Whole slide image representation in bone marrow cytology
One of the goals of AI-based computational pathology is to generate compact representations of whole slide images (WSIs) that capture the essential information needed for diagnosis. While such approaches have been applied to histopathology, few applications have been reported in cytology. Bone marro...
Saved in:
Published in | Computers in biology and medicine Vol. 166; p. 107530 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.11.2023
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0010-4825 1879-0534 1879-0534 |
DOI | 10.1016/j.compbiomed.2023.107530 |
Cover
Abstract | One of the goals of AI-based computational pathology is to generate compact representations of whole slide images (WSIs) that capture the essential information needed for diagnosis. While such approaches have been applied to histopathology, few applications have been reported in cytology. Bone marrow aspirate cytology is the basis for key clinical decisions in hematology. However, visual inspection of aspirate specimens is a tedious and complex process subject to variation in interpretation, and hematopathology expertise is scarce. The ability to generate a compact representation of an aspirate specimen may form the basis for clinical decision-support tools in hematology. In this study, we leverage our previously published end-to-end AI-based system for counting and classifying cells from bone marrow aspirate WSIs, which enables the direct use of individual cells as inputs rather than WSI patches. We then construct bags of individual cell features from each WSI, and apply multiple instance learning to extract their vector representations. To evaluate the quality of our representations, we conducted WSI retrieval and classification tasks. Our results show that we achieved a mAP@10 of 0.58 ±0.02 in WSI-level image retrieval, surpassing the random-retrieval baseline of 0.39 ±0.1. Furthermore, we predicted five diagnostic labels for individual aspirate WSIs with a weighted-average F1 score of 0.57 ±0.03 using a k-nearest-neighbors (k-NN) model, outperforming guessing using empirical class prior probabilities (0.26 ±0.02). We present the first example of exploring trainable mechanisms to generate compact, slide-level representations in bone marrow cytology with deep learning. This method has the potential to summarize complex semantic information in WSIs toward improved diagnostics in hematology, and may eventually support AI-assisted computational pathology approaches.
•A trainable AI system that generates WSI image representations as a single vector.•Prediction of broad, slide-level diagnostic labels for WSI.•The use of interpretable AI approaches including a novel attention plot. |
---|---|
AbstractList | AbstractOne of the goals of AI-based computational pathology is to generate compact representations of whole slide images (WSIs) that capture the essential information needed for diagnosis. While such approaches have been applied to histopathology, few applications have been reported in cytology. Bone marrow aspirate cytology is the basis for key clinical decisions in hematology. However, visual inspection of aspirate specimens is a tedious and complex process subject to variation in interpretation, and hematopathology expertise is scarce. The ability to generate a compact representation of an aspirate specimen may form the basis for clinical decision-support tools in hematology. In this study, we leverage our previously published end-to-end AI-based system for counting and classifying cells from bone marrow aspirate WSIs, which enables the direct use of individual cells as inputs rather than WSI patches. We then construct bags of individual cell features from each WSI, and apply multiple instance learning to extract their vector representations. To evaluate the quality of our representations, we conducted WSI retrieval and classification tasks. Our results show that we achieved a mAP@10 of 0.58 ±0.02 in WSI-level image retrieval, surpassing the random-retrieval baseline of 0.39 ±0.1. Furthermore, we predicted five diagnostic labels for individual aspirate WSIs with a weighted-average F1 score of 0.57 ±0.03 using a k-nearest-neighbors (k-NN) model, outperforming guessing using empirical class prior probabilities (0.26 ±0.02). We present the first example of exploring trainable mechanisms to generate compact, slide-level representations in bone marrow cytology with deep learning. This method has the potential to summarize complex semantic information in WSIs toward improved diagnostics in hematology, and may eventually support AI-assisted computational pathology approaches. One of the goals of AI-based computational pathology is to generate compact representations of whole slide images (WSIs) that capture the essential information needed for diagnosis. While such approaches have been applied to histopathology, few applications have been reported in cytology. Bone marrow aspirate cytology is the basis for key clinical decisions in hematology. However, visual inspection of aspirate specimens is a tedious and complex process subject to variation in interpretation, and hematopathology expertise is scarce. The ability to generate a compact representation of an aspirate specimen may form the basis for clinical decision-support tools in hematology. In this study, we leverage our previously published end-to-end AI-based system for counting and classifying cells from bone marrow aspirate WSIs, which enables the direct use of individual cells as inputs rather than WSI patches. We then construct bags of individual cell features from each WSI, and apply multiple instance learning to extract their vector representations. To evaluate the quality of our representations, we conducted WSI retrieval and classification tasks. Our results show that we achieved a mAP@10 of 0.58 ±0.02 in WSI-level image retrieval, surpassing the random-retrieval baseline of 0.39 ±0.1. Furthermore, we predicted five diagnostic labels for individual aspirate WSIs with a weighted-average F1 score of 0.57 ±0.03 using a k-nearest-neighbors (k-NN) model, outperforming guessing using empirical class prior probabilities (0.26 ±0.02). We present the first example of exploring trainable mechanisms to generate compact, slide-level representations in bone marrow cytology with deep learning. This method has the potential to summarize complex semantic information in WSIs toward improved diagnostics in hematology, and may eventually support AI-assisted computational pathology approaches. One of the goals of AI-based computational pathology is to generate compact representations of whole slide images (WSIs) that capture the essential information needed for diagnosis. While such approaches have been applied to histopathology, few applications have been reported in cytology. Bone marrow aspirate cytology is the basis for key clinical decisions in hematology. However, visual inspection of aspirate specimens is a tedious and complex process subject to variation in interpretation, and hematopathology expertise is scarce. The ability to generate a compact representation of an aspirate specimen may form the basis for clinical decision-support tools in hematology. In this study, we leverage our previously published end-to-end AI-based system for counting and classifying cells from bone marrow aspirate WSIs, which enables the direct use of individual cells as inputs rather than WSI patches. We then construct bags of individual cell features from each WSI, and apply multiple instance learning to extract their vector representations. To evaluate the quality of our representations, we conducted WSI retrieval and classification tasks. Our results show that we achieved a mAP@10 of 0.58 ±0.02 in WSI-level image retrieval, surpassing the random-retrieval baseline of 0.39 ±0.1. Furthermore, we predicted five diagnostic labels for individual aspirate WSIs with a weighted-average F1 score of 0.57 ±0.03 using a k-nearest-neighbors (k-NN) model, outperforming guessing using empirical class prior probabilities (0.26 ±0.02). We present the first example of exploring trainable mechanisms to generate compact, slide-level representations in bone marrow cytology with deep learning. This method has the potential to summarize complex semantic information in WSIs toward improved diagnostics in hematology, and may eventually support AI-assisted computational pathology approaches. •A trainable AI system that generates WSI image representations as a single vector.•Prediction of broad, slide-level diagnostic labels for WSI.•The use of interpretable AI approaches including a novel attention plot. One of the goals of AI-based computational pathology is to generate compact representations of whole slide images (WSIs) that capture the essential information needed for diagnosis. While such approaches have been applied to histopathology, few applications have been reported in cytology. Bone marrow aspirate cytology is the basis for key clinical decisions in hematology. However, visual inspection of aspirate specimens is a tedious and complex process subject to variation in interpretation, and hematopathology expertise is scarce. The ability to generate a compact representation of an aspirate specimen may form the basis for clinical decision-support tools in hematology. In this study, we leverage our previously published end-to-end AI-based system for counting and classifying cells from bone marrow aspirate WSIs, which enables the direct use of individual cells as inputs rather than WSI patches. We then construct bags of individual cell features from each WSI, and apply multiple instance learning to extract their vector representations. To evaluate the quality of our representations, we conducted WSI retrieval and classification tasks. Our results show that we achieved a mAP@10 of 0.58 ±0.02 in WSI-level image retrieval, surpassing the random-retrieval baseline of 0.39 ±0.1. Furthermore, we predicted five diagnostic labels for individual aspirate WSIs with a weighted-average F1 score of 0.57 ±0.03 using a k-nearest-neighbors (k-NN) model, outperforming guessing using empirical class prior probabilities (0.26 ±0.02). We present the first example of exploring trainable mechanisms to generate compact, slide-level representations in bone marrow cytology with deep learning. This method has the potential to summarize complex semantic information in WSIs toward improved diagnostics in hematology, and may eventually support AI-assisted computational pathology approaches.One of the goals of AI-based computational pathology is to generate compact representations of whole slide images (WSIs) that capture the essential information needed for diagnosis. While such approaches have been applied to histopathology, few applications have been reported in cytology. Bone marrow aspirate cytology is the basis for key clinical decisions in hematology. However, visual inspection of aspirate specimens is a tedious and complex process subject to variation in interpretation, and hematopathology expertise is scarce. The ability to generate a compact representation of an aspirate specimen may form the basis for clinical decision-support tools in hematology. In this study, we leverage our previously published end-to-end AI-based system for counting and classifying cells from bone marrow aspirate WSIs, which enables the direct use of individual cells as inputs rather than WSI patches. We then construct bags of individual cell features from each WSI, and apply multiple instance learning to extract their vector representations. To evaluate the quality of our representations, we conducted WSI retrieval and classification tasks. Our results show that we achieved a mAP@10 of 0.58 ±0.02 in WSI-level image retrieval, surpassing the random-retrieval baseline of 0.39 ±0.1. Furthermore, we predicted five diagnostic labels for individual aspirate WSIs with a weighted-average F1 score of 0.57 ±0.03 using a k-nearest-neighbors (k-NN) model, outperforming guessing using empirical class prior probabilities (0.26 ±0.02). We present the first example of exploring trainable mechanisms to generate compact, slide-level representations in bone marrow cytology with deep learning. This method has the potential to summarize complex semantic information in WSIs toward improved diagnostics in hematology, and may eventually support AI-assisted computational pathology approaches. |
ArticleNumber | 107530 |
Author | Mu, Youqing Campbell, Clinton J.V. Tizhoosh, H.R. Dehkharghanian, Taher |
Author_xml | – sequence: 1 givenname: Youqing orcidid: 0000-0002-4561-5514 surname: Mu fullname: Mu, Youqing organization: University of Toronto, Toronto, Canada – sequence: 2 givenname: H.R. surname: Tizhoosh fullname: Tizhoosh, H.R. organization: Rhazes Lab, Artificial Intelligence & Informatics, Mayo Clinic, Rochester, MN, USA – sequence: 3 givenname: Taher orcidid: 0000-0002-4079-623X surname: Dehkharghanian fullname: Dehkharghanian, Taher organization: McMaster University, Hamilton, Canada – sequence: 4 givenname: Clinton J.V. orcidid: 0000-0002-8896-1134 surname: Campbell fullname: Campbell, Clinton J.V. email: campbecj@mcmaster.ca organization: McMaster University, Hamilton, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37837726$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkl2L1DAUhoOsuLOjf0EK3njTMR9tk9wsuotfsOCFipchk5yuGdOmJq1L_70p3VUYEMarA-E973nPk3OBzvrQA0IFwTuCSfPqsDOhG_YudGB3FFOWn3nN8CO0IYLLEtesOkMbjAkuK0Hrc3SR0gFjXGGGn6BzxgXjnDYbJL59Dx6K5J2FwnX6FooIQ4QE_ahHF_rC9cU-Ty86HWO4K8w8Bh9u56focat9gmf3dYu-vnv75fpDefPp_cfrNzelqZtqLK2ULUAjLG2ElgI3tSa4NZKTtuKSS9sKXNmm4gKspJTUmhlLGk4ANMtytkVy9Z36Qc932ns1xBw0zopgtdBQB_WXhlpoqJVG7n259g4x_JwgjapzyYD3uocwJUUF50yQmoosfXEkPYQp9nmzrBKMykbwJczze9W0X4Y9JHngmQWXq8DEkFKEVhm3chyjdv6UyOLI4D-2vVpbIX_HLwdRJeOgN2BdBDMqG9wpJpdHJsa73hntf8AM6Q8UohJVWH1eTmy5MMowljKXLXr9b4PTMvwGfgLjOA |
CitedBy_id | crossref_primary_10_46989_001c_124131 crossref_primary_10_3390_diagnostics15060677 crossref_primary_10_61186_ijbc_16_4_9 crossref_primary_10_3389_fonc_2024_1474155 |
Cites_doi | 10.1111/j.1751-553X.2008.01100.x 10.1109/TMI.2013.2265334 10.1186/s13000-019-0921-2 10.1073/pnas.79.8.2554 10.1093/ajcp/aqy034 10.1038/s43856-022-00107-6 10.1016/j.leukres.2018.04.003 10.1093/bioinformatics/btad344 10.1007/s00277-014-2252-4 10.1016/j.patcog.2017.10.009 10.3126/jpn.v2i4.6885 10.1007/s10479-005-5724-z 10.1038/modpathol.3880295 10.1109/CVPR42600.2020.00307 10.1111/cyt.13178 10.1002/cac2.12012 10.1038/s41416-020-01122-x 10.1145/3328485 10.1016/j.acpath.2022.100030 10.1001/jamanetworkopen.2019.14645 10.1016/j.neucom.2021.03.091 10.2307/1403797 10.1186/s13073-021-00968-x 10.5858/arpa.2018-0343-RA 10.1038/s41746-020-0221-y 10.5858/arpa.2020-0723-CP 10.1109/CVPR.2015.7298682 10.1038/s41598-020-66333-x 10.1016/j.jpi.2023.100334 10.5858/133.1.124 10.1038/s41591-019-0508-1 10.1016/j.patcog.2019.05.011 10.1038/s42256-019-0052-1 10.1007/s00277-012-1565-4 10.1016/S0169-7439(00)00122-2 10.1016/j.ebiom.2020.103094 10.5858/arpa.2016-0108-RA 10.1038/s41551-020-00682-w 10.1038/s43856-021-00008-0 10.4103/jpi.jpi_69_18 10.1109/TMI.2018.2868977 10.1136/jclinpath-2017-204644 10.1111/bjh.13600 10.1109/CVPR52688.2022.01593 10.1002/cpt.1796 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) The Author(s) Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved. 2023. The Author(s) |
Copyright_xml | – notice: 2023 The Author(s) – notice: The Author(s) – notice: Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved. – notice: 2023. The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 ADTOC UNPAY |
DOI | 10.1016/j.compbiomed.2023.107530 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Research Library ProQuest Biological Science Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 107530 |
ExternalDocumentID | 10.1016/j.compbiomed.2023.107530 37837726 10_1016_j_compbiomed_2023_107530 S0010482523009952 1_s2_0_S0010482523009952 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- AFCTW AGRNS ALIPV RIG 3V. 6I. AACTN AAFTH AFKWA AJOXV AMFUW M0N 77I AAYXX ACLOT CITATION EFLBG ~HD CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 ADTOC UNPAY |
ID | FETCH-LOGICAL-c564t-d99fee68d268a98065a10fc971f47979df804d6478ed92215a3cd1671eea38063 |
IEDL.DBID | .~1 |
ISSN | 0010-4825 1879-0534 |
IngestDate | Tue Aug 19 19:25:33 EDT 2025 Sun Sep 28 00:00:51 EDT 2025 Sat Aug 23 12:22:25 EDT 2025 Mon Jul 21 05:55:02 EDT 2025 Wed Oct 01 04:08:00 EDT 2025 Thu Apr 24 23:06:19 EDT 2025 Sat Jan 18 16:09:16 EST 2025 Wed Jun 18 06:48:28 EDT 2025 Tue Aug 26 20:14:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Slide-level representations Deep learning Digital pathology Cytology |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved. cc-by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-d99fee68d268a98065a10fc971f47979df804d6478ed92215a3cd1671eea38063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8896-1134 0000-0002-4079-623X 0000-0002-4561-5514 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0010482523009952 |
PMID | 37837726 |
PQID | 2883296876 |
PQPubID | 1226355 |
PageCount | 1 |
ParticipantIDs | unpaywall_primary_10_1016_j_compbiomed_2023_107530 proquest_miscellaneous_2877381528 proquest_journals_2883296876 pubmed_primary_37837726 crossref_citationtrail_10_1016_j_compbiomed_2023_107530 crossref_primary_10_1016_j_compbiomed_2023_107530 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_107530 elsevier_clinicalkeyesjournals_1_s2_0_S0010482523009952 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_107530 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Widrich, Schäfl, Pavlović, Ramsauer, Gruber, Holzleitner, Brandstetter, Sandve, Greiff, Hochreiter (b39) 2020; 33 Hoffer, Ailon (b57) 2015 Khoury, Solary, Abla, Akkari, Alaggio, Apperley, Bejar, Berti, Busque, Chan (b2) 2022 Xu (b76) 2019; 26 Fix, Hodges (b64) 1989; 57 Font, Loscertales, Benavente, Bermejo, Callejas, Garcia-Alonso, Garcia-Marcilla, Gil, Lopez-Rubio, Martin (b20) 2013; 92 Musgrave, Belongie, Lim (b54) 2020 Chen, Deng (b59) 2019; 93 Duan, Bai, Xie, Qi, Huang, Tian (b50) 2019 Font, Loscertales, Soto, Ricard, Novas, Martín-Clavero, López-Rubio, Garcia-Alonso, Callejas, Bermejo (b25) 2015; 94 Sasada, Yamamoto, Masuda, Tanaka, Ishihara, Takamatsu, Yatomi, Katsuda, Sato, Matsui (b19) 2018; 69 Y. Chen, S. Gong, L. Bazzani, Image search with text feedback by visiolinguistic attention learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 3001–3011. Platzer, Dustdar (b62) 2005 Badillo, Banfai, Birzele, Davydov, Hutchinson, Kam-Thong, Siebourg-Polster, Steiert, Zhang (b11) 2020; 107 Sutton, Pincock, Baumgart, Sadowski, Fedorak, Kroeker (b10) 2020; 3 Tavolara, Niazi, Ginese, Piedra-Mora, Gatti, Beamer, Gurcan (b37) 2020; 62 Tran, Kondrashova, Bradley, Williams, Pearson, Waddell (b13) 2021; 13 van Tulder, de Bruijne (b29) 2018; 38 Parsons (b48) 2014 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b71) 2014; 15 Zhang, Chen, McGough, Xing, Wang, Bui, Xie, Sapkota, Cui, Dhillon (b26) 2019; 1 Evans, Brown, Bui, Chlipala, Lacchetti, Milner Jr., Pantanowitz, Parwani, Reid, Riben (b74) 2022; 146 Sohn (b58) 2016; 29 Miller, Karcher, Kaul (b18) 2022; 9 Mu, Tizhoosh, Tayebi, Ross, Sur, Leber, Campbell (b47) 2021; 1 Pudasaini, Prasad, Rauniyar, Shrestha, Gautam, Pathak, Koirala, Manandhar, Shrestha (b16) 2012; 2 Arber, Orazi, Hasserjian, Thiele, Borowitz, Le Beau, Bloomfield, Cazzola, Vardiman (b22) 2016; 127 Hestness, Narang, Ardalani, Diamos, Jun, Kianinejad, Patwary, Yang, Zhou (b73) 2017 Lee, Erber, Porwit, Tomonaga, Peterson, Hematology (b68) 2008; 30 Wang, Huang, Khalil, Hong, Meng, Lee (b46) 2023 Ramsauer, Schäfl, Lehner, Seidl, Widrich, Adler, Gruber, Holzleitner, Pavlović, Sandve (b52) 2020 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b53) 2017; 30 Nagpal, Foote, Liu, Chen, Wulczyn, Tan, Olson, Smith, Mohtashamian, Wren (b30) 2019; 2 Das, Conjeti, Roy, Chatterjee, Sheet (b32) 2018 Zarella, Bowman, Aeffner, Farahani, Xthona, Absar, Parwani, Bui, Hartman (b8) 2019; 143 Abdulrahman, Patel, Yang, Koch, Sivers, Smith, Jaye (b67) 2018; 150 Yang, Jin (b55) 2006 M. Li, R. Xu, S. Wang, L. Zhou, X. Lin, C. Zhu, M. Zeng, H. Ji, S.-F. Chang, Clip-event: Connecting text and images with event structures, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16420–16429. Williams, Bottoms, Treanor (b7) 2017; 70 Niu, Zhong, Yu (b42) 2021; 452 Jiang, Yang, Wang, Li, Sun (b14) 2020; 40 Pantanowitz, Sharma, Carter, Kurc, Sussman, Saltz (b9) 2018; 9 Campanella, Hanna, Geneslaw, Miraflor, Werneck Krauss Silva, Busam, Brogi, Reuter, Klimstra, Fuchs (b35) 2019; 25 Raskin, Messick (b44) 2012; 42 Tayebi, Mu, Dehkharghanian, Ross, Sur, Foley, Tizhoosh, Campbell (b23) 2022; 2 Tomita, Abdollahi, Wei, Ren, Suriawinata, Hassanpour (b38) 2019; 2 Hopfield (b51) 1982; 79 Li, Yuan, Xu, Cheng, Wen (b40) 2020 Rosai (b4) 2001; 14 Bain, Ahmad (b69) 2015; 171 Wang, Perez (b72) 2017; 11 Khosla, Teterwak, Wang, Sarna, Tian, Isola, Maschinot, Liu, Krishnan (b60) 2020; 33 Gilotra, Gupta, Singh, Sen (b45) 2017; 9 Pena, Andrade-Filho (b1) 2009; 133 Shao, Bian, Chen, Wang, Zhang, Ji (b41) 2021; 34 F. Schroff, D. Kalenichenko, J. Philbin, Facenet: A unified embedding for face recognition and clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–823. Parwani (b6) 2019; 14 Lu, Williamson, Chen, Chen, Barbieri, Mahmood (b43) 2021; 5 Gorelick, Veksler, Gaed, Gómez, Moussa, Bauman, Fenster, Ward (b31) 2013; 32 Combalia, Vilaplana (b33) 2018 Carbonneau, Cheplygina, Granger, Gagnon (b34) 2018; 77 Tian, Killian, Rekhtman, Benayed, Middha, Ladanyi, Lin, Arcila (b17) 2016; 140 De Boer, Kroese, Mannor, Rubinstein (b61) 2005; 134 Antonini, Santonicco, Pantanowitz, Girolami, Rizzo, Brunelli, Bellevicine, Vigliar, Negri, Troncone (b75) 2023; 34 Naqvi, Jabbour, Bueso-Ramos, Pierce, Borthakur, Estrov, Ravandi, Faderl, Kantarjian, Garcia-Manero (b21) 2011; 118 Dehkharghanian, Mu, Ross, Sur, Tizhoosh, Campbell (b70) 2023 Bochkovskiy, Wang, Liao (b49) 2020 Echle, Rindtorff, Brinker, Luedde, Pearson, Kather (b12) 2021; 124 Audebert, Herold, Slimani, Vidal (b27) 2019 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b65) 2011; 12 Musgrave, Belongie, Lim (b63) 2020 Xu, Liang (b66) 2001; 56 Kanavati, Toyokawa, Momosaki, Rambeau, Kozuma, Shoji, Yamazaki, Takeo, Iizuka, Tsuneki (b36) 2020; 10 Alaggio, Amador, Anagnostopoulos, Attygalle, Araujo, Berti, Bhagat, Borges, Boyer, Calaminici (b3) 2022 Ridgeway, Tinsley, Kurtin (b24) 2017; 8 Steiner, Chen, Mermel (b5) 2021; 1875 Kumar, Gupta, Singla, Hu (b15) 2021 Tran (10.1016/j.compbiomed.2023.107530_b13) 2021; 13 Raskin (10.1016/j.compbiomed.2023.107530_b44) 2012; 42 10.1016/j.compbiomed.2023.107530_b77 Fix (10.1016/j.compbiomed.2023.107530_b64) 1989; 57 Xu (10.1016/j.compbiomed.2023.107530_b76) 2019; 26 Alaggio (10.1016/j.compbiomed.2023.107530_b3) 2022 Lu (10.1016/j.compbiomed.2023.107530_b43) 2021; 5 Hestness (10.1016/j.compbiomed.2023.107530_b73) 2017 Pantanowitz (10.1016/j.compbiomed.2023.107530_b9) 2018; 9 Abdulrahman (10.1016/j.compbiomed.2023.107530_b67) 2018; 150 Wang (10.1016/j.compbiomed.2023.107530_b46) 2023 Platzer (10.1016/j.compbiomed.2023.107530_b62) 2005 Steiner (10.1016/j.compbiomed.2023.107530_b5) 2021; 1875 Musgrave (10.1016/j.compbiomed.2023.107530_b63) 2020 Audebert (10.1016/j.compbiomed.2023.107530_b27) 2019 Srivastava (10.1016/j.compbiomed.2023.107530_b71) 2014; 15 Arber (10.1016/j.compbiomed.2023.107530_b22) 2016; 127 Duan (10.1016/j.compbiomed.2023.107530_b50) 2019 Ridgeway (10.1016/j.compbiomed.2023.107530_b24) 2017; 8 Parwani (10.1016/j.compbiomed.2023.107530_b6) 2019; 14 10.1016/j.compbiomed.2023.107530_b28 Zhang (10.1016/j.compbiomed.2023.107530_b26) 2019; 1 Das (10.1016/j.compbiomed.2023.107530_b32) 2018 Yang (10.1016/j.compbiomed.2023.107530_b55) 2006 Hoffer (10.1016/j.compbiomed.2023.107530_b57) 2015 Nagpal (10.1016/j.compbiomed.2023.107530_b30) 2019; 2 Bain (10.1016/j.compbiomed.2023.107530_b69) 2015; 171 Miller (10.1016/j.compbiomed.2023.107530_b18) 2022; 9 Combalia (10.1016/j.compbiomed.2023.107530_b33) 2018 Williams (10.1016/j.compbiomed.2023.107530_b7) 2017; 70 Chen (10.1016/j.compbiomed.2023.107530_b59) 2019; 93 Kumar (10.1016/j.compbiomed.2023.107530_b15) 2021 Vaswani (10.1016/j.compbiomed.2023.107530_b53) 2017; 30 Tomita (10.1016/j.compbiomed.2023.107530_b38) 2019; 2 Khosla (10.1016/j.compbiomed.2023.107530_b60) 2020; 33 Pudasaini (10.1016/j.compbiomed.2023.107530_b16) 2012; 2 Xu (10.1016/j.compbiomed.2023.107530_b66) 2001; 56 Wang (10.1016/j.compbiomed.2023.107530_b72) 2017; 11 Font (10.1016/j.compbiomed.2023.107530_b25) 2015; 94 Musgrave (10.1016/j.compbiomed.2023.107530_b54) 2020 Parsons (10.1016/j.compbiomed.2023.107530_b48) 2014 Echle (10.1016/j.compbiomed.2023.107530_b12) 2021; 124 Niu (10.1016/j.compbiomed.2023.107530_b42) 2021; 452 Ramsauer (10.1016/j.compbiomed.2023.107530_b52) 2020 10.1016/j.compbiomed.2023.107530_b56 Lee (10.1016/j.compbiomed.2023.107530_b68) 2008; 30 Khoury (10.1016/j.compbiomed.2023.107530_b2) 2022 Dehkharghanian (10.1016/j.compbiomed.2023.107530_b70) 2023 Sasada (10.1016/j.compbiomed.2023.107530_b19) 2018; 69 Campanella (10.1016/j.compbiomed.2023.107530_b35) 2019; 25 Font (10.1016/j.compbiomed.2023.107530_b20) 2013; 92 Tavolara (10.1016/j.compbiomed.2023.107530_b37) 2020; 62 Zarella (10.1016/j.compbiomed.2023.107530_b8) 2019; 143 Mu (10.1016/j.compbiomed.2023.107530_b47) 2021; 1 Jiang (10.1016/j.compbiomed.2023.107530_b14) 2020; 40 Gilotra (10.1016/j.compbiomed.2023.107530_b45) 2017; 9 Badillo (10.1016/j.compbiomed.2023.107530_b11) 2020; 107 Kanavati (10.1016/j.compbiomed.2023.107530_b36) 2020; 10 Li (10.1016/j.compbiomed.2023.107530_b40) 2020 Gorelick (10.1016/j.compbiomed.2023.107530_b31) 2013; 32 Sutton (10.1016/j.compbiomed.2023.107530_b10) 2020; 3 Bochkovskiy (10.1016/j.compbiomed.2023.107530_b49) 2020 Tian (10.1016/j.compbiomed.2023.107530_b17) 2016; 140 Rosai (10.1016/j.compbiomed.2023.107530_b4) 2001; 14 Hopfield (10.1016/j.compbiomed.2023.107530_b51) 1982; 79 De Boer (10.1016/j.compbiomed.2023.107530_b61) 2005; 134 Widrich (10.1016/j.compbiomed.2023.107530_b39) 2020; 33 Naqvi (10.1016/j.compbiomed.2023.107530_b21) 2011; 118 Pedregosa (10.1016/j.compbiomed.2023.107530_b65) 2011; 12 van Tulder (10.1016/j.compbiomed.2023.107530_b29) 2018; 38 Pena (10.1016/j.compbiomed.2023.107530_b1) 2009; 133 Antonini (10.1016/j.compbiomed.2023.107530_b75) 2023; 34 Tayebi (10.1016/j.compbiomed.2023.107530_b23) 2022; 2 Shao (10.1016/j.compbiomed.2023.107530_b41) 2021; 34 Evans (10.1016/j.compbiomed.2023.107530_b74) 2022; 146 Carbonneau (10.1016/j.compbiomed.2023.107530_b34) 2018; 77 Sohn (10.1016/j.compbiomed.2023.107530_b58) 2016; 29 |
References_xml | – reference: F. Schroff, D. Kalenichenko, J. Philbin, Facenet: A unified embedding for face recognition and clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–823. – volume: 9 start-page: 182 year: 2017 end-page: 189 ident: b45 article-title: Comparison of bone marrow aspiration cytology with bone marrow trephine biopsy histopathology: An observational study publication-title: J. Lab. Phys. – volume: 14 start-page: 258 year: 2001 end-page: 260 ident: b4 article-title: The continuing role of morphology in the molecular age publication-title: Mod. Pathol. – volume: 32 start-page: 1804 year: 2013 end-page: 1818 ident: b31 article-title: Prostate histopathology: Learning tissue component histograms for cancer detection and classification publication-title: IEEE Trans. Med. Imaging – year: 2019 ident: b50 article-title: CenterNet: Keypoint triplets for object detection – volume: 69 start-page: 54 year: 2018 end-page: 59 ident: b19 article-title: Inter-observer variance and the need for standardization in the morphological classification of myelodysplastic syndrome publication-title: Leuk. Res. – volume: 77 start-page: 329 year: 2018 end-page: 353 ident: b34 article-title: Multiple instance learning: A survey of problem characteristics and applications publication-title: Pattern Recognit. – volume: 118 start-page: 4690 year: 2011 end-page: 4693 ident: b21 article-title: Implications of discrepancy in morphologic diagnosis of myelodysplastic syndrome between referral and tertiary care centers publication-title: Blood J. Am. Soc. Hematol. – volume: 70 start-page: 1010 year: 2017 end-page: 1018 ident: b7 article-title: Future-proofing pathology: the case for clinical adoption of digital pathology publication-title: J. Clin. Pathol. – volume: 94 start-page: 565 year: 2015 end-page: 573 ident: b25 article-title: Interobserver variance in myelodysplastic syndromes with less than 5% bone marrow blasts: unilineage vs. multilineage dysplasia and reproducibility of the threshold of 2% blasts publication-title: Ann. Hematol. – volume: 33 start-page: 18661 year: 2020 end-page: 18673 ident: b60 article-title: Supervised contrastive learning publication-title: Adv. Neural Inf. Process. Syst. – reference: Y. Chen, S. Gong, L. Bazzani, Image search with text feedback by visiolinguistic attention learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 3001–3011. – volume: 26 start-page: 42 year: 2019 end-page: 46 ident: b76 article-title: Toward human-centered AI: a perspective from human-computer interaction publication-title: Interactions – volume: 93 start-page: 353 year: 2019 end-page: 364 ident: b59 article-title: Deep embedding learning with adaptive large margin N-pair loss for image retrieval and clustering publication-title: Pattern Recognit. – volume: 30 start-page: 349 year: 2008 end-page: 364 ident: b68 article-title: ICSH guidelines for the standardization of bone marrow specimens and reports publication-title: Int. J. Lab. Hematol. – volume: 5 start-page: 555 year: 2021 end-page: 570 ident: b43 article-title: Data-efficient and weakly supervised computational pathology on whole-slide images publication-title: Nat. Biomed. Eng. – volume: 124 start-page: 686 year: 2021 end-page: 696 ident: b12 article-title: Deep learning in cancer pathology: a new generation of clinical biomarkers publication-title: Br. J. Cancer – volume: 146 start-page: 440 year: 2022 end-page: 450 ident: b74 article-title: Validating whole slide imaging systems for diagnostic purposes in pathology: guideline update from the college of American pathologists in collaboration with the American society for clinical pathology and the association for pathology informatics publication-title: Arch. Pathol. Lab. Med. – volume: 34 start-page: 5 year: 2023 end-page: 14 ident: b75 article-title: Relevance of the college of American Pathologists guideline for validating whole slide imaging for diagnostic purposes to cytopathology publication-title: Cytopathology – start-page: 427 year: 2019 end-page: 443 ident: b27 article-title: Multimodal deep networks for text and image-based document classification publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases – volume: 134 start-page: 19 year: 2005 end-page: 67 ident: b61 article-title: A tutorial on the cross-entropy method publication-title: Ann. Oper. Res. – volume: 11 start-page: 1 year: 2017 end-page: 8 ident: b72 article-title: The effectiveness of data augmentation in image classification using deep learning publication-title: Convolutional Neural Netw. Vis. Recognit. – year: 2023 ident: b70 article-title: Cell projection plots: a novel visualization of bone marrow aspirate cytology publication-title: J. Pathol. Inform. – start-page: 446 year: 2020 end-page: 450 ident: b40 article-title: Deep multi-instance learning with induced self-attention for medical image classification publication-title: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) – volume: 452 start-page: 48 year: 2021 end-page: 62 ident: b42 article-title: A review on the attention mechanism of deep learning publication-title: Neurocomputing – year: 2020 ident: b49 article-title: YOLOv4: Optimal speed and accuracy of object detection – volume: 40 start-page: 154 year: 2020 end-page: 166 ident: b14 article-title: Emerging role of deep learning-based artificial intelligence in tumor pathology publication-title: Cancer Commun. – volume: 56 start-page: 1 year: 2001 end-page: 11 ident: b66 article-title: Monte Carlo cross validation publication-title: Chemometr. Intell. Lab. Syst. – start-page: 1 year: 2014 end-page: 11 ident: b48 article-title: Stratified sampling publication-title: Wiley StatsRef: Stat. Ref. Online – start-page: 681 year: 2020 end-page: 699 ident: b63 article-title: A metric learning reality check publication-title: European Conference on Computer Vision – year: 2017 ident: b73 article-title: Deep learning scaling is predictable, empirically – volume: 10 start-page: 1 year: 2020 end-page: 11 ident: b36 article-title: Weakly-supervised learning for lung carcinoma classification using deep learning publication-title: Sci. Rep. – start-page: 1 year: 2022 end-page: 29 ident: b3 article-title: The 5th edition of the world health organization classification of haematolymphoid tumours: lymphoid neoplasms publication-title: Leukemia – volume: 30 year: 2017 ident: b53 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 150 start-page: 84 year: 2018 end-page: 91 ident: b67 article-title: Is a 500-cell count necessary for bone marrow differentials? A proposed analytical method for validating a lower cutoff publication-title: Am. J. Clin. Pathol. – start-page: 1 year: 2022 end-page: 17 ident: b2 article-title: The 5th edition of the world health organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms publication-title: Leukemia – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b65 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 40 year: 2018 ident: b9 article-title: Twenty years of digital pathology: an overview of the road travelled, what is on the horizon, and the emergence of vendor-neutral archives publication-title: J. Pathol. Inform. – volume: 143 start-page: 222 year: 2019 end-page: 234 ident: b8 article-title: A practical guide to whole slide imaging: a white paper from the digital pathology association publication-title: Arch. Pathol. Lab. Med. – volume: 62 year: 2020 ident: b37 article-title: Automatic discovery of clinically interpretable imaging biomarkers for mycobacterium tuberculosis supersusceptibility using deep learning publication-title: EBioMedicine – volume: 3 start-page: 1 year: 2020 end-page: 10 ident: b10 article-title: An overview of clinical decision support systems: benefits, risks, and strategies for success publication-title: NPJ Digit. Med. – year: 2020 ident: b54 article-title: PyTorch metric learning – volume: 2 start-page: 309 year: 2012 end-page: 312 ident: b16 article-title: Interpretation of bone marrow aspiration in hematological disorder publication-title: J. Pathol. Nepal – volume: 38 start-page: 638 year: 2018 end-page: 648 ident: b29 article-title: Learning cross-modality representations from multi-modal images publication-title: IEEE Trans. Med. Imaging – start-page: 4 year: 2006 ident: b55 article-title: Distance Metric Learning: A Comprehensive Survey, Vol. 2 – reference: M. Li, R. Xu, S. Wang, L. Zhou, X. Lin, C. Zhu, M. Zeng, H. Ji, S.-F. Chang, Clip-event: Connecting text and images with event structures, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16420–16429. – volume: 1 start-page: 236 year: 2019 end-page: 245 ident: b26 article-title: Pathologist-level interpretable whole-slide cancer diagnosis with deep learning publication-title: Nat. Mach. Intell. – volume: 1875 year: 2021 ident: b5 article-title: Closing the translation gap: AI applications in digital pathology publication-title: Biochim. Biophys. Acta (BBA)-Rev. Cancer – volume: 2 start-page: 1 year: 2022 end-page: 14 ident: b23 article-title: Automated bone marrow cytology using deep learning to generate a histogram of cell types publication-title: Commun. Med. – volume: 133 start-page: 124 year: 2009 end-page: 132 ident: b1 article-title: How does a pathologist make a diagnosis? publication-title: Arch. Pathol. Lab. Med. – volume: 107 start-page: 871 year: 2020 end-page: 885 ident: b11 article-title: An introduction to machine learning publication-title: Clin. Pharmacol. Therapeutics – volume: 8 start-page: 29 year: 2017 ident: b24 article-title: Practical guide to bone marrow sampling for suspected myelodysplastic syndromes publication-title: J. Adv. Practitioner Oncol. – volume: 79 start-page: 2554 year: 1982 end-page: 2558 ident: b51 article-title: Neural networks and physical systems with emergent collective computational abilities. publication-title: Proc. Natl. Acad. Sci. – volume: 34 start-page: 2136 year: 2021 end-page: 2147 ident: b41 article-title: Transmil: Transformer based correlated multiple instance learning for whole slide image classification publication-title: Adv. Neural Inf. Process. Syst. – year: 2020 ident: b52 article-title: Hopfield networks is all you need – volume: 33 start-page: 18832 year: 2020 end-page: 18845 ident: b39 article-title: Modern hopfield networks and attention for immune repertoire classification publication-title: Adv. Neural Inf. Process. Syst. – volume: 14 start-page: 1 year: 2019 ident: b6 article-title: Next generation diagnostic pathology: use of digital pathology and artificial intelligence tools to augment a pathological diagnosis publication-title: Diagn. Pathol. – start-page: 84 year: 2015 end-page: 92 ident: b57 article-title: Deep metric learning using triplet network publication-title: International Workshop on Similarity-Based Pattern Recognition – volume: 92 start-page: 19 year: 2013 end-page: 24 ident: b20 article-title: Inter-observer variance with the diagnosis of myelodysplastic syndromes (MDS) following the 2008 WHO classification publication-title: Ann. Hematol. – start-page: 274 year: 2018 end-page: 281 ident: b33 article-title: Monte-Carlo sampling applied to multiple instance learning for histological image classification publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b71 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – start-page: 1 year: 2021 end-page: 28 ident: b15 article-title: A systematic review of artificial intelligence techniques in cancer prediction and diagnosis publication-title: Arch. Comput. Methods Eng. – start-page: btad344 year: 2023 ident: b46 article-title: CW-NET for multi-type cell detection and classification in bone marrow examination and mitotic figure examination publication-title: Bioinformatics – volume: 2 start-page: 1 year: 2019 end-page: 10 ident: b30 article-title: Development and validation of a deep learning algorithm for improving gleason scoring of prostate cancer publication-title: NPJ Digit. Med. – volume: 140 start-page: 1200 year: 2016 end-page: 1205 ident: b17 article-title: Optimizing workflows and processing of cytologic samples for comprehensive analysis by next-generation sequencing: Memorial sloan kettering cancer center experience publication-title: Arch. Pathol. Lab. Med. – volume: 42 start-page: 23 year: 2012 end-page: 42 ident: b44 article-title: Bone marrow cytologic and histologic biopsies: indications, technique, and evaluation publication-title: Vet. Clin.: Small Anim. Pract. – start-page: 578 year: 2018 end-page: 581 ident: b32 article-title: Multiple instance learning of deep convolutional neural networks for breast histopathology whole slide classification publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) – volume: 57 start-page: 238 year: 1989 end-page: 247 ident: b64 article-title: Discriminatory analysis. Nonparametric discrimination: Consistency properties publication-title: Int. Stat. Rev./Rev. Int. Stat. – volume: 25 start-page: 1301 year: 2019 end-page: 1309 ident: b35 article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images publication-title: Nat. Med. – volume: 171 start-page: 400 year: 2015 end-page: 410 ident: b69 article-title: Chronic neutrophilic leukaemia and plasma cell-related neutrophilic leukaemoid reactions publication-title: Br. J. Haematol. – volume: 2 year: 2019 ident: b38 article-title: Attention-based deep neural networks for detection of cancerous and precancerous esophagus tissue on histopathological slides publication-title: JAMA Netw. Open – start-page: 9 year: 2005 end-page: pp ident: b62 article-title: A vector space search engine for web services publication-title: Third European Conference on Web Services (ECOWS’05) – volume: 13 start-page: 1 year: 2021 end-page: 17 ident: b13 article-title: Deep learning in cancer diagnosis, prognosis and treatment selection publication-title: Genome Med. – volume: 9 year: 2022 ident: b18 article-title: The crisis in the pathology subspecialty fellowship application process: historical background and setting the stage publication-title: Acad. Pathol. – volume: 127 start-page: 2391 year: 2016 end-page: 2405 ident: b22 article-title: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia publication-title: Blood J. Am. Soc. Hematol. – volume: 29 year: 2016 ident: b58 article-title: Improved deep metric learning with multi-class n-pair loss objective publication-title: Adv. Neural Inf. Process. Syst. – volume: 1 start-page: 1 year: 2021 end-page: 13 ident: b47 article-title: A BERT model generates diagnostically relevant semantic embeddings from pathology synopses with active learning publication-title: Commun. Med. – volume: 30 start-page: 349 issue: 5 year: 2008 ident: 10.1016/j.compbiomed.2023.107530_b68 article-title: ICSH guidelines for the standardization of bone marrow specimens and reports publication-title: Int. J. Lab. Hematol. doi: 10.1111/j.1751-553X.2008.01100.x – volume: 30 year: 2017 ident: 10.1016/j.compbiomed.2023.107530_b53 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – year: 2020 ident: 10.1016/j.compbiomed.2023.107530_b49 – start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.107530_b15 article-title: A systematic review of artificial intelligence techniques in cancer prediction and diagnosis publication-title: Arch. Comput. Methods Eng. – volume: 32 start-page: 1804 issue: 10 year: 2013 ident: 10.1016/j.compbiomed.2023.107530_b31 article-title: Prostate histopathology: Learning tissue component histograms for cancer detection and classification publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2265334 – volume: 14 start-page: 1 year: 2019 ident: 10.1016/j.compbiomed.2023.107530_b6 article-title: Next generation diagnostic pathology: use of digital pathology and artificial intelligence tools to augment a pathological diagnosis publication-title: Diagn. Pathol. doi: 10.1186/s13000-019-0921-2 – volume: 127 start-page: 2391 issue: 20 year: 2016 ident: 10.1016/j.compbiomed.2023.107530_b22 article-title: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia publication-title: Blood J. Am. Soc. Hematol. – start-page: 427 year: 2019 ident: 10.1016/j.compbiomed.2023.107530_b27 article-title: Multimodal deep networks for text and image-based document classification – year: 2019 ident: 10.1016/j.compbiomed.2023.107530_b50 – volume: 79 start-page: 2554 issue: 8 year: 1982 ident: 10.1016/j.compbiomed.2023.107530_b51 article-title: Neural networks and physical systems with emergent collective computational abilities. publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.79.8.2554 – volume: 150 start-page: 84 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2023.107530_b67 article-title: Is a 500-cell count necessary for bone marrow differentials? A proposed analytical method for validating a lower cutoff publication-title: Am. J. Clin. Pathol. doi: 10.1093/ajcp/aqy034 – volume: 2 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.107530_b23 article-title: Automated bone marrow cytology using deep learning to generate a histogram of cell types publication-title: Commun. Med. doi: 10.1038/s43856-022-00107-6 – volume: 69 start-page: 54 year: 2018 ident: 10.1016/j.compbiomed.2023.107530_b19 article-title: Inter-observer variance and the need for standardization in the morphological classification of myelodysplastic syndrome publication-title: Leuk. Res. doi: 10.1016/j.leukres.2018.04.003 – start-page: btad344 year: 2023 ident: 10.1016/j.compbiomed.2023.107530_b46 article-title: CW-NET for multi-type cell detection and classification in bone marrow examination and mitotic figure examination publication-title: Bioinformatics doi: 10.1093/bioinformatics/btad344 – start-page: 84 year: 2015 ident: 10.1016/j.compbiomed.2023.107530_b57 article-title: Deep metric learning using triplet network – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.compbiomed.2023.107530_b71 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 33 start-page: 18832 year: 2020 ident: 10.1016/j.compbiomed.2023.107530_b39 article-title: Modern hopfield networks and attention for immune repertoire classification publication-title: Adv. Neural Inf. Process. Syst. – volume: 94 start-page: 565 issue: 4 year: 2015 ident: 10.1016/j.compbiomed.2023.107530_b25 article-title: Interobserver variance in myelodysplastic syndromes with less than 5% bone marrow blasts: unilineage vs. multilineage dysplasia and reproducibility of the threshold of 2% blasts publication-title: Ann. Hematol. doi: 10.1007/s00277-014-2252-4 – volume: 77 start-page: 329 year: 2018 ident: 10.1016/j.compbiomed.2023.107530_b34 article-title: Multiple instance learning: A survey of problem characteristics and applications publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.009 – volume: 118 start-page: 4690 issue: 17 year: 2011 ident: 10.1016/j.compbiomed.2023.107530_b21 article-title: Implications of discrepancy in morphologic diagnosis of myelodysplastic syndrome between referral and tertiary care centers publication-title: Blood J. Am. Soc. Hematol. – volume: 2 start-page: 309 issue: 4 year: 2012 ident: 10.1016/j.compbiomed.2023.107530_b16 article-title: Interpretation of bone marrow aspiration in hematological disorder publication-title: J. Pathol. Nepal doi: 10.3126/jpn.v2i4.6885 – volume: 134 start-page: 19 issue: 1 year: 2005 ident: 10.1016/j.compbiomed.2023.107530_b61 article-title: A tutorial on the cross-entropy method publication-title: Ann. Oper. Res. doi: 10.1007/s10479-005-5724-z – start-page: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.107530_b2 article-title: The 5th edition of the world health organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms publication-title: Leukemia – volume: 14 start-page: 258 issue: 3 year: 2001 ident: 10.1016/j.compbiomed.2023.107530_b4 article-title: The continuing role of morphology in the molecular age publication-title: Mod. Pathol. doi: 10.1038/modpathol.3880295 – ident: 10.1016/j.compbiomed.2023.107530_b28 doi: 10.1109/CVPR42600.2020.00307 – volume: 34 start-page: 5 issue: 1 year: 2023 ident: 10.1016/j.compbiomed.2023.107530_b75 article-title: Relevance of the college of American Pathologists guideline for validating whole slide imaging for diagnostic purposes to cytopathology publication-title: Cytopathology doi: 10.1111/cyt.13178 – volume: 11 start-page: 1 year: 2017 ident: 10.1016/j.compbiomed.2023.107530_b72 article-title: The effectiveness of data augmentation in image classification using deep learning publication-title: Convolutional Neural Netw. Vis. Recognit. – volume: 40 start-page: 154 issue: 4 year: 2020 ident: 10.1016/j.compbiomed.2023.107530_b14 article-title: Emerging role of deep learning-based artificial intelligence in tumor pathology publication-title: Cancer Commun. doi: 10.1002/cac2.12012 – volume: 124 start-page: 686 issue: 4 year: 2021 ident: 10.1016/j.compbiomed.2023.107530_b12 article-title: Deep learning in cancer pathology: a new generation of clinical biomarkers publication-title: Br. J. Cancer doi: 10.1038/s41416-020-01122-x – year: 2020 ident: 10.1016/j.compbiomed.2023.107530_b54 – volume: 26 start-page: 42 issue: 4 year: 2019 ident: 10.1016/j.compbiomed.2023.107530_b76 article-title: Toward human-centered AI: a perspective from human-computer interaction publication-title: Interactions doi: 10.1145/3328485 – start-page: 9 year: 2005 ident: 10.1016/j.compbiomed.2023.107530_b62 article-title: A vector space search engine for web services – start-page: 446 year: 2020 ident: 10.1016/j.compbiomed.2023.107530_b40 article-title: Deep multi-instance learning with induced self-attention for medical image classification – year: 2020 ident: 10.1016/j.compbiomed.2023.107530_b52 – volume: 9 issue: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.107530_b18 article-title: The crisis in the pathology subspecialty fellowship application process: historical background and setting the stage publication-title: Acad. Pathol. doi: 10.1016/j.acpath.2022.100030 – volume: 2 issue: 11 year: 2019 ident: 10.1016/j.compbiomed.2023.107530_b38 article-title: Attention-based deep neural networks for detection of cancerous and precancerous esophagus tissue on histopathological slides publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2019.14645 – volume: 452 start-page: 48 year: 2021 ident: 10.1016/j.compbiomed.2023.107530_b42 article-title: A review on the attention mechanism of deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.091 – volume: 8 start-page: 29 issue: 1 year: 2017 ident: 10.1016/j.compbiomed.2023.107530_b24 article-title: Practical guide to bone marrow sampling for suspected myelodysplastic syndromes publication-title: J. Adv. Practitioner Oncol. – volume: 29 year: 2016 ident: 10.1016/j.compbiomed.2023.107530_b58 article-title: Improved deep metric learning with multi-class n-pair loss objective publication-title: Adv. Neural Inf. Process. Syst. – volume: 57 start-page: 238 issue: 3 year: 1989 ident: 10.1016/j.compbiomed.2023.107530_b64 article-title: Discriminatory analysis. Nonparametric discrimination: Consistency properties publication-title: Int. Stat. Rev./Rev. Int. Stat. doi: 10.2307/1403797 – volume: 13 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.107530_b13 article-title: Deep learning in cancer diagnosis, prognosis and treatment selection publication-title: Genome Med. doi: 10.1186/s13073-021-00968-x – volume: 143 start-page: 222 issue: 2 year: 2019 ident: 10.1016/j.compbiomed.2023.107530_b8 article-title: A practical guide to whole slide imaging: a white paper from the digital pathology association publication-title: Arch. Pathol. Lab. Med. doi: 10.5858/arpa.2018-0343-RA – start-page: 681 year: 2020 ident: 10.1016/j.compbiomed.2023.107530_b63 article-title: A metric learning reality check – volume: 3 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2023.107530_b10 article-title: An overview of clinical decision support systems: benefits, risks, and strategies for success publication-title: NPJ Digit. Med. doi: 10.1038/s41746-020-0221-y – volume: 2 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.compbiomed.2023.107530_b30 article-title: Development and validation of a deep learning algorithm for improving gleason scoring of prostate cancer publication-title: NPJ Digit. Med. – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.compbiomed.2023.107530_b65 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 146 start-page: 440 issue: 4 year: 2022 ident: 10.1016/j.compbiomed.2023.107530_b74 article-title: Validating whole slide imaging systems for diagnostic purposes in pathology: guideline update from the college of American pathologists in collaboration with the American society for clinical pathology and the association for pathology informatics publication-title: Arch. Pathol. Lab. Med. doi: 10.5858/arpa.2020-0723-CP – ident: 10.1016/j.compbiomed.2023.107530_b56 doi: 10.1109/CVPR.2015.7298682 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2023.107530_b36 article-title: Weakly-supervised learning for lung carcinoma classification using deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-020-66333-x – year: 2023 ident: 10.1016/j.compbiomed.2023.107530_b70 article-title: Cell projection plots: a novel visualization of bone marrow aspirate cytology publication-title: J. Pathol. Inform. doi: 10.1016/j.jpi.2023.100334 – year: 2017 ident: 10.1016/j.compbiomed.2023.107530_b73 – volume: 133 start-page: 124 issue: 1 year: 2009 ident: 10.1016/j.compbiomed.2023.107530_b1 article-title: How does a pathologist make a diagnosis? publication-title: Arch. Pathol. Lab. Med. doi: 10.5858/133.1.124 – volume: 25 start-page: 1301 issue: 8 year: 2019 ident: 10.1016/j.compbiomed.2023.107530_b35 article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images publication-title: Nat. Med. doi: 10.1038/s41591-019-0508-1 – start-page: 1 year: 2014 ident: 10.1016/j.compbiomed.2023.107530_b48 article-title: Stratified sampling publication-title: Wiley StatsRef: Stat. Ref. Online – start-page: 4 year: 2006 ident: 10.1016/j.compbiomed.2023.107530_b55 – volume: 33 start-page: 18661 year: 2020 ident: 10.1016/j.compbiomed.2023.107530_b60 article-title: Supervised contrastive learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 93 start-page: 353 year: 2019 ident: 10.1016/j.compbiomed.2023.107530_b59 article-title: Deep embedding learning with adaptive large margin N-pair loss for image retrieval and clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.05.011 – volume: 1 start-page: 236 issue: 5 year: 2019 ident: 10.1016/j.compbiomed.2023.107530_b26 article-title: Pathologist-level interpretable whole-slide cancer diagnosis with deep learning publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0052-1 – volume: 42 start-page: 23 issue: 1 year: 2012 ident: 10.1016/j.compbiomed.2023.107530_b44 article-title: Bone marrow cytologic and histologic biopsies: indications, technique, and evaluation publication-title: Vet. Clin.: Small Anim. Pract. – start-page: 578 year: 2018 ident: 10.1016/j.compbiomed.2023.107530_b32 article-title: Multiple instance learning of deep convolutional neural networks for breast histopathology whole slide classification – start-page: 274 year: 2018 ident: 10.1016/j.compbiomed.2023.107530_b33 article-title: Monte-Carlo sampling applied to multiple instance learning for histological image classification – volume: 92 start-page: 19 issue: 1 year: 2013 ident: 10.1016/j.compbiomed.2023.107530_b20 article-title: Inter-observer variance with the diagnosis of myelodysplastic syndromes (MDS) following the 2008 WHO classification publication-title: Ann. Hematol. doi: 10.1007/s00277-012-1565-4 – volume: 56 start-page: 1 issue: 1 year: 2001 ident: 10.1016/j.compbiomed.2023.107530_b66 article-title: Monte Carlo cross validation publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/S0169-7439(00)00122-2 – volume: 1875 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.107530_b5 article-title: Closing the translation gap: AI applications in digital pathology publication-title: Biochim. Biophys. Acta (BBA)-Rev. Cancer – volume: 62 year: 2020 ident: 10.1016/j.compbiomed.2023.107530_b37 article-title: Automatic discovery of clinically interpretable imaging biomarkers for mycobacterium tuberculosis supersusceptibility using deep learning publication-title: EBioMedicine doi: 10.1016/j.ebiom.2020.103094 – volume: 140 start-page: 1200 issue: 11 year: 2016 ident: 10.1016/j.compbiomed.2023.107530_b17 article-title: Optimizing workflows and processing of cytologic samples for comprehensive analysis by next-generation sequencing: Memorial sloan kettering cancer center experience publication-title: Arch. Pathol. Lab. Med. doi: 10.5858/arpa.2016-0108-RA – volume: 5 start-page: 555 issue: 6 year: 2021 ident: 10.1016/j.compbiomed.2023.107530_b43 article-title: Data-efficient and weakly supervised computational pathology on whole-slide images publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-020-00682-w – start-page: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.107530_b3 article-title: The 5th edition of the world health organization classification of haematolymphoid tumours: lymphoid neoplasms publication-title: Leukemia – volume: 34 start-page: 2136 year: 2021 ident: 10.1016/j.compbiomed.2023.107530_b41 article-title: Transmil: Transformer based correlated multiple instance learning for whole slide image classification publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 start-page: 182 issue: 03 year: 2017 ident: 10.1016/j.compbiomed.2023.107530_b45 article-title: Comparison of bone marrow aspiration cytology with bone marrow trephine biopsy histopathology: An observational study publication-title: J. Lab. Phys. – volume: 1 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.107530_b47 article-title: A BERT model generates diagnostically relevant semantic embeddings from pathology synopses with active learning publication-title: Commun. Med. doi: 10.1038/s43856-021-00008-0 – volume: 9 start-page: 40 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2023.107530_b9 article-title: Twenty years of digital pathology: an overview of the road travelled, what is on the horizon, and the emergence of vendor-neutral archives publication-title: J. Pathol. Inform. doi: 10.4103/jpi.jpi_69_18 – volume: 38 start-page: 638 issue: 2 year: 2018 ident: 10.1016/j.compbiomed.2023.107530_b29 article-title: Learning cross-modality representations from multi-modal images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2868977 – volume: 70 start-page: 1010 issue: 12 year: 2017 ident: 10.1016/j.compbiomed.2023.107530_b7 article-title: Future-proofing pathology: the case for clinical adoption of digital pathology publication-title: J. Clin. Pathol. doi: 10.1136/jclinpath-2017-204644 – volume: 171 start-page: 400 issue: 3 year: 2015 ident: 10.1016/j.compbiomed.2023.107530_b69 article-title: Chronic neutrophilic leukaemia and plasma cell-related neutrophilic leukaemoid reactions publication-title: Br. J. Haematol. doi: 10.1111/bjh.13600 – ident: 10.1016/j.compbiomed.2023.107530_b77 doi: 10.1109/CVPR52688.2022.01593 – volume: 107 start-page: 871 issue: 4 year: 2020 ident: 10.1016/j.compbiomed.2023.107530_b11 article-title: An introduction to machine learning publication-title: Clin. Pharmacol. Therapeutics doi: 10.1002/cpt.1796 |
SSID | ssj0004030 |
Score | 2.3774104 |
Snippet | One of the goals of AI-based computational pathology is to generate compact representations of whole slide images (WSIs) that capture the essential information... AbstractOne of the goals of AI-based computational pathology is to generate compact representations of whole slide images (WSIs) that capture the essential... |
SourceID | unpaywall proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107530 |
SubjectTerms | Bone Marrow Bone Marrow Cells - cytology Cellular biology Classification Computer applications Cytodiagnosis - methods Cytology Decision support systems Deep learning Digital pathology Hematology Humans Image Interpretation, Computer-Assisted - methods Image Processing, Computer-Assisted - methods Image retrieval Internal Medicine Machine learning Medical imaging Other Pathology Representations Slide-level representations |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaglaAcUHm0hBYUJK6BxHZiWxxQhVgqpHKBit4sxw-p1Ta7ZXdV7b_vTOxkkXhob1HikaPxePzZnm-GkLfM0hDw5L6Ch4JbbgtjbVmUrC2laTwNPV3s7Ftzes6_XtQX6cBtkcIqB5_YO2o3s3hG_h6r4lLVwOT9OL8psGoU3q6mEhr3yW5FwZKQKT75suFFlixSUMDXcNgKpUieGN-FIduR4v4OS4jDa0Du5b-Wpz_h5yPycNXNzfrWTKe_LUmTffI4Ycn8JA7-E3LPd0_Jg7N0W_6MyJ9Y_DYHJOl8fnkNniPvc1gOfKMuv-zydtb5_LpPxZjbdV_Ndv2cnE8-__h0WqRKCYWtG74snFLB-0Y62kij8K7UVGWwSlSBCyWUC7LkDmml3ikKq7xh1lWNqLw3DJqzA7LTQXcvQEGtC0KGlsvWcOZUywOvhaPeKMzbIzIiBgVpm9KIYzWLqR7ixa70RrUaVaujajNSjZLzmEpjCxk1jIEeqKLg3DT4-y1kxd9k_SLN0oWu9ILqUn_vkxSBfcB2DABzTTPyYZRMQCQCjC37PR6MRY9dbcw3I2_GzzCV8X7GdH62wjZCAICqqczIYTSyUVFMSAYbIZCmo9VtrcWX__-jI7KHjSPD8pjsLH-t_CuAWsv2dT-f7gC7WCYm priority: 102 providerName: ProQuest |
Title | Whole slide image representation in bone marrow cytology |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523009952 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523009952 https://dx.doi.org/10.1016/j.compbiomed.2023.107530 https://www.ncbi.nlm.nih.gov/pubmed/37837726 https://www.proquest.com/docview/2883296876 https://www.proquest.com/docview/2877381528 https://doi.org/10.1016/j.compbiomed.2023.107530 |
UnpaywallVersion | publishedVersion |
Volume | 166 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250801 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KB_t4GPuet654sFe3tixbEnvqSrNso2GMleVNyPqAlNQNS0LJS__2nSzZ3egGgb3ItqxD9vl0Oln3uwN4V2rinP9zX-BJRjXVmdI6z_KyybmqLXEdXOx0Uo_P6OdpNd2B4x4L490qo-4POr3T1rHmMHLzcDGbeYwvLiVwgYNGNJo5ldfDPvoXyvTB9Y2bB83LAENBfeNbR2-e4OPl3bYDzP3ApxHHarTe839NUbdN0Adwb90u1OZKzee_TUujR_Aw2pPpUXjkx7Bj2ydw9zTumD8F_sMnwE3RmjQ2nV2g9ki7OJY95qhNZ23aXLY2vejCMaZ602W03TyDs9HJ9-NxFrMlZLqq6SozQjhra25IzZXw-6WqyJ0WrHCUCSaM4zk1HlpqjSA406tSm6JmhbWqxOblc9htsbuXyKDGOMZdQ3mjaGlEQx2tmCFWCR-7hyXAegZJHUOJ-4wWc9n7jJ3LG9ZKz1oZWJtAMVAuQjiNLWhE_w1kDxdFBSdR529By_5Ga5dxpC5lIZdE5vKWNCXwfqD8QyC37HevFxY5dOUTOxNR4_yTwNvhNg5nv0ejWnu59m0YQyOqIjyBF0HIBkaVjJe4GEJqMkjd1lx89V_v8xru-6sAwtyD3dXPtX2D1tiq2e-GG5ZsyrDko4_7cOfo05fxBI8fTiZfv_0CH442Hg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlE4IN6EFggSHAOJ7cSxKoQQUG1ptxdasTfX8UMq2mYXdlfV_qn-xo7jJIvEQ3vpLUo8cTQZj2c8880AvKaaOOdP7jO8SJhmOlFap0lKq7RUhSWugYsNj4rBCfs6ykcbcNlhYXxaZacTG0VtJtqfkb_zXXGJKHDxfpj-THzXKB9d7VpoBLE4sMsLdNlm7_c_4_99Q8jel-NPg6TtKpDovGDzxAjhrC1KQ4pSCR9XVFnqtOCZY1xwYVyZMuMhmNYIgjuiotpkBc-sVRSHU3zvDbjJaMp8rX4-4iscZkoD5AV1G0PXq80cCvlkPkU8QOrf-pbleBs9hfRf2-Gf5u4d2FrUU7W8UOPxb1vg3j2429qu8ccgbPdhw9YP4Nawjc4_hPK7b7Ybo-VqbHx2jpoqbmpmdvimOj6r42pS2_i8Kf0Y62XTPXf5CE6uhYePYbPG6Z4igyrjeOkqVlaKUSMq5ljODbFK-DpBPALeMUjqtmy5754xll1-2g-5Yq30rJWBtRFkPeU0lO5Yg0Z0_0B20FRUphL3lzVo-d9o7azVCjOZyRmRqfzWFEVC-UD3Dw30nESw21O2hk8waNacd6cTFtlPtVouEbzqH6Pq8PEgVdvJwo_hHA22nJQRPAlC1jOK8pKi44XUpJe6tbn47P9f9BK2BsfDQ3m4f3SwDbc9YUB37sDm_NfCPkczb169aNZWDKfXvZivAGDvYgg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGkAY8IL7XbUCR4LGsTdKm0YQQYpw2xiYkmLi3kOZD2nTrHbs7Tfev8dfhNG0PiQ_dy96qNm4q13bsxD8b4CXVxDm_c5_hRcI004nSOk1SWqWlKixxDVzs-KQ4OGUfh_lwDX52WBifVtnZxMZQm7H2e-S7visuEQUq765r0yI-7w_eTn4kvoOUP2nt2mkEETmyiysM36ZvDvfxX78iZPDh6_uDpO0wkOi8YLPECOGsLUpDilIJf8aostRpwTPHuODCuDJlxsMxrREEV0dFtckKnlmrKA6n-N4bcJNTRn06GR_yJSYzpQH-gnaOYRjWZhGF3DKfLh7g9a99-3K8jVFD-q-l8U_X9w7cmtcTtbhSo9Fvy-HgHtxt_dj4XRC8-7Bm6wewcdye1D-E8ptvvBujF2tsfHaBVitu6md2WKc6Pqvjalzb-KIpAxnrRdNJd_EITq-Fh49hvcbpNpFBlXG8dBUrK8WoERVzLOeGWCV8zSAeAe8YJHVbwtx30hjJLlftXC5ZKz1rZWBtBFlPOQllPFagEd0_kB1MFQ2rxLVmBVr-N1o7bS3EVGZySmQqvzQFklA-MBREZz0nEez1lK0TFJybFefd6YRF9lMtVSeCF_1jNCP-bEjVdjz3YzhH5y0nZQRPgpD1jKK8pBiEITXppW5lLm79_4uewwaqsfx0eHK0Dbc9XQB67sD67HJun6LHN6ueNaoVw_fr1uVfI9hmQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whole+slide+image+representation+in+bone+marrow+cytology&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Mu%2C+Youqing&rft.au=Tizhoosh%2C+H.R.&rft.au=Dehkharghanian%2C+Taher&rft.au=Campbell%2C+Clinton+J.V.&rft.date=2023-11-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=166&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.107530&rft.externalDocID=S0010482523009952 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482523X00134%2Fcov150h.gif |