Real-time motion analytics during brain MRI improve data quality and reduce costs
Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring c...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 161; pp. 80 - 93 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2017
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2017.08.025 |
Cover
Abstract | Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional ‘buffer data’, an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more.
[Display omitted] |
---|---|
AbstractList | Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional ‘buffer data’, an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more. Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional ‘buffer data’, an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use F ramewise I ntegrated R eal-time M RI M onitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more. Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional 'buffer data', an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more.Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional 'buffer data', an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more. Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional ‘buffer data’, an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more. [Display omitted] |
Author | Wesevich, Victoria Fair, Damien A. Van, Andrew N. Nigg, Joel T. Koller, Jonathan M. Nguyen, Annie L. Miranda-Dominguez, Oscar Snyder, Abraham Z. Dosenbach, Nico U.F. Earl, Eric A. Klein, Rachel L. Nagel, Bonnie J. Greene, Deanna J. |
AuthorAffiliation | a Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA d Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA c Program in Occupational Therapy, Washington University, St. Louis, MO, USA h Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA b Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA g Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA e Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA f Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA |
AuthorAffiliation_xml | – name: e Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA – name: a Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA – name: d Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA – name: c Program in Occupational Therapy, Washington University, St. Louis, MO, USA – name: f Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA – name: b Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA – name: g Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA – name: h Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA |
Author_xml | – sequence: 1 givenname: Nico U.F. surname: Dosenbach fullname: Dosenbach, Nico U.F. email: ndosenbach@wustl.edu organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA – sequence: 2 givenname: Jonathan M. surname: Koller fullname: Koller, Jonathan M. organization: Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA – sequence: 3 givenname: Eric A. surname: Earl fullname: Earl, Eric A. organization: Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA – sequence: 4 givenname: Oscar surname: Miranda-Dominguez fullname: Miranda-Dominguez, Oscar organization: Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA – sequence: 5 givenname: Rachel L. surname: Klein fullname: Klein, Rachel L. organization: Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA – sequence: 6 givenname: Andrew N. surname: Van fullname: Van, Andrew N. organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA – sequence: 7 givenname: Abraham Z. surname: Snyder fullname: Snyder, Abraham Z. organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA – sequence: 8 givenname: Bonnie J. surname: Nagel fullname: Nagel, Bonnie J. organization: Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA – sequence: 9 givenname: Joel T. surname: Nigg fullname: Nigg, Joel T. organization: Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA – sequence: 10 givenname: Annie L. surname: Nguyen fullname: Nguyen, Annie L. organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA – sequence: 11 givenname: Victoria surname: Wesevich fullname: Wesevich, Victoria organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA – sequence: 12 givenname: Deanna J. surname: Greene fullname: Greene, Deanna J. organization: Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA – sequence: 13 givenname: Damien A. surname: Fair fullname: Fair, Damien A. email: faird@ohsu.edu organization: Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28803940$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAUhSNURH_gFZAlNmwSruM4PxsEVNBWKkJUsLYc-2bwkNhT2xlp3h5HU6bQ1axsyZ8_3XvOeXZincUsIxQKCrR-ty4szt6ZSa6wKIE2BbQFlPxZdkah43nHm_JkuXOWt5R2p9l5CGsA6GjVvshOy7YF1lVwln2_Qznm0UxIJheNs0RaOe6iUYHo2Ru7Ir2XxpKvdzfETBvvtki0jJLcz3I0cZd4TTzqWSFRLsTwMns-yDHgq4fzIvv55fOPy-v89tvVzeXH21zxuor5wHtkg0SdRur7ATl0AKoDPrAGaqm7HtoSGNM1oyXXtGok6xnUFFhNm5Kyi-z93ruZ-wm1Qhu9HMXGp1T8TjhpxP8v1vwSK7cVvGEphUXw9kHg3f2MIYrJBIXjKC26OQjalW3TUl7WCX3zBF272aegFqrmVcVZxxL1-t-JDqP8TTsB7R5Q3oXgcTggFMRSrFiLx2LFUqyAVqRiH7c9fFUmyqWwtJsZjxF82gswdbI16EVQBq1CbTyqKLQzx0g-PJGo0Vij5Pgbd8cp_gDhsdvr |
CitedBy_id | crossref_primary_10_1111_jon_12955 crossref_primary_10_1016_j_dcn_2020_100803 crossref_primary_10_1016_j_neuroimage_2022_119367 crossref_primary_10_1016_j_dcn_2018_03_001 crossref_primary_10_1080_13682199_2023_2196494 crossref_primary_10_1016_j_neuroimage_2020_117227 crossref_primary_10_1016_j_neuroimage_2021_118439 crossref_primary_10_1162_nol_a_00113 crossref_primary_10_1016_j_neuropsychologia_2023_108567 crossref_primary_10_3389_fneur_2020_00381 crossref_primary_10_3390_adolescents1020007 crossref_primary_10_1016_j_dcn_2024_101503 crossref_primary_10_1523_JNEUROSCI_0511_22_2022 crossref_primary_10_3389_fninf_2022_843114 crossref_primary_10_1007_s42113_020_00079_7 crossref_primary_10_1016_j_cobeha_2021_03_017 crossref_primary_10_1016_j_biopsych_2022_04_008 crossref_primary_10_1002_da_23154 crossref_primary_10_1016_j_bbih_2023_100643 crossref_primary_10_1016_j_neuroimage_2019_116400 crossref_primary_10_1016_j_jaac_2023_09_547 crossref_primary_10_1177_1087054720911988 crossref_primary_10_1038_s41598_020_78885_z crossref_primary_10_1016_j_neuroimage_2021_118838 crossref_primary_10_3389_fnins_2019_00825 crossref_primary_10_1016_j_janxdis_2020_102224 crossref_primary_10_1097_JCP_0000000000001859 crossref_primary_10_1016_j_brainres_2024_148977 crossref_primary_10_1038_s41597_022_01226_4 crossref_primary_10_52294_001c_128149 crossref_primary_10_3389_fnhum_2023_1147352 crossref_primary_10_1016_j_dcn_2022_101116 crossref_primary_10_1016_j_dcn_2023_101217 crossref_primary_10_3174_ajnr_A7001 crossref_primary_10_1016_j_neuroimage_2021_118093 crossref_primary_10_1038_s41583_024_00882_2 crossref_primary_10_1038_s44220_023_00151_8 crossref_primary_10_1109_JBHI_2017_2771299 crossref_primary_10_1016_j_dcn_2018_07_003 crossref_primary_10_1016_j_dcn_2020_100902 crossref_primary_10_3389_fnins_2023_1100544 crossref_primary_10_1073_pnas_2023860118 crossref_primary_10_3389_fnimg_2022_1007668 crossref_primary_10_1177_11795727211010500 crossref_primary_10_1016_j_dcn_2020_100909 crossref_primary_10_1002_jnr_24831 crossref_primary_10_3390_diagnostics12051032 crossref_primary_10_1002_jnr_24946 crossref_primary_10_1002_mrm_28649 crossref_primary_10_1016_j_jaac_2020_11_021 crossref_primary_10_1093_texcom_tgac011 crossref_primary_10_1162_jocn_a_02113 crossref_primary_10_1016_j_dcn_2022_101087 crossref_primary_10_1016_j_neuroimage_2019_116091 crossref_primary_10_1002_hbm_25724 crossref_primary_10_1016_j_neurobiolaging_2024_11_010 crossref_primary_10_1186_s40708_021_00128_2 crossref_primary_10_1038_s41598_024_79827_9 crossref_primary_10_3389_fnhum_2024_1486770 crossref_primary_10_1016_j_biopsych_2020_01_012 crossref_primary_10_1016_j_neuroimage_2020_117280 crossref_primary_10_1162_jocn_a_01826 crossref_primary_10_1016_j_dcn_2020_100878 crossref_primary_10_1016_j_neuroimage_2022_119253 crossref_primary_10_1016_j_neuron_2020_05_007 crossref_primary_10_1016_j_neuroimage_2018_07_057 crossref_primary_10_1017_S0033291719004148 crossref_primary_10_1016_j_dcn_2022_101090 crossref_primary_10_1016_j_dcn_2024_101452 crossref_primary_10_7717_peerj_5176 crossref_primary_10_1016_j_neuroimage_2017_12_073 crossref_primary_10_1016_j_tins_2021_01_008 crossref_primary_10_1016_j_neuroimage_2020_116866 crossref_primary_10_3758_s13415_022_01017_9 crossref_primary_10_1016_j_nicl_2020_102242 crossref_primary_10_1016_j_nicl_2023_103395 crossref_primary_10_1016_j_bpsc_2019_11_007 crossref_primary_10_1016_j_neuroimage_2018_02_041 crossref_primary_10_1146_annurev_devpsych_121318_085124 crossref_primary_10_1002_hbm_25111 crossref_primary_10_1093_cercor_bhz157 crossref_primary_10_1007_s12021_022_09582_7 crossref_primary_10_1186_s12888_020_03030_z crossref_primary_10_3389_fnhum_2020_00226 crossref_primary_10_1016_j_isci_2023_107965 crossref_primary_10_1038_s41586_022_04492_9 crossref_primary_10_3389_fncir_2023_1120410 crossref_primary_10_1002_hbm_25590 crossref_primary_10_1038_s41467_018_02887_9 crossref_primary_10_12688_f1000research_29988_1 crossref_primary_10_1016_j_dcn_2018_12_002 crossref_primary_10_1177_13623613211065542 crossref_primary_10_1007_s10519_021_10092_6 crossref_primary_10_1093_cercor_bhad506 crossref_primary_10_1038_s44220_024_00281_7 crossref_primary_10_1016_j_bpsc_2022_12_006 crossref_primary_10_1016_j_ynirp_2022_100085 crossref_primary_10_1016_j_dcn_2023_101268 crossref_primary_10_1016_j_neuroimage_2019_01_016 crossref_primary_10_1016_j_neuroimage_2024_120827 crossref_primary_10_1016_j_dcn_2024_101423 crossref_primary_10_1016_j_dcn_2021_101009 crossref_primary_10_1038_s41386_024_01888_1 crossref_primary_10_1093_bioinformatics_btz967 crossref_primary_10_1093_cercor_bhae047 crossref_primary_10_1038_s41386_024_01941_z crossref_primary_10_1371_journal_pone_0265112 crossref_primary_10_1016_j_neuroimage_2018_01_023 crossref_primary_10_1016_j_neuroimage_2018_09_060 crossref_primary_10_1038_s41596_018_0065_y crossref_primary_10_1016_j_media_2019_06_016 crossref_primary_10_1038_s41398_022_02111_9 crossref_primary_10_1016_j_nicl_2023_103448 crossref_primary_10_1016_j_bpsc_2018_03_015 crossref_primary_10_1177_0956797620929299 crossref_primary_10_1016_j_dcn_2019_100667 crossref_primary_10_1016_j_neuroimage_2020_116688 crossref_primary_10_1016_j_neuroimage_2020_117537 crossref_primary_10_1089_neu_2023_0089 crossref_primary_10_1371_journal_pone_0207352 crossref_primary_10_20900_jpbs_20200012 crossref_primary_10_1002_aur_2603 crossref_primary_10_1002_hbm_25458 crossref_primary_10_1016_j_dcn_2019_100706 crossref_primary_10_1038_s41386_022_01286_5 crossref_primary_10_1097_PR9_0000000000000807 crossref_primary_10_1016_j_bpsgos_2021_05_007 crossref_primary_10_1097_j_pain_0000000000003562 crossref_primary_10_1016_j_dcn_2018_10_004 crossref_primary_10_1162_imag_a_00175 crossref_primary_10_1016_j_neuroimage_2023_120176 crossref_primary_10_1002_hbm_25010 crossref_primary_10_1002_hbm_24840 crossref_primary_10_1016_j_neuroimage_2018_03_049 crossref_primary_10_1038_s41467_024_52242_4 crossref_primary_10_1186_s12888_023_05094_z crossref_primary_10_1523_ENEURO_0384_19_2019 crossref_primary_10_1007_s00234_024_03282_6 crossref_primary_10_1038_s41562_021_01216_3 crossref_primary_10_1016_j_dcn_2023_101244 crossref_primary_10_1038_s44220_023_00032_0 crossref_primary_10_1093_cercor_bhaa139 crossref_primary_10_1016_j_biopsych_2020_03_022 crossref_primary_10_1111_apa_16247 crossref_primary_10_3389_fnimg_2022_981947 crossref_primary_10_1016_j_neuroimage_2022_119296 crossref_primary_10_1093_braincomms_fcae250 crossref_primary_10_1093_cercor_bhaa382 crossref_primary_10_1093_cercor_bhy117 crossref_primary_10_1162_imag_a_00437 crossref_primary_10_1523_JNEUROSCI_0735_23_2023 crossref_primary_10_1002_gps_5851 crossref_primary_10_1038_s41386_020_00789_3 crossref_primary_10_1016_j_biopsych_2019_10_026 crossref_primary_10_3390_neurolint13010009 crossref_primary_10_1162_netn_a_00054 crossref_primary_10_1016_j_semperi_2022_151593 crossref_primary_10_1152_jn_00308_2023 crossref_primary_10_1016_j_dcn_2023_101198 crossref_primary_10_1016_j_dcn_2023_101231 crossref_primary_10_1016_j_neuroimage_2021_118466 crossref_primary_10_1186_s13063_024_08629_1 crossref_primary_10_1016_j_neuroimage_2018_08_050 crossref_primary_10_1038_s41586_024_07624_5 crossref_primary_10_1016_j_bpsgos_2024_100446 crossref_primary_10_1038_s41593_024_01596_5 crossref_primary_10_1089_brain_2020_0758 crossref_primary_10_1371_journal_pone_0241974 crossref_primary_10_1016_j_biopsych_2020_07_016 crossref_primary_10_1093_cercor_bhac202 |
Cites_doi | 10.1089/brain.2016.0435 10.1016/j.neuroimage.2007.04.042 10.1016/j.neuroimage.2011.07.044 10.1097/00004583-200104000-00013 10.1016/j.neuroimage.2015.11.022 10.1023/A:1005592401947 10.1016/0028-3932(71)90067-4 10.1016/j.neuroimage.2014.03.034 10.1016/j.neuroimage.2013.03.004 10.1002/mrm.22837 10.1111/desc.12407 10.1093/cercor/bhw253 10.1016/0028-3932(89)90019-5 10.1016/j.neuron.2015.06.037 10.1016/S0962-1849(05)80139-8 10.1016/j.neuroimage.2011.12.063 10.1002/jmri.24678 10.1016/j.neuroimage.2017.03.020 10.1093/cercor/bhq035 10.1016/j.neuroimage.2014.03.028 10.1016/j.neuroimage.2016.08.032 10.1016/j.neuroimage.2013.06.045 10.1016/j.neuroimage.2016.08.009 10.1126/science.1194144 10.1016/j.neuron.2017.07.011 10.1016/j.nicl.2014.07.002 10.1002/mrm.22176 10.1007/BF02172145 10.1002/hbm.23318 10.1016/j.neuroimage.2015.02.064 10.1002/mrm.26040 10.1007/s12021-008-9036-8 10.1016/j.neuroimage.2014.03.012 10.1155/2013/935154 10.1016/j.neuroimage.2014.10.044 10.1016/j.neuron.2014.08.050 10.1016/j.neuroimage.2014.12.006 10.1016/j.neuroimage.2015.11.054 10.1016/j.neuroimage.2013.05.041 10.1016/j.neuroimage.2015.02.063 10.1007/s00247-011-2205-1 10.1016/j.neuroimage.2013.11.046 10.1016/j.neuroimage.2010.06.017 10.1002/hbm.22307 10.1016/j.neuron.2011.09.006 10.1016/j.neuroimage.2011.10.018 10.1016/j.neuroimage.2013.11.027 10.1073/pnas.1301725110 10.1093/cercor/bhw265 10.1002/mrm.23228 |
ContentType | Journal Article |
Copyright | 2017 The Authors Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. Copyright Elsevier Limited Nov 1, 2017 |
Copyright_xml | – notice: 2017 The Authors – notice: Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Nov 1, 2017 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1016/j.neuroimage.2017.08.025 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Collection (Proquest) Biological Science Database (Proquest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 93 |
ExternalDocumentID | PMC5731481 28803940 10_1016_j_neuroimage_2017_08_025 S1053811917306729 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R00 MH091238 – fundername: NIMH NIH HHS grantid: R01 MH115357 – fundername: NIDA NIH HHS grantid: U01 DA041148 – fundername: NICHD NIH HHS grantid: U54 HD087011 – fundername: NIMH NIH HHS grantid: R01 MH096773 – fundername: NINDS NIH HHS grantid: K23 NS088590 – fundername: NIAAA NIH HHS grantid: R01 AA017664 – fundername: NIDA NIH HHS grantid: U24 DA041123 – fundername: NCATS NIH HHS grantid: UL1 TR002345 – fundername: NCATS NIH HHS grantid: UL1 TR000448 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 ACLOT ~HD 5PM |
ID | FETCH-LOGICAL-c564t-f5be3faed914bbfe50900c905f3706ad9b082033d63125d147a3b306103617213 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 18:08:44 EDT 2025 Sat Sep 27 20:37:49 EDT 2025 Wed Aug 13 06:50:53 EDT 2025 Thu Apr 03 07:07:47 EDT 2025 Tue Jul 01 03:01:53 EDT 2025 Thu Apr 24 22:52:18 EDT 2025 Fri Feb 23 02:25:06 EST 2024 Tue Aug 26 20:08:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MRI acquisition Head motion distortion Real-time quality control Resting state functional connectivity MRI Structural MRI Functional MRI MRI methods |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-f5be3faed914bbfe50900c905f3706ad9b082033d63125d147a3b306103617213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811917306729 |
PMID | 28803940 |
PQID | 1965445393 |
PQPubID | 2031077 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5731481 proquest_miscellaneous_1928781526 proquest_journals_1965445393 pubmed_primary_28803940 crossref_primary_10_1016_j_neuroimage_2017_08_025 crossref_citationtrail_10_1016_j_neuroimage_2017_08_025 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2017_08_025 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2017_08_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Power, Mitra, Laumann, Snyder, Schlaggar, Petersen (bib34) 2013; 84C Pruim, Mennes, van Rooij, Llera, Buitelaar, Beckmann (bib37) 2015; 112 Satterthwaite, Wolf, Ruparel, Erus, Elliott, Eickhoff, Gennatas, Jackson, Prabhakaran, Smith, Hakonarson, Verma, Davatzikos, Gur, Gur (bib41) 2013; 83 Lucas, Zhang, Fisher, Shaffer, Regier, Narrow, Bourdon, Dulcan, Canino, Rubio-Stipec, Lahey, Friman (bib26) 2001; 40 Kundu, Brenowitz, Voon, Worbe, Vertes, Inati, Saad, Bandettini, Bullmore (bib20) 2013; 110 Di Martino, Fair, Kelly, Satterthwaite, Castellanos, Thomason, Craddock, Luna, Leventhal, Zuo, Milham (bib12) 2014; 83 Kuperman, Brown, Ahmadi, Erhart, White, Roddey, Shankaranarayanan, Han, Rettmann, Dale (bib21) 2011; 41 Power (bib31) 2017; 154 Benner, van der Kouwe, Sorensen (bib5) 2011; 66 Patel, Kundu, Rubinov, Jones, Vertes, Ersche, Suckling, Bullmore (bib30) 2014; 95 Burgess, Kandala, Nolan, Laumann, Power, Adeyemo, Harms, Petersen, Barch (bib10) 2016; 6 Siegel, Power, Dubis, Vogel, Church, Schlaggar, Petersen (bib43) 2014; 35 Stoeckel, Garrison, Ghosh, Wighton, Hanlon, Gilman, Greer, Turk-Browne, deBettencourt, Scheinost, Craddock, Thompson, Calderon, Bauer, George, Breiter, Whitfield-Gabrieli, Gabrieli, LaConte, Hirshberg, Brewer, Hampson, Van Der Kouwe, Mackey, Evins (bib45) 2014; 5 Laumann, Snyder, Mitra, Gordon, Gratton, Adeyemo, Gilmore, Nelson, Berg, Greene, McCarthy, Tagliazucchi, Laufs, Schlaggar, Dosenbach, Petersen (bib23) 2016 Brown, Schumacher, Rohlmann, Ettlinger, Schmidt, Skreczek (bib6) 1989; 27 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib50) 2013; 80 Lord, Risi, Lambrecht, Cook, Leventhal, DiLavore, Pickles, Rutter (bib24) 2000; 30 Yan, Cheung, Kelly, Colcombe, Craddock, Di Martino, Li, Zuo, Castellanos, Milham (bib52) 2013; 76 Tisdall, Hess, Reuter, Meintjes, Fischl, van der Kouwe (bib47) 2012; 68 Oldfield (bib29) 1971; 9 Satterthwaite, Wolf, Loughead, Ruparel, Elliott, Hakonarson, Gur, Gur (bib40) 2012; 60 Fair, Nigg, Iyer, Bathula, Mills, Dosenbach, Schlaggar, Mennes, Gutman, Bangaru, Buitelaar, Dickstein, Di Martino, Kennedy, Kelly, Luna, Schweitzer, Velanova, Wang, Mostofsky, Castellanos, Milham (bib14) 2012; 6 Pruim, Mennes, Buitelaar, Beckmann (bib36) 2015; 112 Yendiki, Koldewyn, Kakunoori, Kanwisher, Fischl (bib53) 2014; 88 Alhamud, Taylor, Laughton, van der Kouwe, Meintjes (bib2) 2015; 41 Smyser, Inder, Shimony, Hill, Degnan, Snyder, Neil (bib44) 2010; 20 Gordon, Laumann, Adeyemo, Gilmore, Nelson, Dosenbach, Petersen (bib16) 2017; 146 Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay, Moeller, Xu, Yacoub, Baselli, Ugurbil, Miller, Smith (bib18) 2014; 95 Siegel, Mitra, Laumann, Seitzman, Raichle, Corbetta, Snyder (bib42) 2016 Muschelli, Nebel, Caffo, Barber, Pekar, Mostofsky (bib28) 2014; 96 Gordon, Laumann, Gilmore, Newbold, Greene, Berg, Ortega, Hoyt Drazen, Gratton, Sun, Hampton, Coalson, Nguyen, McDermott, Shimony, Snyder, Schlaggar, Petersen, Nelson, Dosenbach (bib54) 2017; 95 Power, Cohen, Nelson, Wig, Barnes, Church, Vogel, Laumann, Miezin, Schlaggar, Petersen (bib33) 2011; 72 Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib39) 2014; 90 Frost, Hess, Okell, Chappell, Tisdall, van der Kouwe, Jezzard (bib15) 2016; 76 Power, Schlaggar, Petersen (bib35) 2015; 105 Greene, Church, Dosenbach, Nielsen, Adeyemo, Nardos, Petersen, Black, Schlaggar (bib17) 2016; 19 Jo, Gotts, Reynolds, Bandettini, Martin, Cox, Saad (bib19) 2013 Brown, Myers, Lippke, Tapert, Stewart, Vik (bib7) 1998; 59 (bib1) 2012; 6 Luo, Kennedy, Cohen (bib27) 2009; 7 Alhamud, Taylor, van der Kouwe, Meintjes (bib3) 2016; 126 Brown, Kuperman, Erhart, White, Roddey, Shankaranarayanan, Han, Rettmann, Dale (bib9) 2010; 53 Reuter, Tisdall, Qureshi, Buckner, van der Kouwe, Fischl (bib38) 2015; 107 Laumann, Gordon, Adeyemo, Snyder, Joo, Chen, Gilmore, McDermott, Nelson, Dosenbach, Schlaggar, Mumford, Poldrack, Petersen (bib22) 2015; 87 Taylor, Alhamud, van der Kouwe, Saleh, Laughton, Meintjes (bib46) 2016; 37 Van Dijk, Sabuncu, Buckner (bib49) 2012; 59 Power, Barnes, Snyder, Schlaggar, Petersen (bib32) 2012; 59 Tisdall, Reuter, Qureshi, Buckner, Fischl, van der Kouwe (bib48) 2016; 127 Lord, Rutter, Le Couteur (bib25) 1994; 24 Ciric, Wolf, Power, Roalf, Baum, Ruparel, Shinohara, Elliott, Eickhoff, Davatzikos, Gur, Gur, Bassett, Satterthwaite (bib11) 2017; 154 Brown, Myers, Mott, Vik (bib8) 1994; 3 Dosenbach, Nardos, Cohen, Fair, Power, Church, Nelson, Wig, Vogel, Lessov-Schlaggar, Barnes, Dubis, Feczko, Coalson, Pruett, Barch, Petersen, Schlaggar (bib13) 2010; 329 Behzadi, Restom, Liau, Liu (bib4) 2007; 37 White, Roddey, Shankaranarayanan, Han, Rettmann, Santos, Kuperman, Dale (bib51) 2010; 63 Tisdall (10.1016/j.neuroimage.2017.08.025_bib48) 2016; 127 Satterthwaite (10.1016/j.neuroimage.2017.08.025_bib41) 2013; 83 Salimi-Khorshidi (10.1016/j.neuroimage.2017.08.025_bib39) 2014; 90 Power (10.1016/j.neuroimage.2017.08.025_bib32) 2012; 59 Yan (10.1016/j.neuroimage.2017.08.025_bib52) 2013; 76 White (10.1016/j.neuroimage.2017.08.025_bib51) 2010; 63 Yendiki (10.1016/j.neuroimage.2017.08.025_bib53) 2014; 88 Jo (10.1016/j.neuroimage.2017.08.025_bib19) 2013 Van Essen (10.1016/j.neuroimage.2017.08.025_bib50) 2013; 80 Laumann (10.1016/j.neuroimage.2017.08.025_bib23) 2016 Van Dijk (10.1016/j.neuroimage.2017.08.025_bib49) 2012; 59 Power (10.1016/j.neuroimage.2017.08.025_bib31) 2017; 154 Power (10.1016/j.neuroimage.2017.08.025_bib35) 2015; 105 Dosenbach (10.1016/j.neuroimage.2017.08.025_bib13) 2010; 329 Brown (10.1016/j.neuroimage.2017.08.025_bib6) 1989; 27 Kuperman (10.1016/j.neuroimage.2017.08.025_bib21) 2011; 41 Patel (10.1016/j.neuroimage.2017.08.025_bib30) 2014; 95 Brown (10.1016/j.neuroimage.2017.08.025_bib8) 1994; 3 Greene (10.1016/j.neuroimage.2017.08.025_bib17) 2016; 19 Alhamud (10.1016/j.neuroimage.2017.08.025_bib3) 2016; 126 (10.1016/j.neuroimage.2017.08.025_bib1) 2012; 6 Luo (10.1016/j.neuroimage.2017.08.025_bib27) 2009; 7 Power (10.1016/j.neuroimage.2017.08.025_bib34) 2013; 84C Lord (10.1016/j.neuroimage.2017.08.025_bib24) 2000; 30 Siegel (10.1016/j.neuroimage.2017.08.025_bib43) 2014; 35 Kundu (10.1016/j.neuroimage.2017.08.025_bib20) 2013; 110 Alhamud (10.1016/j.neuroimage.2017.08.025_bib2) 2015; 41 Lord (10.1016/j.neuroimage.2017.08.025_bib25) 1994; 24 Smyser (10.1016/j.neuroimage.2017.08.025_bib44) 2010; 20 Reuter (10.1016/j.neuroimage.2017.08.025_bib38) 2015; 107 Tisdall (10.1016/j.neuroimage.2017.08.025_bib47) 2012; 68 Behzadi (10.1016/j.neuroimage.2017.08.025_bib4) 2007; 37 Brown (10.1016/j.neuroimage.2017.08.025_bib9) 2010; 53 Gordon (10.1016/j.neuroimage.2017.08.025_bib16) 2017; 146 Lucas (10.1016/j.neuroimage.2017.08.025_bib26) 2001; 40 Laumann (10.1016/j.neuroimage.2017.08.025_bib22) 2015; 87 Power (10.1016/j.neuroimage.2017.08.025_bib33) 2011; 72 Benner (10.1016/j.neuroimage.2017.08.025_bib5) 2011; 66 Pruim (10.1016/j.neuroimage.2017.08.025_bib36) 2015; 112 Taylor (10.1016/j.neuroimage.2017.08.025_bib46) 2016; 37 Brown (10.1016/j.neuroimage.2017.08.025_bib7) 1998; 59 Oldfield (10.1016/j.neuroimage.2017.08.025_bib29) 1971; 9 Burgess (10.1016/j.neuroimage.2017.08.025_bib10) 2016; 6 Satterthwaite (10.1016/j.neuroimage.2017.08.025_bib40) 2012; 60 Ciric (10.1016/j.neuroimage.2017.08.025_bib11) 2017; 154 Stoeckel (10.1016/j.neuroimage.2017.08.025_bib45) 2014; 5 Di Martino (10.1016/j.neuroimage.2017.08.025_bib12) 2014; 83 Muschelli (10.1016/j.neuroimage.2017.08.025_bib28) 2014; 96 Siegel (10.1016/j.neuroimage.2017.08.025_bib42) 2016 Fair (10.1016/j.neuroimage.2017.08.025_bib14) 2012; 6 Frost (10.1016/j.neuroimage.2017.08.025_bib15) 2016; 76 Pruim (10.1016/j.neuroimage.2017.08.025_bib37) 2015; 112 Griffanti (10.1016/j.neuroimage.2017.08.025_bib18) 2014; 95 Gordon (10.1016/j.neuroimage.2017.08.025_bib54) 2017; 95 |
References_xml | – volume: 20 start-page: 2852 year: 2010 end-page: 2862 ident: bib44 article-title: Longitudinal analysis of neural network development in preterm infants publication-title: Cereb. Cortex – volume: 6 start-page: 62 year: 2012 ident: bib1 article-title: The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience publication-title: Front. Syst. Neurosci. – volume: 110 start-page: 16187 year: 2013 end-page: 16192 ident: bib20 article-title: Integrated strategy for improving functional connectivity mapping using multiecho fMRI publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 126 start-page: 60 year: 2016 end-page: 71 ident: bib3 article-title: Real-time measurement and correction of both B0 changes and subject motion in diffusion tensor imaging using a double volumetric navigated (DvNav) sequence publication-title: Neuroimage – volume: 68 start-page: 389 year: 2012 end-page: 399 ident: bib47 article-title: Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI publication-title: Magn. Reson Med. – volume: 59 start-page: 427 year: 1998 end-page: 438 ident: bib7 article-title: Psychometric evaluation of the Customary Drinking and Drug Use Record (CDDR): a measure of adolescent alcohol and drug involvement publication-title: J. Stud. Alcohol Drugs – year: 2016 ident: bib23 article-title: On the stability of BOLD fMRI correlations publication-title: Cereb. Cortex – volume: 84C start-page: 320 year: 2013 end-page: 341 ident: bib34 article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI publication-title: Neuroimage – volume: 24 start-page: 659 year: 1994 end-page: 685 ident: bib25 article-title: Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders publication-title: J. Autism Dev. Disord. – volume: 59 start-page: 431 year: 2012 end-page: 438 ident: bib49 article-title: The influence of head motion on intrinsic functional connectivity MRI publication-title: Neuroimage – volume: 107 start-page: 107 year: 2015 end-page: 115 ident: bib38 article-title: Head motion during MRI acquisition reduces gray matter volume and thickness estimates publication-title: Neuroimage – volume: 127 start-page: 11 year: 2016 end-page: 22 ident: bib48 article-title: Prospective motion correction with volumetric navigators (vNavs) reduces the bias and variance in brain morphometry induced by subject motion publication-title: Neuroimage – volume: 59 start-page: 2142 year: 2012 end-page: 2154 ident: bib32 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage – volume: 6 start-page: 80 year: 2012 ident: bib14 article-title: Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data publication-title: Front. Syst. Neurosci. – year: 2013 ident: bib19 article-title: Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI publication-title: J. Appl. Math. – volume: 41 start-page: 1578 year: 2011 end-page: 1582 ident: bib21 article-title: Prospective motion correction improves diagnostic utility of pediatric MRI scans publication-title: Pediatr. Radiol. – volume: 76 start-page: 1420 year: 2016 end-page: 1430 ident: bib15 article-title: Prospective motion correction and selective reacquisition using volumetric navigators for vessel-encoded arterial spin labeling dynamic angiography publication-title: Magn. Reson Med. – volume: 88 start-page: 79 year: 2014 end-page: 90 ident: bib53 article-title: Spurious group differences due to head motion in a diffusion MRI study publication-title: Neuroimage – volume: 95 start-page: 287 year: 2014 end-page: 304 ident: bib30 article-title: A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series publication-title: Neuroimage – volume: 60 start-page: 623 year: 2012 end-page: 632 ident: bib40 article-title: Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth publication-title: Neuroimage – volume: 154 start-page: 174 year: 2017 end-page: 187 ident: bib11 article-title: Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity publication-title: Neuroimage – volume: 66 start-page: 154 year: 2011 end-page: 167 ident: bib5 article-title: Diffusion imaging with prospective motion correction and reacquisition publication-title: Magn. Reson Med. – volume: 27 start-page: 283 year: 1989 end-page: 302 ident: bib6 article-title: Aimed movements to visual targets in hemiplegic and normal children: is the “good” hand of children with infantile hemiplegia also normal? publication-title: Neuropsychologia – volume: 83 start-page: 1335 year: 2014 end-page: 1353 ident: bib12 article-title: Unraveling the miswired connectome: a developmental perspective publication-title: Neuron – volume: 90 start-page: 449 year: 2014 end-page: 468 ident: bib39 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage – volume: 95 start-page: 232 year: 2014 end-page: 247 ident: bib18 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: Neuroimage – volume: 83 start-page: 45 year: 2013 end-page: 57 ident: bib41 article-title: Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth publication-title: Neuroimage – volume: 112 start-page: 278 year: 2015 end-page: 287 ident: bib36 article-title: Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI publication-title: Neuroimage – volume: 5 start-page: 245 year: 2014 end-page: 255 ident: bib45 article-title: Optimizing real time fMRI neurofeedback for therapeutic discovery and development publication-title: Neuroimage Clin. – volume: 53 start-page: 139 year: 2010 end-page: 145 ident: bib9 article-title: Prospective motion correction of high-resolution magnetic resonance imaging data in children publication-title: Neuroimage – volume: 6 start-page: 669 year: 2016 end-page: 680 ident: bib10 article-title: Evaluation of denoising strategies to address motion-correlated artifacts in resting-state functional magnetic resonance imaging data from the human connectome project publication-title: Brain Connect. – volume: 105 start-page: 536 year: 2015 end-page: 551 ident: bib35 article-title: Recent progress and outstanding issues in motion correction in resting state fMRI publication-title: Neuroimage – volume: 37 start-page: 4405 year: 2016 end-page: 4424 ident: bib46 article-title: Assessing the performance of different DTI motion correction strategies in the presence of EPI distortion correction publication-title: Hum. Brain Mapp. – volume: 146 start-page: 918 year: 2017 end-page: 939 ident: bib16 article-title: Individual-specific features of brain systems identified with resting state functional correlations publication-title: Neuroimage – volume: 87 start-page: 657 year: 2015 end-page: 670 ident: bib22 article-title: Functional system and areal organization of a highly sampled individual human brain publication-title: Neuron – year: 2016 ident: bib42 article-title: Data quality influences observed links between functional connectivity and behavior publication-title: Cereb. Cortex – volume: 7 start-page: 55 year: 2009 end-page: 56 ident: bib27 article-title: Neuroimaging informatics tools and resources clearinghouse (NITRC) resource announcement publication-title: Neuroinformatics – volume: 35 start-page: 1981 year: 2014 end-page: 1996 ident: bib43 article-title: Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points publication-title: Hum. Brain Mapp. – volume: 72 start-page: 665 year: 2011 end-page: 678 ident: bib33 article-title: Functional network organization of the human brain publication-title: Neuron – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib50 article-title: The WU-Minn Human Connectome Project: An overview publication-title: Neuroimage – volume: 112 start-page: 267 year: 2015 end-page: 277 ident: bib37 article-title: ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data publication-title: Neuroimage – volume: 76 start-page: 183 year: 2013 end-page: 201 ident: bib52 article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics publication-title: Neuroimage – volume: 329 start-page: 1358 year: 2010 end-page: 1361 ident: bib13 article-title: Prediction of individual brain maturity using fMRI publication-title: Science – volume: 96 start-page: 22 year: 2014 end-page: 35 ident: bib28 article-title: Reduction of motion-related artifacts in resting state fMRI using aCompCor publication-title: Neuroimage – volume: 40 start-page: 443 year: 2001 end-page: 449 ident: bib26 article-title: The DISC predictive Scales (DPS): efficiently screening for diagnoses publication-title: J. Am. Acad. Child. Adolesc. Psychiatry – volume: 154 start-page: 150 year: 2017 end-page: 158 ident: bib31 article-title: A simple but useful way to assess fMRI scan qualities publication-title: Neuroimage – volume: 63 start-page: 91 year: 2010 end-page: 105 ident: bib51 article-title: PROMO: real-time prospective motion correction in MRI using image-based tracking publication-title: Magn. Reson Med. – volume: 41 start-page: 1353 year: 2015 end-page: 1364 ident: bib2 article-title: Motion artifact reduction in pediatric diffusion tensor imaging using fast prospective correction publication-title: J. Magn. Reson Imaging – volume: 3 start-page: 61 year: 1994 end-page: 73 ident: bib8 article-title: Correlates of success following treatment for adolescent substance abuse publication-title: Appl. Prev. Psychol. – volume: 30 start-page: 205 year: 2000 end-page: 223 ident: bib24 article-title: The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism publication-title: J. Autism Dev. Disord. – volume: 37 start-page: 90 year: 2007 end-page: 101 ident: bib4 article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI publication-title: Neuroimage – volume: 19 start-page: 581 year: 2016 end-page: 598 ident: bib17 article-title: Multivariate pattern classification of pediatric Tourette syndrome using functional connectivity MRI publication-title: Dev. Sci. – volume: 95 start-page: 791 year: 2017 end-page: 807 ident: bib54 article-title: Precision functional mapping of individual human brains publication-title: Neuron – volume: 9 start-page: 97 year: 1971 end-page: 113 ident: bib29 article-title: The assessment and analysis of handedness: the Edinburgh inventory publication-title: Neuropsychologia – volume: 6 start-page: 669 year: 2016 ident: 10.1016/j.neuroimage.2017.08.025_bib10 article-title: Evaluation of denoising strategies to address motion-correlated artifacts in resting-state functional magnetic resonance imaging data from the human connectome project publication-title: Brain Connect. doi: 10.1089/brain.2016.0435 – volume: 37 start-page: 90 year: 2007 ident: 10.1016/j.neuroimage.2017.08.025_bib4 article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.04.042 – volume: 59 start-page: 431 year: 2012 ident: 10.1016/j.neuroimage.2017.08.025_bib49 article-title: The influence of head motion on intrinsic functional connectivity MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.07.044 – volume: 59 start-page: 427 year: 1998 ident: 10.1016/j.neuroimage.2017.08.025_bib7 article-title: Psychometric evaluation of the Customary Drinking and Drug Use Record (CDDR): a measure of adolescent alcohol and drug involvement publication-title: J. Stud. Alcohol Drugs – volume: 40 start-page: 443 year: 2001 ident: 10.1016/j.neuroimage.2017.08.025_bib26 article-title: The DISC predictive Scales (DPS): efficiently screening for diagnoses publication-title: J. Am. Acad. Child. Adolesc. Psychiatry doi: 10.1097/00004583-200104000-00013 – volume: 126 start-page: 60 year: 2016 ident: 10.1016/j.neuroimage.2017.08.025_bib3 article-title: Real-time measurement and correction of both B0 changes and subject motion in diffusion tensor imaging using a double volumetric navigated (DvNav) sequence publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.11.022 – volume: 30 start-page: 205 year: 2000 ident: 10.1016/j.neuroimage.2017.08.025_bib24 article-title: The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism publication-title: J. Autism Dev. Disord. doi: 10.1023/A:1005592401947 – volume: 9 start-page: 97 year: 1971 ident: 10.1016/j.neuroimage.2017.08.025_bib29 article-title: The assessment and analysis of handedness: the Edinburgh inventory publication-title: Neuropsychologia doi: 10.1016/0028-3932(71)90067-4 – volume: 95 start-page: 232 year: 2014 ident: 10.1016/j.neuroimage.2017.08.025_bib18 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.034 – volume: 76 start-page: 183 year: 2013 ident: 10.1016/j.neuroimage.2017.08.025_bib52 article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.004 – volume: 66 start-page: 154 year: 2011 ident: 10.1016/j.neuroimage.2017.08.025_bib5 article-title: Diffusion imaging with prospective motion correction and reacquisition publication-title: Magn. Reson Med. doi: 10.1002/mrm.22837 – volume: 19 start-page: 581 year: 2016 ident: 10.1016/j.neuroimage.2017.08.025_bib17 article-title: Multivariate pattern classification of pediatric Tourette syndrome using functional connectivity MRI publication-title: Dev. Sci. doi: 10.1111/desc.12407 – year: 2016 ident: 10.1016/j.neuroimage.2017.08.025_bib42 article-title: Data quality influences observed links between functional connectivity and behavior publication-title: Cereb. Cortex doi: 10.1093/cercor/bhw253 – volume: 27 start-page: 283 year: 1989 ident: 10.1016/j.neuroimage.2017.08.025_bib6 article-title: Aimed movements to visual targets in hemiplegic and normal children: is the “good” hand of children with infantile hemiplegia also normal? publication-title: Neuropsychologia doi: 10.1016/0028-3932(89)90019-5 – volume: 87 start-page: 657 year: 2015 ident: 10.1016/j.neuroimage.2017.08.025_bib22 article-title: Functional system and areal organization of a highly sampled individual human brain publication-title: Neuron doi: 10.1016/j.neuron.2015.06.037 – volume: 3 start-page: 61 year: 1994 ident: 10.1016/j.neuroimage.2017.08.025_bib8 article-title: Correlates of success following treatment for adolescent substance abuse publication-title: Appl. Prev. Psychol. doi: 10.1016/S0962-1849(05)80139-8 – volume: 60 start-page: 623 year: 2012 ident: 10.1016/j.neuroimage.2017.08.025_bib40 article-title: Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.063 – volume: 41 start-page: 1353 year: 2015 ident: 10.1016/j.neuroimage.2017.08.025_bib2 article-title: Motion artifact reduction in pediatric diffusion tensor imaging using fast prospective correction publication-title: J. Magn. Reson Imaging doi: 10.1002/jmri.24678 – volume: 154 start-page: 174 year: 2017 ident: 10.1016/j.neuroimage.2017.08.025_bib11 article-title: Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.03.020 – volume: 20 start-page: 2852 year: 2010 ident: 10.1016/j.neuroimage.2017.08.025_bib44 article-title: Longitudinal analysis of neural network development in preterm infants publication-title: Cereb. Cortex doi: 10.1093/cercor/bhq035 – volume: 96 start-page: 22 year: 2014 ident: 10.1016/j.neuroimage.2017.08.025_bib28 article-title: Reduction of motion-related artifacts in resting state fMRI using aCompCor publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.028 – volume: 84C start-page: 320 year: 2013 ident: 10.1016/j.neuroimage.2017.08.025_bib34 article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI publication-title: Neuroimage – volume: 146 start-page: 918 year: 2017 ident: 10.1016/j.neuroimage.2017.08.025_bib16 article-title: Individual-specific features of brain systems identified with resting state functional correlations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.08.032 – volume: 83 start-page: 45 year: 2013 ident: 10.1016/j.neuroimage.2017.08.025_bib41 article-title: Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.06.045 – volume: 154 start-page: 150 year: 2017 ident: 10.1016/j.neuroimage.2017.08.025_bib31 article-title: A simple but useful way to assess fMRI scan qualities publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.08.009 – volume: 329 start-page: 1358 year: 2010 ident: 10.1016/j.neuroimage.2017.08.025_bib13 article-title: Prediction of individual brain maturity using fMRI publication-title: Science doi: 10.1126/science.1194144 – volume: 95 start-page: 791 year: 2017 ident: 10.1016/j.neuroimage.2017.08.025_bib54 article-title: Precision functional mapping of individual human brains publication-title: Neuron doi: 10.1016/j.neuron.2017.07.011 – volume: 5 start-page: 245 year: 2014 ident: 10.1016/j.neuroimage.2017.08.025_bib45 article-title: Optimizing real time fMRI neurofeedback for therapeutic discovery and development publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2014.07.002 – volume: 63 start-page: 91 year: 2010 ident: 10.1016/j.neuroimage.2017.08.025_bib51 article-title: PROMO: real-time prospective motion correction in MRI using image-based tracking publication-title: Magn. Reson Med. doi: 10.1002/mrm.22176 – volume: 24 start-page: 659 year: 1994 ident: 10.1016/j.neuroimage.2017.08.025_bib25 article-title: Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders publication-title: J. Autism Dev. Disord. doi: 10.1007/BF02172145 – volume: 37 start-page: 4405 year: 2016 ident: 10.1016/j.neuroimage.2017.08.025_bib46 article-title: Assessing the performance of different DTI motion correction strategies in the presence of EPI distortion correction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23318 – volume: 6 start-page: 80 year: 2012 ident: 10.1016/j.neuroimage.2017.08.025_bib14 article-title: Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data publication-title: Front. Syst. Neurosci. – volume: 112 start-page: 267 year: 2015 ident: 10.1016/j.neuroimage.2017.08.025_bib37 article-title: ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.02.064 – volume: 76 start-page: 1420 year: 2016 ident: 10.1016/j.neuroimage.2017.08.025_bib15 article-title: Prospective motion correction and selective reacquisition using volumetric navigators for vessel-encoded arterial spin labeling dynamic angiography publication-title: Magn. Reson Med. doi: 10.1002/mrm.26040 – volume: 7 start-page: 55 year: 2009 ident: 10.1016/j.neuroimage.2017.08.025_bib27 article-title: Neuroimaging informatics tools and resources clearinghouse (NITRC) resource announcement publication-title: Neuroinformatics doi: 10.1007/s12021-008-9036-8 – volume: 95 start-page: 287 year: 2014 ident: 10.1016/j.neuroimage.2017.08.025_bib30 article-title: A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.012 – year: 2013 ident: 10.1016/j.neuroimage.2017.08.025_bib19 article-title: Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI publication-title: J. Appl. Math. doi: 10.1155/2013/935154 – volume: 105 start-page: 536 year: 2015 ident: 10.1016/j.neuroimage.2017.08.025_bib35 article-title: Recent progress and outstanding issues in motion correction in resting state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.044 – volume: 83 start-page: 1335 year: 2014 ident: 10.1016/j.neuroimage.2017.08.025_bib12 article-title: Unraveling the miswired connectome: a developmental perspective publication-title: Neuron doi: 10.1016/j.neuron.2014.08.050 – volume: 107 start-page: 107 year: 2015 ident: 10.1016/j.neuroimage.2017.08.025_bib38 article-title: Head motion during MRI acquisition reduces gray matter volume and thickness estimates publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.12.006 – volume: 127 start-page: 11 year: 2016 ident: 10.1016/j.neuroimage.2017.08.025_bib48 article-title: Prospective motion correction with volumetric navigators (vNavs) reduces the bias and variance in brain morphometry induced by subject motion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.11.054 – volume: 6 start-page: 62 year: 2012 ident: 10.1016/j.neuroimage.2017.08.025_bib1 article-title: The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience publication-title: Front. Syst. Neurosci. – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2017.08.025_bib50 article-title: The WU-Minn Human Connectome Project: An overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 112 start-page: 278 year: 2015 ident: 10.1016/j.neuroimage.2017.08.025_bib36 article-title: Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.02.063 – volume: 41 start-page: 1578 year: 2011 ident: 10.1016/j.neuroimage.2017.08.025_bib21 article-title: Prospective motion correction improves diagnostic utility of pediatric MRI scans publication-title: Pediatr. Radiol. doi: 10.1007/s00247-011-2205-1 – volume: 90 start-page: 449 year: 2014 ident: 10.1016/j.neuroimage.2017.08.025_bib39 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.046 – volume: 53 start-page: 139 year: 2010 ident: 10.1016/j.neuroimage.2017.08.025_bib9 article-title: Prospective motion correction of high-resolution magnetic resonance imaging data in children publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.017 – volume: 35 start-page: 1981 year: 2014 ident: 10.1016/j.neuroimage.2017.08.025_bib43 article-title: Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22307 – volume: 72 start-page: 665 year: 2011 ident: 10.1016/j.neuroimage.2017.08.025_bib33 article-title: Functional network organization of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2011.09.006 – volume: 59 start-page: 2142 year: 2012 ident: 10.1016/j.neuroimage.2017.08.025_bib32 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.018 – volume: 88 start-page: 79 year: 2014 ident: 10.1016/j.neuroimage.2017.08.025_bib53 article-title: Spurious group differences due to head motion in a diffusion MRI study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.027 – volume: 110 start-page: 16187 year: 2013 ident: 10.1016/j.neuroimage.2017.08.025_bib20 article-title: Integrated strategy for improving functional connectivity mapping using multiecho fMRI publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1301725110 – year: 2016 ident: 10.1016/j.neuroimage.2017.08.025_bib23 article-title: On the stability of BOLD fMRI correlations publication-title: Cereb. Cortex doi: 10.1093/cercor/bhw265 – volume: 68 start-page: 389 year: 2012 ident: 10.1016/j.neuroimage.2017.08.025_bib47 article-title: Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI publication-title: Magn. Reson Med. doi: 10.1002/mrm.23228 |
SSID | ssj0009148 |
Score | 2.6178157 |
Snippet | Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 80 |
SubjectTerms | Accuracy Adolescent Adult Alcoholism - diagnostic imaging Attention Deficit Disorder with Hyperactivity - diagnostic imaging Autism Spectrum Disorder - diagnostic imaging Brain - diagnostic imaging Child Cost control Functional magnetic resonance imaging Functional MRI Functional Neuroimaging - methods Functional Neuroimaging - standards Head motion distortion Head Movements - physiology Humans Image Processing, Computer-Assisted - methods Image Processing, Computer-Assisted - standards Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - standards MRI acquisition MRI methods Neural networks NMR Nuclear magnetic resonance Quality Real-time quality control Resting state functional connectivity MRI Scanners Structural MRI Structure-function relationships Young Adult |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fSxwxEA7Vgvgi1h_1Wlsi-BrcvWySC30oIooVTlAU7i0kmyy9onundz743zuzye6pLeWeNwO7s5PMl2Tm-wg5FFr03UBUzAuVsUJoxwZWOpbbMquUVrYMeN4xvJTnt8XFSIzSgdsslVW2a2KzUPtJiWfkR8h8VxSCa_5z-sBQNQpvV5OExgr5mAMSQekGNVIL0t28iK1wgrMBDEiVPLG-q-GLHN_DrMUCL9UQeaJg9r_T09_w830V5au0dLZJNhKepMcxAD6RD6HeImvDdGO-Ta6uAQkyVJCnUbCHWqQhQXJmGlsUqUOVCDq8_kXHzQlDoFg2SmO75TOM9_QRCV4DLSez-WyH3J6d3pycsySjwEohizmrhAu8ssGDO5yrAkCELCt1JiquMmm9dggDOPeSA9rxeaEsd7CTyCG54QaR75LVelKHPUIF91gUq0XJIfvJShdKaSuVcp5LleseUa33TJk4xlHq4s60xWR_zMLvBv1uUAWzL3ok7yynkWdjCRvd_iDT9pHCymcgGSxh-6OzTVgjYoglrffbeDBpzs_MIkJ75KB7DLMVr2BsHSZPOAZ2qAPATLJHPsfw6T63D0sp6tSDE98EVjcAmcDfPqnHvxtGcKE4hHr-5f-v9ZWs4zfETsp9sjp_fArfAFLN3fdm3rwAA_ggow priority: 102 providerName: ProQuest |
Title | Real-time motion analytics during brain MRI improve data quality and reduce costs |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811917306729 https://dx.doi.org/10.1016/j.neuroimage.2017.08.025 https://www.ncbi.nlm.nih.gov/pubmed/28803940 https://www.proquest.com/docview/1965445393 https://www.proquest.com/docview/1928781526 https://pubmed.ncbi.nlm.nih.gov/PMC5731481 |
Volume | 161 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISFe0PjuGJOReDVN6q9aPI1qUwe0GoVJfbPsxBFBkE5r98ALfzt3sZNR4KESL4mS-KTkcr77Obn7HSGvpJEjP5YVK6XOmJDGs7FTnuWuyCpttCsCfu-YzdX0UrxbyuUemXS1MJhWmXx_9Omtt05nhkmbw6u6Hn4CZADhBtcbCHtHWMQnhEZbf_3zNs3D5CKWw0nOcHTK5ok5Xi1nZP0dZi4meemWzBObZv87RP0NQf_MpPwtNJ0dkPsJU9KTeNsPyF5oHpK7s_TX_BH5uAA0yLCLPI1Ne6hDKhIkaKaxTJF67BRBZ4tzWrdfGQLF1FEaSy5_wPiSXiPJa6DFar1ZPyaXZ6efJ1OWWimwQiqxYZX0gVculKAO76sAMCHLCpPJiutMudJ4hAKcl4oD4ilzoR33oNYcAhwuEvkTst-smvCMUMlLTIw1suAQAVVlhNbGKa19yZXOzYDoTnu2SDzj2O7im-0Syr7aW71b1LvFTpgjOSB5L3kVuTZ2kDHdC7JdLSl4PwsBYQfZN73sls3tKH3U2YNN835tkZ9RCMkNH5CX_WWYsfgbxjVhdYNjYJU6BtykBuRpNJ_-cUfgTrFXPShxy7D6AcgGvn2lqb-0rOBSczD1_PC_Huo5uYdHsdjyiOxvrm_CC0BdG3_cTivY6qU-JndOJosPF7g_fz-dw_7t6fxi8Qv8nzGs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIcFeEL8pDDASPFrEsR3XQgghYGrZOolpk_pm4sQRRSMdaye0f4q_kbs4SRkg1Jc9xxcl5_Pd2b77PoDn2urUD3XFS20SrrT1fJhnnou8SCpjTV4EOu-Y7GejI_Vxqqcb8LPrhaGyys4nNo66nBd0Rv6SkO-U0tLKNyffObFG0e1qR6ERzWI3nP_ALdvi9fg9zu-LNN35cPhuxFtWAV7oTC15pX2QVR5KK5T3VcCImSSFTXQlTZLlpfUUFaUsM4nBvxTK5NJjYi3Q19N-SeJ7r8BVRVeMuH7M1KxAfoWKrXda8qEQtq0civVkDT7l7Bt6CSooMw1wKBF0_zsc_p3u_lm1-VsY3LkJN9r8lb2NBncLNkJ9G65N2hv6O_DpADNPToz1LBIEsZxgTwgMmsWWSOaJlYJNDsZs1pxoBEZlqiy2d57j-JKdEqBsYMV8sVzchaNLUfA92KzndXgATMuSinCtLiRG26yyyhibZ8b4UmZG2AGYTnuuaDHNiVrj2HXFa1_dSu-O9O6IdTPVAxC95EnE9VhDxnYT5Lq-VfS0DoPPGrKvetk2t4k5y5rS2509uNbHLNxqRQzgWf8YvQNd-eR1mJ_RGNwRDzFHywZwP5pP_7spum5pVYJKvGBY_QBCHr_4pJ59aRDItZFo6uLh_z_rKVwfHU723N54f_cRbNH_xC7Obdhcnp6Fx5jOLf2TZg0x-HzZi_YXjrVbig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJk28IH5TGGAkeLQWx3ZcC00I2KqV0WpUTNpbiGNHFG3pWDuh_Yv8VdzFTsoAob7sOb4oOZ_vzvbd9xHyUhmV2r6qmFM6YVIZy_pFZhkvyqTSRhelx_OO0TjbP5IfjtXxGvnZ9sJgWWXrExtH7WYlnpFvI_KdlEoYsV3FsojD3cGbs-8MGaTwprWl0ygizYLbaeDGYpPHgb_8Adu5-c5wF-b-VZoO9j6_32eRcYCVKpMLVinrRVV4Z7i0tvIQTZOkNImqhE6ywhmLEVMIlwlIDByXuhAWkm4OcQD3UgLee4NsaIj6sBHceLc3PpwsIYC5DI15SrA-5ybWFYVqswa9cnoKPgTLzXQDK4r03f8Oln8nw3_WdP4WJAe3ya2Y3dK3wRzvkDVf3yWbo3h_f498mkBeypDPngb6IFogKApCRdPQMEktclbQ0WRIp815h6dYxEpD8-cljHf0HOFmPS1n88X8Pjm6FhU_IOv1rPaPCFXCYYmuUaWAWJxVRmptikxr60SmuekR3WovLyPiORJvnORtadu3fKn3HPWeIydnqnqEd5JnAfVjBRnTTlDedrWCH84hNK0g-7qTjZlPyGhWlN5q7SGPHmieL9dLj7zoHoPvwAuhovazCxwD--U-ZHBZjzwM5tP9bgqOXRiZgBKvGFY3AHHJrz6pp18bfHKlBZg6f_z_z3pONmEB5x-H44Mn5Cb-Tmjx3CLri_ML_xRyvYV9FhcRJV-ue93-AkbqZmU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+motion+analytics+during+brain+MRI+improve+data+quality+and+reduce+costs&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Dosenbach%2C+Nico+U+F&rft.au=Koller%2C+Jonathan+M&rft.au=Earl%2C+Eric+A&rft.au=Miranda-Dominguez%2C+Oscar&rft.date=2017-11-01&rft.eissn=1095-9572&rft.volume=161&rft.spage=80&rft_id=info:doi/10.1016%2Fj.neuroimage.2017.08.025&rft_id=info%3Apmid%2F28803940&rft.externalDocID=28803940 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |