Whole slide image representation in bone marrow cytology

One of the goals of AI-based computational pathology is to generate compact representations of whole slide images (WSIs) that capture the essential information needed for diagnosis. While such approaches have been applied to histopathology, few applications have been reported in cytology. Bone marro...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 166; p. 107530
Main Authors Mu, Youqing, Tizhoosh, H.R., Dehkharghanian, Taher, Campbell, Clinton J.V.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.11.2023
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2023.107530

Cover

Abstract One of the goals of AI-based computational pathology is to generate compact representations of whole slide images (WSIs) that capture the essential information needed for diagnosis. While such approaches have been applied to histopathology, few applications have been reported in cytology. Bone marrow aspirate cytology is the basis for key clinical decisions in hematology. However, visual inspection of aspirate specimens is a tedious and complex process subject to variation in interpretation, and hematopathology expertise is scarce. The ability to generate a compact representation of an aspirate specimen may form the basis for clinical decision-support tools in hematology. In this study, we leverage our previously published end-to-end AI-based system for counting and classifying cells from bone marrow aspirate WSIs, which enables the direct use of individual cells as inputs rather than WSI patches. We then construct bags of individual cell features from each WSI, and apply multiple instance learning to extract their vector representations. To evaluate the quality of our representations, we conducted WSI retrieval and classification tasks. Our results show that we achieved a mAP@10 of 0.58 ±0.02 in WSI-level image retrieval, surpassing the random-retrieval baseline of 0.39 ±0.1. Furthermore, we predicted five diagnostic labels for individual aspirate WSIs with a weighted-average F1 score of 0.57 ±0.03 using a k-nearest-neighbors (k-NN) model, outperforming guessing using empirical class prior probabilities (0.26 ±0.02). We present the first example of exploring trainable mechanisms to generate compact, slide-level representations in bone marrow cytology with deep learning. This method has the potential to summarize complex semantic information in WSIs toward improved diagnostics in hematology, and may eventually support AI-assisted computational pathology approaches. •A trainable AI system that generates WSI image representations as a single vector.•Prediction of broad, slide-level diagnostic labels for WSI.•The use of interpretable AI approaches including a novel attention plot.
AbstractList AbstractOne of the goals of AI-based computational pathology is to generate compact representations of whole slide images (WSIs) that capture the essential information needed for diagnosis. While such approaches have been applied to histopathology, few applications have been reported in cytology. Bone marrow aspirate cytology is the basis for key clinical decisions in hematology. However, visual inspection of aspirate specimens is a tedious and complex process subject to variation in interpretation, and hematopathology expertise is scarce. The ability to generate a compact representation of an aspirate specimen may form the basis for clinical decision-support tools in hematology. In this study, we leverage our previously published end-to-end AI-based system for counting and classifying cells from bone marrow aspirate WSIs, which enables the direct use of individual cells as inputs rather than WSI patches. We then construct bags of individual cell features from each WSI, and apply multiple instance learning to extract their vector representations. To evaluate the quality of our representations, we conducted WSI retrieval and classification tasks. Our results show that we achieved a mAP@10 of 0.58 ±0.02 in WSI-level image retrieval, surpassing the random-retrieval baseline of 0.39 ±0.1. Furthermore, we predicted five diagnostic labels for individual aspirate WSIs with a weighted-average F1 score of 0.57 ±0.03 using a k-nearest-neighbors (k-NN) model, outperforming guessing using empirical class prior probabilities (0.26 ±0.02). We present the first example of exploring trainable mechanisms to generate compact, slide-level representations in bone marrow cytology with deep learning. This method has the potential to summarize complex semantic information in WSIs toward improved diagnostics in hematology, and may eventually support AI-assisted computational pathology approaches.
One of the goals of AI-based computational pathology is to generate compact representations of whole slide images (WSIs) that capture the essential information needed for diagnosis. While such approaches have been applied to histopathology, few applications have been reported in cytology. Bone marrow aspirate cytology is the basis for key clinical decisions in hematology. However, visual inspection of aspirate specimens is a tedious and complex process subject to variation in interpretation, and hematopathology expertise is scarce. The ability to generate a compact representation of an aspirate specimen may form the basis for clinical decision-support tools in hematology. In this study, we leverage our previously published end-to-end AI-based system for counting and classifying cells from bone marrow aspirate WSIs, which enables the direct use of individual cells as inputs rather than WSI patches. We then construct bags of individual cell features from each WSI, and apply multiple instance learning to extract their vector representations. To evaluate the quality of our representations, we conducted WSI retrieval and classification tasks. Our results show that we achieved a mAP@10 of 0.58 ±0.02 in WSI-level image retrieval, surpassing the random-retrieval baseline of 0.39 ±0.1. Furthermore, we predicted five diagnostic labels for individual aspirate WSIs with a weighted-average F1 score of 0.57 ±0.03 using a k-nearest-neighbors (k-NN) model, outperforming guessing using empirical class prior probabilities (0.26 ±0.02). We present the first example of exploring trainable mechanisms to generate compact, slide-level representations in bone marrow cytology with deep learning. This method has the potential to summarize complex semantic information in WSIs toward improved diagnostics in hematology, and may eventually support AI-assisted computational pathology approaches.
One of the goals of AI-based computational pathology is to generate compact representations of whole slide images (WSIs) that capture the essential information needed for diagnosis. While such approaches have been applied to histopathology, few applications have been reported in cytology. Bone marrow aspirate cytology is the basis for key clinical decisions in hematology. However, visual inspection of aspirate specimens is a tedious and complex process subject to variation in interpretation, and hematopathology expertise is scarce. The ability to generate a compact representation of an aspirate specimen may form the basis for clinical decision-support tools in hematology. In this study, we leverage our previously published end-to-end AI-based system for counting and classifying cells from bone marrow aspirate WSIs, which enables the direct use of individual cells as inputs rather than WSI patches. We then construct bags of individual cell features from each WSI, and apply multiple instance learning to extract their vector representations. To evaluate the quality of our representations, we conducted WSI retrieval and classification tasks. Our results show that we achieved a mAP@10 of 0.58 ±0.02 in WSI-level image retrieval, surpassing the random-retrieval baseline of 0.39 ±0.1. Furthermore, we predicted five diagnostic labels for individual aspirate WSIs with a weighted-average F1 score of 0.57 ±0.03 using a k-nearest-neighbors (k-NN) model, outperforming guessing using empirical class prior probabilities (0.26 ±0.02). We present the first example of exploring trainable mechanisms to generate compact, slide-level representations in bone marrow cytology with deep learning. This method has the potential to summarize complex semantic information in WSIs toward improved diagnostics in hematology, and may eventually support AI-assisted computational pathology approaches. •A trainable AI system that generates WSI image representations as a single vector.•Prediction of broad, slide-level diagnostic labels for WSI.•The use of interpretable AI approaches including a novel attention plot.
One of the goals of AI-based computational pathology is to generate compact representations of whole slide images (WSIs) that capture the essential information needed for diagnosis. While such approaches have been applied to histopathology, few applications have been reported in cytology. Bone marrow aspirate cytology is the basis for key clinical decisions in hematology. However, visual inspection of aspirate specimens is a tedious and complex process subject to variation in interpretation, and hematopathology expertise is scarce. The ability to generate a compact representation of an aspirate specimen may form the basis for clinical decision-support tools in hematology. In this study, we leverage our previously published end-to-end AI-based system for counting and classifying cells from bone marrow aspirate WSIs, which enables the direct use of individual cells as inputs rather than WSI patches. We then construct bags of individual cell features from each WSI, and apply multiple instance learning to extract their vector representations. To evaluate the quality of our representations, we conducted WSI retrieval and classification tasks. Our results show that we achieved a mAP@10 of 0.58 ±0.02 in WSI-level image retrieval, surpassing the random-retrieval baseline of 0.39 ±0.1. Furthermore, we predicted five diagnostic labels for individual aspirate WSIs with a weighted-average F1 score of 0.57 ±0.03 using a k-nearest-neighbors (k-NN) model, outperforming guessing using empirical class prior probabilities (0.26 ±0.02). We present the first example of exploring trainable mechanisms to generate compact, slide-level representations in bone marrow cytology with deep learning. This method has the potential to summarize complex semantic information in WSIs toward improved diagnostics in hematology, and may eventually support AI-assisted computational pathology approaches.One of the goals of AI-based computational pathology is to generate compact representations of whole slide images (WSIs) that capture the essential information needed for diagnosis. While such approaches have been applied to histopathology, few applications have been reported in cytology. Bone marrow aspirate cytology is the basis for key clinical decisions in hematology. However, visual inspection of aspirate specimens is a tedious and complex process subject to variation in interpretation, and hematopathology expertise is scarce. The ability to generate a compact representation of an aspirate specimen may form the basis for clinical decision-support tools in hematology. In this study, we leverage our previously published end-to-end AI-based system for counting and classifying cells from bone marrow aspirate WSIs, which enables the direct use of individual cells as inputs rather than WSI patches. We then construct bags of individual cell features from each WSI, and apply multiple instance learning to extract their vector representations. To evaluate the quality of our representations, we conducted WSI retrieval and classification tasks. Our results show that we achieved a mAP@10 of 0.58 ±0.02 in WSI-level image retrieval, surpassing the random-retrieval baseline of 0.39 ±0.1. Furthermore, we predicted five diagnostic labels for individual aspirate WSIs with a weighted-average F1 score of 0.57 ±0.03 using a k-nearest-neighbors (k-NN) model, outperforming guessing using empirical class prior probabilities (0.26 ±0.02). We present the first example of exploring trainable mechanisms to generate compact, slide-level representations in bone marrow cytology with deep learning. This method has the potential to summarize complex semantic information in WSIs toward improved diagnostics in hematology, and may eventually support AI-assisted computational pathology approaches.
ArticleNumber 107530
Author Mu, Youqing
Campbell, Clinton J.V.
Tizhoosh, H.R.
Dehkharghanian, Taher
Author_xml – sequence: 1
  givenname: Youqing
  orcidid: 0000-0002-4561-5514
  surname: Mu
  fullname: Mu, Youqing
  organization: University of Toronto, Toronto, Canada
– sequence: 2
  givenname: H.R.
  surname: Tizhoosh
  fullname: Tizhoosh, H.R.
  organization: Rhazes Lab, Artificial Intelligence & Informatics, Mayo Clinic, Rochester, MN, USA
– sequence: 3
  givenname: Taher
  orcidid: 0000-0002-4079-623X
  surname: Dehkharghanian
  fullname: Dehkharghanian, Taher
  organization: McMaster University, Hamilton, Canada
– sequence: 4
  givenname: Clinton J.V.
  orcidid: 0000-0002-8896-1134
  surname: Campbell
  fullname: Campbell, Clinton J.V.
  email: campbecj@mcmaster.ca
  organization: McMaster University, Hamilton, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37837726$$D View this record in MEDLINE/PubMed
BookMark eNqVkl2L1DAUhoOsuLOjf0EK3njTMR9tk9wsuotfsOCFipchk5yuGdOmJq1L_70p3VUYEMarA-E973nPk3OBzvrQA0IFwTuCSfPqsDOhG_YudGB3FFOWn3nN8CO0IYLLEtesOkMbjAkuK0Hrc3SR0gFjXGGGn6BzxgXjnDYbJL59Dx6K5J2FwnX6FooIQ4QE_ahHF_rC9cU-Ty86HWO4K8w8Bh9u56focat9gmf3dYu-vnv75fpDefPp_cfrNzelqZtqLK2ULUAjLG2ElgI3tSa4NZKTtuKSS9sKXNmm4gKspJTUmhlLGk4ANMtytkVy9Z36Qc932ns1xBw0zopgtdBQB_WXhlpoqJVG7n259g4x_JwgjapzyYD3uocwJUUF50yQmoosfXEkPYQp9nmzrBKMykbwJczze9W0X4Y9JHngmQWXq8DEkFKEVhm3chyjdv6UyOLI4D-2vVpbIX_HLwdRJeOgN2BdBDMqG9wpJpdHJsa73hntf8AM6Q8UohJVWH1eTmy5MMowljKXLXr9b4PTMvwGfgLjOA
CitedBy_id crossref_primary_10_46989_001c_124131
crossref_primary_10_3390_diagnostics15060677
crossref_primary_10_61186_ijbc_16_4_9
crossref_primary_10_3389_fonc_2024_1474155
Cites_doi 10.1111/j.1751-553X.2008.01100.x
10.1109/TMI.2013.2265334
10.1186/s13000-019-0921-2
10.1073/pnas.79.8.2554
10.1093/ajcp/aqy034
10.1038/s43856-022-00107-6
10.1016/j.leukres.2018.04.003
10.1093/bioinformatics/btad344
10.1007/s00277-014-2252-4
10.1016/j.patcog.2017.10.009
10.3126/jpn.v2i4.6885
10.1007/s10479-005-5724-z
10.1038/modpathol.3880295
10.1109/CVPR42600.2020.00307
10.1111/cyt.13178
10.1002/cac2.12012
10.1038/s41416-020-01122-x
10.1145/3328485
10.1016/j.acpath.2022.100030
10.1001/jamanetworkopen.2019.14645
10.1016/j.neucom.2021.03.091
10.2307/1403797
10.1186/s13073-021-00968-x
10.5858/arpa.2018-0343-RA
10.1038/s41746-020-0221-y
10.5858/arpa.2020-0723-CP
10.1109/CVPR.2015.7298682
10.1038/s41598-020-66333-x
10.1016/j.jpi.2023.100334
10.5858/133.1.124
10.1038/s41591-019-0508-1
10.1016/j.patcog.2019.05.011
10.1038/s42256-019-0052-1
10.1007/s00277-012-1565-4
10.1016/S0169-7439(00)00122-2
10.1016/j.ebiom.2020.103094
10.5858/arpa.2016-0108-RA
10.1038/s41551-020-00682-w
10.1038/s43856-021-00008-0
10.4103/jpi.jpi_69_18
10.1109/TMI.2018.2868977
10.1136/jclinpath-2017-204644
10.1111/bjh.13600
10.1109/CVPR52688.2022.01593
10.1002/cpt.1796
ContentType Journal Article
Copyright 2023 The Author(s)
The Author(s)
Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.
2023. The Author(s)
Copyright_xml – notice: 2023 The Author(s)
– notice: The Author(s)
– notice: Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.
– notice: 2023. The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
DOI 10.1016/j.compbiomed.2023.107530
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Research Library
ProQuest Biological Science
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Research Library Prep
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 107530
ExternalDocumentID 10.1016/j.compbiomed.2023.107530
37837726
10_1016_j_compbiomed_2023_107530
S0010482523009952
1_s2_0_S0010482523009952
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
AFCTW
AGRNS
ALIPV
RIG
3V.
6I.
AACTN
AAFTH
AFKWA
AJOXV
AMFUW
M0N
77I
AAYXX
ACLOT
CITATION
EFLBG
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c564t-d99fee68d268a98065a10fc971f47979df804d6478ed92215a3cd1671eea38063
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Tue Aug 19 19:25:33 EDT 2025
Sun Sep 28 00:00:51 EDT 2025
Sat Aug 23 12:22:25 EDT 2025
Mon Jul 21 05:55:02 EDT 2025
Wed Oct 01 04:08:00 EDT 2025
Thu Apr 24 23:06:19 EDT 2025
Sat Jan 18 16:09:16 EST 2025
Wed Jun 18 06:48:28 EDT 2025
Tue Aug 26 20:14:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Slide-level representations
Deep learning
Digital pathology
Cytology
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-d99fee68d268a98065a10fc971f47979df804d6478ed92215a3cd1671eea38063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8896-1134
0000-0002-4079-623X
0000-0002-4561-5514
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0010482523009952
PMID 37837726
PQID 2883296876
PQPubID 1226355
PageCount 1
ParticipantIDs unpaywall_primary_10_1016_j_compbiomed_2023_107530
proquest_miscellaneous_2877381528
proquest_journals_2883296876
pubmed_primary_37837726
crossref_citationtrail_10_1016_j_compbiomed_2023_107530
crossref_primary_10_1016_j_compbiomed_2023_107530
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_107530
elsevier_clinicalkeyesjournals_1_s2_0_S0010482523009952
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_107530
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Widrich, Schäfl, Pavlović, Ramsauer, Gruber, Holzleitner, Brandstetter, Sandve, Greiff, Hochreiter (b39) 2020; 33
Hoffer, Ailon (b57) 2015
Khoury, Solary, Abla, Akkari, Alaggio, Apperley, Bejar, Berti, Busque, Chan (b2) 2022
Xu (b76) 2019; 26
Fix, Hodges (b64) 1989; 57
Font, Loscertales, Benavente, Bermejo, Callejas, Garcia-Alonso, Garcia-Marcilla, Gil, Lopez-Rubio, Martin (b20) 2013; 92
Musgrave, Belongie, Lim (b54) 2020
Chen, Deng (b59) 2019; 93
Duan, Bai, Xie, Qi, Huang, Tian (b50) 2019
Font, Loscertales, Soto, Ricard, Novas, Martín-Clavero, López-Rubio, Garcia-Alonso, Callejas, Bermejo (b25) 2015; 94
Sasada, Yamamoto, Masuda, Tanaka, Ishihara, Takamatsu, Yatomi, Katsuda, Sato, Matsui (b19) 2018; 69
Y. Chen, S. Gong, L. Bazzani, Image search with text feedback by visiolinguistic attention learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 3001–3011.
Platzer, Dustdar (b62) 2005
Badillo, Banfai, Birzele, Davydov, Hutchinson, Kam-Thong, Siebourg-Polster, Steiert, Zhang (b11) 2020; 107
Sutton, Pincock, Baumgart, Sadowski, Fedorak, Kroeker (b10) 2020; 3
Tavolara, Niazi, Ginese, Piedra-Mora, Gatti, Beamer, Gurcan (b37) 2020; 62
Tran, Kondrashova, Bradley, Williams, Pearson, Waddell (b13) 2021; 13
van Tulder, de Bruijne (b29) 2018; 38
Parsons (b48) 2014
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b71) 2014; 15
Zhang, Chen, McGough, Xing, Wang, Bui, Xie, Sapkota, Cui, Dhillon (b26) 2019; 1
Evans, Brown, Bui, Chlipala, Lacchetti, Milner Jr., Pantanowitz, Parwani, Reid, Riben (b74) 2022; 146
Sohn (b58) 2016; 29
Miller, Karcher, Kaul (b18) 2022; 9
Mu, Tizhoosh, Tayebi, Ross, Sur, Leber, Campbell (b47) 2021; 1
Pudasaini, Prasad, Rauniyar, Shrestha, Gautam, Pathak, Koirala, Manandhar, Shrestha (b16) 2012; 2
Arber, Orazi, Hasserjian, Thiele, Borowitz, Le Beau, Bloomfield, Cazzola, Vardiman (b22) 2016; 127
Hestness, Narang, Ardalani, Diamos, Jun, Kianinejad, Patwary, Yang, Zhou (b73) 2017
Lee, Erber, Porwit, Tomonaga, Peterson, Hematology (b68) 2008; 30
Wang, Huang, Khalil, Hong, Meng, Lee (b46) 2023
Ramsauer, Schäfl, Lehner, Seidl, Widrich, Adler, Gruber, Holzleitner, Pavlović, Sandve (b52) 2020
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b53) 2017; 30
Nagpal, Foote, Liu, Chen, Wulczyn, Tan, Olson, Smith, Mohtashamian, Wren (b30) 2019; 2
Das, Conjeti, Roy, Chatterjee, Sheet (b32) 2018
Zarella, Bowman, Aeffner, Farahani, Xthona, Absar, Parwani, Bui, Hartman (b8) 2019; 143
Abdulrahman, Patel, Yang, Koch, Sivers, Smith, Jaye (b67) 2018; 150
Yang, Jin (b55) 2006
M. Li, R. Xu, S. Wang, L. Zhou, X. Lin, C. Zhu, M. Zeng, H. Ji, S.-F. Chang, Clip-event: Connecting text and images with event structures, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16420–16429.
Williams, Bottoms, Treanor (b7) 2017; 70
Niu, Zhong, Yu (b42) 2021; 452
Jiang, Yang, Wang, Li, Sun (b14) 2020; 40
Pantanowitz, Sharma, Carter, Kurc, Sussman, Saltz (b9) 2018; 9
Campanella, Hanna, Geneslaw, Miraflor, Werneck Krauss Silva, Busam, Brogi, Reuter, Klimstra, Fuchs (b35) 2019; 25
Raskin, Messick (b44) 2012; 42
Tayebi, Mu, Dehkharghanian, Ross, Sur, Foley, Tizhoosh, Campbell (b23) 2022; 2
Tomita, Abdollahi, Wei, Ren, Suriawinata, Hassanpour (b38) 2019; 2
Hopfield (b51) 1982; 79
Li, Yuan, Xu, Cheng, Wen (b40) 2020
Rosai (b4) 2001; 14
Bain, Ahmad (b69) 2015; 171
Wang, Perez (b72) 2017; 11
Khosla, Teterwak, Wang, Sarna, Tian, Isola, Maschinot, Liu, Krishnan (b60) 2020; 33
Gilotra, Gupta, Singh, Sen (b45) 2017; 9
Pena, Andrade-Filho (b1) 2009; 133
Shao, Bian, Chen, Wang, Zhang, Ji (b41) 2021; 34
F. Schroff, D. Kalenichenko, J. Philbin, Facenet: A unified embedding for face recognition and clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–823.
Parwani (b6) 2019; 14
Lu, Williamson, Chen, Chen, Barbieri, Mahmood (b43) 2021; 5
Gorelick, Veksler, Gaed, Gómez, Moussa, Bauman, Fenster, Ward (b31) 2013; 32
Combalia, Vilaplana (b33) 2018
Carbonneau, Cheplygina, Granger, Gagnon (b34) 2018; 77
Tian, Killian, Rekhtman, Benayed, Middha, Ladanyi, Lin, Arcila (b17) 2016; 140
De Boer, Kroese, Mannor, Rubinstein (b61) 2005; 134
Antonini, Santonicco, Pantanowitz, Girolami, Rizzo, Brunelli, Bellevicine, Vigliar, Negri, Troncone (b75) 2023; 34
Naqvi, Jabbour, Bueso-Ramos, Pierce, Borthakur, Estrov, Ravandi, Faderl, Kantarjian, Garcia-Manero (b21) 2011; 118
Dehkharghanian, Mu, Ross, Sur, Tizhoosh, Campbell (b70) 2023
Bochkovskiy, Wang, Liao (b49) 2020
Echle, Rindtorff, Brinker, Luedde, Pearson, Kather (b12) 2021; 124
Audebert, Herold, Slimani, Vidal (b27) 2019
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b65) 2011; 12
Musgrave, Belongie, Lim (b63) 2020
Xu, Liang (b66) 2001; 56
Kanavati, Toyokawa, Momosaki, Rambeau, Kozuma, Shoji, Yamazaki, Takeo, Iizuka, Tsuneki (b36) 2020; 10
Alaggio, Amador, Anagnostopoulos, Attygalle, Araujo, Berti, Bhagat, Borges, Boyer, Calaminici (b3) 2022
Ridgeway, Tinsley, Kurtin (b24) 2017; 8
Steiner, Chen, Mermel (b5) 2021; 1875
Kumar, Gupta, Singla, Hu (b15) 2021
Tran (10.1016/j.compbiomed.2023.107530_b13) 2021; 13
Raskin (10.1016/j.compbiomed.2023.107530_b44) 2012; 42
10.1016/j.compbiomed.2023.107530_b77
Fix (10.1016/j.compbiomed.2023.107530_b64) 1989; 57
Xu (10.1016/j.compbiomed.2023.107530_b76) 2019; 26
Alaggio (10.1016/j.compbiomed.2023.107530_b3) 2022
Lu (10.1016/j.compbiomed.2023.107530_b43) 2021; 5
Hestness (10.1016/j.compbiomed.2023.107530_b73) 2017
Pantanowitz (10.1016/j.compbiomed.2023.107530_b9) 2018; 9
Abdulrahman (10.1016/j.compbiomed.2023.107530_b67) 2018; 150
Wang (10.1016/j.compbiomed.2023.107530_b46) 2023
Platzer (10.1016/j.compbiomed.2023.107530_b62) 2005
Steiner (10.1016/j.compbiomed.2023.107530_b5) 2021; 1875
Musgrave (10.1016/j.compbiomed.2023.107530_b63) 2020
Audebert (10.1016/j.compbiomed.2023.107530_b27) 2019
Srivastava (10.1016/j.compbiomed.2023.107530_b71) 2014; 15
Arber (10.1016/j.compbiomed.2023.107530_b22) 2016; 127
Duan (10.1016/j.compbiomed.2023.107530_b50) 2019
Ridgeway (10.1016/j.compbiomed.2023.107530_b24) 2017; 8
Parwani (10.1016/j.compbiomed.2023.107530_b6) 2019; 14
10.1016/j.compbiomed.2023.107530_b28
Zhang (10.1016/j.compbiomed.2023.107530_b26) 2019; 1
Das (10.1016/j.compbiomed.2023.107530_b32) 2018
Yang (10.1016/j.compbiomed.2023.107530_b55) 2006
Hoffer (10.1016/j.compbiomed.2023.107530_b57) 2015
Nagpal (10.1016/j.compbiomed.2023.107530_b30) 2019; 2
Bain (10.1016/j.compbiomed.2023.107530_b69) 2015; 171
Miller (10.1016/j.compbiomed.2023.107530_b18) 2022; 9
Combalia (10.1016/j.compbiomed.2023.107530_b33) 2018
Williams (10.1016/j.compbiomed.2023.107530_b7) 2017; 70
Chen (10.1016/j.compbiomed.2023.107530_b59) 2019; 93
Kumar (10.1016/j.compbiomed.2023.107530_b15) 2021
Vaswani (10.1016/j.compbiomed.2023.107530_b53) 2017; 30
Tomita (10.1016/j.compbiomed.2023.107530_b38) 2019; 2
Khosla (10.1016/j.compbiomed.2023.107530_b60) 2020; 33
Pudasaini (10.1016/j.compbiomed.2023.107530_b16) 2012; 2
Xu (10.1016/j.compbiomed.2023.107530_b66) 2001; 56
Wang (10.1016/j.compbiomed.2023.107530_b72) 2017; 11
Font (10.1016/j.compbiomed.2023.107530_b25) 2015; 94
Musgrave (10.1016/j.compbiomed.2023.107530_b54) 2020
Parsons (10.1016/j.compbiomed.2023.107530_b48) 2014
Echle (10.1016/j.compbiomed.2023.107530_b12) 2021; 124
Niu (10.1016/j.compbiomed.2023.107530_b42) 2021; 452
Ramsauer (10.1016/j.compbiomed.2023.107530_b52) 2020
10.1016/j.compbiomed.2023.107530_b56
Lee (10.1016/j.compbiomed.2023.107530_b68) 2008; 30
Khoury (10.1016/j.compbiomed.2023.107530_b2) 2022
Dehkharghanian (10.1016/j.compbiomed.2023.107530_b70) 2023
Sasada (10.1016/j.compbiomed.2023.107530_b19) 2018; 69
Campanella (10.1016/j.compbiomed.2023.107530_b35) 2019; 25
Font (10.1016/j.compbiomed.2023.107530_b20) 2013; 92
Tavolara (10.1016/j.compbiomed.2023.107530_b37) 2020; 62
Zarella (10.1016/j.compbiomed.2023.107530_b8) 2019; 143
Mu (10.1016/j.compbiomed.2023.107530_b47) 2021; 1
Jiang (10.1016/j.compbiomed.2023.107530_b14) 2020; 40
Gilotra (10.1016/j.compbiomed.2023.107530_b45) 2017; 9
Badillo (10.1016/j.compbiomed.2023.107530_b11) 2020; 107
Kanavati (10.1016/j.compbiomed.2023.107530_b36) 2020; 10
Li (10.1016/j.compbiomed.2023.107530_b40) 2020
Gorelick (10.1016/j.compbiomed.2023.107530_b31) 2013; 32
Sutton (10.1016/j.compbiomed.2023.107530_b10) 2020; 3
Bochkovskiy (10.1016/j.compbiomed.2023.107530_b49) 2020
Tian (10.1016/j.compbiomed.2023.107530_b17) 2016; 140
Rosai (10.1016/j.compbiomed.2023.107530_b4) 2001; 14
Hopfield (10.1016/j.compbiomed.2023.107530_b51) 1982; 79
De Boer (10.1016/j.compbiomed.2023.107530_b61) 2005; 134
Widrich (10.1016/j.compbiomed.2023.107530_b39) 2020; 33
Naqvi (10.1016/j.compbiomed.2023.107530_b21) 2011; 118
Pedregosa (10.1016/j.compbiomed.2023.107530_b65) 2011; 12
van Tulder (10.1016/j.compbiomed.2023.107530_b29) 2018; 38
Pena (10.1016/j.compbiomed.2023.107530_b1) 2009; 133
Antonini (10.1016/j.compbiomed.2023.107530_b75) 2023; 34
Tayebi (10.1016/j.compbiomed.2023.107530_b23) 2022; 2
Shao (10.1016/j.compbiomed.2023.107530_b41) 2021; 34
Evans (10.1016/j.compbiomed.2023.107530_b74) 2022; 146
Carbonneau (10.1016/j.compbiomed.2023.107530_b34) 2018; 77
Sohn (10.1016/j.compbiomed.2023.107530_b58) 2016; 29
References_xml – reference: F. Schroff, D. Kalenichenko, J. Philbin, Facenet: A unified embedding for face recognition and clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–823.
– volume: 9
  start-page: 182
  year: 2017
  end-page: 189
  ident: b45
  article-title: Comparison of bone marrow aspiration cytology with bone marrow trephine biopsy histopathology: An observational study
  publication-title: J. Lab. Phys.
– volume: 14
  start-page: 258
  year: 2001
  end-page: 260
  ident: b4
  article-title: The continuing role of morphology in the molecular age
  publication-title: Mod. Pathol.
– volume: 32
  start-page: 1804
  year: 2013
  end-page: 1818
  ident: b31
  article-title: Prostate histopathology: Learning tissue component histograms for cancer detection and classification
  publication-title: IEEE Trans. Med. Imaging
– year: 2019
  ident: b50
  article-title: CenterNet: Keypoint triplets for object detection
– volume: 69
  start-page: 54
  year: 2018
  end-page: 59
  ident: b19
  article-title: Inter-observer variance and the need for standardization in the morphological classification of myelodysplastic syndrome
  publication-title: Leuk. Res.
– volume: 77
  start-page: 329
  year: 2018
  end-page: 353
  ident: b34
  article-title: Multiple instance learning: A survey of problem characteristics and applications
  publication-title: Pattern Recognit.
– volume: 118
  start-page: 4690
  year: 2011
  end-page: 4693
  ident: b21
  article-title: Implications of discrepancy in morphologic diagnosis of myelodysplastic syndrome between referral and tertiary care centers
  publication-title: Blood J. Am. Soc. Hematol.
– volume: 70
  start-page: 1010
  year: 2017
  end-page: 1018
  ident: b7
  article-title: Future-proofing pathology: the case for clinical adoption of digital pathology
  publication-title: J. Clin. Pathol.
– volume: 94
  start-page: 565
  year: 2015
  end-page: 573
  ident: b25
  article-title: Interobserver variance in myelodysplastic syndromes with less than 5% bone marrow blasts: unilineage vs. multilineage dysplasia and reproducibility of the threshold of 2% blasts
  publication-title: Ann. Hematol.
– volume: 33
  start-page: 18661
  year: 2020
  end-page: 18673
  ident: b60
  article-title: Supervised contrastive learning
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Y. Chen, S. Gong, L. Bazzani, Image search with text feedback by visiolinguistic attention learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 3001–3011.
– volume: 26
  start-page: 42
  year: 2019
  end-page: 46
  ident: b76
  article-title: Toward human-centered AI: a perspective from human-computer interaction
  publication-title: Interactions
– volume: 93
  start-page: 353
  year: 2019
  end-page: 364
  ident: b59
  article-title: Deep embedding learning with adaptive large margin N-pair loss for image retrieval and clustering
  publication-title: Pattern Recognit.
– volume: 30
  start-page: 349
  year: 2008
  end-page: 364
  ident: b68
  article-title: ICSH guidelines for the standardization of bone marrow specimens and reports
  publication-title: Int. J. Lab. Hematol.
– volume: 5
  start-page: 555
  year: 2021
  end-page: 570
  ident: b43
  article-title: Data-efficient and weakly supervised computational pathology on whole-slide images
  publication-title: Nat. Biomed. Eng.
– volume: 124
  start-page: 686
  year: 2021
  end-page: 696
  ident: b12
  article-title: Deep learning in cancer pathology: a new generation of clinical biomarkers
  publication-title: Br. J. Cancer
– volume: 146
  start-page: 440
  year: 2022
  end-page: 450
  ident: b74
  article-title: Validating whole slide imaging systems for diagnostic purposes in pathology: guideline update from the college of American pathologists in collaboration with the American society for clinical pathology and the association for pathology informatics
  publication-title: Arch. Pathol. Lab. Med.
– volume: 34
  start-page: 5
  year: 2023
  end-page: 14
  ident: b75
  article-title: Relevance of the college of American Pathologists guideline for validating whole slide imaging for diagnostic purposes to cytopathology
  publication-title: Cytopathology
– start-page: 427
  year: 2019
  end-page: 443
  ident: b27
  article-title: Multimodal deep networks for text and image-based document classification
  publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases
– volume: 134
  start-page: 19
  year: 2005
  end-page: 67
  ident: b61
  article-title: A tutorial on the cross-entropy method
  publication-title: Ann. Oper. Res.
– volume: 11
  start-page: 1
  year: 2017
  end-page: 8
  ident: b72
  article-title: The effectiveness of data augmentation in image classification using deep learning
  publication-title: Convolutional Neural Netw. Vis. Recognit.
– year: 2023
  ident: b70
  article-title: Cell projection plots: a novel visualization of bone marrow aspirate cytology
  publication-title: J. Pathol. Inform.
– start-page: 446
  year: 2020
  end-page: 450
  ident: b40
  article-title: Deep multi-instance learning with induced self-attention for medical image classification
  publication-title: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– volume: 452
  start-page: 48
  year: 2021
  end-page: 62
  ident: b42
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
– year: 2020
  ident: b49
  article-title: YOLOv4: Optimal speed and accuracy of object detection
– volume: 40
  start-page: 154
  year: 2020
  end-page: 166
  ident: b14
  article-title: Emerging role of deep learning-based artificial intelligence in tumor pathology
  publication-title: Cancer Commun.
– volume: 56
  start-page: 1
  year: 2001
  end-page: 11
  ident: b66
  article-title: Monte Carlo cross validation
  publication-title: Chemometr. Intell. Lab. Syst.
– start-page: 1
  year: 2014
  end-page: 11
  ident: b48
  article-title: Stratified sampling
  publication-title: Wiley StatsRef: Stat. Ref. Online
– start-page: 681
  year: 2020
  end-page: 699
  ident: b63
  article-title: A metric learning reality check
  publication-title: European Conference on Computer Vision
– year: 2017
  ident: b73
  article-title: Deep learning scaling is predictable, empirically
– volume: 10
  start-page: 1
  year: 2020
  end-page: 11
  ident: b36
  article-title: Weakly-supervised learning for lung carcinoma classification using deep learning
  publication-title: Sci. Rep.
– start-page: 1
  year: 2022
  end-page: 29
  ident: b3
  article-title: The 5th edition of the world health organization classification of haematolymphoid tumours: lymphoid neoplasms
  publication-title: Leukemia
– volume: 30
  year: 2017
  ident: b53
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 150
  start-page: 84
  year: 2018
  end-page: 91
  ident: b67
  article-title: Is a 500-cell count necessary for bone marrow differentials? A proposed analytical method for validating a lower cutoff
  publication-title: Am. J. Clin. Pathol.
– start-page: 1
  year: 2022
  end-page: 17
  ident: b2
  article-title: The 5th edition of the world health organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms
  publication-title: Leukemia
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b65
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 40
  year: 2018
  ident: b9
  article-title: Twenty years of digital pathology: an overview of the road travelled, what is on the horizon, and the emergence of vendor-neutral archives
  publication-title: J. Pathol. Inform.
– volume: 143
  start-page: 222
  year: 2019
  end-page: 234
  ident: b8
  article-title: A practical guide to whole slide imaging: a white paper from the digital pathology association
  publication-title: Arch. Pathol. Lab. Med.
– volume: 62
  year: 2020
  ident: b37
  article-title: Automatic discovery of clinically interpretable imaging biomarkers for mycobacterium tuberculosis supersusceptibility using deep learning
  publication-title: EBioMedicine
– volume: 3
  start-page: 1
  year: 2020
  end-page: 10
  ident: b10
  article-title: An overview of clinical decision support systems: benefits, risks, and strategies for success
  publication-title: NPJ Digit. Med.
– year: 2020
  ident: b54
  article-title: PyTorch metric learning
– volume: 2
  start-page: 309
  year: 2012
  end-page: 312
  ident: b16
  article-title: Interpretation of bone marrow aspiration in hematological disorder
  publication-title: J. Pathol. Nepal
– volume: 38
  start-page: 638
  year: 2018
  end-page: 648
  ident: b29
  article-title: Learning cross-modality representations from multi-modal images
  publication-title: IEEE Trans. Med. Imaging
– start-page: 4
  year: 2006
  ident: b55
  article-title: Distance Metric Learning: A Comprehensive Survey, Vol. 2
– reference: M. Li, R. Xu, S. Wang, L. Zhou, X. Lin, C. Zhu, M. Zeng, H. Ji, S.-F. Chang, Clip-event: Connecting text and images with event structures, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16420–16429.
– volume: 1
  start-page: 236
  year: 2019
  end-page: 245
  ident: b26
  article-title: Pathologist-level interpretable whole-slide cancer diagnosis with deep learning
  publication-title: Nat. Mach. Intell.
– volume: 1875
  year: 2021
  ident: b5
  article-title: Closing the translation gap: AI applications in digital pathology
  publication-title: Biochim. Biophys. Acta (BBA)-Rev. Cancer
– volume: 2
  start-page: 1
  year: 2022
  end-page: 14
  ident: b23
  article-title: Automated bone marrow cytology using deep learning to generate a histogram of cell types
  publication-title: Commun. Med.
– volume: 133
  start-page: 124
  year: 2009
  end-page: 132
  ident: b1
  article-title: How does a pathologist make a diagnosis?
  publication-title: Arch. Pathol. Lab. Med.
– volume: 107
  start-page: 871
  year: 2020
  end-page: 885
  ident: b11
  article-title: An introduction to machine learning
  publication-title: Clin. Pharmacol. Therapeutics
– volume: 8
  start-page: 29
  year: 2017
  ident: b24
  article-title: Practical guide to bone marrow sampling for suspected myelodysplastic syndromes
  publication-title: J. Adv. Practitioner Oncol.
– volume: 79
  start-page: 2554
  year: 1982
  end-page: 2558
  ident: b51
  article-title: Neural networks and physical systems with emergent collective computational abilities.
  publication-title: Proc. Natl. Acad. Sci.
– volume: 34
  start-page: 2136
  year: 2021
  end-page: 2147
  ident: b41
  article-title: Transmil: Transformer based correlated multiple instance learning for whole slide image classification
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: b52
  article-title: Hopfield networks is all you need
– volume: 33
  start-page: 18832
  year: 2020
  end-page: 18845
  ident: b39
  article-title: Modern hopfield networks and attention for immune repertoire classification
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 14
  start-page: 1
  year: 2019
  ident: b6
  article-title: Next generation diagnostic pathology: use of digital pathology and artificial intelligence tools to augment a pathological diagnosis
  publication-title: Diagn. Pathol.
– start-page: 84
  year: 2015
  end-page: 92
  ident: b57
  article-title: Deep metric learning using triplet network
  publication-title: International Workshop on Similarity-Based Pattern Recognition
– volume: 92
  start-page: 19
  year: 2013
  end-page: 24
  ident: b20
  article-title: Inter-observer variance with the diagnosis of myelodysplastic syndromes (MDS) following the 2008 WHO classification
  publication-title: Ann. Hematol.
– start-page: 274
  year: 2018
  end-page: 281
  ident: b33
  article-title: Monte-Carlo sampling applied to multiple instance learning for histological image classification
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b71
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2021
  end-page: 28
  ident: b15
  article-title: A systematic review of artificial intelligence techniques in cancer prediction and diagnosis
  publication-title: Arch. Comput. Methods Eng.
– start-page: btad344
  year: 2023
  ident: b46
  article-title: CW-NET for multi-type cell detection and classification in bone marrow examination and mitotic figure examination
  publication-title: Bioinformatics
– volume: 2
  start-page: 1
  year: 2019
  end-page: 10
  ident: b30
  article-title: Development and validation of a deep learning algorithm for improving gleason scoring of prostate cancer
  publication-title: NPJ Digit. Med.
– volume: 140
  start-page: 1200
  year: 2016
  end-page: 1205
  ident: b17
  article-title: Optimizing workflows and processing of cytologic samples for comprehensive analysis by next-generation sequencing: Memorial sloan kettering cancer center experience
  publication-title: Arch. Pathol. Lab. Med.
– volume: 42
  start-page: 23
  year: 2012
  end-page: 42
  ident: b44
  article-title: Bone marrow cytologic and histologic biopsies: indications, technique, and evaluation
  publication-title: Vet. Clin.: Small Anim. Pract.
– start-page: 578
  year: 2018
  end-page: 581
  ident: b32
  article-title: Multiple instance learning of deep convolutional neural networks for breast histopathology whole slide classification
  publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
– volume: 57
  start-page: 238
  year: 1989
  end-page: 247
  ident: b64
  article-title: Discriminatory analysis. Nonparametric discrimination: Consistency properties
  publication-title: Int. Stat. Rev./Rev. Int. Stat.
– volume: 25
  start-page: 1301
  year: 2019
  end-page: 1309
  ident: b35
  article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
  publication-title: Nat. Med.
– volume: 171
  start-page: 400
  year: 2015
  end-page: 410
  ident: b69
  article-title: Chronic neutrophilic leukaemia and plasma cell-related neutrophilic leukaemoid reactions
  publication-title: Br. J. Haematol.
– volume: 2
  year: 2019
  ident: b38
  article-title: Attention-based deep neural networks for detection of cancerous and precancerous esophagus tissue on histopathological slides
  publication-title: JAMA Netw. Open
– start-page: 9
  year: 2005
  end-page: pp
  ident: b62
  article-title: A vector space search engine for web services
  publication-title: Third European Conference on Web Services (ECOWS’05)
– volume: 13
  start-page: 1
  year: 2021
  end-page: 17
  ident: b13
  article-title: Deep learning in cancer diagnosis, prognosis and treatment selection
  publication-title: Genome Med.
– volume: 9
  year: 2022
  ident: b18
  article-title: The crisis in the pathology subspecialty fellowship application process: historical background and setting the stage
  publication-title: Acad. Pathol.
– volume: 127
  start-page: 2391
  year: 2016
  end-page: 2405
  ident: b22
  article-title: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
  publication-title: Blood J. Am. Soc. Hematol.
– volume: 29
  year: 2016
  ident: b58
  article-title: Improved deep metric learning with multi-class n-pair loss objective
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1
  start-page: 1
  year: 2021
  end-page: 13
  ident: b47
  article-title: A BERT model generates diagnostically relevant semantic embeddings from pathology synopses with active learning
  publication-title: Commun. Med.
– volume: 30
  start-page: 349
  issue: 5
  year: 2008
  ident: 10.1016/j.compbiomed.2023.107530_b68
  article-title: ICSH guidelines for the standardization of bone marrow specimens and reports
  publication-title: Int. J. Lab. Hematol.
  doi: 10.1111/j.1751-553X.2008.01100.x
– volume: 30
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107530_b53
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: 10.1016/j.compbiomed.2023.107530_b49
– start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107530_b15
  article-title: A systematic review of artificial intelligence techniques in cancer prediction and diagnosis
  publication-title: Arch. Comput. Methods Eng.
– volume: 32
  start-page: 1804
  issue: 10
  year: 2013
  ident: 10.1016/j.compbiomed.2023.107530_b31
  article-title: Prostate histopathology: Learning tissue component histograms for cancer detection and classification
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2265334
– volume: 14
  start-page: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107530_b6
  article-title: Next generation diagnostic pathology: use of digital pathology and artificial intelligence tools to augment a pathological diagnosis
  publication-title: Diagn. Pathol.
  doi: 10.1186/s13000-019-0921-2
– volume: 127
  start-page: 2391
  issue: 20
  year: 2016
  ident: 10.1016/j.compbiomed.2023.107530_b22
  article-title: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
  publication-title: Blood J. Am. Soc. Hematol.
– start-page: 427
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107530_b27
  article-title: Multimodal deep networks for text and image-based document classification
– year: 2019
  ident: 10.1016/j.compbiomed.2023.107530_b50
– volume: 79
  start-page: 2554
  issue: 8
  year: 1982
  ident: 10.1016/j.compbiomed.2023.107530_b51
  article-title: Neural networks and physical systems with emergent collective computational abilities.
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.79.8.2554
– volume: 150
  start-page: 84
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107530_b67
  article-title: Is a 500-cell count necessary for bone marrow differentials? A proposed analytical method for validating a lower cutoff
  publication-title: Am. J. Clin. Pathol.
  doi: 10.1093/ajcp/aqy034
– volume: 2
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107530_b23
  article-title: Automated bone marrow cytology using deep learning to generate a histogram of cell types
  publication-title: Commun. Med.
  doi: 10.1038/s43856-022-00107-6
– volume: 69
  start-page: 54
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107530_b19
  article-title: Inter-observer variance and the need for standardization in the morphological classification of myelodysplastic syndrome
  publication-title: Leuk. Res.
  doi: 10.1016/j.leukres.2018.04.003
– start-page: btad344
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107530_b46
  article-title: CW-NET for multi-type cell detection and classification in bone marrow examination and mitotic figure examination
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad344
– start-page: 84
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107530_b57
  article-title: Deep metric learning using triplet network
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2023.107530_b71
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 33
  start-page: 18832
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107530_b39
  article-title: Modern hopfield networks and attention for immune repertoire classification
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 94
  start-page: 565
  issue: 4
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107530_b25
  article-title: Interobserver variance in myelodysplastic syndromes with less than 5% bone marrow blasts: unilineage vs. multilineage dysplasia and reproducibility of the threshold of 2% blasts
  publication-title: Ann. Hematol.
  doi: 10.1007/s00277-014-2252-4
– volume: 77
  start-page: 329
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107530_b34
  article-title: Multiple instance learning: A survey of problem characteristics and applications
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.009
– volume: 118
  start-page: 4690
  issue: 17
  year: 2011
  ident: 10.1016/j.compbiomed.2023.107530_b21
  article-title: Implications of discrepancy in morphologic diagnosis of myelodysplastic syndrome between referral and tertiary care centers
  publication-title: Blood J. Am. Soc. Hematol.
– volume: 2
  start-page: 309
  issue: 4
  year: 2012
  ident: 10.1016/j.compbiomed.2023.107530_b16
  article-title: Interpretation of bone marrow aspiration in hematological disorder
  publication-title: J. Pathol. Nepal
  doi: 10.3126/jpn.v2i4.6885
– volume: 134
  start-page: 19
  issue: 1
  year: 2005
  ident: 10.1016/j.compbiomed.2023.107530_b61
  article-title: A tutorial on the cross-entropy method
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-005-5724-z
– start-page: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107530_b2
  article-title: The 5th edition of the world health organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms
  publication-title: Leukemia
– volume: 14
  start-page: 258
  issue: 3
  year: 2001
  ident: 10.1016/j.compbiomed.2023.107530_b4
  article-title: The continuing role of morphology in the molecular age
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.3880295
– ident: 10.1016/j.compbiomed.2023.107530_b28
  doi: 10.1109/CVPR42600.2020.00307
– volume: 34
  start-page: 5
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107530_b75
  article-title: Relevance of the college of American Pathologists guideline for validating whole slide imaging for diagnostic purposes to cytopathology
  publication-title: Cytopathology
  doi: 10.1111/cyt.13178
– volume: 11
  start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107530_b72
  article-title: The effectiveness of data augmentation in image classification using deep learning
  publication-title: Convolutional Neural Netw. Vis. Recognit.
– volume: 40
  start-page: 154
  issue: 4
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107530_b14
  article-title: Emerging role of deep learning-based artificial intelligence in tumor pathology
  publication-title: Cancer Commun.
  doi: 10.1002/cac2.12012
– volume: 124
  start-page: 686
  issue: 4
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107530_b12
  article-title: Deep learning in cancer pathology: a new generation of clinical biomarkers
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-020-01122-x
– year: 2020
  ident: 10.1016/j.compbiomed.2023.107530_b54
– volume: 26
  start-page: 42
  issue: 4
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107530_b76
  article-title: Toward human-centered AI: a perspective from human-computer interaction
  publication-title: Interactions
  doi: 10.1145/3328485
– start-page: 9
  year: 2005
  ident: 10.1016/j.compbiomed.2023.107530_b62
  article-title: A vector space search engine for web services
– start-page: 446
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107530_b40
  article-title: Deep multi-instance learning with induced self-attention for medical image classification
– year: 2020
  ident: 10.1016/j.compbiomed.2023.107530_b52
– volume: 9
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107530_b18
  article-title: The crisis in the pathology subspecialty fellowship application process: historical background and setting the stage
  publication-title: Acad. Pathol.
  doi: 10.1016/j.acpath.2022.100030
– volume: 2
  issue: 11
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107530_b38
  article-title: Attention-based deep neural networks for detection of cancerous and precancerous esophagus tissue on histopathological slides
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2019.14645
– volume: 452
  start-page: 48
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107530_b42
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
– volume: 8
  start-page: 29
  issue: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107530_b24
  article-title: Practical guide to bone marrow sampling for suspected myelodysplastic syndromes
  publication-title: J. Adv. Practitioner Oncol.
– volume: 29
  year: 2016
  ident: 10.1016/j.compbiomed.2023.107530_b58
  article-title: Improved deep metric learning with multi-class n-pair loss objective
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 57
  start-page: 238
  issue: 3
  year: 1989
  ident: 10.1016/j.compbiomed.2023.107530_b64
  article-title: Discriminatory analysis. Nonparametric discrimination: Consistency properties
  publication-title: Int. Stat. Rev./Rev. Int. Stat.
  doi: 10.2307/1403797
– volume: 13
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107530_b13
  article-title: Deep learning in cancer diagnosis, prognosis and treatment selection
  publication-title: Genome Med.
  doi: 10.1186/s13073-021-00968-x
– volume: 143
  start-page: 222
  issue: 2
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107530_b8
  article-title: A practical guide to whole slide imaging: a white paper from the digital pathology association
  publication-title: Arch. Pathol. Lab. Med.
  doi: 10.5858/arpa.2018-0343-RA
– start-page: 681
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107530_b63
  article-title: A metric learning reality check
– volume: 3
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107530_b10
  article-title: An overview of clinical decision support systems: benefits, risks, and strategies for success
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-020-0221-y
– volume: 2
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107530_b30
  article-title: Development and validation of a deep learning algorithm for improving gleason scoring of prostate cancer
  publication-title: NPJ Digit. Med.
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.compbiomed.2023.107530_b65
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 146
  start-page: 440
  issue: 4
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107530_b74
  article-title: Validating whole slide imaging systems for diagnostic purposes in pathology: guideline update from the college of American pathologists in collaboration with the American society for clinical pathology and the association for pathology informatics
  publication-title: Arch. Pathol. Lab. Med.
  doi: 10.5858/arpa.2020-0723-CP
– ident: 10.1016/j.compbiomed.2023.107530_b56
  doi: 10.1109/CVPR.2015.7298682
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107530_b36
  article-title: Weakly-supervised learning for lung carcinoma classification using deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-66333-x
– year: 2023
  ident: 10.1016/j.compbiomed.2023.107530_b70
  article-title: Cell projection plots: a novel visualization of bone marrow aspirate cytology
  publication-title: J. Pathol. Inform.
  doi: 10.1016/j.jpi.2023.100334
– year: 2017
  ident: 10.1016/j.compbiomed.2023.107530_b73
– volume: 133
  start-page: 124
  issue: 1
  year: 2009
  ident: 10.1016/j.compbiomed.2023.107530_b1
  article-title: How does a pathologist make a diagnosis?
  publication-title: Arch. Pathol. Lab. Med.
  doi: 10.5858/133.1.124
– volume: 25
  start-page: 1301
  issue: 8
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107530_b35
  article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0508-1
– start-page: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2023.107530_b48
  article-title: Stratified sampling
  publication-title: Wiley StatsRef: Stat. Ref. Online
– start-page: 4
  year: 2006
  ident: 10.1016/j.compbiomed.2023.107530_b55
– volume: 33
  start-page: 18661
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107530_b60
  article-title: Supervised contrastive learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 93
  start-page: 353
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107530_b59
  article-title: Deep embedding learning with adaptive large margin N-pair loss for image retrieval and clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.05.011
– volume: 1
  start-page: 236
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107530_b26
  article-title: Pathologist-level interpretable whole-slide cancer diagnosis with deep learning
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0052-1
– volume: 42
  start-page: 23
  issue: 1
  year: 2012
  ident: 10.1016/j.compbiomed.2023.107530_b44
  article-title: Bone marrow cytologic and histologic biopsies: indications, technique, and evaluation
  publication-title: Vet. Clin.: Small Anim. Pract.
– start-page: 578
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107530_b32
  article-title: Multiple instance learning of deep convolutional neural networks for breast histopathology whole slide classification
– start-page: 274
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107530_b33
  article-title: Monte-Carlo sampling applied to multiple instance learning for histological image classification
– volume: 92
  start-page: 19
  issue: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2023.107530_b20
  article-title: Inter-observer variance with the diagnosis of myelodysplastic syndromes (MDS) following the 2008 WHO classification
  publication-title: Ann. Hematol.
  doi: 10.1007/s00277-012-1565-4
– volume: 56
  start-page: 1
  issue: 1
  year: 2001
  ident: 10.1016/j.compbiomed.2023.107530_b66
  article-title: Monte Carlo cross validation
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(00)00122-2
– volume: 1875
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107530_b5
  article-title: Closing the translation gap: AI applications in digital pathology
  publication-title: Biochim. Biophys. Acta (BBA)-Rev. Cancer
– volume: 62
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107530_b37
  article-title: Automatic discovery of clinically interpretable imaging biomarkers for mycobacterium tuberculosis supersusceptibility using deep learning
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2020.103094
– volume: 140
  start-page: 1200
  issue: 11
  year: 2016
  ident: 10.1016/j.compbiomed.2023.107530_b17
  article-title: Optimizing workflows and processing of cytologic samples for comprehensive analysis by next-generation sequencing: Memorial sloan kettering cancer center experience
  publication-title: Arch. Pathol. Lab. Med.
  doi: 10.5858/arpa.2016-0108-RA
– volume: 5
  start-page: 555
  issue: 6
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107530_b43
  article-title: Data-efficient and weakly supervised computational pathology on whole-slide images
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-020-00682-w
– start-page: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107530_b3
  article-title: The 5th edition of the world health organization classification of haematolymphoid tumours: lymphoid neoplasms
  publication-title: Leukemia
– volume: 34
  start-page: 2136
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107530_b41
  article-title: Transmil: Transformer based correlated multiple instance learning for whole slide image classification
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 182
  issue: 03
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107530_b45
  article-title: Comparison of bone marrow aspiration cytology with bone marrow trephine biopsy histopathology: An observational study
  publication-title: J. Lab. Phys.
– volume: 1
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107530_b47
  article-title: A BERT model generates diagnostically relevant semantic embeddings from pathology synopses with active learning
  publication-title: Commun. Med.
  doi: 10.1038/s43856-021-00008-0
– volume: 9
  start-page: 40
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107530_b9
  article-title: Twenty years of digital pathology: an overview of the road travelled, what is on the horizon, and the emergence of vendor-neutral archives
  publication-title: J. Pathol. Inform.
  doi: 10.4103/jpi.jpi_69_18
– volume: 38
  start-page: 638
  issue: 2
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107530_b29
  article-title: Learning cross-modality representations from multi-modal images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2868977
– volume: 70
  start-page: 1010
  issue: 12
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107530_b7
  article-title: Future-proofing pathology: the case for clinical adoption of digital pathology
  publication-title: J. Clin. Pathol.
  doi: 10.1136/jclinpath-2017-204644
– volume: 171
  start-page: 400
  issue: 3
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107530_b69
  article-title: Chronic neutrophilic leukaemia and plasma cell-related neutrophilic leukaemoid reactions
  publication-title: Br. J. Haematol.
  doi: 10.1111/bjh.13600
– ident: 10.1016/j.compbiomed.2023.107530_b77
  doi: 10.1109/CVPR52688.2022.01593
– volume: 107
  start-page: 871
  issue: 4
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107530_b11
  article-title: An introduction to machine learning
  publication-title: Clin. Pharmacol. Therapeutics
  doi: 10.1002/cpt.1796
SSID ssj0004030
Score 2.3774104
Snippet One of the goals of AI-based computational pathology is to generate compact representations of whole slide images (WSIs) that capture the essential information...
AbstractOne of the goals of AI-based computational pathology is to generate compact representations of whole slide images (WSIs) that capture the essential...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107530
SubjectTerms Bone Marrow
Bone Marrow Cells - cytology
Cellular biology
Classification
Computer applications
Cytodiagnosis - methods
Cytology
Decision support systems
Deep learning
Digital pathology
Hematology
Humans
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted - methods
Image retrieval
Internal Medicine
Machine learning
Medical imaging
Other
Pathology
Representations
Slide-level representations
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaglaAcUHm0hBYUJK6BxHZiWxxQhVgqpHKBit4sxw-p1Ta7ZXdV7b_vTOxkkXhob1HikaPxePzZnm-GkLfM0hDw5L6Ch4JbbgtjbVmUrC2laTwNPV3s7Ftzes6_XtQX6cBtkcIqB5_YO2o3s3hG_h6r4lLVwOT9OL8psGoU3q6mEhr3yW5FwZKQKT75suFFlixSUMDXcNgKpUieGN-FIduR4v4OS4jDa0Du5b-Wpz_h5yPycNXNzfrWTKe_LUmTffI4Ycn8JA7-E3LPd0_Jg7N0W_6MyJ9Y_DYHJOl8fnkNniPvc1gOfKMuv-zydtb5_LpPxZjbdV_Ndv2cnE8-__h0WqRKCYWtG74snFLB-0Y62kij8K7UVGWwSlSBCyWUC7LkDmml3ikKq7xh1lWNqLw3DJqzA7LTQXcvQEGtC0KGlsvWcOZUywOvhaPeKMzbIzIiBgVpm9KIYzWLqR7ixa70RrUaVaujajNSjZLzmEpjCxk1jIEeqKLg3DT4-y1kxd9k_SLN0oWu9ILqUn_vkxSBfcB2DABzTTPyYZRMQCQCjC37PR6MRY9dbcw3I2_GzzCV8X7GdH62wjZCAICqqczIYTSyUVFMSAYbIZCmo9VtrcWX__-jI7KHjSPD8pjsLH-t_CuAWsv2dT-f7gC7WCYm
  priority: 102
  providerName: ProQuest
Title Whole slide image representation in bone marrow cytology
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523009952
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523009952
https://dx.doi.org/10.1016/j.compbiomed.2023.107530
https://www.ncbi.nlm.nih.gov/pubmed/37837726
https://www.proquest.com/docview/2883296876
https://www.proquest.com/docview/2877381528
https://doi.org/10.1016/j.compbiomed.2023.107530
UnpaywallVersion publishedVersion
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250801
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KB_t4GPuet654sFe3tixbEnvqSrNso2GMleVNyPqAlNQNS0LJS__2nSzZ3egGgb3ItqxD9vl0Oln3uwN4V2rinP9zX-BJRjXVmdI6z_KyybmqLXEdXOx0Uo_P6OdpNd2B4x4L490qo-4POr3T1rHmMHLzcDGbeYwvLiVwgYNGNJo5ldfDPvoXyvTB9Y2bB83LAENBfeNbR2-e4OPl3bYDzP3ApxHHarTe839NUbdN0Adwb90u1OZKzee_TUujR_Aw2pPpUXjkx7Bj2ydw9zTumD8F_sMnwE3RmjQ2nV2g9ki7OJY95qhNZ23aXLY2vejCMaZ602W03TyDs9HJ9-NxFrMlZLqq6SozQjhra25IzZXw-6WqyJ0WrHCUCSaM4zk1HlpqjSA406tSm6JmhbWqxOblc9htsbuXyKDGOMZdQ3mjaGlEQx2tmCFWCR-7hyXAegZJHUOJ-4wWc9n7jJ3LG9ZKz1oZWJtAMVAuQjiNLWhE_w1kDxdFBSdR529By_5Ga5dxpC5lIZdE5vKWNCXwfqD8QyC37HevFxY5dOUTOxNR4_yTwNvhNg5nv0ejWnu59m0YQyOqIjyBF0HIBkaVjJe4GEJqMkjd1lx89V_v8xru-6sAwtyD3dXPtX2D1tiq2e-GG5ZsyrDko4_7cOfo05fxBI8fTiZfv_0CH442Hg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlE4IN6EFggSHAOJ7cSxKoQQUG1ptxdasTfX8UMq2mYXdlfV_qn-xo7jJIvEQ3vpLUo8cTQZj2c8880AvKaaOOdP7jO8SJhmOlFap0lKq7RUhSWugYsNj4rBCfs6ykcbcNlhYXxaZacTG0VtJtqfkb_zXXGJKHDxfpj-THzXKB9d7VpoBLE4sMsLdNlm7_c_4_99Q8jel-NPg6TtKpDovGDzxAjhrC1KQ4pSCR9XVFnqtOCZY1xwYVyZMuMhmNYIgjuiotpkBc-sVRSHU3zvDbjJaMp8rX4-4iscZkoD5AV1G0PXq80cCvlkPkU8QOrf-pbleBs9hfRf2-Gf5u4d2FrUU7W8UOPxb1vg3j2429qu8ccgbPdhw9YP4Nawjc4_hPK7b7Ybo-VqbHx2jpoqbmpmdvimOj6r42pS2_i8Kf0Y62XTPXf5CE6uhYePYbPG6Z4igyrjeOkqVlaKUSMq5ljODbFK-DpBPALeMUjqtmy5754xll1-2g-5Yq30rJWBtRFkPeU0lO5Yg0Z0_0B20FRUphL3lzVo-d9o7azVCjOZyRmRqfzWFEVC-UD3Dw30nESw21O2hk8waNacd6cTFtlPtVouEbzqH6Pq8PEgVdvJwo_hHA22nJQRPAlC1jOK8pKi44XUpJe6tbn47P9f9BK2BsfDQ3m4f3SwDbc9YUB37sDm_NfCPkczb169aNZWDKfXvZivAGDvYgg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGkAY8IL7XbUCR4LGsTdKm0YQQYpw2xiYkmLi3kOZD2nTrHbs7Tfev8dfhNG0PiQ_dy96qNm4q13bsxD8b4CXVxDm_c5_hRcI004nSOk1SWqWlKixxDVzs-KQ4OGUfh_lwDX52WBifVtnZxMZQm7H2e-S7visuEQUq765r0yI-7w_eTn4kvoOUP2nt2mkEETmyiysM36ZvDvfxX78iZPDh6_uDpO0wkOi8YLPECOGsLUpDilIJf8aostRpwTPHuODCuDJlxsMxrREEV0dFtckKnlmrKA6n-N4bcJNTRn06GR_yJSYzpQH-gnaOYRjWZhGF3DKfLh7g9a99-3K8jVFD-q-l8U_X9w7cmtcTtbhSo9Fvy-HgHtxt_dj4XRC8-7Bm6wewcdye1D-E8ptvvBujF2tsfHaBVitu6md2WKc6Pqvjalzb-KIpAxnrRdNJd_EITq-Fh49hvcbpNpFBlXG8dBUrK8WoERVzLOeGWCV8zSAeAe8YJHVbwtx30hjJLlftXC5ZKz1rZWBtBFlPOQllPFagEd0_kB1MFQ2rxLVmBVr-N1o7bS3EVGZySmQqvzQFklA-MBREZz0nEez1lK0TFJybFefd6YRF9lMtVSeCF_1jNCP-bEjVdjz3YzhH5y0nZQRPgpD1jKK8pBiEITXppW5lLm79_4uewwaqsfx0eHK0Dbc9XQB67sD67HJun6LHN6ueNaoVw_fr1uVfI9hmQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whole+slide+image+representation+in+bone+marrow+cytology&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Mu%2C+Youqing&rft.au=Tizhoosh%2C+H.R.&rft.au=Dehkharghanian%2C+Taher&rft.au=Campbell%2C+Clinton+J.V.&rft.date=2023-11-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=166&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.107530&rft.externalDocID=S0010482523009952
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482523X00134%2Fcov150h.gif