaching tasks, the grasping is implemented via simple logic which is easily designable but may result in improper gripping. To assist the grasping task properly, a dedicated reward system for approaching the object is designed through using individual axis-based weights. To verify the validity of the proposed method, wecarry out various experiments in the MuJoCo physics engine with the Robosuite framework. According to the simulation results of four trials, the robot manipulator picked up and released the object in the goal position with an average success rate of 93.2%. |
|---|---|
| AbstractList | This paper proposes a task decomposition and dedicated reward-system-based reinforcement learning algorithm for the Pick-and-Place task, which is one of the high-level tasks of robot manipulators. The proposed method decomposes the Pick-and-Place task into three subtasks: two reaching tasks and one grasping task. One of the two reaching tasks is approaching the object, and the other is reaching the place position. These two reaching tasks are carried out using each optimal policy of the agents which are trained using Soft Actor-Critic (SAC). Different from the two reaching tasks, the grasping is implemented via simple logic which is easily designable but may result in improper gripping. To assist the grasping task properly, a dedicated reward system for approaching the object is designed through using individual axis-based weights. To verify the validity of the proposed method, wecarry out various experiments in the MuJoCo physics engine with the Robosuite framework. According to the simulation results of four trials, the robot manipulator picked up and released the object in the goal position with an average success rate of 93.2%.This paper proposes a task decomposition and dedicated reward-system-based reinforcement learning algorithm for the Pick-and-Place task, which is one of the high-level tasks of robot manipulators. The proposed method decomposes the Pick-and-Place task into three subtasks: two reaching tasks and one grasping task. One of the two reaching tasks is approaching the object, and the other is reaching the place position. These two reaching tasks are carried out using each optimal policy of the agents which are trained using Soft Actor-Critic (SAC). Different from the two reaching tasks, the grasping is implemented via simple logic which is easily designable but may result in improper gripping. To assist the grasping task properly, a dedicated reward system for approaching the object is designed through using individual axis-based weights. To verify the validity of the proposed method, wecarry out various experiments in the MuJoCo physics engine with the Robosuite framework. According to the simulation results of four trials, the robot manipulator picked up and released the object in the goal position with an average success rate of 93.2%. This paper proposes a task decomposition and dedicated reward-system-based reinforcement learning algorithm for the Pick-and-Place task, which is one of the high-level tasks of robot manipulators. The proposed method decomposes the Pick-and-Place task into three subtasks: two reaching tasks and one grasping task. One of the two reaching tasks is approaching the object, and the other is reaching the place position. These two reaching tasks are carried out using each optimal policy of the agents which are trained using Soft Actor-Critic (SAC). Different from the two reaching tasks, the grasping is implemented via simple logic which is easily designable but may result in improper gripping. To assist the grasping task properly, a dedicated reward system for approaching the object is designed through using individual axis-based weights. To verify the validity of the proposed method, wecarry out various experiments in the MuJoCo physics engine with the Robosuite framework. According to the simulation results of four trials, the robot manipulator picked up and released the object in the goal position with an average success rate of 93.2%. |
| Audience | Academic |
| Author | Kwon, Gunam Kwon, Nam Kyu Park, Chaneun Kim, Byeongjun |
| AuthorAffiliation | 1 Department of Electronic Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; slim7928@ynu.ac.kr (B.K.); nineman@yu.ac.kr (G.K.) 2 School of Electronics Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; chaneun@knu.ac.kr |
| AuthorAffiliation_xml | – name: 1 Department of Electronic Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; slim7928@ynu.ac.kr (B.K.); nineman@yu.ac.kr (G.K.) – name: 2 School of Electronics Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; chaneun@knu.ac.kr |
| Author_xml | – sequence: 1 givenname: Byeongjun orcidid: 0009-0008-6486-6926 surname: Kim fullname: Kim, Byeongjun – sequence: 2 givenname: Gunam surname: Kwon fullname: Kwon, Gunam – sequence: 3 givenname: Chaneun surname: Park fullname: Park, Chaneun – sequence: 4 givenname: Nam Kyu surname: Kwon fullname: Kwon, Nam Kyu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37366835$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1v1DAQhiNUREvpH-CAInHhkuLYTuKcUClflSpRwXK2JvZk19vEXuwsVf89s91SugUh5EOsmXceZ96Zp9meDx6z7HnJjoVo2evOhdGNODmTFOOMS_YoO-CiFEVTN2Lv3n0_O0ppyRgr27qSkj3J9kUj6lqJ6iAbZgvMZ5Au83dowrgKyU0u-By8pYh1Bia0-Re8gmiLr9dpwrF4C-km5nwfosER_ZSfI0Tv_Dw_GeYhumkx5pTML5y5LIhVXAxg8Fn2uIch4dHt9zD79uH97PRTcf7549npyXlhqlpORd_wqrWISoqmU72VCNAqNHWnulKwWvQWQFrR1J2xbcOUrGTHZFcxShoF4jA723JtgKVeRTdCvNYBnL4JhDjXEMm5ATWr67YDBC4rlKolZ9ueY4XQ2q40nSCW2LLWfgXXVzAMd8CS6c0o9J-joKo326rVuhvRGrIowrDzK7sZ7xZ6Hn4Qk7c1a0oivLolxPB9jWnSo0sGhwE8hnXSXAnGS7V97OUD6TKsoyeHScXbhkxl4rdqDtT3Znb0sNlA9UlTSZKxipPq-C8qOhZHZ2gFe0fxnYIX9zu9a_HXipFAbQUmhpQi9tq4CTZLRmQ3_NtF_qD0P6z_CbVq-1o |
| CitedBy_id | crossref_primary_10_3389_frobt_2023_1280578 crossref_primary_10_3390_biomimetics9040196 crossref_primary_10_3390_bioengineering11020108 |
| Cites_doi | 10.1007/s00170-020-05997-1 10.1109/UPCON.2017.8251075 10.3390/ijerph18041927 10.1109/EECSI.2018.8752950 10.3390/app9020348 10.1109/SSCI47803.2020.9308468 10.1049/iet-its.2019.0317 10.1145/3453160 10.1109/ICRA40945.2020.9196850 10.1109/LRA.2020.3032104 10.1016/j.rcim.2020.101998 10.15607/RSS.2019.XV.073 10.1016/j.enbuild.2021.110860 10.1109/IROS40897.2019.8967899 10.1038/s41928-020-00523-3 10.1016/j.rcim.2020.101948 10.1109/IRC.2019.00120 10.3390/app10020575 10.1007/s12555-021-0642-7 10.23919/ECC.2018.8550363 10.1109/ICAR53236.2021.9659344 10.1016/j.compag.2021.106350 10.1109/IROS51168.2021.9635931 10.1109/ETFA.2016.7733585 10.1108/01439911211201627 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/biomimetics8020240 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 2313-7673 |
| ExternalDocumentID | oai_doaj_org_article_0669baea245e4893909f2e5ea9db1cb3 10.3390/biomimetics8020240 PMC10296071 A754975052 37366835 10_3390_biomimetics8020240 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: Korea Institute for Advancement of Technology grantid: P0008473 |
| GroupedDBID | 53G 8FE 8FH AADQD AAFWJ AAYXX ABDBF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI 7X8 PUEGO 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c564t-f7259dee8437b8fd4eaa98ec6b8b13063fdaa4d376bcd9708454b04b50306c8a3 |
| IEDL.DBID | UNPAY |
| ISSN | 2313-7673 |
| IngestDate | Fri Oct 03 12:46:32 EDT 2025 Sun Oct 26 04:17:38 EDT 2025 Tue Sep 30 17:13:54 EDT 2025 Thu Sep 04 17:40:06 EDT 2025 Fri Jul 25 11:54:20 EDT 2025 Mon Oct 20 22:21:19 EDT 2025 Mon Oct 20 16:19:28 EDT 2025 Thu Jan 02 22:52:54 EST 2025 Thu Oct 16 04:46:17 EDT 2025 Thu Apr 24 23:02:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | robot manipulator Soft Actor-Critic deep reinforcement learning Pick-and-Place task decomposition |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c564t-f7259dee8437b8fd4eaa98ec6b8b13063fdaa4d376bcd9708454b04b50306c8a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0008-6486-6926 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2313-7673/8/2/240/pdf?version=1686057959 |
| PMID | 37366835 |
| PQID | 2829756403 |
| PQPubID | 2055439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0669baea245e4893909f2e5ea9db1cb3 unpaywall_primary_10_3390_biomimetics8020240 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10296071 proquest_miscellaneous_2830218240 proquest_journals_2829756403 gale_infotracmisc_A754975052 gale_infotracacademiconefile_A754975052 pubmed_primary_37366835 crossref_citationtrail_10_3390_biomimetics8020240 crossref_primary_10_3390_biomimetics8020240 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Biomimetics (Basel, Switzerland) |
| PublicationTitleAlternate | Biomimetics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Deng (ref_15) 2021; 238 ref_13 ref_12 ref_33 ref_32 ref_31 ref_30 Pateria (ref_25) 2021; 54 ref_19 Nascimento (ref_10) 2020; 6 Chen (ref_11) 2020; 64 ref_17 Lin (ref_18) 2021; 188 Gualtieri (ref_6) 2021; 67 Solanes (ref_9) 2020; 111 Duan (ref_26) 2020; 14 ref_24 ref_23 ref_22 ref_21 ref_20 ref_1 Dalgaty (ref_14) 2021; 4 Luan (ref_3) 2012; 39 ref_2 Knudsen (ref_4) 2020; 3 ref_29 ref_28 ref_27 ref_8 Li (ref_16) 2023; 21 ref_5 ref_7 |
| References_xml | – volume: 111 start-page: 1077 year: 2020 ident: ref_9 article-title: Teleoperation of industrial robot manipulators based on augmented reality publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-020-05997-1 – ident: ref_28 – ident: ref_2 doi: 10.1109/UPCON.2017.8251075 – ident: ref_7 doi: 10.3390/ijerph18041927 – ident: ref_30 – ident: ref_1 doi: 10.1109/EECSI.2018.8752950 – ident: ref_5 – ident: ref_32 – ident: ref_22 doi: 10.3390/app9020348 – volume: 3 start-page: 13 year: 2020 ident: ref_4 article-title: Collaborative robots: Frontiers of current literature publication-title: J. Intell. Syst. Theory Appl. – ident: ref_13 doi: 10.1109/SSCI47803.2020.9308468 – volume: 14 start-page: 297 year: 2020 ident: ref_26 article-title: Hierarchical reinforcement learning for self-driving decision-making without reliance on labelled driving data publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2019.0317 – volume: 54 start-page: 1 year: 2021 ident: ref_25 article-title: Hierarchical reinforcement learning: A comprehensive survey publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3453160 – ident: ref_21 – ident: ref_8 doi: 10.1109/ICRA40945.2020.9196850 – volume: 6 start-page: 88 year: 2020 ident: ref_10 article-title: Collision avoidance interaction between human and a hidden robot based on kinect and robot data fusion publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.3032104 – volume: 67 start-page: 101998 year: 2021 ident: ref_6 article-title: Emerging research fields in safety and ergonomics in industrial collaborative robotics: A systematic literature review publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2020.101998 – ident: ref_20 doi: 10.15607/RSS.2019.XV.073 – volume: 238 start-page: 110860 year: 2021 ident: ref_15 article-title: Reinforcement learning of occupant behavior model for cross-building transfer learning to various HVAC control systems publication-title: Energy Build. doi: 10.1016/j.enbuild.2021.110860 – ident: ref_24 doi: 10.1109/IROS40897.2019.8967899 – ident: ref_29 – ident: ref_33 – volume: 4 start-page: 151 year: 2021 ident: ref_14 article-title: In situ learning using intrinsic memristor variability via Markov chain Monte Carlo sampling publication-title: Nat. Electron. doi: 10.1038/s41928-020-00523-3 – volume: 64 start-page: 101948 year: 2020 ident: ref_11 article-title: A virtual-physical collision detection interface for AR-based interactive teaching of robot publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2020.101948 – ident: ref_12 doi: 10.1109/IRC.2019.00120 – ident: ref_31 doi: 10.3390/app10020575 – volume: 21 start-page: 563 year: 2023 ident: ref_16 article-title: Navigation of Mobile Robots Based on Deep Reinforcement Learning: Reward Function Optimization and Knowledge Transfer publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-021-0642-7 – ident: ref_17 doi: 10.23919/ECC.2018.8550363 – ident: ref_27 doi: 10.1109/ICAR53236.2021.9659344 – volume: 188 start-page: 106350 year: 2021 ident: ref_18 article-title: Collision-free path planning for a guava-harvesting robot based on recurrent deep reinforcement learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106350 – ident: ref_23 doi: 10.1109/IROS51168.2021.9635931 – ident: ref_19 doi: 10.1109/ETFA.2016.7733585 – volume: 39 start-page: 162 year: 2012 ident: ref_3 article-title: Optimum motion control of palletizing robots based on iterative learning publication-title: Ind. Robot. Int. J. doi: 10.1108/01439911211201627 |
| SSID | ssj0001965440 |
| Score | 2.2711575 |
| Snippet | This paper proposes a task decomposition and dedicated reward-system-based reinforcement learning algorithm for the Pick-and-Place task, which is one of the... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 240 |
| SubjectTerms | Algorithms Artificial intelligence Assembly lines Collaboration Control algorithms Decomposition deep reinforcement learning Grasping Pick-and-Place Reinforcement robot manipulator Robots Soft Actor-Critic Success task decomposition |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBQHkECjISggNYTWLHcY5boKqQQBVqpd4iP9ul2WzV3VXVf98ZJ40SKgEHrn4l87Bnxpr5TMg7b1RQZRlYGixnwnnNNJyBLPDcFrlwRYh1a99_yINj8e2kOBk99YU5YR08cMe4XTCJldFe56LwCJRSpVXIfeF15UxmTcT5TFU1CqZ-daAvhRBpVyXDYdIuVrPPF1gYuFLgIuV42zGyRBGw_-6xPLJLv-dM3t-0F_r6SjfNyCDtPyIPe0-SzjoKHpN7vn1CtmctRNGLa_qextzOeGm-TRrQBnqkV-f0i8ck8j5Ti-rWQYuLdXCO_vQxhbYDMWd7YN-wLUKr2niLSHs01lM6a06Xl_P12YJCJz2c23MGa7FDvJR_So73vx59PmD9OwvMFlKsWSghBnLeK8FLEJ0TXutKeSuNMmDiJA9Oa-HgKDLWVWWqRCFMKkyB8YZVmj8jW-2y9S8IlboqA3cSlpICIj1tswA-EAgoVyrLbEKyW57Xtgchx7cwmhqCEZRTfVdOCfk4zLnoIDj-OHoPRTmMRPjs2ABKVfdKVf9NqRLyARWhRg7D71nd1yoAkQiXVc9KCKtLfAMwITuTkbA57bT7VpXq_nBY1XksZ5Yihe-8HbpxJia8tX65wTE8gusjQc87zRtI4iWXEjznhKiJTk5onva087MIHQ7uZIWIggn5NKjvPzD15f9g6ivyABbjXZ7dDtlaX278a_Do1uZN3Lw3nVJMWQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7gFe0GB8hA1kJAQPYC2NncR5QKiFTRMSVTVt0t4ix3a6amla1lZo_z13Ttq1TJp4tZ0oPp_vK3e_A_jgClWqNC15WBrBpXWaa5SBvBSRiSNp49LXrf0aJKcX8udlfLkDg1UtDKVVrmSiF9R2aihGfhT5GtBEhuLb7DenrlH0d3XVQkO3rRXsVw8x9gh2I0LG6sBu_3gwPLuLumRJLGXYVM8I9PePqMp9PKGCwblC0ymiKMiGhvJA_vfF9Ya--jeX8vGynunbP7qqNhTVyR48bS1M1mtY4hnsuPo57Pdq9K4nt-wj8zmfPpi-DxVyCTvX82v2w1FyeZvBxXRtccT6-jjLzpxPrW3AzXkf9R6NechV46OLrEVpHbFeNUKiLa4mDCfZcGyuOb6LDylY_wIuTo7Pv5_ytv8CN0joBS9T9I2sc0qKFI_USqd1ppxJClWg6ktEabWWFkVUYWyWhkrGsghlEZMfYpQWL6FTT2v3Gliis7QUNsFXJRI9QG26JdpGocoipbpdE0B3RfPctODk1COjytFJoXPK759TAJ_Xz8waaI4HV_fpKNcrCVbbD0xvRnl7S3O0v7JCOx3J2BEqTxZmZeRipzNbdE0hAvhEjJAThfHzjG5rGHCTBKOV91J0t1PqDRjA4dZKvLRme3rFSnkrNOb5HYsH8H49TU9SIlztpktaIzzoPm3oVcN56y2JVCQJWtQBqC2e3Nrz9kw9vvKQ4mhmZoQ0GMCXNfv-B1HfPLyNA3iCy0STWXcIncXN0r1FG25RvGsv5l98-Une priority: 102 providerName: ProQuest |
| Title | The Task Decomposition and Dedicated Reward-System-Based Reinforcement Learning Algorithm for Pick-and-Place |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37366835 https://www.proquest.com/docview/2829756403 https://www.proquest.com/docview/2830218240 https://pubmed.ncbi.nlm.nih.gov/PMC10296071 https://www.mdpi.com/2313-7673/8/2/240/pdf?version=1686057959 https://doaj.org/article/0669baea245e4893909f2e5ea9db1cb3 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: ABDBF dateStart: 20220601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: RPM dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: BENPR dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegfYAXvgYjMCojIXiALB92HOcJpWzVhERVTas0niLHdrqqbVr1AzT-es6OV7WbhICnSPY5zaWX-9Ld7xB6p0te8TSt_LCSxKdKC1-ADvQrEsskpiqpbN_atz47G9Kvl8mlq81ZubJKCMXHVkmD70H8lKUk4EEcgO0JFqr6_MMlkiLGmWmlTLL7qM0ScMVbqD3sD_LvdqCcO9o0yhAI7QPT0D6emd7AFQcvKTYJjx1jZDH772rmHdN0u2zywaZeiOufYjrdsUm9x83g1ZWFMjSlKJPjzbo8lr9uAT3-N7tP0CPnreK8Ea-n6J6un6GDvIZIfXaN32NbP2oT8wdoChKHL8Rqgk-0KVR31WBY1ApWlO21U_hc2zLdBijd74INNWsWvlXaTCV2iK8jnE9H8-V4fTXDsIkHYznx4V7-wCT-n6Nh7_Tiy5nvZjn4MmF07VcpxFlKa05JCuKhqBYi41qykpdgRhmplBBUgborpcrSkNOEliEtExPTSC7IC9Sq57V-iTATWVoRxeBWjEI0KWRUgZ8V8izmPIqkh6KbP7WQDujczNuYFhDwGEEo7gqChz5uzywamI8_UneNrGwpDUS3XZgvR4X74gvw5bJSaBHTRBuEnyzMqlgnWmSqjGRJPPTBSFph3jA8nhSuHwKYNJBcRZ5C6J6aOYMeOtqjBAUg97dvZLVwCmhVxLZlmtEQfuftdtucNEV1tZ5vDA2xAP6GocNGtLcskZQwBt65h_ie0O_xvL9Tj68sPDm4rJlBLfTQp-338Rcv9dW_kb9GD-FKmqq9I9RaLzf6DfiH67KD2nn3pNuDa_e0Pzjv2DxLx-mG3y0UZ7Y |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELcYPLCXaRv7yMY2T9rHwxaRxk5iP6CpHaAyoKpQkXgLju2UijbtaCvUf25_2-6ctLRDQnvh1V-Kfefz3eXud4R8spnIRZLkfpBr5nNjla9ABvo5C3UUchPlLm_tpBU3z_iv8-h8jfyZ58JgWOVcJjpBbYYafeQ7ocsBjXnAfox--1g1Cv-uzktoqKq0gtl1EGNVYseRnd2ACTfePdwDen8Ow4P9zs-mX1UZ8DUsN_HzBCwAY63gLIEPN9wqJYXVcSYyEPAxy41S3MBFzLSRSSB4xLOAZxFq21ooBus-IhuccQnG30Zjv9U-vfXyyDjiPCizdRiTwQ5m1fcGmKA4FqCqheh1WXoRXeGAu8_D0vv4b-zm5rQYqdmN6veXHsaDp-RJpdHSesmCz8iaLZ6TrXoB1vxgRr9QF2PqnPdbpA9cSTtqfEX3LAazVxFjVBUGWozLxzP01LpQ3hJM3W_AO4ttDuJVO28mrVBhu7Te7wKRJpcDCp203dNXPqzlt_HnwAty9iCUeEnWi2FhXxMaK5nkzMSwVMzB4lS6loMuFggZClGraY_U5mee6goMHWty9FMwipBO6V06eeTbYs6ohAK5d3QDSbkYiTDermF43U0rqZCCviczZVXII4soQDKQeWgjq6TJajpjHvmKjJDiCcPnaVXlTMAmEbYrrSdg3idYi9Aj2ysjQUjo1e45K6WVkBqnt1fKIx8X3TgTA-8KO5ziGOZA_nFDr0rOW2yJJSyOQYP3iFjhyZU9r_YUvUsHYQ5qrURkQ498X7Dvfxzqm_u38YFsNjsnx-nxYevoLXkMU1gZ1bdN1ifXU_sO9MdJ9r66pJRcPLRc-AsgDIdw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJgEvCBgfgQFG4uOBRU1jJ3EeJtTSVRuDqpo2aW_BsZ2uWpuWtdXUf5G_ijvH7VomTbzsNf5Qznc-39l3vyPkg8lFIZKk8INCMZ9rI30JOtAvWKiikOuosHlrPzvxwSn_fhadbZA_i1wYDKtc6ESrqPVI4R15LbQ5oDEPWK1wYRHdVvvr-LePFaTwpXVRTkO6Mgt6z8KNuSSPIzO_AndusnfYAt5_DMP2_sm3A99VHPAVTD31iwS8AW2M4CwBIjQ3UqbCqDgXOSj7mBVaSq5hU-ZKp0kgeMTzgOcRWt5KSAbz3iNb-PgFSmKrud_pHl_f-KRxxHlQZe4wlgY1zLDvDzFZcSLAbAvxBmbldLRFBG4eFStn5b9xnA9m5VjOr-RgsHJIth-TR866pY1KHJ-QDVM-JduNEjz74Zx-ojbe1F7kb5MBSCg9kZML2jIY2O6ix6gsNXzRNjdP02Njw3orYHW_CWcufrNwr8rebFKHENujjUEPmDQ9H1JopN2-uvBhLr-LDwXPyOmdcOI52SxHpXlJaCzTpGA6hqliDt6nVPUC7LJApKEQ9brySH2x5plywOhYn2OQgYOEfMpu8skjX5ZjxhUsyK29m8jKZU-E9LYfRpe9zGmIDGy_NJdGhjwyiAiUBmkRmsjIVOd1lTOPfEZByHCF4feUdPkTQCRCeGWNBFz9BOsSemRnrScoDLXevBClzCmsSXa9vTzyftmMIzEIrzSjGfZhFvAfCXpRSd6SJJawOAZr3iNiTSbXaF5vKfvnFs4cTNwUUQ49srsU3_9Y1Fe3k_GO3Af9kP047By9Jg9hBKsC_HbI5vRyZt6AKTnN37o9Ssmvu1YLfwEv94uf |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4AXvgYjMJCREDxA1iR2bOcJdcA0ITFVaJPGU-TYTle1Tat-gMZfz53jVe0mIeApkn1OeunlvnT3O0Jeu0rVSso6TmrDYm6djjXowLhmmckzbvPa9619PRHHZ_zLeX4eanMWoawSQvGhV9Lge7BYCsm6qpt1wfZ0Z7b-8CMkklKhBLZS5sVtsiNycMU7ZOfspN_77gfKhaNtowyD0L6LDe3DCfYGLhR4SRkmPDaMkcfsv6mZN0zT9bLJO6tmpi9_6vF4wyYd3W8Hry48lCGWoowOVsvqwPy6BvT43-w-IPeCt0p7rXg9JLdc84js9hqI1CeX9A319aM-Mb9LxiBx9FQvRvSTw0L1UA1GdWNhxfpeO0u_OV-m2wKlx4dgQ3HNw7can6mkAfF1QHvjwXQ-XF5MKGzS_tCMYrhX3MfE_2NydvT59ONxHGY5xCYXfBnXEuIs65ziTIJ4WO60LpQzolIVmFHBaqs1t6DuKmMLmSie8yrhVY4xjVGaPSGdZtq4p4QKXciaWQG3EhyiSW3SGvysRBWZUmlqIpJe_amlCUDnOG9jXELAg4JQ3hSEiLxbn5m1MB9_pD5EWVlTIkS3X5jOB2X44kvw5YpKO53x3CHCT5EUdeZypwtbpaZiEXmLklbiG4afZ3TohwAmEZKr7EkI3SXOGYzI_hYlKACzvX0lq2VQQIsy8y3TgifwnFfrbTyJRXWNm66QhnkAf2RorxXtNUtMMiHAO4-I2hL6LZ63d5rhhYcnB5e1QNTCiLxffx9_8VKf_Rv5c3IXrqyt2tsnneV85V6Af7isXgYt8Bt1m2O1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Task+Decomposition+and+Dedicated+Reward-System-Based+Reinforcement+Learning+Algorithm+for+Pick-and-Place&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Kim%2C+Byeongjun&rft.au=Kwon%2C+Gunam&rft.au=Park%2C+Chaneun&rft.au=Kwon%2C+Nam+Kyu&rft.date=2023-06-01&rft.issn=2313-7673&rft.eissn=2313-7673&rft.volume=8&rft.issue=2&rft_id=info:doi/10.3390%2Fbiomimetics8020240&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon |