Identification of potential feature genes in non-alcoholic fatty liver disease using bioinformatics analysis and machine learning strategies
The prevalence of non-alcoholic fatty liver disease (NAFLD) and NAFLD-associated hepatocellular carcinoma (HCC) has continuously increased in recent years. Machine learning is an effective method for screening the feature genes of a disease for prediction, prevention and personalized treatment. Here...
Saved in:
| Published in | Computers in biology and medicine Vol. 157; p. 106724 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.05.2023
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2023.106724 |
Cover
| Abstract | The prevalence of non-alcoholic fatty liver disease (NAFLD) and NAFLD-associated hepatocellular carcinoma (HCC) has continuously increased in recent years. Machine learning is an effective method for screening the feature genes of a disease for prediction, prevention and personalized treatment. Here, we used the “limma” package and weighted gene co-expression network analysis (WGCNA) to screen 219 NAFLD-related genes and found that they were mainly enriched in inflammation-related pathways. Four feature genes (AXUD1, FOSB, GADD45B, and SOCS2) were screened by LASSO regression and support vector machine-recursive feature elimination (SVM-RFE) machine learning algorithms. Therefore, a clinical diagnostic model with an area under the curve (AUC) value of 0.994 was constructed, which was superior to other indicators of NAFLD. Significant correlations existed between feature genes expression and steatohepatitis histology or clinical variables. These findings were also validated in external datasets and a mouse model. Finally, we found that feature genes expression was significantly decreased in NAFLD-associated HCC and that SOCS2 may be a prognostic biomarker. Our findings may provide new insights into the diagnosis, prevention and treatment targets of NAFLD and NAFLD-associated HCC.
•Machine learning showed that AXUD1, FOSB, GADD45B and SOCS2 are considered to be biomarkers for NAFLD.•AXUD1, FOSB, GADD45B, and SOCS2 showed a significant negative correlation with the histology grade of steatohepatitis.•The ROC curve and the nomogram was constructed for clinical use.•Low expression of SOCS2 in HCC predicts a worse survival rate, and SOCS2 may be a prognostic marker for NAFLD-associated HCC. |
|---|---|
| AbstractList | The prevalence of non-alcoholic fatty liver disease (NAFLD) and NAFLD-associated hepatocellular carcinoma (HCC) has continuously increased in recent years. Machine learning is an effective method for screening the feature genes of a disease for prediction, prevention and personalized treatment. Here, we used the "limma" package and weighted gene co-expression network analysis (WGCNA) to screen 219 NAFLD-related genes and found that they were mainly enriched in inflammation-related pathways. Four feature genes (AXUD1, FOSB, GADD45B, and SOCS2) were screened by LASSO regression and support vector machine-recursive feature elimination (SVM-RFE) machine learning algorithms. Therefore, a clinical diagnostic model with an area under the curve (AUC) value of 0.994 was constructed, which was superior to other indicators of NAFLD. Significant correlations existed between feature genes expression and steatohepatitis histology or clinical variables. These findings were also validated in external datasets and a mouse model. Finally, we found that feature genes expression was significantly decreased in NAFLD-associated HCC and that SOCS2 may be a prognostic biomarker. Our findings may provide new insights into the diagnosis, prevention and treatment targets of NAFLD and NAFLD-associated HCC. AbstractThe prevalence of non-alcoholic fatty liver disease (NAFLD) and NAFLD-associated hepatocellular carcinoma (HCC) has continuously increased in recent years. Machine learning is an effective method for screening the feature genes of a disease for prediction, prevention and personalized treatment. Here, we used the “limma” package and weighted gene co-expression network analysis (WGCNA) to screen 219 NAFLD-related genes and found that they were mainly enriched in inflammation-related pathways. Four feature genes ( AXUD1, FOSB, GADD45B, and SOCS2) were screened by LASSO regression and support vector machine-recursive feature elimination (SVM-RFE) machine learning algorithms. Therefore, a clinical diagnostic model with an area under the curve (AUC) value of 0.994 was constructed, which was superior to other indicators of NAFLD. Significant correlations existed between feature genes expression and steatohepatitis histology or clinical variables. These findings were also validated in external datasets and a mouse model. Finally, we found that feature genes expression was significantly decreased in NAFLD-associated HCC and that SOCS2 may be a prognostic biomarker. Our findings may provide new insights into the diagnosis, prevention and treatment targets of NAFLD and NAFLD-associated HCC. The prevalence of non-alcoholic fatty liver disease (NAFLD) and NAFLD-associated hepatocellular carcinoma (HCC) has continuously increased in recent years. Machine learning is an effective method for screening the feature genes of a disease for prediction, prevention and personalized treatment. Here, we used the “limma” package and weighted gene co-expression network analysis (WGCNA) to screen 219 NAFLD-related genes and found that they were mainly enriched in inflammation-related pathways. Four feature genes (AXUD1, FOSB, GADD45B, and SOCS2) were screened by LASSO regression and support vector machine-recursive feature elimination (SVM-RFE) machine learning algorithms. Therefore, a clinical diagnostic model with an area under the curve (AUC) value of 0.994 was constructed, which was superior to other indicators of NAFLD. Significant correlations existed between feature genes expression and steatohepatitis histology or clinical variables. These findings were also validated in external datasets and a mouse model. Finally, we found that feature genes expression was significantly decreased in NAFLD-associated HCC and that SOCS2 may be a prognostic biomarker. Our findings may provide new insights into the diagnosis, prevention and treatment targets of NAFLD and NAFLD-associated HCC. •Machine learning showed that AXUD1, FOSB, GADD45B and SOCS2 are considered to be biomarkers for NAFLD.•AXUD1, FOSB, GADD45B, and SOCS2 showed a significant negative correlation with the histology grade of steatohepatitis.•The ROC curve and the nomogram was constructed for clinical use.•Low expression of SOCS2 in HCC predicts a worse survival rate, and SOCS2 may be a prognostic marker for NAFLD-associated HCC. The prevalence of non-alcoholic fatty liver disease (NAFLD) and NAFLD-associated hepatocellular carcinoma (HCC) has continuously increased in recent years. Machine learning is an effective method for screening the feature genes of a disease for prediction, prevention and personalized treatment. Here, we used the "limma" package and weighted gene co-expression network analysis (WGCNA) to screen 219 NAFLD-related genes and found that they were mainly enriched in inflammation-related pathways. Four feature genes (AXUD1, FOSB, GADD45B, and SOCS2) were screened by LASSO regression and support vector machine-recursive feature elimination (SVM-RFE) machine learning algorithms. Therefore, a clinical diagnostic model with an area under the curve (AUC) value of 0.994 was constructed, which was superior to other indicators of NAFLD. Significant correlations existed between feature genes expression and steatohepatitis histology or clinical variables. These findings were also validated in external datasets and a mouse model. Finally, we found that feature genes expression was significantly decreased in NAFLD-associated HCC and that SOCS2 may be a prognostic biomarker. Our findings may provide new insights into the diagnosis, prevention and treatment targets of NAFLD and NAFLD-associated HCC.The prevalence of non-alcoholic fatty liver disease (NAFLD) and NAFLD-associated hepatocellular carcinoma (HCC) has continuously increased in recent years. Machine learning is an effective method for screening the feature genes of a disease for prediction, prevention and personalized treatment. Here, we used the "limma" package and weighted gene co-expression network analysis (WGCNA) to screen 219 NAFLD-related genes and found that they were mainly enriched in inflammation-related pathways. Four feature genes (AXUD1, FOSB, GADD45B, and SOCS2) were screened by LASSO regression and support vector machine-recursive feature elimination (SVM-RFE) machine learning algorithms. Therefore, a clinical diagnostic model with an area under the curve (AUC) value of 0.994 was constructed, which was superior to other indicators of NAFLD. Significant correlations existed between feature genes expression and steatohepatitis histology or clinical variables. These findings were also validated in external datasets and a mouse model. Finally, we found that feature genes expression was significantly decreased in NAFLD-associated HCC and that SOCS2 may be a prognostic biomarker. Our findings may provide new insights into the diagnosis, prevention and treatment targets of NAFLD and NAFLD-associated HCC. |
| ArticleNumber | 106724 |
| Author | Zhang, Zhaohui Nie, Biao Zhu, Zhengwen Wang, Shihao |
| Author_xml | – sequence: 1 givenname: Zhaohui surname: Zhang fullname: Zhang, Zhaohui – sequence: 2 givenname: Shihao surname: Wang fullname: Wang, Shihao – sequence: 3 givenname: Zhengwen surname: Zhu fullname: Zhu, Zhengwen – sequence: 4 givenname: Biao surname: Nie fullname: Nie, Biao email: biaonie@jnu.edu.cn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36898287$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkl1rFTEQhhep2NPqX5CAN97scbKfyY1oix-FghfqdchmJ6c5ZpNjkq2c_-CPNutpKxSE9irD8Mybl3fmpDhy3mFREAprCrR7s10rP-0G4ycc1xVUdW53fdU8KVaU9byEtm6OihUAhbJhVXtcnMS4BYAGanhWHNcd46xi_ar4fTGiS0YbJZPxjnhNdj4tLWmJRpnmgGSDDiMxjmQbpbTKX3lrFNEypT2x5hoDGU1EGZHM0bgNyc6M0z5MWVRFIp20-2iWYiSTVFfGIbEog1vgmIJMuDEYnxdPtbQRX9y8p8X3jx--nX8uL798ujh_f1mqtmtSOcBA2Vg1gxpaKlUzjCNTwFuJfdfyZug55XWtoUetedV2NTRy7DVAPTa6V7o-LfhBd3Y7uf8lrRW7YCYZ9oKCWBIWW_EvYbEkLA4J59nXh9ld8D9njElMJiq0Vjr0cxRVzzoKVdf1GX11D936OeQsForTlnXAeaZe3lDzsHx26-R2RxlgB0AFH2NA_Rizb--NKpP-LjpnbuxDBM4OApjXcW0wiKgMOoWjCaiSGL15hIs7EWWNyxdnf-Ae410oVMRKgPi6nO1ytVWdK8YhC7z7v8DDPPwB1hAEbA |
| CitedBy_id | crossref_primary_10_1186_s43556_024_00185_z crossref_primary_10_1177_20552076241272535 crossref_primary_10_1038_s41598_025_90744_3 crossref_primary_10_1186_s12967_024_05858_5 crossref_primary_10_1186_s13062_024_00517_7 crossref_primary_10_1007_s12031_024_02291_7 crossref_primary_10_3389_fimmu_2024_1416297 crossref_primary_10_1111_jocd_16266 crossref_primary_10_1111_jcmm_70267 crossref_primary_10_3390_ijms26062808 crossref_primary_10_1007_s10115_025_02344_2 crossref_primary_10_2147_JIR_S507085 crossref_primary_10_22416_1382_4376_2024_34_5_32_39 crossref_primary_10_1016_j_aohep_2023_101278 crossref_primary_10_3389_fgene_2023_1251999 |
| Cites_doi | 10.21037/tgh.2019.09.08 10.1186/1471-2407-7-136 10.1097/MOP.0000000000000815 10.18632/aging.101157 10.1002/hep.28123 10.1093/carcin/bgt304 10.1016/j.jnutbio.2019.108304 10.1101/gr.074914.107 10.1136/gutjnl-2021-326874 10.1038/sj.onc.1204603 10.1038/cdd.2012.129 10.1016/j.apsb.2020.08.015 10.1111/j.1440-1746.2008.05694.x 10.1152/ajpendo.00056.2013 10.3233/CBM-140434 10.1186/1878-5085-4-12 10.1016/j.cmet.2022.05.003 10.1172/JCI200522710 10.1002/ped4.12314 10.7150/ijbs.63889 10.1016/j.medengphy.2022.103870 10.1136/jcp.2004.024919 10.1002/hep.27406 10.1016/j.jhep.2017.09.003 10.1186/1878-5085-3-14 10.1186/s13167-015-0030-6 10.1172/JCI29881 10.1002/hep.31150 10.1016/j.humpath.2018.11.029 10.1016/j.phrs.2021.105879 10.3892/ol.2021.13001 10.2741/e760 10.1111/apt.14937 10.2353/ajpath.2009.080999 10.1038/s41419-019-1530-4 10.1186/1471-2105-9-559 10.1002/hep.23276 10.1038/s41575-019-0212-0 10.1016/j.cll.2020.02.001 10.1172/JCI33913 10.1016/j.apsb.2021.09.019 10.1038/s41598-022-23905-3 10.3389/fendo.2021.760860 10.1038/s41575-020-00381-6 10.1016/j.jada.2011.10.007 10.1016/j.biopha.2022.114060 10.1038/s41574-022-00675-6 10.1155/2014/795624 10.1242/dmm.049088 10.1001/jama.2020.2298 10.1172/JCI38760 10.1002/hep.20701 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors The Authors Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved. 2023. The Authors |
| Copyright_xml | – notice: 2023 The Authors – notice: The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved. – notice: 2023. The Authors |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.compbiomed.2023.106724 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 106724 |
| ExternalDocumentID | 10.1016/j.compbiomed.2023.106724 36898287 10_1016_j_compbiomed_2023_106724 S0010482523001890 1_s2_0_S0010482523001890 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG 6I. AAFTH AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c564t-b0b18d24bcb51ac4bdd8c095ae76594b791933f07eff9256304ad7f003d4f7cf3 |
| IEDL.DBID | .~1 |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Tue Aug 19 22:03:06 EDT 2025 Sun Sep 28 11:11:48 EDT 2025 Tue Oct 07 06:39:24 EDT 2025 Wed Feb 19 02:24:48 EST 2025 Thu Apr 24 23:06:37 EDT 2025 Wed Oct 01 05:20:41 EDT 2025 Fri Feb 23 02:37:09 EST 2024 Tue Feb 25 20:08:37 EST 2025 Tue Oct 14 19:33:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bioinformatics analysis Biomarkers NAFLD-associated hepatocellular carcinoma Non-alcoholic fatty liver disease (NAFLD) Machine learning |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c564t-b0b18d24bcb51ac4bdd8c095ae76594b791933f07eff9256304ad7f003d4f7cf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0010482523001890 |
| PMID | 36898287 |
| PQID | 2791586099 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1016_j_compbiomed_2023_106724 proquest_miscellaneous_2786102667 proquest_journals_2791586099 pubmed_primary_36898287 crossref_primary_10_1016_j_compbiomed_2023_106724 crossref_citationtrail_10_1016_j_compbiomed_2023_106724 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_106724 elsevier_clinicalkeyesjournals_1_s2_0_S0010482523001890 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_106724 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-01 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Peymani, Farzeen, Prokisch (bib17) 2022; 6 Sonkin, Palmer, Rong, Horrigan, Regnier, Fanton, Holash, Pinzon-Ortiz, Squires, Sirulnik, Radimerski, Schlegel, Morrissey, Cao (bib47) 2015; 15 Farabegoli, Ceccarelli, Santini, Taffurelli (bib43) 2005; 58 Ishiguro, Tsunoda, Tanaka, Fujii, Nakamura, Furukawa (bib37) 2001; 20 Kleiner, Brunt, Van Natta, Behling, Contos, Cummings, Ferrell, Liu, Torbenson, Unalp-Arida, Yeh, McCullough, Sanyal, Nonalcoholic Steatohepatitis Clinical Research (bib4) 2005; 41 Neu, Bowling, Cooper (bib16) 2019; 31 Barreby, Chen, Aouadi (bib48) 2022; 18 Hirsova, Bamidele, Wang, Povero, Revelo (bib51) 2021; 12 Sheka, Adeyi, Thompson, Hameed, Crawford, Ikramuddin (bib5) 2020; 323 Grech, Zhan, Yoo, Bubnov, Hagan, Danesi, Vittadini, Desiderio (bib9) 2015; 6 Iglesias-Gato, Chuan, Wikström, Augsten, Jiang, Niu, Seipel, Danneman, Vermeij, Fernandez-Perez, Jenster, Egevad, Norstedt, Flores-Morales (bib42) 2014; 35 Dufour, Anstee, Bugianesi, Harrison, Loomba, Paradis, Tilg, Wong, Zelber-Sagi (bib12) 2022; 71 Deng, Li, Xu, Zou, Ke, Zeng (bib36) 2013; 33 Papa, Zazzeroni, Fu, Bubici, Alvarez, Dean, Christiansen, Anders, Franzoso (bib30) 2008; 118 Ren, Wu, Wu, Liu, Zhao, Li (bib39) 2019; 10 Dong, Ma, Fan, Yuan, Wu, Gong, Tao, Chen, Ren (bib32) 2021; 173 Letellier, Haan (bib45) 2016; 8 Keller, Choi, Wang, Davis, Rabaglia, Oler, Stapleton, Argmann, Schueler, Edwards, Steinberg, Chaibub Neto, Kleinhanz, Turner, Hellerstein, Schadt, Yandell, Kendziorski, Attie (bib20) 2008; 18 Huang, Singal, Kono, Tan, El-Serag, Loomba (bib23) 2022; 34 Keil, Hocker, Schuster, Essmann, Ueffing, Hoffman, Liebermann, Pfeffer, Schulze-Osthoff, Schmitz (bib28) 2013; 20 Eslam, George (bib27) 2020; 17 Lombardo, Broadwater, Collins, Cebe, Brady, Harrison (bib54) 2019; 86 Promrat, Kleiner, Niemeier, Jackvony, Kearns, Wands, Fava, Wing (bib25) 2010; 51 Tian, Huang, Hoffman, Liebermann, Ledda-Columbano, Columbano, Locker (bib29) 2011; 121 Cai, Feng, Xu, Yu, Xie (bib31) 2021; 11 Cabrera-Galván, Araujo, de Mirecki-Garrido, Pérez-Rodríguez, Guerra, Aranda-Tavío, Guerra-Rodríguez, Brito-Casillas, Melián, Martínez-Martín, Fernández-Pérez, Recio (bib40) 2023; 157 Hirai, Ohyane, Kim, Lin, Goto, Takahashi, Kim, Kang, Yu, Kawada (bib53) 2014; 306 Du, Liu, Qin, Zhang, Xi, Yuan, Hao, Xiong (bib21) 2022; 12 Stine, Wentworth, Zimmet, Rinella, Loomba, Caldwell, Argo (bib8) 2018; 48 Younossi, Otgonsuren, Henry, Venkatesan, Mishra, Erario, Hunt (bib7) 2015; 62 Eslam, Valenti, Romeo (bib3) 2018; 68 Duan, Chen, Shao, Jiang, Zhao, Li, Ke, Zhang, Zhu, Yu (bib41) 2021; 22 Li, Hao, Chen, Bai, Gao, Lian, Wei, Sun, Tian (bib52) 2017; 7 Golubnitschaja, Costigliola, Epma (bib10) 2012; 3 McCarthy, Rinella (bib24) 2012; 112 Huang, El-Serag, Loomba (bib6) 2021; 18 Heinemann, Gross, Zeveleva, Qian, Hill, Höfer, Jonigk, Diehl, Abdelmalek, Lenter, Pullen, Guarnieri, Stierstorfer (bib14) 2022; 12 Zhou, Zhou, Wang, Zhang, Ji, Zhang, She, Zhu, Cai, Li (bib22) 2020; 71 Golubnitschaja, Watson, Topic, Sandberg, Ferrari, Costigliola (bib11) 2013; 4 Li, Han, Jin, Yu, Chen, Zhou, Tan, Zhang (bib34) 2021; 17 Sato, Idelevich, Nagano, Rowe, Gori, Baron (bib38) 2017; 9 Kuluozturk, Kobat, Barua, Dogan, Tuncer, Tan, Ciaccio, Acharya (bib13) 2022; 110 Langfelder, Horvath (bib18) 2008; 9 Haffner, Petridou, Peyrat, Révillion, Müller-Holzner, Daxenbichler, Marth, Doppler (bib46) 2007; 7 Murdock (bib15) 2020; 40 George, Bauman, Johnston, Farrell, Chey, George (bib26) 2009; 24 Jin, Ng, Zhao, Liu, Higashimoto, Lee, Chung, Chen, Ney, Kandarpa, Talpaz, Li (bib44) 2022; 15 Wang, Fan, Zhang, Gao, Wang (bib2) 2014; 60 Lumeng, Bodzin, Saltiel (bib49) 2007; 117 Rensen, Slaats, Nijhuis, Jans, Bieghs, Driessen, Malle, Greve, Buurman (bib50) 2009; 175 Huang, Hung, Lee, Li, Jiang (bib19) 2014 Greenhalgh, Rico-Bautista, Lorentzon, Thaus, Morgan, Willson, Zervoudakis, Metcalf, Street, Nicola, Nash, Fabri, Norstedt, Ohlsson, Flores-Morales, Alexander, Hilton (bib33) 2005; 115 Mitra, De, Chowdhury (bib1) 2020; 5 Val, de Oliveira, Lacerda, Barroso, Batista, Menezes-Garcia, de Assis, Cramer, Brant, Teixeira, Glória Souza, Ferreira, Machado (bib35) 2020; 76 Barreby (10.1016/j.compbiomed.2023.106724_bib48) 2022; 18 Promrat (10.1016/j.compbiomed.2023.106724_bib25) 2010; 51 Stine (10.1016/j.compbiomed.2023.106724_bib8) 2018; 48 Jin (10.1016/j.compbiomed.2023.106724_bib44) 2022; 15 Eslam (10.1016/j.compbiomed.2023.106724_bib3) 2018; 68 Huang (10.1016/j.compbiomed.2023.106724_bib6) 2021; 18 Kleiner (10.1016/j.compbiomed.2023.106724_bib4) 2005; 41 Grech (10.1016/j.compbiomed.2023.106724_bib9) 2015; 6 Sato (10.1016/j.compbiomed.2023.106724_bib38) 2017; 9 Tian (10.1016/j.compbiomed.2023.106724_bib29) 2011; 121 Peymani (10.1016/j.compbiomed.2023.106724_bib17) 2022; 6 Keller (10.1016/j.compbiomed.2023.106724_bib20) 2008; 18 Greenhalgh (10.1016/j.compbiomed.2023.106724_bib33) 2005; 115 Haffner (10.1016/j.compbiomed.2023.106724_bib46) 2007; 7 Cai (10.1016/j.compbiomed.2023.106724_bib31) 2021; 11 Mitra (10.1016/j.compbiomed.2023.106724_bib1) 2020; 5 Li (10.1016/j.compbiomed.2023.106724_bib52) 2017; 7 Neu (10.1016/j.compbiomed.2023.106724_bib16) 2019; 31 Duan (10.1016/j.compbiomed.2023.106724_bib41) 2021; 22 Golubnitschaja (10.1016/j.compbiomed.2023.106724_bib11) 2013; 4 Deng (10.1016/j.compbiomed.2023.106724_bib36) 2013; 33 Younossi (10.1016/j.compbiomed.2023.106724_bib7) 2015; 62 Hirai (10.1016/j.compbiomed.2023.106724_bib53) 2014; 306 Langfelder (10.1016/j.compbiomed.2023.106724_bib18) 2008; 9 George (10.1016/j.compbiomed.2023.106724_bib26) 2009; 24 Keil (10.1016/j.compbiomed.2023.106724_bib28) 2013; 20 Sheka (10.1016/j.compbiomed.2023.106724_bib5) 2020; 323 Val (10.1016/j.compbiomed.2023.106724_bib35) 2020; 76 Rensen (10.1016/j.compbiomed.2023.106724_bib50) 2009; 175 Heinemann (10.1016/j.compbiomed.2023.106724_bib14) 2022; 12 Murdock (10.1016/j.compbiomed.2023.106724_bib15) 2020; 40 Ishiguro (10.1016/j.compbiomed.2023.106724_bib37) 2001; 20 Huang (10.1016/j.compbiomed.2023.106724_bib23) 2022; 34 Dufour (10.1016/j.compbiomed.2023.106724_bib12) 2022; 71 Kuluozturk (10.1016/j.compbiomed.2023.106724_bib13) 2022; 110 Hirsova (10.1016/j.compbiomed.2023.106724_bib51) 2021; 12 Li (10.1016/j.compbiomed.2023.106724_bib34) 2021; 17 McCarthy (10.1016/j.compbiomed.2023.106724_bib24) 2012; 112 Cabrera-Galván (10.1016/j.compbiomed.2023.106724_bib40) 2023; 157 Golubnitschaja (10.1016/j.compbiomed.2023.106724_bib10) 2012; 3 Zhou (10.1016/j.compbiomed.2023.106724_bib22) 2020; 71 Wang (10.1016/j.compbiomed.2023.106724_bib2) 2014; 60 Eslam (10.1016/j.compbiomed.2023.106724_bib27) 2020; 17 Papa (10.1016/j.compbiomed.2023.106724_bib30) 2008; 118 Farabegoli (10.1016/j.compbiomed.2023.106724_bib43) 2005; 58 Lombardo (10.1016/j.compbiomed.2023.106724_bib54) 2019; 86 Huang (10.1016/j.compbiomed.2023.106724_bib19) 2014 Sonkin (10.1016/j.compbiomed.2023.106724_bib47) 2015; 15 Dong (10.1016/j.compbiomed.2023.106724_bib32) 2021; 173 Letellier (10.1016/j.compbiomed.2023.106724_bib45) 2016; 8 Lumeng (10.1016/j.compbiomed.2023.106724_bib49) 2007; 117 Ren (10.1016/j.compbiomed.2023.106724_bib39) 2019; 10 Du (10.1016/j.compbiomed.2023.106724_bib21) 2022; 12 Iglesias-Gato (10.1016/j.compbiomed.2023.106724_bib42) 2014; 35 |
| References_xml | – volume: 7 start-page: 136 year: 2007 ident: bib46 article-title: Favorable prognostic value of SOCS2 and IGF-I in breast cancer publication-title: BMC Cancer – volume: 9 year: 2008 ident: bib18 article-title: WGCNA: an R package for weighted correlation network analysis publication-title: BMC Bioinf. – volume: 48 start-page: 696 year: 2018 end-page: 703 ident: bib8 article-title: Systematic review with meta-analysis: risk of hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis compared to other liver diseases publication-title: Aliment. Pharmacol. Ther. – volume: 76 year: 2020 ident: bib35 article-title: SOCS2 modulates adipose tissue inflammation and expansion in mice publication-title: J. Nutr. Biochem. – volume: 15 start-page: 79 year: 2015 end-page: 87 ident: bib47 article-title: The identification and characterization of a STAT5 gene signature in hematologic malignancies publication-title: Cancer Biomarkers – volume: 173 year: 2021 ident: bib32 article-title: GADD45beta stabilized by direct interaction with HSP72 ameliorates insulin resistance and lipid accumulation publication-title: Pharmacol. Res. – volume: 11 start-page: 434 year: 2021 end-page: 441 ident: bib31 article-title: Gadd45b is required in part for the anti-obesity effect of constitutive androstane receptor (CAR) publication-title: Acta Pharm. Sin. B – volume: 60 start-page: 2099 year: 2014 end-page: 2108 ident: bib2 article-title: The global burden of liver disease: the major impact of China publication-title: Hepatology – volume: 17 start-page: 4165 year: 2021 end-page: 4175 ident: bib34 article-title: SOCS2 suppresses inflammation and apoptosis during NASH progression through limiting NF-kappaB activation in macrophages publication-title: Int. J. Biol. Sci. – volume: 33 start-page: 1122 year: 2013 end-page: 1126 ident: bib36 article-title: [AXIN1-related CSRNP1 mRNA expression and its transcriptional regulation in TGF-beta1-induced tumor cells] publication-title: Nan Fang Yi Ke Da Xue Xue Bao – volume: 5 start-page: 16 year: 2020 ident: bib1 article-title: Epidemiology of non-alcoholic and alcoholic fatty liver diseases publication-title: Transl Gastroenterol Hepatol – volume: 24 start-page: 399 year: 2009 end-page: 407 ident: bib26 article-title: Effect of a lifestyle intervention in patients with abnormal liver enzymes and metabolic risk factors publication-title: J. Gastroenterol. Hepatol. – volume: 22 start-page: 740 year: 2021 ident: bib41 article-title: Lanatoside C inhibits human cervical cancer cell proliferation and induces cell apoptosis by a reduction of the JAK2/STAT6/SOCS2 signaling pathway publication-title: Oncol. Lett. – year: 2014 ident: bib19 article-title: SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier publication-title: Sci. World J. – volume: 9 start-page: 353 year: 2017 end-page: 369 ident: bib38 article-title: Hypothalamic DeltaFosB prevents age-related metabolic decline and functions via SNS publication-title: Aging (Albany NY) – volume: 157 year: 2023 ident: bib40 article-title: SOCS2 protects against chemical-induced hepatocellular carcinoma progression by modulating inflammation and cell proliferation in the liver publication-title: Biomed. Pharmacother. – volume: 121 start-page: 4491 year: 2011 end-page: 4502 ident: bib29 article-title: Gadd45beta is an inducible coactivator of transcription that facilitates rapid liver growth in mice publication-title: J. Clin. Invest. – volume: 175 start-page: 1473 year: 2009 end-page: 1482 ident: bib50 article-title: Increased hepatic myeloperoxidase activity in obese subjects with nonalcoholic steatohepatitis publication-title: Am. J. Pathol. – volume: 4 start-page: 12 year: 2013 ident: bib11 article-title: Position paper of the EPMA and EFLM: a global vision of the consolidated promotion of an integrative medical approach to advance health care publication-title: EPMA J. – volume: 8 start-page: 189 year: 2016 end-page: 204 ident: bib45 article-title: SOCS2: physiological and pathological functions publication-title: Front. Biosci. – volume: 115 start-page: 397 year: 2005 end-page: 406 ident: bib33 article-title: SOCS2 negatively regulates growth hormone action in vitro and in vivo publication-title: J. Clin. Invest. – volume: 86 start-page: 129 year: 2019 end-page: 135 ident: bib54 article-title: Hepatic mast cell concentration directly correlates to stage of fibrosis in NASH publication-title: Hum. Pathol. – volume: 12 start-page: 558 year: 2022 end-page: 580 ident: bib21 article-title: Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma publication-title: Acta Pharm. Sin. B – volume: 18 start-page: 706 year: 2008 end-page: 716 ident: bib20 article-title: A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility publication-title: Genome Res. – volume: 118 start-page: 1911 year: 2008 end-page: 1923 ident: bib30 article-title: Gadd45beta promotes hepatocyte survival during liver regeneration in mice by modulating JNK signaling publication-title: J. Clin. Invest. – volume: 58 start-page: 1046 year: 2005 end-page: 1050 ident: bib43 article-title: Suppressor of cytokine signalling 2 (SOCS-2) expression in breast carcinoma publication-title: J. Clin. Pathol. – volume: 34 start-page: 969 year: 2022 end-page: 977 ident: bib23 article-title: Changing global epidemiology of liver cancer from 2010 to 2019: NASH is the fastest growing cause of liver cancer publication-title: Cell Metabol. – volume: 71 start-page: 2123 year: 2022 end-page: 2134 ident: bib12 article-title: Current therapies and new developments in NASH publication-title: Gut – volume: 20 start-page: 5062 year: 2001 end-page: 5066 ident: bib37 article-title: Identification of AXUD1, a novel human gene induced by AXIN1 and its reduced expression in human carcinomas of the lung, liver, colon and kidney publication-title: Oncogene – volume: 12 year: 2021 ident: bib51 article-title: Emerging roles of T cells in the pathogenesis of nonalcoholic steatohepatitis and hepatocellular carcinoma publication-title: Front. Endocrinol. – volume: 10 start-page: 333 year: 2019 ident: bib39 article-title: MicroRNA-196a/-196b regulate the progression of hepatocellular carcinoma through modulating the JAK/STAT pathway via targeting SOCS2 publication-title: Cell Death Dis. – volume: 71 start-page: 1851 year: 2020 end-page: 1864 ident: bib22 article-title: Epidemiological features of NAFLD from 1999 to 2018 in China publication-title: Hepatology – volume: 6 start-page: 9 year: 2015 ident: bib9 article-title: EPMA position paper in cancer: current overview and future perspectives publication-title: EPMA J. – volume: 40 start-page: 113 year: 2020 end-page: 119 ident: bib15 article-title: Enhancing diagnosis through RNA sequencing publication-title: Clin. Lab. Med. – volume: 323 start-page: 1175 year: 2020 end-page: 1183 ident: bib5 article-title: Nonalcoholic steatohepatitis: a review publication-title: JAMA, J. Am. Med. Assoc. – volume: 17 start-page: 40 year: 2020 end-page: 52 ident: bib27 article-title: Genetic contributions to NAFLD: leveraging shared genetics to uncover systems biology publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 117 start-page: 175 year: 2007 end-page: 184 ident: bib49 article-title: Obesity induces a phenotypic switch in adipose tissue macrophage polarization publication-title: J. Clin. Invest. – volume: 41 start-page: 1313 year: 2005 end-page: 1321 ident: bib4 article-title: Design and validation of a histological scoring system for nonalcoholic fatty liver disease publication-title: Hepatology – volume: 12 year: 2022 ident: bib14 article-title: Deep learning-based quantification of NAFLD/NASH progression in human liver biopsies publication-title: Sci. Rep. – volume: 7 year: 2017 ident: bib52 article-title: The microbiota maintain homeostasis of liver-resident gammadeltaT-17 cells in a lipid antigen/CD1d-dependent manner publication-title: Nat. Commun. – volume: 306 start-page: E247 year: 2014 end-page: E255 ident: bib53 article-title: Involvement of mast cells in adipose tissue fibrosis publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 35 start-page: 24 year: 2014 end-page: 33 ident: bib42 article-title: SOCS2 mediates the cross talk between androgen and growth hormone signaling in prostate cancer publication-title: Carcinogenesis – volume: 15 year: 2022 ident: bib44 article-title: Epigenetic downregulation of Socs2 contributes to mutant N-Ras-mediated hematopoietic dysregulation publication-title: Dis Model Mech – volume: 110 year: 2022 ident: bib13 article-title: DKPNet41: directed knight pattern network-based cough sound classification model for automatic disease diagnosis publication-title: Med. Eng. Phys. – volume: 68 start-page: 268 year: 2018 end-page: 279 ident: bib3 article-title: Genetics and epigenetics of NAFLD and NASH: clinical impact publication-title: J. Hepatol. – volume: 62 start-page: 1723 year: 2015 end-page: 1730 ident: bib7 article-title: Association of nonalcoholic fatty liver disease (NAFLD) with hepatocellular carcinoma (HCC) in the United States from 2004 to 2009 publication-title: Hepatology – volume: 6 start-page: 29 year: 2022 end-page: 35 ident: bib17 article-title: RNA sequencing role and application in clinical diagnostic publication-title: Pediatr Investig – volume: 20 start-page: 321 year: 2013 end-page: 332 ident: bib28 article-title: Phosphorylation of Atg5 by the Gadd45beta-MEKK4-p38 pathway inhibits autophagy publication-title: Cell Death Differ. – volume: 51 start-page: 121 year: 2010 end-page: 129 ident: bib25 article-title: Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis publication-title: Hepatology – volume: 31 start-page: 732 year: 2019 end-page: 738 ident: bib16 article-title: Clinical utility of genomic sequencing publication-title: Curr. Opin. Pediatr. – volume: 18 start-page: 223 year: 2021 end-page: 238 ident: bib6 article-title: Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 18 start-page: 461 year: 2022 end-page: 472 ident: bib48 article-title: Macrophage functional diversity in NAFLD - more than inflammation publication-title: Nat. Rev. Endocrinol. – volume: 3 start-page: 14 year: 2012 ident: bib10 article-title: General report & recommendations in predictive, preventive and personalised medicine 2012: white paper of the European Association for Predictive, Preventive and Personalised Medicine publication-title: EPMA J. – volume: 112 start-page: 401 year: 2012 end-page: 409 ident: bib24 article-title: The role of diet and nutrient composition in nonalcoholic fatty liver disease publication-title: J. Acad. Nutr. Diet. – volume: 5 start-page: 16 year: 2020 ident: 10.1016/j.compbiomed.2023.106724_bib1 article-title: Epidemiology of non-alcoholic and alcoholic fatty liver diseases publication-title: Transl Gastroenterol Hepatol doi: 10.21037/tgh.2019.09.08 – volume: 7 start-page: 136 year: 2007 ident: 10.1016/j.compbiomed.2023.106724_bib46 article-title: Favorable prognostic value of SOCS2 and IGF-I in breast cancer publication-title: BMC Cancer doi: 10.1186/1471-2407-7-136 – volume: 31 start-page: 732 year: 2019 ident: 10.1016/j.compbiomed.2023.106724_bib16 article-title: Clinical utility of genomic sequencing publication-title: Curr. Opin. Pediatr. doi: 10.1097/MOP.0000000000000815 – volume: 9 start-page: 353 year: 2017 ident: 10.1016/j.compbiomed.2023.106724_bib38 article-title: Hypothalamic DeltaFosB prevents age-related metabolic decline and functions via SNS publication-title: Aging (Albany NY) doi: 10.18632/aging.101157 – volume: 62 start-page: 1723 year: 2015 ident: 10.1016/j.compbiomed.2023.106724_bib7 article-title: Association of nonalcoholic fatty liver disease (NAFLD) with hepatocellular carcinoma (HCC) in the United States from 2004 to 2009 publication-title: Hepatology doi: 10.1002/hep.28123 – volume: 35 start-page: 24 year: 2014 ident: 10.1016/j.compbiomed.2023.106724_bib42 article-title: SOCS2 mediates the cross talk between androgen and growth hormone signaling in prostate cancer publication-title: Carcinogenesis doi: 10.1093/carcin/bgt304 – volume: 76 year: 2020 ident: 10.1016/j.compbiomed.2023.106724_bib35 article-title: SOCS2 modulates adipose tissue inflammation and expansion in mice publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2019.108304 – volume: 18 start-page: 706 year: 2008 ident: 10.1016/j.compbiomed.2023.106724_bib20 article-title: A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility publication-title: Genome Res. doi: 10.1101/gr.074914.107 – volume: 71 start-page: 2123 year: 2022 ident: 10.1016/j.compbiomed.2023.106724_bib12 article-title: Current therapies and new developments in NASH publication-title: Gut doi: 10.1136/gutjnl-2021-326874 – volume: 20 start-page: 5062 year: 2001 ident: 10.1016/j.compbiomed.2023.106724_bib37 article-title: Identification of AXUD1, a novel human gene induced by AXIN1 and its reduced expression in human carcinomas of the lung, liver, colon and kidney publication-title: Oncogene doi: 10.1038/sj.onc.1204603 – volume: 20 start-page: 321 year: 2013 ident: 10.1016/j.compbiomed.2023.106724_bib28 article-title: Phosphorylation of Atg5 by the Gadd45beta-MEKK4-p38 pathway inhibits autophagy publication-title: Cell Death Differ. doi: 10.1038/cdd.2012.129 – volume: 11 start-page: 434 year: 2021 ident: 10.1016/j.compbiomed.2023.106724_bib31 article-title: Gadd45b is required in part for the anti-obesity effect of constitutive androstane receptor (CAR) publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2020.08.015 – volume: 24 start-page: 399 year: 2009 ident: 10.1016/j.compbiomed.2023.106724_bib26 article-title: Effect of a lifestyle intervention in patients with abnormal liver enzymes and metabolic risk factors publication-title: J. Gastroenterol. Hepatol. doi: 10.1111/j.1440-1746.2008.05694.x – volume: 33 start-page: 1122 year: 2013 ident: 10.1016/j.compbiomed.2023.106724_bib36 article-title: [AXIN1-related CSRNP1 mRNA expression and its transcriptional regulation in TGF-beta1-induced tumor cells] publication-title: Nan Fang Yi Ke Da Xue Xue Bao – volume: 306 start-page: E247 year: 2014 ident: 10.1016/j.compbiomed.2023.106724_bib53 article-title: Involvement of mast cells in adipose tissue fibrosis publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00056.2013 – volume: 15 start-page: 79 year: 2015 ident: 10.1016/j.compbiomed.2023.106724_bib47 article-title: The identification and characterization of a STAT5 gene signature in hematologic malignancies publication-title: Cancer Biomarkers doi: 10.3233/CBM-140434 – volume: 4 start-page: 12 year: 2013 ident: 10.1016/j.compbiomed.2023.106724_bib11 article-title: Position paper of the EPMA and EFLM: a global vision of the consolidated promotion of an integrative medical approach to advance health care publication-title: EPMA J. doi: 10.1186/1878-5085-4-12 – volume: 34 start-page: 969 year: 2022 ident: 10.1016/j.compbiomed.2023.106724_bib23 article-title: Changing global epidemiology of liver cancer from 2010 to 2019: NASH is the fastest growing cause of liver cancer publication-title: Cell Metabol. doi: 10.1016/j.cmet.2022.05.003 – volume: 115 start-page: 397 year: 2005 ident: 10.1016/j.compbiomed.2023.106724_bib33 article-title: SOCS2 negatively regulates growth hormone action in vitro and in vivo publication-title: J. Clin. Invest. doi: 10.1172/JCI200522710 – volume: 6 start-page: 29 year: 2022 ident: 10.1016/j.compbiomed.2023.106724_bib17 article-title: RNA sequencing role and application in clinical diagnostic publication-title: Pediatr Investig doi: 10.1002/ped4.12314 – volume: 17 start-page: 4165 year: 2021 ident: 10.1016/j.compbiomed.2023.106724_bib34 article-title: SOCS2 suppresses inflammation and apoptosis during NASH progression through limiting NF-kappaB activation in macrophages publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.63889 – volume: 110 year: 2022 ident: 10.1016/j.compbiomed.2023.106724_bib13 article-title: DKPNet41: directed knight pattern network-based cough sound classification model for automatic disease diagnosis publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2022.103870 – volume: 58 start-page: 1046 year: 2005 ident: 10.1016/j.compbiomed.2023.106724_bib43 article-title: Suppressor of cytokine signalling 2 (SOCS-2) expression in breast carcinoma publication-title: J. Clin. Pathol. doi: 10.1136/jcp.2004.024919 – volume: 60 start-page: 2099 year: 2014 ident: 10.1016/j.compbiomed.2023.106724_bib2 article-title: The global burden of liver disease: the major impact of China publication-title: Hepatology doi: 10.1002/hep.27406 – volume: 68 start-page: 268 year: 2018 ident: 10.1016/j.compbiomed.2023.106724_bib3 article-title: Genetics and epigenetics of NAFLD and NASH: clinical impact publication-title: J. Hepatol. doi: 10.1016/j.jhep.2017.09.003 – volume: 3 start-page: 14 year: 2012 ident: 10.1016/j.compbiomed.2023.106724_bib10 article-title: General report & recommendations in predictive, preventive and personalised medicine 2012: white paper of the European Association for Predictive, Preventive and Personalised Medicine publication-title: EPMA J. doi: 10.1186/1878-5085-3-14 – volume: 6 start-page: 9 year: 2015 ident: 10.1016/j.compbiomed.2023.106724_bib9 article-title: EPMA position paper in cancer: current overview and future perspectives publication-title: EPMA J. doi: 10.1186/s13167-015-0030-6 – volume: 117 start-page: 175 year: 2007 ident: 10.1016/j.compbiomed.2023.106724_bib49 article-title: Obesity induces a phenotypic switch in adipose tissue macrophage polarization publication-title: J. Clin. Invest. doi: 10.1172/JCI29881 – volume: 71 start-page: 1851 year: 2020 ident: 10.1016/j.compbiomed.2023.106724_bib22 article-title: Epidemiological features of NAFLD from 1999 to 2018 in China publication-title: Hepatology doi: 10.1002/hep.31150 – volume: 86 start-page: 129 year: 2019 ident: 10.1016/j.compbiomed.2023.106724_bib54 article-title: Hepatic mast cell concentration directly correlates to stage of fibrosis in NASH publication-title: Hum. Pathol. doi: 10.1016/j.humpath.2018.11.029 – volume: 173 year: 2021 ident: 10.1016/j.compbiomed.2023.106724_bib32 article-title: GADD45beta stabilized by direct interaction with HSP72 ameliorates insulin resistance and lipid accumulation publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2021.105879 – volume: 22 start-page: 740 year: 2021 ident: 10.1016/j.compbiomed.2023.106724_bib41 article-title: Lanatoside C inhibits human cervical cancer cell proliferation and induces cell apoptosis by a reduction of the JAK2/STAT6/SOCS2 signaling pathway publication-title: Oncol. Lett. doi: 10.3892/ol.2021.13001 – volume: 8 start-page: 189 year: 2016 ident: 10.1016/j.compbiomed.2023.106724_bib45 article-title: SOCS2: physiological and pathological functions publication-title: Front. Biosci. doi: 10.2741/e760 – volume: 48 start-page: 696 year: 2018 ident: 10.1016/j.compbiomed.2023.106724_bib8 article-title: Systematic review with meta-analysis: risk of hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis compared to other liver diseases publication-title: Aliment. Pharmacol. Ther. doi: 10.1111/apt.14937 – volume: 175 start-page: 1473 year: 2009 ident: 10.1016/j.compbiomed.2023.106724_bib50 article-title: Increased hepatic myeloperoxidase activity in obese subjects with nonalcoholic steatohepatitis publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2009.080999 – volume: 10 start-page: 333 year: 2019 ident: 10.1016/j.compbiomed.2023.106724_bib39 article-title: MicroRNA-196a/-196b regulate the progression of hepatocellular carcinoma through modulating the JAK/STAT pathway via targeting SOCS2 publication-title: Cell Death Dis. doi: 10.1038/s41419-019-1530-4 – volume: 9 year: 2008 ident: 10.1016/j.compbiomed.2023.106724_bib18 article-title: WGCNA: an R package for weighted correlation network analysis publication-title: BMC Bioinf. doi: 10.1186/1471-2105-9-559 – volume: 51 start-page: 121 year: 2010 ident: 10.1016/j.compbiomed.2023.106724_bib25 article-title: Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis publication-title: Hepatology doi: 10.1002/hep.23276 – volume: 17 start-page: 40 year: 2020 ident: 10.1016/j.compbiomed.2023.106724_bib27 article-title: Genetic contributions to NAFLD: leveraging shared genetics to uncover systems biology publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-019-0212-0 – volume: 40 start-page: 113 year: 2020 ident: 10.1016/j.compbiomed.2023.106724_bib15 article-title: Enhancing diagnosis through RNA sequencing publication-title: Clin. Lab. Med. doi: 10.1016/j.cll.2020.02.001 – volume: 118 start-page: 1911 year: 2008 ident: 10.1016/j.compbiomed.2023.106724_bib30 article-title: Gadd45beta promotes hepatocyte survival during liver regeneration in mice by modulating JNK signaling publication-title: J. Clin. Invest. doi: 10.1172/JCI33913 – volume: 12 start-page: 558 year: 2022 ident: 10.1016/j.compbiomed.2023.106724_bib21 article-title: Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2021.09.019 – volume: 12 year: 2022 ident: 10.1016/j.compbiomed.2023.106724_bib14 article-title: Deep learning-based quantification of NAFLD/NASH progression in human liver biopsies publication-title: Sci. Rep. doi: 10.1038/s41598-022-23905-3 – volume: 12 year: 2021 ident: 10.1016/j.compbiomed.2023.106724_bib51 article-title: Emerging roles of T cells in the pathogenesis of nonalcoholic steatohepatitis and hepatocellular carcinoma publication-title: Front. Endocrinol. doi: 10.3389/fendo.2021.760860 – volume: 18 start-page: 223 year: 2021 ident: 10.1016/j.compbiomed.2023.106724_bib6 article-title: Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-020-00381-6 – volume: 112 start-page: 401 year: 2012 ident: 10.1016/j.compbiomed.2023.106724_bib24 article-title: The role of diet and nutrient composition in nonalcoholic fatty liver disease publication-title: J. Acad. Nutr. Diet. doi: 10.1016/j.jada.2011.10.007 – volume: 157 year: 2023 ident: 10.1016/j.compbiomed.2023.106724_bib40 article-title: SOCS2 protects against chemical-induced hepatocellular carcinoma progression by modulating inflammation and cell proliferation in the liver publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2022.114060 – volume: 18 start-page: 461 year: 2022 ident: 10.1016/j.compbiomed.2023.106724_bib48 article-title: Macrophage functional diversity in NAFLD - more than inflammation publication-title: Nat. Rev. Endocrinol. doi: 10.1038/s41574-022-00675-6 – volume: 7 year: 2017 ident: 10.1016/j.compbiomed.2023.106724_bib52 article-title: The microbiota maintain homeostasis of liver-resident gammadeltaT-17 cells in a lipid antigen/CD1d-dependent manner publication-title: Nat. Commun. – year: 2014 ident: 10.1016/j.compbiomed.2023.106724_bib19 article-title: SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier publication-title: Sci. World J. doi: 10.1155/2014/795624 – volume: 15 year: 2022 ident: 10.1016/j.compbiomed.2023.106724_bib44 article-title: Epigenetic downregulation of Socs2 contributes to mutant N-Ras-mediated hematopoietic dysregulation publication-title: Dis Model Mech doi: 10.1242/dmm.049088 – volume: 323 start-page: 1175 year: 2020 ident: 10.1016/j.compbiomed.2023.106724_bib5 article-title: Nonalcoholic steatohepatitis: a review publication-title: JAMA, J. Am. Med. Assoc. doi: 10.1001/jama.2020.2298 – volume: 121 start-page: 4491 year: 2011 ident: 10.1016/j.compbiomed.2023.106724_bib29 article-title: Gadd45beta is an inducible coactivator of transcription that facilitates rapid liver growth in mice publication-title: J. Clin. Invest. doi: 10.1172/JCI38760 – volume: 41 start-page: 1313 year: 2005 ident: 10.1016/j.compbiomed.2023.106724_bib4 article-title: Design and validation of a histological scoring system for nonalcoholic fatty liver disease publication-title: Hepatology doi: 10.1002/hep.20701 |
| SSID | ssj0004030 |
| Score | 2.487225 |
| Snippet | The prevalence of non-alcoholic fatty liver disease (NAFLD) and NAFLD-associated hepatocellular carcinoma (HCC) has continuously increased in recent years.... AbstractThe prevalence of non-alcoholic fatty liver disease (NAFLD) and NAFLD-associated hepatocellular carcinoma (HCC) has continuously increased in recent... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 106724 |
| SubjectTerms | Algorithms Animals Antigens, Differentiation Bioinformatics Bioinformatics analysis Biomarkers Carcinoma, Hepatocellular - diagnosis Computational Biology Correlation analysis Datasets Diabetes Fatty liver FosB protein Gene expression Genes Genomes Health services Hepatitis Hepatocellular carcinoma Histology Internal Medicine Learning algorithms Liver Liver cancer Liver cirrhosis Liver diseases Liver Neoplasms - diagnosis Machine learning Medical diagnosis Mice NAFLD-associated hepatocellular carcinoma Network analysis Non-alcoholic fatty liver disease (NAFLD) Non-alcoholic Fatty Liver Disease - genetics Normal distribution Other Support Vector Machine Support vector machines |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9QwEB_OPfDxQXxbPSWCX3v2kTYJIqJyxyHcIurBfQtpHsvJ2q5uF7n_wT_aTJN2BR9sP5W2Q9vMdDLp_OY3AM-ZKblztEqFs36B0hQ8bXLu0oozxSuTazuUR5_O65Mz-v68Ot-D-VgLg7DK0ScOjtp0Gv-RvyiYyCte-4Dm9epbil2jMLs6ttBQsbWCeTVQjF2B_QKZsWaw__Zo_uHjtlIyK0NRivc-1C-OIrYnIL4QxB2K3g-xqfghsqsV9F8T1p8B6Q24tmlX6vKHWi5_m6SOb8HNGF2SN8EcbsOebe_A1dOYP78LP0Ndros_6kjnyKrr8ZCXcnYg-SQLdH_koiVt16YqtNC90MSpvr8kS8RxkJjWIYiaXxD_NpF_FTmfiYo8J37HkK8DWNOS2J1iQdb9SE5xD86Ojz6_O0ljP4ZUVzXt0ybzajQFbXRT5UrTxhiufYimLKsrQRuvIVGWLmPWOVEg8RhVhjnvNwx1TLvyPsz8k9uHQGiTC4ZJU2TfF65UdWFwK4S2WlUmATYOutSRrBx7ZizliEr7IrfqkqguGdSVQD5JrgJhxw4yYtSrHAtSvQuVflbZQZb9Tdauoy9Yy1yuC5nJTwMVkrc5v-jLci6yBF5OkjHcCWHMjvc9GA1QTrfafiQJPJtOe4eBWSDV2m6D13AfMvu4jCXwIBjuNFBlzQV2QEigmCx551F89P8negzX8eIAFj2AWf99Y5_4gK5vnsav9BcPmk2Q priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB6VVILywF0wFLRIvDrysfauxVOFqCqkViCIVJ5We0aF4ETEESq_gR_NrHdtbhTIU66xNzPj8beZmW8AnjBTcudolTbO4gZFFTxVOXdpxZnklcm17dujT07r4xl9cVad7UA29ML8kL_v67B8aXVoRZ_6Ud9Tz3lW0EuwW1eIviewOzt9efg2BNwspbyfs-pnaKfoXzQW7_ztUH-6I_2KOK_ClU27khef5GLx3V3o6Dq8GtYfik_eTzedmurPP1E7_ssPvAHXIiQlh8GHbsKObW_B5ZOYdL8NX0Izr4v_7pGlI6tl599CKWd7ZlAy9zGTnLekXbapDHN3zzVxsusuyMIXf5CYCyK-1H5OcC2RtNUTRRMZyVHwiSEf-gpPS-JIizlZdwOjxR2YHT1_8-w4jUMcUl3VtEtVhrY3BVVaVbnUVBnDNeI6aRkakCrWIIQsXcasc03h2cqoNMxhsDHUMe3KfZjgyu09IFTlDfOZVk_Z37hS1oXxj6LRVsvKJMAGQwodGc79oI2FGErZ3olvyhZe2SIoO4F8lFwFlo8tZJrBV8TQxYpxV6CBt5Blv5O16xhA1iIX60Jk4nXPn4Q-jTvFLOdNlsDTUTJipIB9tjzvweDUYjxVgSaoeI1bhQQejx9jlPGpI9na5cZ_hyPORjDHErgbLoZRUWXNGz82IYFivDq21uL9_xF6AHv-Vag7PYBJ93FjHyI27NSjGA6-Ar1MYhA priority: 102 providerName: Unpaywall |
| Title | Identification of potential feature genes in non-alcoholic fatty liver disease using bioinformatics analysis and machine learning strategies |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523001890 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523001890 https://dx.doi.org/10.1016/j.compbiomed.2023.106724 https://www.ncbi.nlm.nih.gov/pubmed/36898287 https://www.proquest.com/docview/2791586099 https://www.proquest.com/docview/2786102667 https://doi.org/10.1016/j.compbiomed.2023.106724 |
| UnpaywallVersion | publishedVersion |
| Volume | 157 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250903 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZWi8TjgHgTWFZG4ppukzixI05ltaWAtlohKpWT5fhRFZW0oqnQXvgF_GhmYicLWpAq0UNezSiJZzIex998Q8grbjLhHMvj0lkYoFSpiKtEuDgXXIncJNq26dHn02IyY-_n-fyAnHa5MAirDL7f-_TWW4cjJ6E1TzbLJeb4wlACBjgQRA8TUeK4nTGOVQwGP65gHmyY-TQU8Dd4dkDzeIwXwrZ9mvsAy4gPkE8tZf_qoq6HoHfIrV29UZff1Wr1W7c0vkfuhniSjvwt3ycHtn5Abp6HGfOH5KfPxHXh0xxdO7pZN3gIpJxtaT3pAh0eXda0Xtex8kVzl5o61TSXdIXIDRomciji5BcUniYwriLLM1WB2QQ2DP3awjMtDfUoFnTbdHQUj8hsfPbpdBKHCgyxzgvWxNUQFGdSVukqT5RmlTFCQ1CmLC_yklW8hPgvc0NunStTpBpjynAHnsIwx7XLHpNDuHP7lFBWJSXHaVLk2y9dporU4C8ttdUqNxHhXaNLHejJsUrGSnY4tC_ySl0S1SW9uiKS9JIbT9Gxh0zZ6VV2KajgNCX0I3vI8r_J2m14-7cykdtUDuU1C43I617yDyPf87pHnQHK_lIpqCAXBcT5EXnZ_w0uAud9VG3XOzxHQJAMkRiPyBNvuH1DZYUoseZBRNLekvduxWf_9TzPyW3c8-jRI3LYfNvZFxDhNdVx-wrDks85LMX47TG5MXr3YTKF9Zuz6cVHWM-mF6PPvwDODViu |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjF4QHwTGGAkeMyWOE4cC02Ij00bWysEm7Q34_ijGippoamm_g_8TfxtnGMnReJDfVmfqiZXO77z-S539zuEnjOdldbSPObWgINSkTKu0tLGeclkmetUmbY8ejAsDk7p-7P8bA397GphXFplpxNbRa0nyr0j3yGMp3lZgEHzavotdl2jXHS1a6EhQ2sFvdtCjIXCjiOzuAAXbrZ7-A74_YKQ_b2Ttwdx6DIQq7ygTVwlMDlNaKWqPJWKVlqXCgwPaViRc1rBuOD024QZazlxcFpUamZhN2hqmbIZ_O8VtEEzysH523izN_zwcVmZmWS-CAa0HQVnLOQS-QwzlzTui-y3XRPzbYfmRui_Dsg_DeDraHNeT-XiQo7Hvx2K-zfRjWDN4tde_G6hNVPfRlcHIV5_B_3wdcA2vBjEE4unk8b9BFTWtKCieOTULT6vcT2pY-lb9p4rbGXTLPDY5Y3gEEbCLkt_hOFpAt6rw5jGMuCqwBeNv7bJoQaHbhgjPGs6MIy76PRSOHMPrcPMzQOEaZVy5oK0Du2f20wWRLsP4coomesIsW7RhQrg6K5Hx1h0WXBfxJJdwrFLeHZFKO0ppx4gZAUa3vFVdAWwoLIFnGIr0LK_0ZpZ0D0zkYoZEYn41EIvgcyBk5mkJU8i9LKnDOaVN5tWHHerE0DRD7XclBF61l8GBeWiTrI2k7m7pwQTHexAFqH7XnD7hcqKkruOCxEivSSvvIoP_z-jp2jz4GRwLI4Ph0eP0DVH6BNVt9B6831uHoMx2VRPwo7F6PNlK4lfoPKLEg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELVKkQo8IO4EChgJHtPm4sSxEEKIsmoprZCgUt-M48uqaMkubFbV_gNfxNcxEztZJC7al-7TapNZO57xeByfOUPIM27yyjlWxMJZ2KDUWRXXaeXiouKqKkyqbZcefXRc7p-wd6fF6Qb52efCIKyy94mdozZTje_IdzMu0qIqIaDZdQEW8WFv9Gr2LcYKUnjS2pfT8CZyaJfnsH2bvzzYA10_z7LR209v9uNQYSDWRcnauE6gYyZjta6LVGlWG1NpCDqU5WUhWA1twobfJdw6JzKk0mLKcAczwTDHtcvhfy-RyzzPBcIJ-Slf5WQmuU9_AT_HYBsWUEQeW4ZwcZ9ev4Ply3eQxy1j_1oa_wx9r5Eri2amludqMvltORzdINdDHEtfe8O7STZsc4tsHYWT-tvkh88AduGVIJ06Opu2-BNIOdvRidIxOlp61tBm2sTKF-s909Sptl3SCSJGaDhAoojPH1N4msD0iuzSVAVGFfhi6NcOFmppqIMxpvO2p8G4Q04uRC93ySb03N4nlNWp4Hg8izz_wuWqzAx-MqGtVoWJCO8HXepAi47VOSayx799kSt1SVSX9OqKSDpIzjw1yBoyoter7FNfwVlLWL_WkOV_k7Xz4HXmMpXzTCbyY0e6BDYH28skrUQSkReDZAisfMC0ZrvbvQHKoanVdIzI0-EyuCY8b1KNnS7wngqCc4gAeUTuecMdBiovK4G1FiKSDZa89ig--H-PnpAtcA3y_cHx4UNyFeU8QnWbbLbfF_YRRJFt_bibrpR8vmj_8Ave8Iis |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB6VVILywF0wFLRIvDrysfauxVOFqCqkViCIVJ5We0aF4ETEESq_gR_NrHdtbhTIU66xNzPj8beZmW8AnjBTcudolTbO4gZFFTxVOXdpxZnklcm17dujT07r4xl9cVad7UA29ML8kL_v67B8aXVoRZ_6Ud9Tz3lW0EuwW1eIviewOzt9efg2BNwspbyfs-pnaKfoXzQW7_ztUH-6I_2KOK_ClU27khef5GLx3V3o6Dq8GtYfik_eTzedmurPP1E7_ssPvAHXIiQlh8GHbsKObW_B5ZOYdL8NX0Izr4v_7pGlI6tl599CKWd7ZlAy9zGTnLekXbapDHN3zzVxsusuyMIXf5CYCyK-1H5OcC2RtNUTRRMZyVHwiSEf-gpPS-JIizlZdwOjxR2YHT1_8-w4jUMcUl3VtEtVhrY3BVVaVbnUVBnDNeI6aRkakCrWIIQsXcasc03h2cqoNMxhsDHUMe3KfZjgyu09IFTlDfOZVk_Z37hS1oXxj6LRVsvKJMAGQwodGc79oI2FGErZ3olvyhZe2SIoO4F8lFwFlo8tZJrBV8TQxYpxV6CBt5Blv5O16xhA1iIX60Jk4nXPn4Q-jTvFLOdNlsDTUTJipIB9tjzvweDUYjxVgSaoeI1bhQQejx9jlPGpI9na5cZ_hyPORjDHErgbLoZRUWXNGz82IYFivDq21uL9_xF6AHv-Vag7PYBJ93FjHyI27NSjGA6-Ar1MYhA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+potential+feature+genes+in+non-alcoholic+fatty+liver+disease+using+bioinformatics+analysis+and+machine+learning+strategies&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Zhang%2C+Zhaohui&rft.au=Wang%2C+Shihao&rft.au=Zhu%2C+Zhengwen&rft.au=Nie%2C+Biao&rft.date=2023-05-01&rft.issn=0010-4825&rft.volume=157&rft.spage=106724&rft.epage=106724&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.106724&rft.externalDBID=ECK1-s2.0-S0010482523001890&rft.externalDocID=1_s2_0_S0010482523001890 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif |