Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework
Ordered two-dimensional covalent organic frameworks (COFs) have generally been synthesized using reversible reactions. It has been difficult to synthesize a similar degree of ordered COFs using irreversible reactions. Developing COFs with a fused aromatic ring system via an irreversible reaction is...
Saved in:
Published in | Communications chemistry Vol. 3; no. 1; p. 31 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
06.03.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2399-3669 2399-3669 |
DOI | 10.1038/s42004-020-0278-1 |
Cover
Abstract | Ordered two-dimensional covalent organic frameworks (COFs) have generally been synthesized using reversible reactions. It has been difficult to synthesize a similar degree of ordered COFs using irreversible reactions. Developing COFs with a fused aromatic ring system via an irreversible reaction is highly desirable but has remained a significant challenge. Here we demonstrate a COF that can be synthesized from organic building blocks via irreversible condensation (aromatization). The as-synthesized robust fused aromatic COF (F-COF) exhibits high crystallinity. Its lattice structure is characterized by scanning tunneling microscopy and X-ray diffraction pattern. Because of its fused aromatic ring system, the F-COF structure possesses high physiochemical stability, due to the absence of hydrolysable weak covalent bonds.
Two-dimensional covalent organic frameworks (2D COFs) are commonly synthesised through dynamic covalent chemistry, as it allows for thermodynamic ‘error correction' which enhances crystallinity. Here a crystalline 2D COF with amine and hydroxyl functional groups within the pores is synthesised through kinetically-controlled reactions. |
---|---|
AbstractList | Ordered two-dimensional covalent organic frameworks (COFs) have generally been synthesized using reversible reactions. It has been difficult to synthesize a similar degree of ordered COFs using irreversible reactions. Developing COFs with a fused aromatic ring system via an irreversible reaction is highly desirable but has remained a significant challenge. Here we demonstrate a COF that can be synthesized from organic building blocks via irreversible condensation (aromatization). The as-synthesized robust fused aromatic COF (F-COF) exhibits high crystallinity. Its lattice structure is characterized by scanning tunneling microscopy and X-ray diffraction pattern. Because of its fused aromatic ring system, the F-COF structure possesses high physiochemical stability, due to the absence of hydrolysable weak covalent bonds. Ordered two-dimensional covalent organic frameworks (COFs) have generally been synthesized using reversible reactions. It has been difficult to synthesize a similar degree of ordered COFs using irreversible reactions. Developing COFs with a fused aromatic ring system via an irreversible reaction is highly desirable but has remained a significant challenge. Here we demonstrate a COF that can be synthesized from organic building blocks via irreversible condensation (aromatization). The as-synthesized robust fused aromatic COF (F-COF) exhibits high crystallinity. Its lattice structure is characterized by scanning tunneling microscopy and X-ray diffraction pattern. Because of its fused aromatic ring system, the F-COF structure possesses high physiochemical stability, due to the absence of hydrolysable weak covalent bonds.Two-dimensional covalent organic frameworks (2D COFs) are commonly synthesised through dynamic covalent chemistry, as it allows for thermodynamic ‘error correction' which enhances crystallinity. Here a crystalline 2D COF with amine and hydroxyl functional groups within the pores is synthesised through kinetically-controlled reactions. Ordered two-dimensional covalent organic frameworks (COFs) have generally been synthesized using reversible reactions. It has been difficult to synthesize a similar degree of ordered COFs using irreversible reactions. Developing COFs with a fused aromatic ring system via an irreversible reaction is highly desirable but has remained a significant challenge. Here we demonstrate a COF that can be synthesized from organic building blocks via irreversible condensation (aromatization). The as-synthesized robust fused aromatic COF (F-COF) exhibits high crystallinity. Its lattice structure is characterized by scanning tunneling microscopy and X-ray diffraction pattern. Because of its fused aromatic ring system, the F-COF structure possesses high physiochemical stability, due to the absence of hydrolysable weak covalent bonds.Ordered two-dimensional covalent organic frameworks (COFs) have generally been synthesized using reversible reactions. It has been difficult to synthesize a similar degree of ordered COFs using irreversible reactions. Developing COFs with a fused aromatic ring system via an irreversible reaction is highly desirable but has remained a significant challenge. Here we demonstrate a COF that can be synthesized from organic building blocks via irreversible condensation (aromatization). The as-synthesized robust fused aromatic COF (F-COF) exhibits high crystallinity. Its lattice structure is characterized by scanning tunneling microscopy and X-ray diffraction pattern. Because of its fused aromatic ring system, the F-COF structure possesses high physiochemical stability, due to the absence of hydrolysable weak covalent bonds. Ordered two-dimensional covalent organic frameworks (COFs) have generally been synthesized using reversible reactions. It has been difficult to synthesize a similar degree of ordered COFs using irreversible reactions. Developing COFs with a fused aromatic ring system via an irreversible reaction is highly desirable but has remained a significant challenge. Here we demonstrate a COF that can be synthesized from organic building blocks via irreversible condensation (aromatization). The as-synthesized robust fused aromatic COF (F-COF) exhibits high crystallinity. Its lattice structure is characterized by scanning tunneling microscopy and X-ray diffraction pattern. Because of its fused aromatic ring system, the F-COF structure possesses high physiochemical stability, due to the absence of hydrolysable weak covalent bonds. Two-dimensional covalent organic frameworks (2D COFs) are commonly synthesised through dynamic covalent chemistry, as it allows for thermodynamic ‘error correction' which enhances crystallinity. Here a crystalline 2D COF with amine and hydroxyl functional groups within the pores is synthesised through kinetically-controlled reactions. |
ArticleNumber | 31 |
Author | Ahmad, Ishfaq Jung, Minbok Mahmood, Javeed Seo, Jeong-Min Noh, Hyuk-Jun Kim, Young Hyun Baek, Jong-Beom Yu, Soo-Young Shin, Hyung-Joon |
Author_xml | – sequence: 1 givenname: Javeed orcidid: 0000-0002-9159-3336 surname: Mahmood fullname: Mahmood, Javeed organization: School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST) – sequence: 2 givenname: Ishfaq surname: Ahmad fullname: Ahmad, Ishfaq organization: School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST) – sequence: 3 givenname: Minbok surname: Jung fullname: Jung, Minbok organization: School of Materials Science and Engineering & Low-Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST) – sequence: 4 givenname: Jeong-Min surname: Seo fullname: Seo, Jeong-Min organization: School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST) – sequence: 5 givenname: Soo-Young surname: Yu fullname: Yu, Soo-Young organization: School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST) – sequence: 6 givenname: Hyuk-Jun surname: Noh fullname: Noh, Hyuk-Jun organization: School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST) – sequence: 7 givenname: Young Hyun surname: Kim fullname: Kim, Young Hyun organization: School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST) – sequence: 8 givenname: Hyung-Joon orcidid: 0000-0002-6750-118X surname: Shin fullname: Shin, Hyung-Joon email: shinhj@unist.ac.kr organization: School of Materials Science and Engineering & Low-Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST) – sequence: 9 givenname: Jong-Beom orcidid: 0000-0003-4785-2326 surname: Baek fullname: Baek, Jong-Beom email: jbbaek@unist.ac.kr organization: School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36703382$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstO3TAQhq2KqlDKA3RTRWLTTVo7dmxng4RQbxJSN7BhY02cycE0scFODpw-fZ0eaClSWfj-za_fM_Oa7PjgkZC3jH5glOuPSVSUipJWNA-lS_aC7FW8aUouZbPzaL9LDlK6ojSTjCulX5FdLhXlXFd75OLsNpSdG9EnFzwMBYzOYwG-Ky43XQx3m6KfvZ1-P7qf2OVjyjPEMMLkbGHDGgb0UxHiCny-6COMeBvijzfkZQ9DwoP7dZ-cf_50dvK1PP3-5dvJ8WlpaymmEmyNkilErlsuVAsCoaWgOgttywArq7nFimEDNRNUI1VMyY4rqXSLveT75Girez23I3Y2m4kwmOvoRogbE8CZf1-8uzSrsDaNZkJqngXe3wvEcDNjmszoksVhAI9hTqZSijKmatZk9PAJehXmmFOTKdFQkbOs2bPU4puJul6od499_zH8UJwMqC1gY0gpYm-sm2ApRf6GGwyjZukEs-0Ek-trlk4wizR7Evkg_lxMtY1JmfUrjH9N_z_oF_V-xkk |
CitedBy_id | crossref_primary_10_1016_j_ccr_2024_216359 crossref_primary_10_1016_j_ccr_2021_214152 crossref_primary_10_1007_s11426_020_9836_x crossref_primary_10_1039_D3QM00782K crossref_primary_10_1002_anie_202113657 crossref_primary_10_1016_j_cej_2023_142459 crossref_primary_10_1002_adma_202004707 crossref_primary_10_1016_j_ccr_2024_215680 crossref_primary_10_1016_j_xcrp_2021_100653 crossref_primary_10_1021_acsami_3c07036 crossref_primary_10_1002_sstr_202300282 crossref_primary_10_1038_s41598_023_39899_5 crossref_primary_10_1016_j_jphotochem_2024_116052 crossref_primary_10_1016_j_arabjc_2024_105987 crossref_primary_10_20517_energymater_2023_72 crossref_primary_10_1002_ange_202113657 crossref_primary_10_1002_anie_202318142 crossref_primary_10_1021_acsami_4c12069 crossref_primary_10_1016_j_aca_2022_340207 crossref_primary_10_1016_j_desal_2024_117723 crossref_primary_10_1002_ange_202203250 crossref_primary_10_1016_j_jorganchem_2023_122984 crossref_primary_10_1021_acs_chemmater_1c04365 crossref_primary_10_1039_D2NH00440B crossref_primary_10_1016_j_chroma_2021_462521 crossref_primary_10_1016_j_cej_2020_127991 crossref_primary_10_1016_j_apsusc_2022_155890 crossref_primary_10_1039_D3CS00908D crossref_primary_10_3390_cryst12101405 crossref_primary_10_1002_ange_202309125 crossref_primary_10_1002_app_53492 crossref_primary_10_1039_D2NJ01776H crossref_primary_10_1002_adma_202301308 crossref_primary_10_1007_s11426_023_1747_2 crossref_primary_10_1021_acsenergylett_0c01889 crossref_primary_10_1021_acssuschemeng_2c07141 crossref_primary_10_3390_ma16124357 crossref_primary_10_1002_anie_202203250 crossref_primary_10_3390_en14113197 crossref_primary_10_1002_ange_202318142 crossref_primary_10_1016_j_ccr_2024_216280 crossref_primary_10_1021_acsami_3c11998 crossref_primary_10_1039_D3CS00287J crossref_primary_10_1002_anie_202309125 crossref_primary_10_1021_jacs_3c07224 |
Cites_doi | 10.1039/C5CS00878F 10.1002/anie.200900881 10.1021/acs.accounts.5b00369 10.1039/c2cs35157a 10.1002/anie.201310500 10.1021/ja509602c 10.1038/ncomms3736 10.1038/nchem.2696 10.1021/jacs.6b12005 10.1038/nmat4611 10.1002/adma.200800030 10.1038/ncomms9508 10.1038/nchem.548 10.1039/c3cs60160a 10.1021/jacs.7b02303 10.1002/anie.201411262 10.1021/jacs.6b12328 10.1002/ange.201306775 10.1002/adfm.201705553 10.1002/anie.201802220 10.1021/jacs.7b05025 10.1038/nchem.2352 10.1002/anie.201501706 10.1002/anie.200803826 10.1126/science.aac8343 10.1021/ja502212v 10.1126/science.1120411 10.1021/ja0751781 10.1002/anie.201103493 10.1039/C2CS35072F 10.1038/s41570-017-0056 10.1038/nnano.2016.304 10.1038/ncomms7486 10.1021/ja308278w 10.1021/jacs.9b07644 10.1126/science.aan0202 10.1021/jacs.9b03441 10.1038/ncomms1542 10.1021/jacs.8b00571 10.1126/science.1102896 10.1021/ja409421d 10.1002/adma.201702007 10.1021/nl1022139 10.1002/anie.201800218 10.1038/ncomms12325 10.1021/acs.chemmater.8b03897 10.1073/pnas.1605318113 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 2020. The Author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: 2020. The Author(s). – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM |
DOI | 10.1038/s42004-020-0278-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2399-3669 |
ExternalDocumentID | PMC9814683 36703382 10_1038_s42004_020_0278_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) grantid: 2019R1C1C1006650; 2014R1A3A2069102; 10Z20130011057; 2016R1A5A1009405 funderid: https://doi.org/10.13039/501100003725 – fundername: National Research Foundation of Korea (NRF) grantid: 2019R1C1C1006650 – fundername: National Research Foundation of Korea (NRF) grantid: 10Z20130011057 – fundername: National Research Foundation of Korea (NRF) grantid: 2016R1A5A1009405 – fundername: National Research Foundation of Korea (NRF) grantid: 2014R1A3A2069102 – fundername: ; grantid: 2019R1C1C1006650; 2014R1A3A2069102; 10Z20130011057; 2016R1A5A1009405 |
GroupedDBID | 0R~ 53G AAFWJ AAJSJ ABDBF ABJCF ACGFS ACSMW ACUHS ADBBV AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ KB. M7S M~E NAO O9- OK1 PDBOC PGMZT PIMPY PTHSS RNT RPM SNYQT AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 8FE 8FG AARCD ABUWG AZQEC D1I DWQXO L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c564t-ac5e617ee38b347ba4eab0a7dcabb1ae2c83ce21e9a51408e07176d37678bef63 |
IEDL.DBID | 8FG |
ISSN | 2399-3669 |
IngestDate | Thu Aug 21 18:38:03 EDT 2025 Fri Sep 05 11:07:06 EDT 2025 Wed Aug 13 09:30:21 EDT 2025 Wed Aug 13 07:59:52 EDT 2025 Thu Jan 02 22:54:51 EST 2025 Tue Jul 01 02:10:16 EDT 2025 Thu Apr 24 22:53:55 EDT 2025 Fri Feb 21 02:37:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2020. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-ac5e617ee38b347ba4eab0a7dcabb1ae2c83ce21e9a51408e07176d37678bef63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6750-118X 0000-0002-9159-3336 0000-0003-4785-2326 |
OpenAccessLink | https://www.proquest.com/docview/2376714551?pq-origsite=%requestingapplication% |
PMID | 36703382 |
PQID | 2376714551 |
PQPubID | 4669725 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9814683 proquest_miscellaneous_2770117519 proquest_journals_2490400081 proquest_journals_2376714551 pubmed_primary_36703382 crossref_citationtrail_10_1038_s42004_020_0278_1 crossref_primary_10_1038_s42004_020_0278_1 springer_journals_10_1038_s42004_020_0278_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-06 |
PublicationDateYYYYMMDD | 2020-03-06 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Communications chemistry |
PublicationTitleAbbrev | Commun Chem |
PublicationTitleAlternate | Commun Chem |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Novoselov (CR5) 2004; 306 Mahmood (CR24) 2017; 12 Segura, Mancheño, Zamora (CR29) 2016; 45 Halder (CR34) 2018; 57 Mahmood (CR11) 2015; 6 Côté, El-Kaderi, Furukawa, Hunt, Yaghi (CR28) 2007; 129 Kou, Xu, Guo, Jiang (CR46) 2011; 50 Doonan, Tranchemontagne, Glover, Hunt, Yaghi (CR16) 2010; 2 Xu (CR25) 2017; 29 CR12 Wang (CR45) 2019; 141 Chen (CR33) 2015; 137 Guo (CR42) 2013; 4 Kandambeth (CR31) 2012; 134 Nagai (CR48) 2011; 2 Huang, Wang, Jiang (CR8) 2016; 1 Kandambeth (CR32) 2013; 125 Vyas (CR21) 2015; 6 Rao, Fang, De Feyter, Perepichka (CR38) 2017; 139 Lin (CR19) 2015; 349 Liu (CR39) 2017; 9 Fang (CR20) 2014; 53 Xu (CR23) 2015; 54 Huang (CR26) 2016; 7 Xu, Jin, Xu, Nagai, Jiang (CR36) 2013; 42 Feng, Ding, Jiang (CR3) 2012; 41 Huang, Chen, Krishna, Jiang (CR15) 2015; 54 Meng, Stolz, Mirica (CR44) 2019; 141 Jin, Hu, Zhang (CR9) 2017; 1 Mahmood (CR17) 2018; 57 DeBlase, Silberstein, Truong, Abruña, Dichtel (CR22) 2013; 135 Song (CR6) 2010; 10 Wan, Guo, Kim, Ihee, Jiang (CR27) 2009; 48 Wan, Guo, Kim, Ihee, Jiang (CR37) 2008; 47 Jin (CR10) 2017; 357 Huang, Zhai, Xu, Jiang (CR41) 2017; 139 Xu, Gao, Jiang (CR18) 2015; 7 Tilford, Mugavero, Pellechia, Lavigne (CR47) 2008; 20 Waller, Gándara, Yaghi (CR2) 2015; 48 Liu (CR40) 2017; 139 Chandra (CR13) 2014; 136 Qian (CR30) 2017; 139 Meng, Aykanat, Mirica (CR43) 2019; 31 Wei (CR35) 2018; 140 Xu, Tao, Jiang (CR14) 2016; 15 Ding, Wang (CR1) 2013; 42 Lohse, Bein (CR7) 2018; 28 Côté (CR4) 2005; 310 VS Vyas (278_CR21) 2015; 6 S Wan (278_CR37) 2008; 47 AP Côté (278_CR4) 2005; 310 RW Tilford (278_CR47) 2008; 20 N Huang (278_CR15) 2015; 54 X Feng (278_CR3) 2012; 41 JL Segura (278_CR29) 2016; 45 MR Rao (278_CR38) 2017; 139 H Xu (278_CR14) 2016; 15 S Lin (278_CR19) 2015; 349 J Mahmood (278_CR17) 2018; 57 A Nagai (278_CR48) 2011; 2 N Huang (278_CR8) 2016; 1 Y Jin (278_CR9) 2017; 1 M Wang (278_CR45) 2019; 141 E Jin (278_CR10) 2017; 357 J Mahmood (278_CR11) 2015; 6 KS Novoselov (278_CR5) 2004; 306 J Xu (278_CR25) 2017; 29 PJ Waller (278_CR2) 2015; 48 Z Meng (278_CR43) 2019; 31 J Mahmood (278_CR24) 2017; 12 N Huang (278_CR26) 2016; 7 MS Lohse (278_CR7) 2018; 28 AP Côté (278_CR28) 2007; 129 Z Meng (278_CR44) 2019; 141 N Huang (278_CR41) 2017; 139 278_CR12 S Kandambeth (278_CR32) 2013; 125 CJ Doonan (278_CR16) 2010; 2 Q Fang (278_CR20) 2014; 53 Y Xu (278_CR36) 2013; 42 Y Kou (278_CR46) 2011; 50 S Chandra (278_CR13) 2014; 136 C Qian (278_CR30) 2017; 139 J Liu (278_CR40) 2017; 139 S Kandambeth (278_CR31) 2012; 134 X Chen (278_CR33) 2015; 137 W Liu (278_CR39) 2017; 9 A Halder (278_CR34) 2018; 57 J Guo (278_CR42) 2013; 4 H Xu (278_CR18) 2015; 7 F Xu (278_CR23) 2015; 54 P-F Wei (278_CR35) 2018; 140 S Wan (278_CR27) 2009; 48 S-Y Ding (278_CR1) 2013; 42 CR DeBlase (278_CR22) 2013; 135 L Song (278_CR6) 2010; 10 |
References_xml | – volume: 45 start-page: 5635 year: 2016 end-page: 5671 ident: CR29 article-title: Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00878F – volume: 48 start-page: 5439 year: 2009 end-page: 5442 ident: CR27 article-title: A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2d polypyrene sheets for photocurrent generation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200900881 – volume: 48 start-page: 3053 year: 2015 end-page: 3063 ident: CR2 article-title: Chemistry of covalent organic frameworks publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00369 – volume: 41 start-page: 6010 year: 2012 end-page: 6022 ident: CR3 article-title: Covalent organic frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35157a – volume: 53 start-page: 2878 year: 2014 end-page: 2882 ident: CR20 article-title: 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201310500 – volume: 137 start-page: 3241 year: 2015 end-page: 3247 ident: CR33 article-title: Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja509602c – volume: 4 year: 2013 ident: CR42 article-title: Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds publication-title: Nat. Commun. doi: 10.1038/ncomms3736 – ident: CR12 – volume: 9 start-page: 563 year: 2017 ident: CR39 article-title: A two-dimensional conjugated aromatic polymer via C–C coupling reaction publication-title: Nat. Chem. doi: 10.1038/nchem.2696 – volume: 139 start-page: 2421 year: 2017 end-page: 2427 ident: CR38 article-title: Conjugated covalent organic frameworks via Michael addition–elimination publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12005 – volume: 15 start-page: 722 year: 2016 ident: CR14 article-title: Proton conduction in crystalline and porous covalent organic frameworks publication-title: Nat. Mater. doi: 10.1038/nmat4611 – volume: 20 start-page: 2741 year: 2008 end-page: 2746 ident: CR47 article-title: Tailoring microporosity in covalent organic frameworks publication-title: Adv. Mater. doi: 10.1002/adma.200800030 – volume: 6 year: 2015 ident: CR21 article-title: A tunable azine covalent organic framework platform for visible light-induced hydrogen generation publication-title: Nat. Commun. doi: 10.1038/ncomms9508 – volume: 2 start-page: 235 year: 2010 ident: CR16 article-title: Exceptional ammonia uptake by a covalent organic framework publication-title: Nat. Chem. doi: 10.1038/nchem.548 – volume: 42 start-page: 8012 year: 2013 end-page: 8031 ident: CR36 article-title: Conjugated microporous polymers: design, synthesis and application publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60160a – volume: 139 start-page: 6736 year: 2017 end-page: 6743 ident: CR30 article-title: Toward covalent organic frameworks bearing three different kinds of pores: the strategy for construction and COF-to-COF transformation via heterogeneous linker exchange publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02303 – volume: 54 start-page: 2986 year: 2015 end-page: 2990 ident: CR15 article-title: Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411262 – volume: 139 start-page: 2428 year: 2017 end-page: 2434 ident: CR41 article-title: Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12328 – volume: 125 start-page: 13290 year: 2013 end-page: 13294 ident: CR32 article-title: Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201306775 – volume: 28 start-page: 1705553 year: 2018 ident: CR7 article-title: Covalent organic frameworks: structures, synthesis, and applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705553 – volume: 57 start-page: 5797 year: 2018 end-page: 5802 ident: CR34 article-title: Ultrastable imine-based covalent organic frameworks for sulfuric acid recovery: an effect of interlayer hydrogen bonding publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201802220 – volume: 139 start-page: 11666 year: 2017 end-page: 11669 ident: CR40 article-title: Solution synthesis of semiconducting two-dimensional polymer via trimerization of carbonitrile publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05025 – volume: 7 start-page: 905 year: 2015 ident: CR18 article-title: Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts publication-title: Nat. Chem. doi: 10.1038/nchem.2352 – volume: 54 start-page: 6814 year: 2015 end-page: 6818 ident: CR23 article-title: Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201501706 – volume: 47 start-page: 8826 year: 2008 end-page: 8830 ident: CR37 article-title: A belt-shaped, blue luminescent, and semiconducting covalent organic framework publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200803826 – volume: 349 start-page: 1208 year: 2015 end-page: 1213 ident: CR19 article-title: Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water publication-title: Science doi: 10.1126/science.aac8343 – volume: 136 start-page: 6570 year: 2014 end-page: 6573 ident: CR13 article-title: Phosphoric acid loaded azo (−N═N−) based covalent organic framework for proton conduction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502212v – volume: 310 start-page: 1166 year: 2005 end-page: 1170 ident: CR4 article-title: Porous, crystalline, covalent organic frameworks publication-title: Science doi: 10.1126/science.1120411 – volume: 129 start-page: 12914 year: 2007 end-page: 12915 ident: CR28 article-title: Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0751781 – volume: 50 start-page: 8753 year: 2011 end-page: 8757 ident: CR46 article-title: Supercapacitive energy storage and electric power supply using an aza-fused π-conjugated microporous framework publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201103493 – volume: 1 start-page: 16068 year: 2016 ident: CR8 article-title: Covalent organic frameworks: a materials platform for structural and functional designs publication-title: Nat. Rev. Chem. – volume: 42 start-page: 548 year: 2013 end-page: 568 ident: CR1 article-title: Covalent organic frameworks (COFs): from design to applications publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35072F – volume: 1 start-page: 0056 year: 2017 ident: CR9 article-title: Tessellated multiporous two-dimensional covalent organic frameworks publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-017-0056 – volume: 12 start-page: 441 year: 2017 ident: CR24 article-title: An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.304 – volume: 6 year: 2015 ident: CR11 article-title: Nitrogenated holey two-dimensional structures publication-title: Nat. Commun. doi: 10.1038/ncomms7486 – volume: 134 start-page: 19524 year: 2012 end-page: 19527 ident: CR31 article-title: Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308278w – volume: 141 start-page: 16810 year: 2019 end-page: 16816 ident: CR45 article-title: Unveiling electronic properties in metal–phthalocyanine-based pyrazine-linked conjugated two-dimensional covalent organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07644 – volume: 357 start-page: 673 year: 2017 end-page: 676 ident: CR10 article-title: Two-dimensional sp2 carbon-conjugated covalent organic frameworks publication-title: Science doi: 10.1126/science.aan0202 – volume: 141 start-page: 11929 year: 2019 end-page: 11937 ident: CR44 article-title: Two-dimensional chemiresistive covalent organic framework with high intrinsic conductivity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03441 – volume: 2 year: 2011 ident: CR48 article-title: Pore surface engineering in covalent organic frameworks publication-title: Nat. Commun. doi: 10.1038/ncomms1542 – volume: 140 start-page: 4623 year: 2018 end-page: 4631 ident: CR35 article-title: Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00571 – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: CR5 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 135 start-page: 16821 year: 2013 end-page: 16824 ident: CR22 article-title: β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409421d – volume: 29 start-page: 1702007 year: 2017 ident: CR25 article-title: 2D frameworks of C2N and C3N as new anode materials for lithium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201702007 – volume: 10 start-page: 3209 year: 2010 end-page: 3215 ident: CR6 article-title: Large scale growth and characterization of atomic hexagonal boron nitride layers publication-title: Nano Lett. doi: 10.1021/nl1022139 – volume: 57 start-page: 3415 year: 2018 end-page: 3420 ident: CR17 article-title: A robust 3D cage-like ultramicroporous network structure with high gas-uptake capacity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201800218 – volume: 7 year: 2016 ident: CR26 article-title: Multiple-component covalent organic frameworks publication-title: Nat. Commun. doi: 10.1038/ncomms12325 – volume: 31 start-page: 819 year: 2019 end-page: 825 ident: CR43 article-title: Proton conduction in 2D aza-fused covalent organic frameworks publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03897 – volume: 53 start-page: 2878 year: 2014 ident: 278_CR20 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201310500 – volume: 12 start-page: 441 year: 2017 ident: 278_CR24 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.304 – volume: 2 start-page: 235 year: 2010 ident: 278_CR16 publication-title: Nat. Chem. doi: 10.1038/nchem.548 – volume: 7 start-page: 905 year: 2015 ident: 278_CR18 publication-title: Nat. Chem. doi: 10.1038/nchem.2352 – volume: 134 start-page: 19524 year: 2012 ident: 278_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308278w – volume: 54 start-page: 2986 year: 2015 ident: 278_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411262 – volume: 139 start-page: 2428 year: 2017 ident: 278_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12328 – ident: 278_CR12 doi: 10.1073/pnas.1605318113 – volume: 4 year: 2013 ident: 278_CR42 publication-title: Nat. Commun. doi: 10.1038/ncomms3736 – volume: 140 start-page: 4623 year: 2018 ident: 278_CR35 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00571 – volume: 48 start-page: 3053 year: 2015 ident: 278_CR2 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00369 – volume: 1 start-page: 16068 year: 2016 ident: 278_CR8 publication-title: Nat. Rev. Chem. – volume: 57 start-page: 5797 year: 2018 ident: 278_CR34 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201802220 – volume: 7 year: 2016 ident: 278_CR26 publication-title: Nat. Commun. doi: 10.1038/ncomms12325 – volume: 137 start-page: 3241 year: 2015 ident: 278_CR33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja509602c – volume: 48 start-page: 5439 year: 2009 ident: 278_CR27 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200900881 – volume: 9 start-page: 563 year: 2017 ident: 278_CR39 publication-title: Nat. Chem. doi: 10.1038/nchem.2696 – volume: 2 year: 2011 ident: 278_CR48 publication-title: Nat. Commun. doi: 10.1038/ncomms1542 – volume: 10 start-page: 3209 year: 2010 ident: 278_CR6 publication-title: Nano Lett. doi: 10.1021/nl1022139 – volume: 6 year: 2015 ident: 278_CR21 publication-title: Nat. Commun. doi: 10.1038/ncomms9508 – volume: 310 start-page: 1166 year: 2005 ident: 278_CR4 publication-title: Science doi: 10.1126/science.1120411 – volume: 47 start-page: 8826 year: 2008 ident: 278_CR37 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200803826 – volume: 6 year: 2015 ident: 278_CR11 publication-title: Nat. Commun. doi: 10.1038/ncomms7486 – volume: 139 start-page: 2421 year: 2017 ident: 278_CR38 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12005 – volume: 1 start-page: 0056 year: 2017 ident: 278_CR9 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-017-0056 – volume: 42 start-page: 548 year: 2013 ident: 278_CR1 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35072F – volume: 41 start-page: 6010 year: 2012 ident: 278_CR3 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35157a – volume: 349 start-page: 1208 year: 2015 ident: 278_CR19 publication-title: Science doi: 10.1126/science.aac8343 – volume: 136 start-page: 6570 year: 2014 ident: 278_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502212v – volume: 20 start-page: 2741 year: 2008 ident: 278_CR47 publication-title: Adv. Mater. doi: 10.1002/adma.200800030 – volume: 125 start-page: 13290 year: 2013 ident: 278_CR32 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201306775 – volume: 139 start-page: 11666 year: 2017 ident: 278_CR40 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05025 – volume: 135 start-page: 16821 year: 2013 ident: 278_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409421d – volume: 50 start-page: 8753 year: 2011 ident: 278_CR46 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201103493 – volume: 357 start-page: 673 year: 2017 ident: 278_CR10 publication-title: Science doi: 10.1126/science.aan0202 – volume: 139 start-page: 6736 year: 2017 ident: 278_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02303 – volume: 54 start-page: 6814 year: 2015 ident: 278_CR23 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201501706 – volume: 15 start-page: 722 year: 2016 ident: 278_CR14 publication-title: Nat. Mater. doi: 10.1038/nmat4611 – volume: 31 start-page: 819 year: 2019 ident: 278_CR43 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03897 – volume: 29 start-page: 1702007 year: 2017 ident: 278_CR25 publication-title: Adv. Mater. doi: 10.1002/adma.201702007 – volume: 45 start-page: 5635 year: 2016 ident: 278_CR29 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00878F – volume: 141 start-page: 16810 year: 2019 ident: 278_CR45 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07644 – volume: 141 start-page: 11929 year: 2019 ident: 278_CR44 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03441 – volume: 129 start-page: 12914 year: 2007 ident: 278_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0751781 – volume: 42 start-page: 8012 year: 2013 ident: 278_CR36 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60160a – volume: 57 start-page: 3415 year: 2018 ident: 278_CR17 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201800218 – volume: 306 start-page: 666 year: 2004 ident: 278_CR5 publication-title: Science doi: 10.1126/science.1102896 – volume: 28 start-page: 1705553 year: 2018 ident: 278_CR7 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705553 |
SSID | ssj0002013778 |
Score | 2.326996 |
Snippet | Ordered two-dimensional covalent organic frameworks (COFs) have generally been synthesized using reversible reactions. It has been difficult to synthesize a... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 31 |
SubjectTerms | 639/301/357 639/301/357/1018 639/638/298 Aromatic compounds Bonding strength Chemical synthesis Chemistry Chemistry and Materials Science Chemistry/Food Science Covalence Covalent bonds Crystal structure Crystallinity Diffraction patterns Dimensional stability Error correction Functional groups Physiochemistry Scanning tunneling microscopy |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBele9heyr6b7To82NOG2Tl2YudxHC1lsD314NhL8FdooU3KfVDav36Sc8m4HR3sJRAsgyLLkWTJPwF8ksqSmbZcBlFypZTnTuiGu4DeQCO0Lhzdd_7xszyfq--LYnEAYrgLk4r2E6Rl-k0P1WFfV6ovmcBgh3JlHAOeJ0bLgpR6Vs7GY5U8QeiZIX8pzf7MXQu051buV0f-lSJNlufsORxtXUb2rWfyBRzE9iU8nQ2d2l7Br4u7jgeC6e8hNpi9Qd-R2Tawy_tAdSqMzFd_6nf1EAO-rvBpl10CbGW-Q31DPljf48mzZijZeg3zs9OL2Tnf9kzgvijVmltfRHRKYpTGSaWdVdG6qdXBW-eEjbk30sdcxMqiqzQ1keK5MhCmi3GxKeUbOGy7Nh4DC142vhJWhWiV15XD2ZXPqxBV40pTZDAd5Fj7LaA49bW4rlNiW5q6F32Noq9J9LXI4PM45bZH0_gX8WRYnHq7sVY1FfFoAld_ZFhV9FdCPyeDj-MwLgelQWwbuw3SaJ0ASkWVwdt-qUdmCM4Og_Y8A72jBCMBoXHvjrRXlwmVu6LDVCMz-DKoyx-2Hv3Gd_9F_R6e5UmPqSHHBA7Xy008QZ9o7T6kXfAbr7oImg priority: 102 providerName: Springer Nature |
Title | Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework |
URI | https://link.springer.com/article/10.1038/s42004-020-0278-1 https://www.ncbi.nlm.nih.gov/pubmed/36703382 https://www.proquest.com/docview/2376714551 https://www.proquest.com/docview/2490400081 https://www.proquest.com/docview/2770117519 https://pubmed.ncbi.nlm.nih.gov/PMC9814683 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLdge4AXxDeFcSoST6BolyZt0qfpdtoxncSEYJMmXqp8VZsE7djdhOCvx04_pmOwl1ZtUimx3dixnZ8B3gppSE0bJjwvmJTSMctVzaxHa6DmSuWWzjt_PCoOT-TyND_tHW6rPq1yWBPjQu1bRz7yXcreUISqzfcufjCqGkXR1b6Exl3Y5hnqWjopvvgw-liyiKenh2Cm0Lsr2WVe4J6JQm6Mb6qjGzbmzVTJv-KlUQ0tHsKD3n5MZx3DH8Gd0DyGe_OhbNsT-Hr8s2WeMPs7vI3UfEdDMjWNT89-eUpaSUmXdS7A89_B4-MKr-ayjeitqWtR-HAcaVfwyaX1kL_1FE4WB8fzQ9YXUGAuL-SaGZcHtFBCENoKqayRwdipUd4Za7kJmdPChYyH0qDdNNWBNneFJ0prG-pCPIOtpm3CC0i9E7UruZE-GOlUafHr0mWlD7K2hc4TmA50rFyPLk5FLr5VMcotdNWRvkLSV0T6iifwbvzkooPWuK3zzsCcqv_LVtW1TPy7WZa0RKHRk8CbsRnZQTER04T2CvsoFdFKeZnA847V42AI2w538FkCakMIxg4Ezb3Z0pyfRYjukjyrWiTwfhCX62H9d44vb5_jK7ifRcGlchw7sLW-vAqv0SJa20kU-wlsz2bLL0u87x8cffqMb-fFfBK9DJPoxvoD4f4RYQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxJtAASPBBWR1HTuxc0AIFZYtfZy2UsXF-BW1EiSlu1VVfhS_EU-yTrUUeuslUmQ7scdjz3hm_A3AKy4MimlDuWclFUI4apmsqfVRG6iZlIXF-867e-VkX3w5KA5W4He6C4NhlWlP7DZq3zq0kW9g9IZEVG32_vgnxaxR6F1NKTR6ttgO52fxyDZ7t_Uxzu_rPB9_mm5O6CKrAHVFKebUuCJEsR0CV5YLaY0Ixo6M9M5Yy0zIneIu5CxUJioTIxXwxFN6_L2yoS55_O4NuCk45xhCqMafB5tO3uH3qeQ85WpjJvpIj3hGQxcfZcvi75JOezk08y__bCf2xnfg9kJfJR96BrsLK6G5B2ubKU3cffg6PWupxxwBPb4HMT-i4kpM48nhuccgGYKyszc5Hv0KPr7O4tOctB1aLHFtZPbYD9InmHKkTvFiD2D_Wkj7EFabtgmPgXjHa1cxI3wwwsnKxtaVyysfRG1LVWQwSnTUboFmjkk1vuvOq86V7kmvI-k1kl6zDN4MTY57KI-rKq-nydGLVT3TFzz472JR4ZYYlawMXg7FcTrQB2Oa0J7GOlJ26KisyuBRP9VDZxBLj3OVZyCXmGCogFDgyyXN0WEHCV6hJVfxDN4mdrno1n_H-OTqMb6Atcl0d0fvbO1tP4VbecfEmApkHVbnJ6fhWdTG5vZ5twQIfLvuNfcHovtJyQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qC-qLtH7UaK0r-KQsXrKb7OaxnB5t1eJDC8WXZb9CC5pI74roX-_M5hI5jwp9CYSdhcnsZGdmZ_Y3AK-FtGSmLRchr7iU0nOXq4a7gN5AkytVOrrv_PmkOjyTx-fl-QaUw12YVLSfIC3TNj1Uh72by75kAoMdypVx3GBCcwe2NFpEirmm1XQ8WikSjJ4ecphCr89etUJrruV6heQ_adJkfWbb8GDpNrKDntEd2IjtQ7g3Hbq1PYKvpz87Hgiqv4fZYPY7-o_MtoFd_ApUq8LIhPUnf5e_Y8DXOT7tVZdAW5nvUOeQD9b3efKsGcq2HsPZ7MPp9JAv-yZwX1Zywa0vIzomMQrthFTOymjdxKrgrXO5jYXXwscij7VFd2miI8V0VSBcF-1iU4knsNl2bXwKLHjR-Dq3MkQrvaodzq59UYcoG1fpMoPJIEfjl6Di1Nvim0nJbaFNL3qDojckepNn8Gac8qNH1Pgf8d6wOGb5c80NFfIoAli_YVjWtDOhr5PBq3EYl4NSIbaN3TXSKJVASvM6g91-qUdmCNIOA_ciA7WiBCMBIXKvjrSXFwmZu6YDVS0yeDuoy1-2bvzGZ7eifgl3v7yfmU9HJx-fw_0iqTT159iDzcXVdXyBLtLC7acf4g8GnAyS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+amine+and+hydroxy+functionalized+fused+aromatic+covalent+organic+framework&rft.jtitle=Communications+chemistry&rft.au=Mahmood%2C+Javeed&rft.au=Ahmad%2C+Ishfaq&rft.au=Jung%2C+Minbok&rft.au=Seo%2C+Jeong-Min&rft.date=2020-03-06&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2399-3669&rft.volume=3&rft_id=info:doi/10.1038%2Fs42004-020-0278-1&rft.externalDocID=PMC9814683 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3669&client=summon |