Real-time motion analytics during brain MRI improve data quality and reduce costs

Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring c...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 161; pp. 80 - 93
Main Authors Dosenbach, Nico U.F., Koller, Jonathan M., Earl, Eric A., Miranda-Dominguez, Oscar, Klein, Rachel L., Van, Andrew N., Snyder, Abraham Z., Nagel, Bonnie J., Nigg, Joel T., Nguyen, Annie L., Wesevich, Victoria, Greene, Deanna J., Fair, Damien A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2017
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2017.08.025

Cover

Abstract Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional ‘buffer data’, an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more. [Display omitted]
AbstractList Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional ‘buffer data’, an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more.
Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional ‘buffer data’, an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use F ramewise I ntegrated R eal-time M RI M onitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more.
Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional 'buffer data', an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more.Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional 'buffer data', an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more.
Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional ‘buffer data’, an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more. [Display omitted]
Author Wesevich, Victoria
Fair, Damien A.
Van, Andrew N.
Nigg, Joel T.
Koller, Jonathan M.
Nguyen, Annie L.
Miranda-Dominguez, Oscar
Snyder, Abraham Z.
Dosenbach, Nico U.F.
Earl, Eric A.
Klein, Rachel L.
Nagel, Bonnie J.
Greene, Deanna J.
AuthorAffiliation a Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
d Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
c Program in Occupational Therapy, Washington University, St. Louis, MO, USA
h Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
b Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
g Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
e Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
f Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
AuthorAffiliation_xml – name: e Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
– name: a Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
– name: d Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
– name: c Program in Occupational Therapy, Washington University, St. Louis, MO, USA
– name: f Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
– name: b Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
– name: g Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
– name: h Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
Author_xml – sequence: 1
  givenname: Nico U.F.
  surname: Dosenbach
  fullname: Dosenbach, Nico U.F.
  email: ndosenbach@wustl.edu
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
– sequence: 2
  givenname: Jonathan M.
  surname: Koller
  fullname: Koller, Jonathan M.
  organization: Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
– sequence: 3
  givenname: Eric A.
  surname: Earl
  fullname: Earl, Eric A.
  organization: Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
– sequence: 4
  givenname: Oscar
  surname: Miranda-Dominguez
  fullname: Miranda-Dominguez, Oscar
  organization: Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
– sequence: 5
  givenname: Rachel L.
  surname: Klein
  fullname: Klein, Rachel L.
  organization: Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
– sequence: 6
  givenname: Andrew N.
  surname: Van
  fullname: Van, Andrew N.
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
– sequence: 7
  givenname: Abraham Z.
  surname: Snyder
  fullname: Snyder, Abraham Z.
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
– sequence: 8
  givenname: Bonnie J.
  surname: Nagel
  fullname: Nagel, Bonnie J.
  organization: Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
– sequence: 9
  givenname: Joel T.
  surname: Nigg
  fullname: Nigg, Joel T.
  organization: Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
– sequence: 10
  givenname: Annie L.
  surname: Nguyen
  fullname: Nguyen, Annie L.
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
– sequence: 11
  givenname: Victoria
  surname: Wesevich
  fullname: Wesevich, Victoria
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
– sequence: 12
  givenname: Deanna J.
  surname: Greene
  fullname: Greene, Deanna J.
  organization: Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
– sequence: 13
  givenname: Damien A.
  surname: Fair
  fullname: Fair, Damien A.
  email: faird@ohsu.edu
  organization: Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28803940$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhSNURH_gFZAlNmwSruM4PxsEVNBWKkJUsLYc-2bwkNhT2xlp3h5HU6bQ1axsyZ8_3XvOeXZincUsIxQKCrR-ty4szt6ZSa6wKIE2BbQFlPxZdkah43nHm_JkuXOWt5R2p9l5CGsA6GjVvshOy7YF1lVwln2_Qznm0UxIJheNs0RaOe6iUYHo2Ru7Ir2XxpKvdzfETBvvtki0jJLcz3I0cZd4TTzqWSFRLsTwMns-yDHgq4fzIvv55fOPy-v89tvVzeXH21zxuor5wHtkg0SdRur7ATl0AKoDPrAGaqm7HtoSGNM1oyXXtGok6xnUFFhNm5Kyi-z93ruZ-wm1Qhu9HMXGp1T8TjhpxP8v1vwSK7cVvGEphUXw9kHg3f2MIYrJBIXjKC26OQjalW3TUl7WCX3zBF272aegFqrmVcVZxxL1-t-JDqP8TTsB7R5Q3oXgcTggFMRSrFiLx2LFUqyAVqRiH7c9fFUmyqWwtJsZjxF82gswdbI16EVQBq1CbTyqKLQzx0g-PJGo0Vij5Pgbd8cp_gDhsdvr
CitedBy_id crossref_primary_10_1111_jon_12955
crossref_primary_10_1016_j_dcn_2020_100803
crossref_primary_10_1016_j_neuroimage_2022_119367
crossref_primary_10_1016_j_dcn_2018_03_001
crossref_primary_10_1080_13682199_2023_2196494
crossref_primary_10_1016_j_neuroimage_2020_117227
crossref_primary_10_1016_j_neuroimage_2021_118439
crossref_primary_10_1162_nol_a_00113
crossref_primary_10_1016_j_neuropsychologia_2023_108567
crossref_primary_10_3389_fneur_2020_00381
crossref_primary_10_3390_adolescents1020007
crossref_primary_10_1016_j_dcn_2024_101503
crossref_primary_10_1523_JNEUROSCI_0511_22_2022
crossref_primary_10_3389_fninf_2022_843114
crossref_primary_10_1007_s42113_020_00079_7
crossref_primary_10_1016_j_cobeha_2021_03_017
crossref_primary_10_1016_j_biopsych_2022_04_008
crossref_primary_10_1002_da_23154
crossref_primary_10_1016_j_bbih_2023_100643
crossref_primary_10_1016_j_neuroimage_2019_116400
crossref_primary_10_1016_j_jaac_2023_09_547
crossref_primary_10_1177_1087054720911988
crossref_primary_10_1038_s41598_020_78885_z
crossref_primary_10_1016_j_neuroimage_2021_118838
crossref_primary_10_3389_fnins_2019_00825
crossref_primary_10_1016_j_janxdis_2020_102224
crossref_primary_10_1097_JCP_0000000000001859
crossref_primary_10_1016_j_brainres_2024_148977
crossref_primary_10_1038_s41597_022_01226_4
crossref_primary_10_52294_001c_128149
crossref_primary_10_3389_fnhum_2023_1147352
crossref_primary_10_1016_j_dcn_2022_101116
crossref_primary_10_1016_j_dcn_2023_101217
crossref_primary_10_3174_ajnr_A7001
crossref_primary_10_1016_j_neuroimage_2021_118093
crossref_primary_10_1038_s41583_024_00882_2
crossref_primary_10_1038_s44220_023_00151_8
crossref_primary_10_1109_JBHI_2017_2771299
crossref_primary_10_1016_j_dcn_2018_07_003
crossref_primary_10_1016_j_dcn_2020_100902
crossref_primary_10_3389_fnins_2023_1100544
crossref_primary_10_1073_pnas_2023860118
crossref_primary_10_3389_fnimg_2022_1007668
crossref_primary_10_1177_11795727211010500
crossref_primary_10_1016_j_dcn_2020_100909
crossref_primary_10_1002_jnr_24831
crossref_primary_10_3390_diagnostics12051032
crossref_primary_10_1002_jnr_24946
crossref_primary_10_1002_mrm_28649
crossref_primary_10_1016_j_jaac_2020_11_021
crossref_primary_10_1093_texcom_tgac011
crossref_primary_10_1162_jocn_a_02113
crossref_primary_10_1016_j_dcn_2022_101087
crossref_primary_10_1016_j_neuroimage_2019_116091
crossref_primary_10_1002_hbm_25724
crossref_primary_10_1016_j_neurobiolaging_2024_11_010
crossref_primary_10_1186_s40708_021_00128_2
crossref_primary_10_1038_s41598_024_79827_9
crossref_primary_10_3389_fnhum_2024_1486770
crossref_primary_10_1016_j_biopsych_2020_01_012
crossref_primary_10_1016_j_neuroimage_2020_117280
crossref_primary_10_1162_jocn_a_01826
crossref_primary_10_1016_j_dcn_2020_100878
crossref_primary_10_1016_j_neuroimage_2022_119253
crossref_primary_10_1016_j_neuron_2020_05_007
crossref_primary_10_1016_j_neuroimage_2018_07_057
crossref_primary_10_1017_S0033291719004148
crossref_primary_10_1016_j_dcn_2022_101090
crossref_primary_10_1016_j_dcn_2024_101452
crossref_primary_10_7717_peerj_5176
crossref_primary_10_1016_j_neuroimage_2017_12_073
crossref_primary_10_1016_j_tins_2021_01_008
crossref_primary_10_1016_j_neuroimage_2020_116866
crossref_primary_10_3758_s13415_022_01017_9
crossref_primary_10_1016_j_nicl_2020_102242
crossref_primary_10_1016_j_nicl_2023_103395
crossref_primary_10_1016_j_bpsc_2019_11_007
crossref_primary_10_1016_j_neuroimage_2018_02_041
crossref_primary_10_1146_annurev_devpsych_121318_085124
crossref_primary_10_1002_hbm_25111
crossref_primary_10_1093_cercor_bhz157
crossref_primary_10_1007_s12021_022_09582_7
crossref_primary_10_1186_s12888_020_03030_z
crossref_primary_10_3389_fnhum_2020_00226
crossref_primary_10_1016_j_isci_2023_107965
crossref_primary_10_1038_s41586_022_04492_9
crossref_primary_10_3389_fncir_2023_1120410
crossref_primary_10_1002_hbm_25590
crossref_primary_10_1038_s41467_018_02887_9
crossref_primary_10_12688_f1000research_29988_1
crossref_primary_10_1016_j_dcn_2018_12_002
crossref_primary_10_1177_13623613211065542
crossref_primary_10_1007_s10519_021_10092_6
crossref_primary_10_1093_cercor_bhad506
crossref_primary_10_1038_s44220_024_00281_7
crossref_primary_10_1016_j_bpsc_2022_12_006
crossref_primary_10_1016_j_ynirp_2022_100085
crossref_primary_10_1016_j_dcn_2023_101268
crossref_primary_10_1016_j_neuroimage_2019_01_016
crossref_primary_10_1016_j_neuroimage_2024_120827
crossref_primary_10_1016_j_dcn_2024_101423
crossref_primary_10_1016_j_dcn_2021_101009
crossref_primary_10_1038_s41386_024_01888_1
crossref_primary_10_1093_bioinformatics_btz967
crossref_primary_10_1093_cercor_bhae047
crossref_primary_10_1038_s41386_024_01941_z
crossref_primary_10_1371_journal_pone_0265112
crossref_primary_10_1016_j_neuroimage_2018_01_023
crossref_primary_10_1016_j_neuroimage_2018_09_060
crossref_primary_10_1038_s41596_018_0065_y
crossref_primary_10_1016_j_media_2019_06_016
crossref_primary_10_1038_s41398_022_02111_9
crossref_primary_10_1016_j_nicl_2023_103448
crossref_primary_10_1016_j_bpsc_2018_03_015
crossref_primary_10_1177_0956797620929299
crossref_primary_10_1016_j_dcn_2019_100667
crossref_primary_10_1016_j_neuroimage_2020_116688
crossref_primary_10_1016_j_neuroimage_2020_117537
crossref_primary_10_1089_neu_2023_0089
crossref_primary_10_1371_journal_pone_0207352
crossref_primary_10_20900_jpbs_20200012
crossref_primary_10_1002_aur_2603
crossref_primary_10_1002_hbm_25458
crossref_primary_10_1016_j_dcn_2019_100706
crossref_primary_10_1038_s41386_022_01286_5
crossref_primary_10_1097_PR9_0000000000000807
crossref_primary_10_1016_j_bpsgos_2021_05_007
crossref_primary_10_1097_j_pain_0000000000003562
crossref_primary_10_1016_j_dcn_2018_10_004
crossref_primary_10_1162_imag_a_00175
crossref_primary_10_1016_j_neuroimage_2023_120176
crossref_primary_10_1002_hbm_25010
crossref_primary_10_1002_hbm_24840
crossref_primary_10_1016_j_neuroimage_2018_03_049
crossref_primary_10_1038_s41467_024_52242_4
crossref_primary_10_1186_s12888_023_05094_z
crossref_primary_10_1523_ENEURO_0384_19_2019
crossref_primary_10_1007_s00234_024_03282_6
crossref_primary_10_1038_s41562_021_01216_3
crossref_primary_10_1016_j_dcn_2023_101244
crossref_primary_10_1038_s44220_023_00032_0
crossref_primary_10_1093_cercor_bhaa139
crossref_primary_10_1016_j_biopsych_2020_03_022
crossref_primary_10_1111_apa_16247
crossref_primary_10_3389_fnimg_2022_981947
crossref_primary_10_1016_j_neuroimage_2022_119296
crossref_primary_10_1093_braincomms_fcae250
crossref_primary_10_1093_cercor_bhaa382
crossref_primary_10_1093_cercor_bhy117
crossref_primary_10_1162_imag_a_00437
crossref_primary_10_1523_JNEUROSCI_0735_23_2023
crossref_primary_10_1002_gps_5851
crossref_primary_10_1038_s41386_020_00789_3
crossref_primary_10_1016_j_biopsych_2019_10_026
crossref_primary_10_3390_neurolint13010009
crossref_primary_10_1162_netn_a_00054
crossref_primary_10_1016_j_semperi_2022_151593
crossref_primary_10_1152_jn_00308_2023
crossref_primary_10_1016_j_dcn_2023_101198
crossref_primary_10_1016_j_dcn_2023_101231
crossref_primary_10_1016_j_neuroimage_2021_118466
crossref_primary_10_1186_s13063_024_08629_1
crossref_primary_10_1016_j_neuroimage_2018_08_050
crossref_primary_10_1038_s41586_024_07624_5
crossref_primary_10_1016_j_bpsgos_2024_100446
crossref_primary_10_1038_s41593_024_01596_5
crossref_primary_10_1089_brain_2020_0758
crossref_primary_10_1371_journal_pone_0241974
crossref_primary_10_1016_j_biopsych_2020_07_016
crossref_primary_10_1093_cercor_bhac202
Cites_doi 10.1089/brain.2016.0435
10.1016/j.neuroimage.2007.04.042
10.1016/j.neuroimage.2011.07.044
10.1097/00004583-200104000-00013
10.1016/j.neuroimage.2015.11.022
10.1023/A:1005592401947
10.1016/0028-3932(71)90067-4
10.1016/j.neuroimage.2014.03.034
10.1016/j.neuroimage.2013.03.004
10.1002/mrm.22837
10.1111/desc.12407
10.1093/cercor/bhw253
10.1016/0028-3932(89)90019-5
10.1016/j.neuron.2015.06.037
10.1016/S0962-1849(05)80139-8
10.1016/j.neuroimage.2011.12.063
10.1002/jmri.24678
10.1016/j.neuroimage.2017.03.020
10.1093/cercor/bhq035
10.1016/j.neuroimage.2014.03.028
10.1016/j.neuroimage.2016.08.032
10.1016/j.neuroimage.2013.06.045
10.1016/j.neuroimage.2016.08.009
10.1126/science.1194144
10.1016/j.neuron.2017.07.011
10.1016/j.nicl.2014.07.002
10.1002/mrm.22176
10.1007/BF02172145
10.1002/hbm.23318
10.1016/j.neuroimage.2015.02.064
10.1002/mrm.26040
10.1007/s12021-008-9036-8
10.1016/j.neuroimage.2014.03.012
10.1155/2013/935154
10.1016/j.neuroimage.2014.10.044
10.1016/j.neuron.2014.08.050
10.1016/j.neuroimage.2014.12.006
10.1016/j.neuroimage.2015.11.054
10.1016/j.neuroimage.2013.05.041
10.1016/j.neuroimage.2015.02.063
10.1007/s00247-011-2205-1
10.1016/j.neuroimage.2013.11.046
10.1016/j.neuroimage.2010.06.017
10.1002/hbm.22307
10.1016/j.neuron.2011.09.006
10.1016/j.neuroimage.2011.10.018
10.1016/j.neuroimage.2013.11.027
10.1073/pnas.1301725110
10.1093/cercor/bhw265
10.1002/mrm.23228
ContentType Journal Article
Copyright 2017 The Authors
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Nov 1, 2017
Copyright_xml – notice: 2017 The Authors
– notice: Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Nov 1, 2017
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1016/j.neuroimage.2017.08.025
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Collection (Proquest)
Biological Science Database (Proquest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology

MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 93
ExternalDocumentID PMC5731481
28803940
10_1016_j_neuroimage_2017_08_025
S1053811917306729
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R00 MH091238
– fundername: NIMH NIH HHS
  grantid: R01 MH115357
– fundername: NIDA NIH HHS
  grantid: U01 DA041148
– fundername: NICHD NIH HHS
  grantid: U54 HD087011
– fundername: NIMH NIH HHS
  grantid: R01 MH096773
– fundername: NINDS NIH HHS
  grantid: K23 NS088590
– fundername: NIAAA NIH HHS
  grantid: R01 AA017664
– fundername: NIDA NIH HHS
  grantid: U24 DA041123
– fundername: NCATS NIH HHS
  grantid: UL1 TR002345
– fundername: NCATS NIH HHS
  grantid: UL1 TR000448
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ACLOT
~HD
5PM
ID FETCH-LOGICAL-c564t-f5be3faed914bbfe50900c905f3706ad9b082033d63125d147a3b306103617213
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 18:08:44 EDT 2025
Sat Sep 27 20:37:49 EDT 2025
Wed Aug 13 06:50:53 EDT 2025
Thu Apr 03 07:07:47 EDT 2025
Tue Jul 01 03:01:53 EDT 2025
Thu Apr 24 22:52:18 EDT 2025
Fri Feb 23 02:25:06 EST 2024
Tue Aug 26 20:08:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords MRI acquisition
Head motion distortion
Real-time quality control
Resting state functional connectivity MRI
Structural MRI
Functional MRI
MRI methods
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-f5be3faed914bbfe50900c905f3706ad9b082033d63125d147a3b306103617213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811917306729
PMID 28803940
PQID 1965445393
PQPubID 2031077
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5731481
proquest_miscellaneous_1928781526
proquest_journals_1965445393
pubmed_primary_28803940
crossref_primary_10_1016_j_neuroimage_2017_08_025
crossref_citationtrail_10_1016_j_neuroimage_2017_08_025
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2017_08_025
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2017_08_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2017
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Power, Mitra, Laumann, Snyder, Schlaggar, Petersen (bib34) 2013; 84C
Pruim, Mennes, van Rooij, Llera, Buitelaar, Beckmann (bib37) 2015; 112
Satterthwaite, Wolf, Ruparel, Erus, Elliott, Eickhoff, Gennatas, Jackson, Prabhakaran, Smith, Hakonarson, Verma, Davatzikos, Gur, Gur (bib41) 2013; 83
Lucas, Zhang, Fisher, Shaffer, Regier, Narrow, Bourdon, Dulcan, Canino, Rubio-Stipec, Lahey, Friman (bib26) 2001; 40
Kundu, Brenowitz, Voon, Worbe, Vertes, Inati, Saad, Bandettini, Bullmore (bib20) 2013; 110
Di Martino, Fair, Kelly, Satterthwaite, Castellanos, Thomason, Craddock, Luna, Leventhal, Zuo, Milham (bib12) 2014; 83
Kuperman, Brown, Ahmadi, Erhart, White, Roddey, Shankaranarayanan, Han, Rettmann, Dale (bib21) 2011; 41
Power (bib31) 2017; 154
Benner, van der Kouwe, Sorensen (bib5) 2011; 66
Patel, Kundu, Rubinov, Jones, Vertes, Ersche, Suckling, Bullmore (bib30) 2014; 95
Burgess, Kandala, Nolan, Laumann, Power, Adeyemo, Harms, Petersen, Barch (bib10) 2016; 6
Siegel, Power, Dubis, Vogel, Church, Schlaggar, Petersen (bib43) 2014; 35
Stoeckel, Garrison, Ghosh, Wighton, Hanlon, Gilman, Greer, Turk-Browne, deBettencourt, Scheinost, Craddock, Thompson, Calderon, Bauer, George, Breiter, Whitfield-Gabrieli, Gabrieli, LaConte, Hirshberg, Brewer, Hampson, Van Der Kouwe, Mackey, Evins (bib45) 2014; 5
Laumann, Snyder, Mitra, Gordon, Gratton, Adeyemo, Gilmore, Nelson, Berg, Greene, McCarthy, Tagliazucchi, Laufs, Schlaggar, Dosenbach, Petersen (bib23) 2016
Brown, Schumacher, Rohlmann, Ettlinger, Schmidt, Skreczek (bib6) 1989; 27
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib50) 2013; 80
Lord, Risi, Lambrecht, Cook, Leventhal, DiLavore, Pickles, Rutter (bib24) 2000; 30
Yan, Cheung, Kelly, Colcombe, Craddock, Di Martino, Li, Zuo, Castellanos, Milham (bib52) 2013; 76
Tisdall, Hess, Reuter, Meintjes, Fischl, van der Kouwe (bib47) 2012; 68
Oldfield (bib29) 1971; 9
Satterthwaite, Wolf, Loughead, Ruparel, Elliott, Hakonarson, Gur, Gur (bib40) 2012; 60
Fair, Nigg, Iyer, Bathula, Mills, Dosenbach, Schlaggar, Mennes, Gutman, Bangaru, Buitelaar, Dickstein, Di Martino, Kennedy, Kelly, Luna, Schweitzer, Velanova, Wang, Mostofsky, Castellanos, Milham (bib14) 2012; 6
Pruim, Mennes, Buitelaar, Beckmann (bib36) 2015; 112
Yendiki, Koldewyn, Kakunoori, Kanwisher, Fischl (bib53) 2014; 88
Alhamud, Taylor, Laughton, van der Kouwe, Meintjes (bib2) 2015; 41
Smyser, Inder, Shimony, Hill, Degnan, Snyder, Neil (bib44) 2010; 20
Gordon, Laumann, Adeyemo, Gilmore, Nelson, Dosenbach, Petersen (bib16) 2017; 146
Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay, Moeller, Xu, Yacoub, Baselli, Ugurbil, Miller, Smith (bib18) 2014; 95
Siegel, Mitra, Laumann, Seitzman, Raichle, Corbetta, Snyder (bib42) 2016
Muschelli, Nebel, Caffo, Barber, Pekar, Mostofsky (bib28) 2014; 96
Gordon, Laumann, Gilmore, Newbold, Greene, Berg, Ortega, Hoyt Drazen, Gratton, Sun, Hampton, Coalson, Nguyen, McDermott, Shimony, Snyder, Schlaggar, Petersen, Nelson, Dosenbach (bib54) 2017; 95
Power, Cohen, Nelson, Wig, Barnes, Church, Vogel, Laumann, Miezin, Schlaggar, Petersen (bib33) 2011; 72
Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib39) 2014; 90
Frost, Hess, Okell, Chappell, Tisdall, van der Kouwe, Jezzard (bib15) 2016; 76
Power, Schlaggar, Petersen (bib35) 2015; 105
Greene, Church, Dosenbach, Nielsen, Adeyemo, Nardos, Petersen, Black, Schlaggar (bib17) 2016; 19
Jo, Gotts, Reynolds, Bandettini, Martin, Cox, Saad (bib19) 2013
Brown, Myers, Lippke, Tapert, Stewart, Vik (bib7) 1998; 59
(bib1) 2012; 6
Luo, Kennedy, Cohen (bib27) 2009; 7
Alhamud, Taylor, van der Kouwe, Meintjes (bib3) 2016; 126
Brown, Kuperman, Erhart, White, Roddey, Shankaranarayanan, Han, Rettmann, Dale (bib9) 2010; 53
Reuter, Tisdall, Qureshi, Buckner, van der Kouwe, Fischl (bib38) 2015; 107
Laumann, Gordon, Adeyemo, Snyder, Joo, Chen, Gilmore, McDermott, Nelson, Dosenbach, Schlaggar, Mumford, Poldrack, Petersen (bib22) 2015; 87
Taylor, Alhamud, van der Kouwe, Saleh, Laughton, Meintjes (bib46) 2016; 37
Van Dijk, Sabuncu, Buckner (bib49) 2012; 59
Power, Barnes, Snyder, Schlaggar, Petersen (bib32) 2012; 59
Tisdall, Reuter, Qureshi, Buckner, Fischl, van der Kouwe (bib48) 2016; 127
Lord, Rutter, Le Couteur (bib25) 1994; 24
Ciric, Wolf, Power, Roalf, Baum, Ruparel, Shinohara, Elliott, Eickhoff, Davatzikos, Gur, Gur, Bassett, Satterthwaite (bib11) 2017; 154
Brown, Myers, Mott, Vik (bib8) 1994; 3
Dosenbach, Nardos, Cohen, Fair, Power, Church, Nelson, Wig, Vogel, Lessov-Schlaggar, Barnes, Dubis, Feczko, Coalson, Pruett, Barch, Petersen, Schlaggar (bib13) 2010; 329
Behzadi, Restom, Liau, Liu (bib4) 2007; 37
White, Roddey, Shankaranarayanan, Han, Rettmann, Santos, Kuperman, Dale (bib51) 2010; 63
Tisdall (10.1016/j.neuroimage.2017.08.025_bib48) 2016; 127
Satterthwaite (10.1016/j.neuroimage.2017.08.025_bib41) 2013; 83
Salimi-Khorshidi (10.1016/j.neuroimage.2017.08.025_bib39) 2014; 90
Power (10.1016/j.neuroimage.2017.08.025_bib32) 2012; 59
Yan (10.1016/j.neuroimage.2017.08.025_bib52) 2013; 76
White (10.1016/j.neuroimage.2017.08.025_bib51) 2010; 63
Yendiki (10.1016/j.neuroimage.2017.08.025_bib53) 2014; 88
Jo (10.1016/j.neuroimage.2017.08.025_bib19) 2013
Van Essen (10.1016/j.neuroimage.2017.08.025_bib50) 2013; 80
Laumann (10.1016/j.neuroimage.2017.08.025_bib23) 2016
Van Dijk (10.1016/j.neuroimage.2017.08.025_bib49) 2012; 59
Power (10.1016/j.neuroimage.2017.08.025_bib31) 2017; 154
Power (10.1016/j.neuroimage.2017.08.025_bib35) 2015; 105
Dosenbach (10.1016/j.neuroimage.2017.08.025_bib13) 2010; 329
Brown (10.1016/j.neuroimage.2017.08.025_bib6) 1989; 27
Kuperman (10.1016/j.neuroimage.2017.08.025_bib21) 2011; 41
Patel (10.1016/j.neuroimage.2017.08.025_bib30) 2014; 95
Brown (10.1016/j.neuroimage.2017.08.025_bib8) 1994; 3
Greene (10.1016/j.neuroimage.2017.08.025_bib17) 2016; 19
Alhamud (10.1016/j.neuroimage.2017.08.025_bib3) 2016; 126
(10.1016/j.neuroimage.2017.08.025_bib1) 2012; 6
Luo (10.1016/j.neuroimage.2017.08.025_bib27) 2009; 7
Power (10.1016/j.neuroimage.2017.08.025_bib34) 2013; 84C
Lord (10.1016/j.neuroimage.2017.08.025_bib24) 2000; 30
Siegel (10.1016/j.neuroimage.2017.08.025_bib43) 2014; 35
Kundu (10.1016/j.neuroimage.2017.08.025_bib20) 2013; 110
Alhamud (10.1016/j.neuroimage.2017.08.025_bib2) 2015; 41
Lord (10.1016/j.neuroimage.2017.08.025_bib25) 1994; 24
Smyser (10.1016/j.neuroimage.2017.08.025_bib44) 2010; 20
Reuter (10.1016/j.neuroimage.2017.08.025_bib38) 2015; 107
Tisdall (10.1016/j.neuroimage.2017.08.025_bib47) 2012; 68
Behzadi (10.1016/j.neuroimage.2017.08.025_bib4) 2007; 37
Brown (10.1016/j.neuroimage.2017.08.025_bib9) 2010; 53
Gordon (10.1016/j.neuroimage.2017.08.025_bib16) 2017; 146
Lucas (10.1016/j.neuroimage.2017.08.025_bib26) 2001; 40
Laumann (10.1016/j.neuroimage.2017.08.025_bib22) 2015; 87
Power (10.1016/j.neuroimage.2017.08.025_bib33) 2011; 72
Benner (10.1016/j.neuroimage.2017.08.025_bib5) 2011; 66
Pruim (10.1016/j.neuroimage.2017.08.025_bib36) 2015; 112
Taylor (10.1016/j.neuroimage.2017.08.025_bib46) 2016; 37
Brown (10.1016/j.neuroimage.2017.08.025_bib7) 1998; 59
Oldfield (10.1016/j.neuroimage.2017.08.025_bib29) 1971; 9
Burgess (10.1016/j.neuroimage.2017.08.025_bib10) 2016; 6
Satterthwaite (10.1016/j.neuroimage.2017.08.025_bib40) 2012; 60
Ciric (10.1016/j.neuroimage.2017.08.025_bib11) 2017; 154
Stoeckel (10.1016/j.neuroimage.2017.08.025_bib45) 2014; 5
Di Martino (10.1016/j.neuroimage.2017.08.025_bib12) 2014; 83
Muschelli (10.1016/j.neuroimage.2017.08.025_bib28) 2014; 96
Siegel (10.1016/j.neuroimage.2017.08.025_bib42) 2016
Fair (10.1016/j.neuroimage.2017.08.025_bib14) 2012; 6
Frost (10.1016/j.neuroimage.2017.08.025_bib15) 2016; 76
Pruim (10.1016/j.neuroimage.2017.08.025_bib37) 2015; 112
Griffanti (10.1016/j.neuroimage.2017.08.025_bib18) 2014; 95
Gordon (10.1016/j.neuroimage.2017.08.025_bib54) 2017; 95
References_xml – volume: 20
  start-page: 2852
  year: 2010
  end-page: 2862
  ident: bib44
  article-title: Longitudinal analysis of neural network development in preterm infants
  publication-title: Cereb. Cortex
– volume: 6
  start-page: 62
  year: 2012
  ident: bib1
  article-title: The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience
  publication-title: Front. Syst. Neurosci.
– volume: 110
  start-page: 16187
  year: 2013
  end-page: 16192
  ident: bib20
  article-title: Integrated strategy for improving functional connectivity mapping using multiecho fMRI
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 126
  start-page: 60
  year: 2016
  end-page: 71
  ident: bib3
  article-title: Real-time measurement and correction of both B0 changes and subject motion in diffusion tensor imaging using a double volumetric navigated (DvNav) sequence
  publication-title: Neuroimage
– volume: 68
  start-page: 389
  year: 2012
  end-page: 399
  ident: bib47
  article-title: Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI
  publication-title: Magn. Reson Med.
– volume: 59
  start-page: 427
  year: 1998
  end-page: 438
  ident: bib7
  article-title: Psychometric evaluation of the Customary Drinking and Drug Use Record (CDDR): a measure of adolescent alcohol and drug involvement
  publication-title: J. Stud. Alcohol Drugs
– year: 2016
  ident: bib23
  article-title: On the stability of BOLD fMRI correlations
  publication-title: Cereb. Cortex
– volume: 84C
  start-page: 320
  year: 2013
  end-page: 341
  ident: bib34
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI
  publication-title: Neuroimage
– volume: 24
  start-page: 659
  year: 1994
  end-page: 685
  ident: bib25
  article-title: Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders
  publication-title: J. Autism Dev. Disord.
– volume: 59
  start-page: 431
  year: 2012
  end-page: 438
  ident: bib49
  article-title: The influence of head motion on intrinsic functional connectivity MRI
  publication-title: Neuroimage
– volume: 107
  start-page: 107
  year: 2015
  end-page: 115
  ident: bib38
  article-title: Head motion during MRI acquisition reduces gray matter volume and thickness estimates
  publication-title: Neuroimage
– volume: 127
  start-page: 11
  year: 2016
  end-page: 22
  ident: bib48
  article-title: Prospective motion correction with volumetric navigators (vNavs) reduces the bias and variance in brain morphometry induced by subject motion
  publication-title: Neuroimage
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  ident: bib32
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
– volume: 6
  start-page: 80
  year: 2012
  ident: bib14
  article-title: Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data
  publication-title: Front. Syst. Neurosci.
– year: 2013
  ident: bib19
  article-title: Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI
  publication-title: J. Appl. Math.
– volume: 41
  start-page: 1578
  year: 2011
  end-page: 1582
  ident: bib21
  article-title: Prospective motion correction improves diagnostic utility of pediatric MRI scans
  publication-title: Pediatr. Radiol.
– volume: 76
  start-page: 1420
  year: 2016
  end-page: 1430
  ident: bib15
  article-title: Prospective motion correction and selective reacquisition using volumetric navigators for vessel-encoded arterial spin labeling dynamic angiography
  publication-title: Magn. Reson Med.
– volume: 88
  start-page: 79
  year: 2014
  end-page: 90
  ident: bib53
  article-title: Spurious group differences due to head motion in a diffusion MRI study
  publication-title: Neuroimage
– volume: 95
  start-page: 287
  year: 2014
  end-page: 304
  ident: bib30
  article-title: A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series
  publication-title: Neuroimage
– volume: 60
  start-page: 623
  year: 2012
  end-page: 632
  ident: bib40
  article-title: Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth
  publication-title: Neuroimage
– volume: 154
  start-page: 174
  year: 2017
  end-page: 187
  ident: bib11
  article-title: Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity
  publication-title: Neuroimage
– volume: 66
  start-page: 154
  year: 2011
  end-page: 167
  ident: bib5
  article-title: Diffusion imaging with prospective motion correction and reacquisition
  publication-title: Magn. Reson Med.
– volume: 27
  start-page: 283
  year: 1989
  end-page: 302
  ident: bib6
  article-title: Aimed movements to visual targets in hemiplegic and normal children: is the “good” hand of children with infantile hemiplegia also normal?
  publication-title: Neuropsychologia
– volume: 83
  start-page: 1335
  year: 2014
  end-page: 1353
  ident: bib12
  article-title: Unraveling the miswired connectome: a developmental perspective
  publication-title: Neuron
– volume: 90
  start-page: 449
  year: 2014
  end-page: 468
  ident: bib39
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
– volume: 95
  start-page: 232
  year: 2014
  end-page: 247
  ident: bib18
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: Neuroimage
– volume: 83
  start-page: 45
  year: 2013
  end-page: 57
  ident: bib41
  article-title: Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth
  publication-title: Neuroimage
– volume: 112
  start-page: 278
  year: 2015
  end-page: 287
  ident: bib36
  article-title: Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI
  publication-title: Neuroimage
– volume: 5
  start-page: 245
  year: 2014
  end-page: 255
  ident: bib45
  article-title: Optimizing real time fMRI neurofeedback for therapeutic discovery and development
  publication-title: Neuroimage Clin.
– volume: 53
  start-page: 139
  year: 2010
  end-page: 145
  ident: bib9
  article-title: Prospective motion correction of high-resolution magnetic resonance imaging data in children
  publication-title: Neuroimage
– volume: 6
  start-page: 669
  year: 2016
  end-page: 680
  ident: bib10
  article-title: Evaluation of denoising strategies to address motion-correlated artifacts in resting-state functional magnetic resonance imaging data from the human connectome project
  publication-title: Brain Connect.
– volume: 105
  start-page: 536
  year: 2015
  end-page: 551
  ident: bib35
  article-title: Recent progress and outstanding issues in motion correction in resting state fMRI
  publication-title: Neuroimage
– volume: 37
  start-page: 4405
  year: 2016
  end-page: 4424
  ident: bib46
  article-title: Assessing the performance of different DTI motion correction strategies in the presence of EPI distortion correction
  publication-title: Hum. Brain Mapp.
– volume: 146
  start-page: 918
  year: 2017
  end-page: 939
  ident: bib16
  article-title: Individual-specific features of brain systems identified with resting state functional correlations
  publication-title: Neuroimage
– volume: 87
  start-page: 657
  year: 2015
  end-page: 670
  ident: bib22
  article-title: Functional system and areal organization of a highly sampled individual human brain
  publication-title: Neuron
– year: 2016
  ident: bib42
  article-title: Data quality influences observed links between functional connectivity and behavior
  publication-title: Cereb. Cortex
– volume: 7
  start-page: 55
  year: 2009
  end-page: 56
  ident: bib27
  article-title: Neuroimaging informatics tools and resources clearinghouse (NITRC) resource announcement
  publication-title: Neuroinformatics
– volume: 35
  start-page: 1981
  year: 2014
  end-page: 1996
  ident: bib43
  article-title: Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points
  publication-title: Hum. Brain Mapp.
– volume: 72
  start-page: 665
  year: 2011
  end-page: 678
  ident: bib33
  article-title: Functional network organization of the human brain
  publication-title: Neuron
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib50
  article-title: The WU-Minn Human Connectome Project: An overview
  publication-title: Neuroimage
– volume: 112
  start-page: 267
  year: 2015
  end-page: 277
  ident: bib37
  article-title: ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data
  publication-title: Neuroimage
– volume: 76
  start-page: 183
  year: 2013
  end-page: 201
  ident: bib52
  article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics
  publication-title: Neuroimage
– volume: 329
  start-page: 1358
  year: 2010
  end-page: 1361
  ident: bib13
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
– volume: 96
  start-page: 22
  year: 2014
  end-page: 35
  ident: bib28
  article-title: Reduction of motion-related artifacts in resting state fMRI using aCompCor
  publication-title: Neuroimage
– volume: 40
  start-page: 443
  year: 2001
  end-page: 449
  ident: bib26
  article-title: The DISC predictive Scales (DPS): efficiently screening for diagnoses
  publication-title: J. Am. Acad. Child. Adolesc. Psychiatry
– volume: 154
  start-page: 150
  year: 2017
  end-page: 158
  ident: bib31
  article-title: A simple but useful way to assess fMRI scan qualities
  publication-title: Neuroimage
– volume: 63
  start-page: 91
  year: 2010
  end-page: 105
  ident: bib51
  article-title: PROMO: real-time prospective motion correction in MRI using image-based tracking
  publication-title: Magn. Reson Med.
– volume: 41
  start-page: 1353
  year: 2015
  end-page: 1364
  ident: bib2
  article-title: Motion artifact reduction in pediatric diffusion tensor imaging using fast prospective correction
  publication-title: J. Magn. Reson Imaging
– volume: 3
  start-page: 61
  year: 1994
  end-page: 73
  ident: bib8
  article-title: Correlates of success following treatment for adolescent substance abuse
  publication-title: Appl. Prev. Psychol.
– volume: 30
  start-page: 205
  year: 2000
  end-page: 223
  ident: bib24
  article-title: The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism
  publication-title: J. Autism Dev. Disord.
– volume: 37
  start-page: 90
  year: 2007
  end-page: 101
  ident: bib4
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: Neuroimage
– volume: 19
  start-page: 581
  year: 2016
  end-page: 598
  ident: bib17
  article-title: Multivariate pattern classification of pediatric Tourette syndrome using functional connectivity MRI
  publication-title: Dev. Sci.
– volume: 95
  start-page: 791
  year: 2017
  end-page: 807
  ident: bib54
  article-title: Precision functional mapping of individual human brains
  publication-title: Neuron
– volume: 9
  start-page: 97
  year: 1971
  end-page: 113
  ident: bib29
  article-title: The assessment and analysis of handedness: the Edinburgh inventory
  publication-title: Neuropsychologia
– volume: 6
  start-page: 669
  year: 2016
  ident: 10.1016/j.neuroimage.2017.08.025_bib10
  article-title: Evaluation of denoising strategies to address motion-correlated artifacts in resting-state functional magnetic resonance imaging data from the human connectome project
  publication-title: Brain Connect.
  doi: 10.1089/brain.2016.0435
– volume: 37
  start-page: 90
  year: 2007
  ident: 10.1016/j.neuroimage.2017.08.025_bib4
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.04.042
– volume: 59
  start-page: 431
  year: 2012
  ident: 10.1016/j.neuroimage.2017.08.025_bib49
  article-title: The influence of head motion on intrinsic functional connectivity MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.07.044
– volume: 59
  start-page: 427
  year: 1998
  ident: 10.1016/j.neuroimage.2017.08.025_bib7
  article-title: Psychometric evaluation of the Customary Drinking and Drug Use Record (CDDR): a measure of adolescent alcohol and drug involvement
  publication-title: J. Stud. Alcohol Drugs
– volume: 40
  start-page: 443
  year: 2001
  ident: 10.1016/j.neuroimage.2017.08.025_bib26
  article-title: The DISC predictive Scales (DPS): efficiently screening for diagnoses
  publication-title: J. Am. Acad. Child. Adolesc. Psychiatry
  doi: 10.1097/00004583-200104000-00013
– volume: 126
  start-page: 60
  year: 2016
  ident: 10.1016/j.neuroimage.2017.08.025_bib3
  article-title: Real-time measurement and correction of both B0 changes and subject motion in diffusion tensor imaging using a double volumetric navigated (DvNav) sequence
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.11.022
– volume: 30
  start-page: 205
  year: 2000
  ident: 10.1016/j.neuroimage.2017.08.025_bib24
  article-title: The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism
  publication-title: J. Autism Dev. Disord.
  doi: 10.1023/A:1005592401947
– volume: 9
  start-page: 97
  year: 1971
  ident: 10.1016/j.neuroimage.2017.08.025_bib29
  article-title: The assessment and analysis of handedness: the Edinburgh inventory
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(71)90067-4
– volume: 95
  start-page: 232
  year: 2014
  ident: 10.1016/j.neuroimage.2017.08.025_bib18
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.034
– volume: 76
  start-page: 183
  year: 2013
  ident: 10.1016/j.neuroimage.2017.08.025_bib52
  article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.004
– volume: 66
  start-page: 154
  year: 2011
  ident: 10.1016/j.neuroimage.2017.08.025_bib5
  article-title: Diffusion imaging with prospective motion correction and reacquisition
  publication-title: Magn. Reson Med.
  doi: 10.1002/mrm.22837
– volume: 19
  start-page: 581
  year: 2016
  ident: 10.1016/j.neuroimage.2017.08.025_bib17
  article-title: Multivariate pattern classification of pediatric Tourette syndrome using functional connectivity MRI
  publication-title: Dev. Sci.
  doi: 10.1111/desc.12407
– year: 2016
  ident: 10.1016/j.neuroimage.2017.08.025_bib42
  article-title: Data quality influences observed links between functional connectivity and behavior
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhw253
– volume: 27
  start-page: 283
  year: 1989
  ident: 10.1016/j.neuroimage.2017.08.025_bib6
  article-title: Aimed movements to visual targets in hemiplegic and normal children: is the “good” hand of children with infantile hemiplegia also normal?
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(89)90019-5
– volume: 87
  start-page: 657
  year: 2015
  ident: 10.1016/j.neuroimage.2017.08.025_bib22
  article-title: Functional system and areal organization of a highly sampled individual human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.06.037
– volume: 3
  start-page: 61
  year: 1994
  ident: 10.1016/j.neuroimage.2017.08.025_bib8
  article-title: Correlates of success following treatment for adolescent substance abuse
  publication-title: Appl. Prev. Psychol.
  doi: 10.1016/S0962-1849(05)80139-8
– volume: 60
  start-page: 623
  year: 2012
  ident: 10.1016/j.neuroimage.2017.08.025_bib40
  article-title: Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.063
– volume: 41
  start-page: 1353
  year: 2015
  ident: 10.1016/j.neuroimage.2017.08.025_bib2
  article-title: Motion artifact reduction in pediatric diffusion tensor imaging using fast prospective correction
  publication-title: J. Magn. Reson Imaging
  doi: 10.1002/jmri.24678
– volume: 154
  start-page: 174
  year: 2017
  ident: 10.1016/j.neuroimage.2017.08.025_bib11
  article-title: Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.020
– volume: 20
  start-page: 2852
  year: 2010
  ident: 10.1016/j.neuroimage.2017.08.025_bib44
  article-title: Longitudinal analysis of neural network development in preterm infants
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq035
– volume: 96
  start-page: 22
  year: 2014
  ident: 10.1016/j.neuroimage.2017.08.025_bib28
  article-title: Reduction of motion-related artifacts in resting state fMRI using aCompCor
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.028
– volume: 84C
  start-page: 320
  year: 2013
  ident: 10.1016/j.neuroimage.2017.08.025_bib34
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI
  publication-title: Neuroimage
– volume: 146
  start-page: 918
  year: 2017
  ident: 10.1016/j.neuroimage.2017.08.025_bib16
  article-title: Individual-specific features of brain systems identified with resting state functional correlations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.08.032
– volume: 83
  start-page: 45
  year: 2013
  ident: 10.1016/j.neuroimage.2017.08.025_bib41
  article-title: Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.06.045
– volume: 154
  start-page: 150
  year: 2017
  ident: 10.1016/j.neuroimage.2017.08.025_bib31
  article-title: A simple but useful way to assess fMRI scan qualities
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.08.009
– volume: 329
  start-page: 1358
  year: 2010
  ident: 10.1016/j.neuroimage.2017.08.025_bib13
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
  doi: 10.1126/science.1194144
– volume: 95
  start-page: 791
  year: 2017
  ident: 10.1016/j.neuroimage.2017.08.025_bib54
  article-title: Precision functional mapping of individual human brains
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.07.011
– volume: 5
  start-page: 245
  year: 2014
  ident: 10.1016/j.neuroimage.2017.08.025_bib45
  article-title: Optimizing real time fMRI neurofeedback for therapeutic discovery and development
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2014.07.002
– volume: 63
  start-page: 91
  year: 2010
  ident: 10.1016/j.neuroimage.2017.08.025_bib51
  article-title: PROMO: real-time prospective motion correction in MRI using image-based tracking
  publication-title: Magn. Reson Med.
  doi: 10.1002/mrm.22176
– volume: 24
  start-page: 659
  year: 1994
  ident: 10.1016/j.neuroimage.2017.08.025_bib25
  article-title: Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders
  publication-title: J. Autism Dev. Disord.
  doi: 10.1007/BF02172145
– volume: 37
  start-page: 4405
  year: 2016
  ident: 10.1016/j.neuroimage.2017.08.025_bib46
  article-title: Assessing the performance of different DTI motion correction strategies in the presence of EPI distortion correction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23318
– volume: 6
  start-page: 80
  year: 2012
  ident: 10.1016/j.neuroimage.2017.08.025_bib14
  article-title: Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data
  publication-title: Front. Syst. Neurosci.
– volume: 112
  start-page: 267
  year: 2015
  ident: 10.1016/j.neuroimage.2017.08.025_bib37
  article-title: ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.02.064
– volume: 76
  start-page: 1420
  year: 2016
  ident: 10.1016/j.neuroimage.2017.08.025_bib15
  article-title: Prospective motion correction and selective reacquisition using volumetric navigators for vessel-encoded arterial spin labeling dynamic angiography
  publication-title: Magn. Reson Med.
  doi: 10.1002/mrm.26040
– volume: 7
  start-page: 55
  year: 2009
  ident: 10.1016/j.neuroimage.2017.08.025_bib27
  article-title: Neuroimaging informatics tools and resources clearinghouse (NITRC) resource announcement
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-008-9036-8
– volume: 95
  start-page: 287
  year: 2014
  ident: 10.1016/j.neuroimage.2017.08.025_bib30
  article-title: A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.012
– year: 2013
  ident: 10.1016/j.neuroimage.2017.08.025_bib19
  article-title: Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI
  publication-title: J. Appl. Math.
  doi: 10.1155/2013/935154
– volume: 105
  start-page: 536
  year: 2015
  ident: 10.1016/j.neuroimage.2017.08.025_bib35
  article-title: Recent progress and outstanding issues in motion correction in resting state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.044
– volume: 83
  start-page: 1335
  year: 2014
  ident: 10.1016/j.neuroimage.2017.08.025_bib12
  article-title: Unraveling the miswired connectome: a developmental perspective
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.08.050
– volume: 107
  start-page: 107
  year: 2015
  ident: 10.1016/j.neuroimage.2017.08.025_bib38
  article-title: Head motion during MRI acquisition reduces gray matter volume and thickness estimates
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.12.006
– volume: 127
  start-page: 11
  year: 2016
  ident: 10.1016/j.neuroimage.2017.08.025_bib48
  article-title: Prospective motion correction with volumetric navigators (vNavs) reduces the bias and variance in brain morphometry induced by subject motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.11.054
– volume: 6
  start-page: 62
  year: 2012
  ident: 10.1016/j.neuroimage.2017.08.025_bib1
  article-title: The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience
  publication-title: Front. Syst. Neurosci.
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2017.08.025_bib50
  article-title: The WU-Minn Human Connectome Project: An overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 112
  start-page: 278
  year: 2015
  ident: 10.1016/j.neuroimage.2017.08.025_bib36
  article-title: Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.02.063
– volume: 41
  start-page: 1578
  year: 2011
  ident: 10.1016/j.neuroimage.2017.08.025_bib21
  article-title: Prospective motion correction improves diagnostic utility of pediatric MRI scans
  publication-title: Pediatr. Radiol.
  doi: 10.1007/s00247-011-2205-1
– volume: 90
  start-page: 449
  year: 2014
  ident: 10.1016/j.neuroimage.2017.08.025_bib39
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.046
– volume: 53
  start-page: 139
  year: 2010
  ident: 10.1016/j.neuroimage.2017.08.025_bib9
  article-title: Prospective motion correction of high-resolution magnetic resonance imaging data in children
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.017
– volume: 35
  start-page: 1981
  year: 2014
  ident: 10.1016/j.neuroimage.2017.08.025_bib43
  article-title: Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22307
– volume: 72
  start-page: 665
  year: 2011
  ident: 10.1016/j.neuroimage.2017.08.025_bib33
  article-title: Functional network organization of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
– volume: 59
  start-page: 2142
  year: 2012
  ident: 10.1016/j.neuroimage.2017.08.025_bib32
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 88
  start-page: 79
  year: 2014
  ident: 10.1016/j.neuroimage.2017.08.025_bib53
  article-title: Spurious group differences due to head motion in a diffusion MRI study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.027
– volume: 110
  start-page: 16187
  year: 2013
  ident: 10.1016/j.neuroimage.2017.08.025_bib20
  article-title: Integrated strategy for improving functional connectivity mapping using multiecho fMRI
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1301725110
– year: 2016
  ident: 10.1016/j.neuroimage.2017.08.025_bib23
  article-title: On the stability of BOLD fMRI correlations
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhw265
– volume: 68
  start-page: 389
  year: 2012
  ident: 10.1016/j.neuroimage.2017.08.025_bib47
  article-title: Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI
  publication-title: Magn. Reson Med.
  doi: 10.1002/mrm.23228
SSID ssj0009148
Score 2.6178157
Snippet Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 80
SubjectTerms Accuracy
Adolescent
Adult
Alcoholism - diagnostic imaging
Attention Deficit Disorder with Hyperactivity - diagnostic imaging
Autism Spectrum Disorder - diagnostic imaging
Brain - diagnostic imaging
Child
Cost control
Functional magnetic resonance imaging
Functional MRI
Functional Neuroimaging - methods
Functional Neuroimaging - standards
Head motion distortion
Head Movements - physiology
Humans
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - standards
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - standards
MRI acquisition
MRI methods
Neural networks
NMR
Nuclear magnetic resonance
Quality
Real-time quality control
Resting state functional connectivity MRI
Scanners
Structural MRI
Structure-function relationships
Young Adult
SummonAdditionalLinks – databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fSxwxEA7Vgvgi1h_1Wlsi-BrcvWySC30oIooVTlAU7i0kmyy9onundz743zuzye6pLeWeNwO7s5PMl2Tm-wg5FFr03UBUzAuVsUJoxwZWOpbbMquUVrYMeN4xvJTnt8XFSIzSgdsslVW2a2KzUPtJiWfkR8h8VxSCa_5z-sBQNQpvV5OExgr5mAMSQekGNVIL0t28iK1wgrMBDEiVPLG-q-GLHN_DrMUCL9UQeaJg9r_T09_w830V5au0dLZJNhKepMcxAD6RD6HeImvDdGO-Ta6uAQkyVJCnUbCHWqQhQXJmGlsUqUOVCDq8_kXHzQlDoFg2SmO75TOM9_QRCV4DLSez-WyH3J6d3pycsySjwEohizmrhAu8ssGDO5yrAkCELCt1JiquMmm9dggDOPeSA9rxeaEsd7CTyCG54QaR75LVelKHPUIF91gUq0XJIfvJShdKaSuVcp5LleseUa33TJk4xlHq4s60xWR_zMLvBv1uUAWzL3ok7yynkWdjCRvd_iDT9pHCymcgGSxh-6OzTVgjYoglrffbeDBpzs_MIkJ75KB7DLMVr2BsHSZPOAZ2qAPATLJHPsfw6T63D0sp6tSDE98EVjcAmcDfPqnHvxtGcKE4hHr-5f-v9ZWs4zfETsp9sjp_fArfAFLN3fdm3rwAA_ggow
  priority: 102
  providerName: ProQuest
Title Real-time motion analytics during brain MRI improve data quality and reduce costs
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811917306729
https://dx.doi.org/10.1016/j.neuroimage.2017.08.025
https://www.ncbi.nlm.nih.gov/pubmed/28803940
https://www.proquest.com/docview/1965445393
https://www.proquest.com/docview/1928781526
https://pubmed.ncbi.nlm.nih.gov/PMC5731481
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISFe0PjuGJOReDVN6q9aPI1qUwe0GoVJfbPsxBFBkE5r98ALfzt3sZNR4KESL4mS-KTkcr77Obn7HSGvpJEjP5YVK6XOmJDGs7FTnuWuyCpttCsCfu-YzdX0UrxbyuUemXS1MJhWmXx_9Omtt05nhkmbw6u6Hn4CZADhBtcbCHtHWMQnhEZbf_3zNs3D5CKWw0nOcHTK5ok5Xi1nZP0dZi4meemWzBObZv87RP0NQf_MpPwtNJ0dkPsJU9KTeNsPyF5oHpK7s_TX_BH5uAA0yLCLPI1Ne6hDKhIkaKaxTJF67BRBZ4tzWrdfGQLF1FEaSy5_wPiSXiPJa6DFar1ZPyaXZ6efJ1OWWimwQiqxYZX0gVculKAO76sAMCHLCpPJiutMudJ4hAKcl4oD4ilzoR33oNYcAhwuEvkTst-smvCMUMlLTIw1suAQAVVlhNbGKa19yZXOzYDoTnu2SDzj2O7im-0Syr7aW71b1LvFTpgjOSB5L3kVuTZ2kDHdC7JdLSl4PwsBYQfZN73sls3tKH3U2YNN835tkZ9RCMkNH5CX_WWYsfgbxjVhdYNjYJU6BtykBuRpNJ_-cUfgTrFXPShxy7D6AcgGvn2lqb-0rOBSczD1_PC_Huo5uYdHsdjyiOxvrm_CC0BdG3_cTivY6qU-JndOJosPF7g_fz-dw_7t6fxi8Qv8nzGs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIcFeEL8pDDASPFrEsR3XQgghYGrZOolpk_pm4sQRRSMdaye0f4q_kbs4SRkg1Jc9xxcl5_Pd2b77PoDn2urUD3XFS20SrrT1fJhnnou8SCpjTV4EOu-Y7GejI_Vxqqcb8LPrhaGyys4nNo66nBd0Rv6SkO-U0tLKNyffObFG0e1qR6ERzWI3nP_ALdvi9fg9zu-LNN35cPhuxFtWAV7oTC15pX2QVR5KK5T3VcCImSSFTXQlTZLlpfUUFaUsM4nBvxTK5NJjYi3Q19N-SeJ7r8BVRVeMuH7M1KxAfoWKrXda8qEQtq0civVkDT7l7Bt6CSooMw1wKBF0_zsc_p3u_lm1-VsY3LkJN9r8lb2NBncLNkJ9G65N2hv6O_DpADNPToz1LBIEsZxgTwgMmsWWSOaJlYJNDsZs1pxoBEZlqiy2d57j-JKdEqBsYMV8sVzchaNLUfA92KzndXgATMuSinCtLiRG26yyyhibZ8b4UmZG2AGYTnuuaDHNiVrj2HXFa1_dSu-O9O6IdTPVAxC95EnE9VhDxnYT5Lq-VfS0DoPPGrKvetk2t4k5y5rS2509uNbHLNxqRQzgWf8YvQNd-eR1mJ_RGNwRDzFHywZwP5pP_7spum5pVYJKvGBY_QBCHr_4pJ59aRDItZFo6uLh_z_rKVwfHU723N54f_cRbNH_xC7Obdhcnp6Fx5jOLf2TZg0x-HzZi_YXjrVbig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJk28IH5TGGAkeLQWx3ZcC00I2KqV0WpUTNpbiGNHFG3pWDuh_Yv8VdzFTsoAob7sOb4oOZ_vzvbd9xHyUhmV2r6qmFM6YVIZy_pFZhkvyqTSRhelx_OO0TjbP5IfjtXxGvnZ9sJgWWXrExtH7WYlnpFvI_KdlEoYsV3FsojD3cGbs-8MGaTwprWl0ygizYLbaeDGYpPHgb_8Adu5-c5wF-b-VZoO9j6_32eRcYCVKpMLVinrRVV4Z7i0tvIQTZOkNImqhE6ywhmLEVMIlwlIDByXuhAWkm4OcQD3UgLee4NsaIj6sBHceLc3PpwsIYC5DI15SrA-5ybWFYVqswa9cnoKPgTLzXQDK4r03f8Oln8nw3_WdP4WJAe3ya2Y3dK3wRzvkDVf3yWbo3h_f498mkBeypDPngb6IFogKApCRdPQMEktclbQ0WRIp815h6dYxEpD8-cljHf0HOFmPS1n88X8Pjm6FhU_IOv1rPaPCFXCYYmuUaWAWJxVRmptikxr60SmuekR3WovLyPiORJvnORtadu3fKn3HPWeIydnqnqEd5JnAfVjBRnTTlDedrWCH84hNK0g-7qTjZlPyGhWlN5q7SGPHmieL9dLj7zoHoPvwAuhovazCxwD--U-ZHBZjzwM5tP9bgqOXRiZgBKvGFY3AHHJrz6pp18bfHKlBZg6f_z_z3pONmEB5x-H44Mn5Cb-Tmjx3CLri_ML_xRyvYV9FhcRJV-ue93-AkbqZmU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+motion+analytics+during+brain+MRI+improve+data+quality+and+reduce+costs&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Dosenbach%2C+Nico+U+F&rft.au=Koller%2C+Jonathan+M&rft.au=Earl%2C+Eric+A&rft.au=Miranda-Dominguez%2C+Oscar&rft.date=2017-11-01&rft.eissn=1095-9572&rft.volume=161&rft.spage=80&rft_id=info:doi/10.1016%2Fj.neuroimage.2017.08.025&rft_id=info%3Apmid%2F28803940&rft.externalDocID=28803940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon