G-RMOS: GPU-accelerated Riemannian Metric Optimization on Surfaces
Surface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer’s disease. Riemannian metrics on surface (RMOS) is a state-of-the-art surface mapping algorithm that optimizes Riemannian metrics to establish one-to-one correspondences between su...
        Saved in:
      
    
          | Published in | Computers in biology and medicine Vol. 150; p. 106167 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Ltd
    
        01.11.2022
     Elsevier Limited  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0010-4825 1879-0534 1879-0534  | 
| DOI | 10.1016/j.compbiomed.2022.106167 | 
Cover
| Abstract | Surface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer’s disease. Riemannian metrics on surface (RMOS) is a state-of-the-art surface mapping algorithm that optimizes Riemannian metrics to establish one-to-one correspondences between surfaces in the Laplace–Beltrami embedding space. However, owing to the complex calculation with accurate one-to-one correspondences, RMOS registration takes a long time. In this study, we propose G-RMOS, a graphics processing unit (GPU)-accelerated RMOS registration pipeline that uses three GPU kernel design strategies: 1. using GPU computing capability with a batch scheme; 2. using the cache in the GPU block to minimize memory latency in register and shared memory; and 3. maximizing the effective number of instructions per GPU cycle using instruction level parallelism. Using the experimental results, we compare the acceleration speed of the G-RMOS framework with that of RMOS using hippocampus and cortical surfaces, and show that G-RMOS achieves a significant speedup in surface mapping. We also compare the memory requirements for cortical surface mapping and show that G-RMOS uses less memory than RMOS.
[Display omitted]
•Propose a GPU-accelerated parallel framework for fast surface mapping.•Design a batch scheme with a GPU kernel using instruction level parallelism.•Demonstrate improvement in computational time for brain surface mapping. | 
    
|---|---|
| AbstractList | Surface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer’s disease. Riemannian metrics on surface (RMOS) is a state-of-the-art surface mapping algorithm that optimizes Riemannian metrics to establish one-to-one correspondences between surfaces in the Laplace–Beltrami embedding space. However, owing to the complex calculation with accurate one-to-one correspondences, RMOS registration takes a long time. In this study, we propose G-RMOS, a graphics processing unit (GPU)-accelerated RMOS registration pipeline that uses three GPU kernel design strategies: 1. using GPU computing capability with a batch scheme; 2. using the cache in the GPU block to minimize memory latency in register and shared memory; and 3. maximizing the effective number of instructions per GPU cycle using instruction level parallelism. Using the experimental results, we compare the acceleration speed of the G-RMOS framework with that of RMOS using hippocampus and cortical surfaces, and show that G-RMOS achieves a significant speedup in surface mapping. We also compare the memory requirements for cortical surface mapping and show that G-RMOS uses less memory than RMOS.
[Display omitted]
•Propose a GPU-accelerated parallel framework for fast surface mapping.•Design a batch scheme with a GPU kernel using instruction level parallelism.•Demonstrate improvement in computational time for brain surface mapping. AbstractSurface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer’s disease. Riemannian metrics on surface (RMOS) is a state-of-the-art surface mapping algorithm that optimizes Riemannian metrics to establish one-to-one correspondences between surfaces in the Laplace–Beltrami embedding space. However, owing to the complex calculation with accurate one-to-one correspondences, RMOS registration takes a long time. In this study, we propose G-RMOS, a graphics processing unit (GPU)-accelerated RMOS registration pipeline that uses three GPU kernel design strategies: 1. using GPU computing capability with a batch scheme; 2. using the cache in the GPU block to minimize memory latency in register and shared memory; and 3. maximizing the effective number of instructions per GPU cycle using instruction level parallelism. Using the experimental results, we compare the acceleration speed of the G-RMOS framework with that of RMOS using hippocampus and cortical surfaces, and show that G-RMOS achieves a significant speedup in surface mapping. We also compare the memory requirements for cortical surface mapping and show that G-RMOS uses less memory than RMOS. Surface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer's disease. Riemannian metrics on surface (RMOS) is a state-of-the-art surface mapping algorithm that optimizes Riemannian metrics to establish one-to-one correspondences between surfaces in the Laplace-Beltrami embedding space. However, owing to the complex calculation with accurate one-to-one correspondences, RMOS registration takes a long time. In this study, we propose G-RMOS, a graphics processing unit (GPU)-accelerated RMOS registration pipeline that uses three GPU kernel design strategies: 1. using GPU computing capability with a batch scheme; 2. using the cache in the GPU block to minimize memory latency in register and shared memory; and 3. maximizing the effective number of instructions per GPU cycle using instruction level parallelism. Using the experimental results, we compare the acceleration speed of the G-RMOS framework with that of RMOS using hippocampus and cortical surfaces, and show that G-RMOS achieves a significant speedup in surface mapping. We also compare the memory requirements for cortical surface mapping and show that G-RMOS uses less memory than RMOS.Surface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer's disease. Riemannian metrics on surface (RMOS) is a state-of-the-art surface mapping algorithm that optimizes Riemannian metrics to establish one-to-one correspondences between surfaces in the Laplace-Beltrami embedding space. However, owing to the complex calculation with accurate one-to-one correspondences, RMOS registration takes a long time. In this study, we propose G-RMOS, a graphics processing unit (GPU)-accelerated RMOS registration pipeline that uses three GPU kernel design strategies: 1. using GPU computing capability with a batch scheme; 2. using the cache in the GPU block to minimize memory latency in register and shared memory; and 3. maximizing the effective number of instructions per GPU cycle using instruction level parallelism. Using the experimental results, we compare the acceleration speed of the G-RMOS framework with that of RMOS using hippocampus and cortical surfaces, and show that G-RMOS achieves a significant speedup in surface mapping. We also compare the memory requirements for cortical surface mapping and show that G-RMOS uses less memory than RMOS. Surface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer's disease. Riemannian metrics on surface (RMOS) is a state-of-the-art surface mapping algorithm that optimizes Riemannian metrics to establish one-to-one correspondences between surfaces in the Laplace-Beltrami embedding space. However, owing to the complex calculation with accurate one-to-one correspondences, RMOS registration takes a long time. In this study, we propose G-RMOS, a graphics processing unit (GPU)-accelerated RMOS registration pipeline that uses three GPU kernel design strategies: 1. using GPU computing capability with a batch scheme; 2. using the cache in the GPU block to minimize memory latency in register and shared memory; and 3. maximizing the effective number of instructions per GPU cycle using instruction level parallelism. Using the experimental results, we compare the acceleration speed of the G-RMOS framework with that of RMOS using hippocampus and cortical surfaces, and show that G-RMOS achieves a significant speedup in surface mapping. We also compare the memory requirements for cortical surface mapping and show that G-RMOS uses less memory than RMOS.  | 
    
| ArticleNumber | 106167 | 
    
| Author | Jo, Jeong Won Gahm, Jin Kyu  | 
    
| Author_xml | – sequence: 1 givenname: Jeong Won surname: Jo fullname: Jo, Jeong Won organization: Department of Information Convergence Engineering, Pusan National University, 2, Busandaehak-ro 63, Busan, 46241, Republic of Korea – sequence: 2 givenname: Jin Kyu orcidid: 0000-0001-8827-402X surname: Gahm fullname: Gahm, Jin Kyu email: gahmj@pusan.ac.kr organization: School of Computer Science and Engineering, Pusan National University, 2, Busandaehak-ro 63, Busan, 46241, Republic of Korea  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37859279$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqVklGL1DAUhYOsuLOrf0EKvvjS8SZt08aHxd1FR2GXkR33OdxJUsjYpjVplfHXm9pdhQFhhJBAOOfk3i_3jJy4zhlCEgpLCpS_2S1V1_Zb27VGLxkwFq855eUTsqBVKVIosvyELAAopHnFilNyFsIOAHLI4Bk5zcqqEKwUC3K1Su9u15u3yerzfYpKmcZ4HIxO7qxp0TmLLrk1g7cqWfeDbe1PHGznkrg2o69RmfCcPK2xCebFw3lO7j-8_3L9Mb1Zrz5dX96kquD5kCJFVijBOWpkW4G6ZLTWmnOBJWQly6oMhKmELljOWK63CFop5LWqs4rG7ZyIOXd0Pe5_YNPI3tsW_V5SkBMXuZN_uciJi5y5RO_r2dv77ttowiBbG2KzDTrTjUGyqgIQgmY0Sl8dSHfd6F3sTLKSCZFlrORR9fJBNW6nxx4reSQbBRezQPkuBG9qqezwm93g0TbHlFwdBPxHt1ez1cTv-G6Nl0FZ45TR1hs1SN3ZY0IuDkJUY51V2Hw1exP-QKEyMAlyMw3bNGuMAVRlMQW8-3fAcTX8AkDh5ok | 
    
| CitedBy_id | crossref_primary_10_3390_s24051591 | 
    
| Cites_doi | 10.3390/rs14061442 10.21037/qims.2018.03.07 10.1016/j.cag.2021.04.019 10.1109/TCSVT.2018.2879833 10.1145/2602143 10.1016/j.gmod.2012.03.009 10.1016/j.neuroimage.2004.03.040 10.1016/j.eswa.2021.116158 10.1109/TMI.2021.3069645 10.1109/TMI.2014.2313812 10.1016/j.neuroimage.2019.02.053 10.1016/j.jfluidstructs.2021.103312 10.1145/2458523.2458536 10.1016/j.media.2019.06.013 10.1016/j.neuroimage.2013.05.041 10.1016/j.compeleceng.2022.107761 10.1016/j.cie.2021.107250 10.1016/j.neuroimage.2020.117161 10.1145/3293883.3295712 10.1002/cpe.4460 10.1007/s00234-021-02698-8 10.1145/3453688.3461510 10.1016/j.ijchp.2019.01.001 10.1109/TCBB.2011.68 10.1016/j.media.2018.03.004 10.1145/77726.255144  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 The Authors The Authors Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved. 2022. The Authors  | 
    
| Copyright_xml | – notice: 2022 The Authors – notice: The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved. – notice: 2022. The Authors  | 
    
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1016/j.compbiomed.2022.106167 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological science database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1879-0534 | 
    
| EndPage | 106167 | 
    
| ExternalDocumentID | 10.1016/j.compbiomed.2022.106167 37859279 10_1016_j_compbiomed_2022_106167 S0010482522008757 1_s2_0_S0010482522008757  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG 6I. AAFTH AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c564t-a1a25c966ada2b9ad721fdd669a7037238309e89d524224dba0dcca6fcf381cf3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0010-4825 1879-0534  | 
    
| IngestDate | Tue Aug 19 15:55:37 EDT 2025 Sat Sep 27 18:48:05 EDT 2025 Tue Oct 07 06:30:06 EDT 2025 Mon Jul 21 05:55:02 EDT 2025 Wed Oct 01 05:27:31 EDT 2025 Thu Apr 24 22:52:38 EDT 2025 Fri Feb 23 02:39:20 EST 2024 Tue Feb 25 20:12:01 EST 2025 Tue Oct 14 19:33:19 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | GPU-acceleration Surface mapping Embedding registration Hippocampus Cortex  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved. cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c564t-a1a25c966ada2b9ad721fdd669a7037238309e89d524224dba0dcca6fcf381cf3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-8827-402X | 
    
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0010482522008757 | 
    
| PMID | 37859279 | 
    
| PQID | 2729933276 | 
    
| PQPubID | 1226355 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_compbiomed_2022_106167 proquest_miscellaneous_2880099131 proquest_journals_2729933276 pubmed_primary_37859279 crossref_citationtrail_10_1016_j_compbiomed_2022_106167 crossref_primary_10_1016_j_compbiomed_2022_106167 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_106167 elsevier_clinicalkeyesjournals_1_s2_0_S0010482522008757 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_106167  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-11-01 | 
    
| PublicationDateYYYYMMDD | 2022-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Oxford  | 
    
| PublicationTitle | Computers in biology and medicine | 
    
| PublicationTitleAlternate | Comput Biol Med | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier Ltd Elsevier Limited  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited  | 
    
| References | NVIDIA, Vingelmann, Fitzek (b46) 2020 S. Grauer-Gray, W. Killian, R. Searles, J. Cavazos, Accelerating financial applications on the GPU, in: Proceedings of the 6th Workshop on General Purpose Processor using Graphics Processing Units, 2013, pp. 127–136. Nagasaka, Nukada, Kojima, Matsuoka (b51) 2019 Gahm, Shi (b12) 2018; 46 Zhao, Xia, Wu, Wang, Chen, Lin, Gilmore, Shen, Li (b42) 2019 Gale, Zaharia, Young, Elsen (b47) 2020 Croquet, Christiaens, Weinberg, Bronstein, Vandermeulen, Claes (b4) 2021 Torrecillas-Martínez, Catena, O’Valle, Padial-Molina, Galindo-Moreno (b14) 2019; 19 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (b52) 2013; 80 Shi, Lai, Gill, Pelletier, Mohr, Sicotte, Toga (b28) 2011 Lyu, Kang, Woodward, Styner, Landman (b6) 2019; 57 Zhang, Shi (b13) 2021 Yang, Buluç, Owens (b48) 2018 Liu, Englot, Morgan, Taylor, Wei, Oguz, Landman, Lyu (b2) 2021; vol. 11596 He, Razlighi (b7) 2020 Bell, Garland (b34) 2008 Pang, Cheung, Liu, Lou, Lin (b40) 2018; 29 Bo, Di, Liu, Wang, Liu, Xin, Cheng, Yin (b8) 2022; 14 Lo, Kumar, Tan, Lock, Keong (b15) 2021; 63 Bustamam, Burrage, Hamilton (b23) 2012; 9 Croquet, Christiaens, Weinberg, Bronstein, Vandermeulen, Claes (b45) 2021 Alavani, Varma, Sarkar (b33) 2018 Gahm, Shi (b9) 2016 Marinescu, Eshaghi, Lorenzi, Young, Oxtoby, Garbarino, Crutch, Alexander, Initiative (b16) 2019; 192 Ronneberger, Fischer, Brox (b43) 2015 O’Connor, Rogers (b26) 2021; 104 F.d. Goes, P. Memari, P. Mullen, M. Desbrun, Weighted triangulations for geometry processing, ACM Trans. Graph. 33. Shi, Lai, Wang, Pelletier, Mohr, Sicotte, Toga (b17) 2014; 33 Zhao, Wu, Wang, Lin, Xia, Shen, Wang, Li (b44) 2021; 40 Grimes, Kincaid, Young (b36) 1979 Nasikun, Brandt, Hildebrandt (b18) 2018; vol. 37 Zhao, Wu, Wang, Lin, Xia, Shen, Li, Consortium (b5) 2020 Shi, Liu, Zhang, Xie, Wang (b20) 2012; 2 Potluri, Fasih, Vutukuru, Al Machot, Kyamakya (b21) 2011 Gahm, Tang, Shi (b11) 2018 T. Song, X. Chen, Y. Han, Eliminating Iterations of Iterative Methods: Solving Large-Scale Sparse Linear System in O (1) with RRAM-Based In-Memory Accelerator, in: Proceedings of the 2021 on Great Lakes Symposium on VLSI, 2021, pp. 71–76. Abualigah, Abd Elaziz, Sumari, Geem, Gandomi (b54) 2022; 191 Skorkovská, Kolingerová, Vanecek (b25) 2019 Merrill, Garland (b49) 2016 E.N. Houstis, J.R. Rice, N. Chrisochoides, H. Karathanasis, P. Papachiou, M. Samartzis, E. Vavalis, K.Y. Wang, S. Weerawarana, //ELLPACK: A numerical simulation programming environment for parallel MIMD machines, in: Proceedings of the 4th International Conference on Supercomputing, 1990, pp. 96–107. Coors, Condurache, Geiger (b41) 2018 Tasoulas, Anagnostopoulos (b31) 2018 Cheng, Dalca, Fischl, Zöllei, Initiative (b3) 2020; 221 Mousa, Hussein (b27) 2022; 99 Serpa, Moreira, Navaux, Cruz, Diener, Griebler, Fernandes (b32) 2019 Gahm, Shi (b10) 2017 Thompson, Hayashi, De Zubicaray, Janke, Rose, Semple, Hong, Herman, Gravano, Doddrell (b1) 2004; 22 Xu, Lin, Hu, He (b19) 2021; 97 Wang, Peng, Chang, Liang (b24) 2018; 8 Abualigah, Yousri, Abd Elaziz, Ewees, Al-Qaness, Gandomi (b53) 2021; 157 C. Hong, A. Sukumaran-Rajam, I. Nisa, K. Singh, P. Sadayappan, Adaptive sparse tiling for sparse matrix multiplication, in: Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming, 2019, pp. 300–314. Zeng, Guo, Luo, Gu (b29) 2012; 74 Anzt, Dongarra, Flegar, Higham, Quintana-Ortí (b37) 2019; 31 Koskela, Matveev, Yang, Adedoyin, Belenov, Thierry, Zhao, Gayatri, Shan, Oliker (b39) 2018 Grimes (10.1016/j.compbiomed.2022.106167_b36) 1979 Pang (10.1016/j.compbiomed.2022.106167_b40) 2018; 29 Van Essen (10.1016/j.compbiomed.2022.106167_b52) 2013; 80 O’Connor (10.1016/j.compbiomed.2022.106167_b26) 2021; 104 Shi (10.1016/j.compbiomed.2022.106167_b28) 2011 10.1016/j.compbiomed.2022.106167_b50 Abualigah (10.1016/j.compbiomed.2022.106167_b54) 2022; 191 Gahm (10.1016/j.compbiomed.2022.106167_b11) 2018 Serpa (10.1016/j.compbiomed.2022.106167_b32) 2019 Liu (10.1016/j.compbiomed.2022.106167_b2) 2021; vol. 11596 Shi (10.1016/j.compbiomed.2022.106167_b17) 2014; 33 Zhao (10.1016/j.compbiomed.2022.106167_b42) 2019 Thompson (10.1016/j.compbiomed.2022.106167_b1) 2004; 22 Tasoulas (10.1016/j.compbiomed.2022.106167_b31) 2018 Skorkovská (10.1016/j.compbiomed.2022.106167_b25) 2019 Cheng (10.1016/j.compbiomed.2022.106167_b3) 2020; 221 Zeng (10.1016/j.compbiomed.2022.106167_b29) 2012; 74 He (10.1016/j.compbiomed.2022.106167_b7) 2020 Zhang (10.1016/j.compbiomed.2022.106167_b13) 2021 Marinescu (10.1016/j.compbiomed.2022.106167_b16) 2019; 192 Zhao (10.1016/j.compbiomed.2022.106167_b44) 2021; 40 Gale (10.1016/j.compbiomed.2022.106167_b47) 2020 Croquet (10.1016/j.compbiomed.2022.106167_b4) 2021 Bell (10.1016/j.compbiomed.2022.106167_b34) 2008 Ronneberger (10.1016/j.compbiomed.2022.106167_b43) 2015 Abualigah (10.1016/j.compbiomed.2022.106167_b53) 2021; 157 Anzt (10.1016/j.compbiomed.2022.106167_b37) 2019; 31 Torrecillas-Martínez (10.1016/j.compbiomed.2022.106167_b14) 2019; 19 10.1016/j.compbiomed.2022.106167_b22 Gahm (10.1016/j.compbiomed.2022.106167_b12) 2018; 46 Bo (10.1016/j.compbiomed.2022.106167_b8) 2022; 14 Lo (10.1016/j.compbiomed.2022.106167_b15) 2021; 63 Koskela (10.1016/j.compbiomed.2022.106167_b39) 2018 Croquet (10.1016/j.compbiomed.2022.106167_b45) 2021 Zhao (10.1016/j.compbiomed.2022.106167_b5) 2020 10.1016/j.compbiomed.2022.106167_b38 Wang (10.1016/j.compbiomed.2022.106167_b24) 2018; 8 10.1016/j.compbiomed.2022.106167_b30 10.1016/j.compbiomed.2022.106167_b35 Yang (10.1016/j.compbiomed.2022.106167_b48) 2018 Nasikun (10.1016/j.compbiomed.2022.106167_b18) 2018; vol. 37 Potluri (10.1016/j.compbiomed.2022.106167_b21) 2011 Mousa (10.1016/j.compbiomed.2022.106167_b27) 2022; 99 Alavani (10.1016/j.compbiomed.2022.106167_b33) 2018 Merrill (10.1016/j.compbiomed.2022.106167_b49) 2016 Xu (10.1016/j.compbiomed.2022.106167_b19) 2021; 97 Shi (10.1016/j.compbiomed.2022.106167_b20) 2012; 2 Coors (10.1016/j.compbiomed.2022.106167_b41) 2018 Nagasaka (10.1016/j.compbiomed.2022.106167_b51) 2019 Gahm (10.1016/j.compbiomed.2022.106167_b9) 2016 Gahm (10.1016/j.compbiomed.2022.106167_b10) 2017 Lyu (10.1016/j.compbiomed.2022.106167_b6) 2019; 57 Bustamam (10.1016/j.compbiomed.2022.106167_b23) 2012; 9 NVIDIA (10.1016/j.compbiomed.2022.106167_b46) 2020  | 
    
| References_xml | – volume: 22 start-page: 1754 year: 2004 end-page: 1766 ident: b1 article-title: Mapping hippocampal and ventricular change in Alzheimer disease publication-title: Neuroimage – volume: vol. 11596 start-page: 253 year: 2021 end-page: 260 ident: b2 article-title: Establishing surface correspondence for post-surgical cortical thickness changes in temporal lobe epilepsy publication-title: Medical Imaging 2021: Image Processing – start-page: 226 year: 2018 end-page: 245 ident: b39 article-title: A novel multi-level integrated roofline model approach for performance characterization publication-title: International Conference on High Performance Computing – start-page: 231 year: 2019 end-page: 240 ident: b51 article-title: Batched sparse matrix multiplication for accelerating graph convolutional networks publication-title: 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing – start-page: 228 year: 2016 end-page: 236 ident: b9 article-title: Riemannian metric optimization for connectivity-driven surface mapping publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 1882 year: 2019 end-page: 1886 ident: b42 article-title: Spherical U-net for infant cortical surface parcellation publication-title: 2019 IEEE 16th International Symposium on Biomedical Imaging – volume: 74 start-page: 121 year: 2012 end-page: 129 ident: b29 article-title: Discrete heat kernel determines discrete Riemannian metric publication-title: Graph. Models – volume: vol. 37 start-page: 121 year: 2018 end-page: 134 ident: b18 article-title: Fast approximation of Laplace-Beltrami eigenproblems publication-title: Computer Graphics Forum – start-page: 234 year: 2015 end-page: 241 ident: b43 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 21 year: 2017 end-page: 30 ident: b10 article-title: Holistic mapping of striatum surfaces in the Laplace-beltrami embedding space publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 14 start-page: 1442 year: 2022 ident: b8 article-title: High-precision registration of lunar global mapping products based on spherical triangular mesh publication-title: Remote Sens. – volume: 99 year: 2022 ident: b27 article-title: Toward high-performance computation of surface approximation using a GPU publication-title: Comput. Electr. Eng. – volume: 104 year: 2021 ident: b26 article-title: A fluid–structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU publication-title: J. Fluids Struct. – volume: 33 start-page: 1447 year: 2014 end-page: 1463 ident: b17 article-title: Metric optimization for surface analysis in the Laplace-Beltrami embedding space publication-title: IEEE Trans. Med. Imaging – volume: 97 start-page: 236 year: 2021 end-page: 247 ident: b19 article-title: Fast calculation of Laplace-Beltrami eigenproblems via subdivision linear subspace publication-title: Comput. Graphics – start-page: 689 year: 2018 end-page: 697 ident: b11 article-title: Patch-based mapping of transentorhinal cortex with a distributed atlas publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 672 year: 2018 end-page: 687 ident: b48 article-title: Design principles for sparse matrix multiplication on the gpu publication-title: European Conference on Parallel Processing – volume: 221 year: 2020 ident: b3 article-title: Cortical surface registration using unsupervised learning publication-title: NeuroImage – volume: 63 start-page: 1689 year: 2021 end-page: 1699 ident: b15 article-title: The topology of ventricle surfaces and its application in the analysis of hydrocephalic ventricles: A proof-of-concept study publication-title: Neuroradiology – reference: S. Grauer-Gray, W. Killian, R. Searles, J. Cavazos, Accelerating financial applications on the GPU, in: Proceedings of the 6th Workshop on General Purpose Processor using Graphics Processing Units, 2013, pp. 127–136. – volume: 46 start-page: 189 year: 2018 end-page: 201 ident: b12 article-title: Riemannian metric optimization on surfaces (RMOS) for intrinsic brain mapping in the Laplace–Beltrami embedding space publication-title: Med. Image Anal. – start-page: 710 year: 2021 end-page: 720 ident: b13 article-title: Personalized matching and analysis of cortical folding patterns via patch-based intrinsic brain mapping publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 57 start-page: 72 year: 2019 end-page: 88 ident: b6 article-title: Hierarchical spherical deformation for cortical surface registration publication-title: Med. Image Anal. – volume: 8 start-page: 196 year: 2018 ident: b24 article-title: A survey of GPU-based acceleration techniques in MRI reconstructions publication-title: Quant. Imaging Med. Surg. – volume: 40 start-page: 1964 year: 2021 end-page: 1976 ident: b44 article-title: S3Reg: Superfast spherical surface registration based on deep learning publication-title: IEEE Trans. Med. Imaging – start-page: 678 year: 2016 end-page: 689 ident: b49 article-title: Merge-based parallel sparse matrix-vector multiplication publication-title: SC’16: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis – volume: 2 start-page: 188 year: 2012 ident: b20 article-title: A survey of GPU-based medical image computing techniques publication-title: Quant. Imaging Med. Surg. – volume: 19 start-page: 115 year: 2019 end-page: 123 ident: b14 article-title: Does experienced pain affects local brain volumes? Insights from a clinical acute pain model publication-title: Int. J. Clin. Health Psychol. – start-page: 118 year: 2021 end-page: 128 ident: b4 article-title: Unsupervised diffeomorphic surface registration and non-linear modelling publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 157 year: 2021 ident: b53 article-title: Aquila optimizer: A novel meta-heuristic optimization algorithm publication-title: Comput. Ind. Eng. – volume: 191 year: 2022 ident: b54 article-title: Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer publication-title: Expert Syst. Appl. – start-page: 1 year: 2011 end-page: 7 ident: b21 article-title: CNN based high performance computing for real time image processing on GPU publication-title: Proceedings of the Joint INDS’11 & ISTET’11 – year: 1979 ident: b36 article-title: ITPACK 2.0 User’s Guide – reference: T. Song, X. Chen, Y. Han, Eliminating Iterations of Iterative Methods: Solving Large-Scale Sparse Linear System in O (1) with RRAM-Based In-Memory Accelerator, in: Proceedings of the 2021 on Great Lakes Symposium on VLSI, 2021, pp. 71–76. – start-page: 122 year: 2019 end-page: 133 ident: b25 article-title: A unified curvature-driven approach for weathering and hydraulic erosion simulation on triangular meshes publication-title: VISIGRAPP (1: GRAPP) – volume: 192 start-page: 166 year: 2019 end-page: 177 ident: b16 article-title: DIVE: A spatiotemporal progression model of brain pathology in neurodegenerative disorders publication-title: NeuroImage – reference: F.d. Goes, P. Memari, P. Mullen, M. Desbrun, Weighted triangulations for geometry processing, ACM Trans. Graph. 33. – start-page: 621 year: 2018 end-page: 624 ident: b31 article-title: Optimizing performance of GPU applications with SM activity divergence minimization publication-title: 2018 25th IEEE International Conference on Electronics, Circuits and Systems – volume: 29 start-page: 3184 year: 2018 end-page: 3198 ident: b40 article-title: Toward efficient image representation: Sparse concept discriminant matrix factorization publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 1 year: 2020 end-page: 14 ident: b47 article-title: Sparse GPU kernels for deep learning publication-title: SC20: International Conference for High Performance Computing, Networking, Storage and Analysis – start-page: 233 year: 2019 end-page: 236 ident: b32 article-title: Memory performance and bottlenecks in multicore and GPU architectures publication-title: 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing – start-page: 118 year: 2021 end-page: 128 ident: b45 article-title: Unsupervised diffeomorphic surface registration and non-linear modelling publication-title: Medical Image Computing and Computer Assisted Intervention – year: 2020 ident: b46 article-title: CUDA, release: 10.2.89 – start-page: 948 year: 2018 end-page: 955 ident: b33 article-title: Predicting execution time of CUDA kernel using static analysis publication-title: 2018 IEEE Intl Conf on Parallel Distributed Processing with Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable Computing Communications – volume: 31 year: 2019 ident: b37 article-title: Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers publication-title: Concurr. Comput.: Pract. Exper. – reference: E.N. Houstis, J.R. Rice, N. Chrisochoides, H. Karathanasis, P. Papachiou, M. Samartzis, E. Vavalis, K.Y. Wang, S. Weerawarana, //ELLPACK: A numerical simulation programming environment for parallel MIMD machines, in: Proceedings of the 4th International Conference on Supercomputing, 1990, pp. 96–107. – start-page: 1412 year: 2020 end-page: 1417 ident: b7 article-title: Volumetric registration of Brain Cortical Regions by automatic landmark matching and large deformation diffeomorphisms publication-title: 2020 IEEE 17th International Symposium on Biomedical Imaging – year: 2008 ident: b34 article-title: Efficient Sparse Matrix-Vector Multiplication on CUDA – reference: C. Hong, A. Sukumaran-Rajam, I. Nisa, K. Singh, P. Sadayappan, Adaptive sparse tiling for sparse matrix multiplication, in: Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming, 2019, pp. 300–314. – start-page: 373 year: 2020 end-page: 383 ident: b5 article-title: Unsupervised learning for spherical surface registration publication-title: International Workshop on Machine Learning in Medical Imaging – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: b52 article-title: The WU-minn human connectome project: an overview publication-title: Neuroimage – start-page: 525 year: 2018 end-page: 541 ident: b41 article-title: SphereNet: Learning spherical representations for detection and classification in omnidirectional images publication-title: Computer Vision – ECCV 2018 – start-page: 327 year: 2011 end-page: 334 ident: b28 article-title: Conformal metric optimization on surface (CMOS) for deformation and mapping in Laplace-Beltrami embedding space publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 9 start-page: 679 year: 2012 end-page: 692 ident: b23 article-title: Fast parallel Markov clustering in bioinformatics using massively parallel computing on GPU with CUDA and ELLPACK-R sparse format publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. – volume: 14 start-page: 1442 issue: 6 year: 2022 ident: 10.1016/j.compbiomed.2022.106167_b8 article-title: High-precision registration of lunar global mapping products based on spherical triangular mesh publication-title: Remote Sens. doi: 10.3390/rs14061442 – year: 2020 ident: 10.1016/j.compbiomed.2022.106167_b46 – volume: 8 start-page: 196 issue: 2 year: 2018 ident: 10.1016/j.compbiomed.2022.106167_b24 article-title: A survey of GPU-based acceleration techniques in MRI reconstructions publication-title: Quant. Imaging Med. Surg. doi: 10.21037/qims.2018.03.07 – start-page: 1412 year: 2020 ident: 10.1016/j.compbiomed.2022.106167_b7 article-title: Volumetric registration of Brain Cortical Regions by automatic landmark matching and large deformation diffeomorphisms – volume: 97 start-page: 236 year: 2021 ident: 10.1016/j.compbiomed.2022.106167_b19 article-title: Fast calculation of Laplace-Beltrami eigenproblems via subdivision linear subspace publication-title: Comput. Graphics doi: 10.1016/j.cag.2021.04.019 – start-page: 228 year: 2016 ident: 10.1016/j.compbiomed.2022.106167_b9 article-title: Riemannian metric optimization for connectivity-driven surface mapping – start-page: 1 year: 2020 ident: 10.1016/j.compbiomed.2022.106167_b47 article-title: Sparse GPU kernels for deep learning – start-page: 21 year: 2017 ident: 10.1016/j.compbiomed.2022.106167_b10 article-title: Holistic mapping of striatum surfaces in the Laplace-beltrami embedding space – volume: 29 start-page: 3184 issue: 11 year: 2018 ident: 10.1016/j.compbiomed.2022.106167_b40 article-title: Toward efficient image representation: Sparse concept discriminant matrix factorization publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2018.2879833 – ident: 10.1016/j.compbiomed.2022.106167_b30 doi: 10.1145/2602143 – start-page: 233 year: 2019 ident: 10.1016/j.compbiomed.2022.106167_b32 article-title: Memory performance and bottlenecks in multicore and GPU architectures – volume: 74 start-page: 121 issue: 4 year: 2012 ident: 10.1016/j.compbiomed.2022.106167_b29 article-title: Discrete heat kernel determines discrete Riemannian metric publication-title: Graph. Models doi: 10.1016/j.gmod.2012.03.009 – year: 2008 ident: 10.1016/j.compbiomed.2022.106167_b34 – volume: 22 start-page: 1754 issue: 4 year: 2004 ident: 10.1016/j.compbiomed.2022.106167_b1 article-title: Mapping hippocampal and ventricular change in Alzheimer disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.03.040 – volume: vol. 37 start-page: 121 year: 2018 ident: 10.1016/j.compbiomed.2022.106167_b18 article-title: Fast approximation of Laplace-Beltrami eigenproblems – volume: 191 year: 2022 ident: 10.1016/j.compbiomed.2022.106167_b54 article-title: Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116158 – year: 1979 ident: 10.1016/j.compbiomed.2022.106167_b36 – volume: 40 start-page: 1964 issue: 8 year: 2021 ident: 10.1016/j.compbiomed.2022.106167_b44 article-title: S3Reg: Superfast spherical surface registration based on deep learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3069645 – volume: 33 start-page: 1447 issue: 7 year: 2014 ident: 10.1016/j.compbiomed.2022.106167_b17 article-title: Metric optimization for surface analysis in the Laplace-Beltrami embedding space publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2313812 – start-page: 234 year: 2015 ident: 10.1016/j.compbiomed.2022.106167_b43 article-title: U-net: Convolutional networks for biomedical image segmentation – start-page: 678 year: 2016 ident: 10.1016/j.compbiomed.2022.106167_b49 article-title: Merge-based parallel sparse matrix-vector multiplication – start-page: 118 year: 2021 ident: 10.1016/j.compbiomed.2022.106167_b4 article-title: Unsupervised diffeomorphic surface registration and non-linear modelling – start-page: 327 year: 2011 ident: 10.1016/j.compbiomed.2022.106167_b28 article-title: Conformal metric optimization on surface (CMOS) for deformation and mapping in Laplace-Beltrami embedding space – volume: 192 start-page: 166 year: 2019 ident: 10.1016/j.compbiomed.2022.106167_b16 article-title: DIVE: A spatiotemporal progression model of brain pathology in neurodegenerative disorders publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.02.053 – start-page: 621 year: 2018 ident: 10.1016/j.compbiomed.2022.106167_b31 article-title: Optimizing performance of GPU applications with SM activity divergence minimization – start-page: 1 year: 2011 ident: 10.1016/j.compbiomed.2022.106167_b21 article-title: CNN based high performance computing for real time image processing on GPU – volume: 104 year: 2021 ident: 10.1016/j.compbiomed.2022.106167_b26 article-title: A fluid–structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2021.103312 – ident: 10.1016/j.compbiomed.2022.106167_b22 doi: 10.1145/2458523.2458536 – volume: 57 start-page: 72 year: 2019 ident: 10.1016/j.compbiomed.2022.106167_b6 article-title: Hierarchical spherical deformation for cortical surface registration publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.06.013 – start-page: 1882 year: 2019 ident: 10.1016/j.compbiomed.2022.106167_b42 article-title: Spherical U-net for infant cortical surface parcellation – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.compbiomed.2022.106167_b52 article-title: The WU-minn human connectome project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 99 year: 2022 ident: 10.1016/j.compbiomed.2022.106167_b27 article-title: Toward high-performance computation of surface approximation using a GPU publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2022.107761 – start-page: 118 year: 2021 ident: 10.1016/j.compbiomed.2022.106167_b45 article-title: Unsupervised diffeomorphic surface registration and non-linear modelling – volume: 157 year: 2021 ident: 10.1016/j.compbiomed.2022.106167_b53 article-title: Aquila optimizer: A novel meta-heuristic optimization algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107250 – start-page: 373 year: 2020 ident: 10.1016/j.compbiomed.2022.106167_b5 article-title: Unsupervised learning for spherical surface registration – start-page: 672 year: 2018 ident: 10.1016/j.compbiomed.2022.106167_b48 article-title: Design principles for sparse matrix multiplication on the gpu – volume: 221 year: 2020 ident: 10.1016/j.compbiomed.2022.106167_b3 article-title: Cortical surface registration using unsupervised learning publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117161 – ident: 10.1016/j.compbiomed.2022.106167_b50 doi: 10.1145/3293883.3295712 – start-page: 226 year: 2018 ident: 10.1016/j.compbiomed.2022.106167_b39 article-title: A novel multi-level integrated roofline model approach for performance characterization – start-page: 122 year: 2019 ident: 10.1016/j.compbiomed.2022.106167_b25 article-title: A unified curvature-driven approach for weathering and hydraulic erosion simulation on triangular meshes – start-page: 948 year: 2018 ident: 10.1016/j.compbiomed.2022.106167_b33 article-title: Predicting execution time of CUDA kernel using static analysis – volume: 31 issue: 6 year: 2019 ident: 10.1016/j.compbiomed.2022.106167_b37 article-title: Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers publication-title: Concurr. Comput.: Pract. Exper. doi: 10.1002/cpe.4460 – volume: 63 start-page: 1689 issue: 10 year: 2021 ident: 10.1016/j.compbiomed.2022.106167_b15 article-title: The topology of ventricle surfaces and its application in the analysis of hydrocephalic ventricles: A proof-of-concept study publication-title: Neuroradiology doi: 10.1007/s00234-021-02698-8 – ident: 10.1016/j.compbiomed.2022.106167_b38 doi: 10.1145/3453688.3461510 – start-page: 231 year: 2019 ident: 10.1016/j.compbiomed.2022.106167_b51 article-title: Batched sparse matrix multiplication for accelerating graph convolutional networks – start-page: 525 year: 2018 ident: 10.1016/j.compbiomed.2022.106167_b41 article-title: SphereNet: Learning spherical representations for detection and classification in omnidirectional images – volume: 19 start-page: 115 issue: 2 year: 2019 ident: 10.1016/j.compbiomed.2022.106167_b14 article-title: Does experienced pain affects local brain volumes? Insights from a clinical acute pain model publication-title: Int. J. Clin. Health Psychol. doi: 10.1016/j.ijchp.2019.01.001 – volume: 2 start-page: 188 issue: 3 year: 2012 ident: 10.1016/j.compbiomed.2022.106167_b20 article-title: A survey of GPU-based medical image computing techniques publication-title: Quant. Imaging Med. Surg. – volume: 9 start-page: 679 issue: 3 year: 2012 ident: 10.1016/j.compbiomed.2022.106167_b23 article-title: Fast parallel Markov clustering in bioinformatics using massively parallel computing on GPU with CUDA and ELLPACK-R sparse format publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2011.68 – volume: vol. 11596 start-page: 253 year: 2021 ident: 10.1016/j.compbiomed.2022.106167_b2 article-title: Establishing surface correspondence for post-surgical cortical thickness changes in temporal lobe epilepsy – start-page: 710 year: 2021 ident: 10.1016/j.compbiomed.2022.106167_b13 article-title: Personalized matching and analysis of cortical folding patterns via patch-based intrinsic brain mapping – volume: 46 start-page: 189 year: 2018 ident: 10.1016/j.compbiomed.2022.106167_b12 article-title: Riemannian metric optimization on surfaces (RMOS) for intrinsic brain mapping in the Laplace–Beltrami embedding space publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.03.004 – start-page: 689 year: 2018 ident: 10.1016/j.compbiomed.2022.106167_b11 article-title: Patch-based mapping of transentorhinal cortex with a distributed atlas – ident: 10.1016/j.compbiomed.2022.106167_b35 doi: 10.1145/77726.255144  | 
    
| SSID | ssj0004030 | 
    
| Score | 2.3502665 | 
    
| Snippet | Surface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer’s disease. Riemannian metrics on... AbstractSurface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer’s disease. Riemannian metrics... Surface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer's disease. Riemannian metrics on...  | 
    
| SourceID | unpaywall proquest pubmed crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 106167 | 
    
| SubjectTerms | Acceleration Algorithms Alzheimer's disease Atrophy Brain mapping Brain Mapping - methods Cortex Embedding Embedding registration GPU-acceleration Graphics processing units Gray Matter - diagnostic imaging Hippocampus Internal Medicine Latency Mapping Neurodegenerative diseases Neuroimaging Optimization Other Pipelining (computers) Substantia grisea Surface mapping  | 
    
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hDtAeKkpfKVClUq-BxI7tGE6ACqjSlgq6EjfLsR1pqyWs2F0hLvx2xmsntILDSpWiSEk8cvJ5PI94xgPwjQtBuTRFVnHrsrIiZVbXDp0VYhqRc1uI2v_QH_zkZ8PyxxW7WoHjLhfGh1VG2R9k-kJaxzt7Ec29yWjkc3zRlUAHh5CwLbvPYC-Fr2Kw-_AU5lHmNKShoLzxrWM0T4jx8mHbIc0dPUVCdr1_tKg4_6KKem6Cvob1eTvR93d6PP5LLZ1swJtoT6aH4ZXfwoprN2FtEFfM38HRaXYxOL_cT09_DTNtDGoZvzmETS9G7trXK9JtOvBVtUx6jtLjOqZlpnhczm8bH7D1HoYn338fn2WxbkJmGC9nmS40YQb9GG01qaW26OU11nIuNc5vX2WM5tJV0jLUz6S0tc4tDiRvTIP6G08fYLW9ad0nhKphhaaCScYMmna0pmWT18wSbSsiuEtAdFApEzcV97UtxqqLHvujnkBWHmQVQE6g6CknYWONJWhkNxqqSxxFUadQ-i9BK16iddM4Z6eqUFOicvWMrxI46Cn_Yc0l-93u2Eb1XRF0aSSliGACX_vHOLH9ao1u3c0c26BkRfO9oEUCHwO79UBRUTFJhEyA9Py3NIqf_-t7tuCVvwrpmNuwOrudux20y2b1l8XEewSJRjM0 priority: 102 providerName: Elsevier – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VrcTxwFkgUFCQePUqsWM7hqe2oq2Qti1dVipPlmM7ErBNq-5GCH494zoJN1qQokhRMnEynsx8E88B8FxIyYSyOSmF86QoaUGqyqOzQm0tM-FyWYUf-pMDsT8rXp_wkzXI-lyYH9bvL-OwQmh1TEVHb47ScfBhhLwC64Ij-h7B-uzgaOtdVLhZGC1ELYYe2gTlq-iCd_52qz9ZpF8R5w241jbn5vMnM59_Z4V2b8Gb_vlj8MnHcbusxvbLT6Ud_-UFb8PNDpKmW1GG7sCab-7C1Um36H4PtvfI8eRw-iLdO5oRYy0aqlBfwqXH7_1paHlkmnQSGnPZ9BAV0GmX2ZniNm0v6hDztQGz3Vdvd_ZJ13qBWC6KJTG5odyiK2ScoZUyDh3F2jkhlEEVERqVsUz5UjmOJp4WrjKZQ1kQta0RAuDuPoyas8Y_RPbXPDdMcsW5RXTIKlbUWcUdNa6kUvgEZM9-bbu65KE9xlz3AWgf9DcW6cAiHVmUQD5QnsfaHCvQqH6GdZ97itpS47SsQCt_R-sX3We_0LleUJ3p6WXVI5RESmPHgAReDpQdsomIZcVxN3tR1MNQFL0ixRhyMIFnw2nUDWHBxzT-rMVrUDmjB5CzPIEHUYQHRjFZckWlSoAOMr0yFx_9D9FjuB6OYiLnJoyWF61_gohuWT3tPuKvnEBDMw priority: 102 providerName: Unpaywall  | 
    
| Title | G-RMOS: GPU-accelerated Riemannian Metric Optimization on Surfaces | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522008757 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522008757 https://dx.doi.org/10.1016/j.compbiomed.2022.106167 https://www.ncbi.nlm.nih.gov/pubmed/37859279 https://www.proquest.com/docview/2729933276 https://www.proquest.com/docview/2880099131 https://doi.org/10.1016/j.compbiomed.2022.106167  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 150 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_uWvDjQfw2epYIvuZMNtndRBHpybVVaa-0FnpPyya7AaWX1muL-OLf7mx3kwoeUgibh2RIMjs7H9mZ-QG8ZpzHLCuiIGVKB0lKkiDPNQYrpCh5yFTEc_NDfzhig1nyeU7nRzCqa2FMWmWtE3eKWi0L84_8DUEvEINvwtmH1Y_AoEaZ3dUaQkM6aAX1ftdi7BjaxHTGakH77Hw0nuwrJcPYFqWg9sEXoy63x2Z8mSRuW_SOcSMhpyZa2uHP32iw_nVI78LtbbWSv37KxeIvI9W7D_ecd-l3rTg8gCNdPYRbQ7d__gjO-sFkeDF96_fHswC_Bm2OaRWh_Mk3fWXQi2TlDw3GVuFfoC65ckWaPh7T7XVp0rcew6x3_vXjIHAoCkFBWbIJZCQJLTCqkUqSPJMKY75SKcYyiavdYI7FYabTTFG01iRRuQwVTisrixKtOQ5PoFUtK_0MWVXSSMacZpQW6OjFeZyUYU4VkSrFidEe8JpVonAtxg3SxULUuWTfxZ7JwjBZWCZ7EDWUK9tm4wCarJ4NUZeRouITaAsOoOU30eq1W8FrEYk1EaGY7hoYoaQQYpv_e_CuoXROinU-DnzuSS02onnUXrQ9eNVcxmVu9m5kpZdbvAf1LDrzURx58NSKW8OomKc0IzzzgDTydzAXn___jV7AHXOzrb48gdbmeqtfohu2yTtwfPo7wpHPOY5pr9-BdvfTl8Go41YdnmejcffyD91yNLA | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWLwgPheYECQ4DEscWInBk2IwbaOLd3UrtLejBM70lCXlrXVtH-Ov41z7aRITKgvk6q8tJekv5zvI767H8A7lqYx42UUZEzpIMlIEhSFxmSFlFUaMhWlhXmhn3dZZ5B8P6NnK_C76YUxZZWNTZwbajUqzTvyLYJRICbfJGWfx78CwxpldlcbCg3pqBXU9nzEmGvsONTXV5jCTbYPvuHzfk_I3u7p107gWAaCkrJkGshIElpi1C-VJAWXCnOiSinGuMTVYDi54pDrjCuK3owkqpChwr_NqrJCb4cHPO8dWEvihGPyt7az2z3pLTozw9g2waC1QyCoqyWyFWamaNw22WOeSsgHk53N-e5vdJD_BsD3YX1Wj-X1lRwO_3KKew_hgYtm_S9W_R7Biq4fw93c7dc_gZ39oJcf9z_6-yeDANFDH2dGUyi_d64vDFuSrP3ccHqV_jHargvXFOrjpz-7rEy52FMY3Aqez2C1HtV6A6GqaCTjlHJKSwws4yJOqrCgikiVoSJoD9IGKlG6keaGWWMomtq1n2IBsjAgCwuyB1ErObZjPZaQ4c3TEE3bKhpagb5nCdn0Jlk9cRZjIiIxISIU_fnAJNQUQizZgAefWkkXFNlgZ8nrbjZqI9pLLZaSB2_br9GsmL0iWevRDH-Ddh2ThyiOPHhu1a0FKk4zyknKPSCt_i2N4ov_39EbWO-c5kfi6KB7-BLuGUHb-bkJq9PLmX6FIeC0eO3WmQ8_bntp_wFv0mx3 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQxrwgLgTGBAkeAxL7NiuQQgBo9sY3aZ1lfpmHNuRQF1a1lbT_hq_juM6SZGYUF8mVXlpT5J-Odf4HH8Ar7gQlEuTJR1uXZJ3SJ4UhcNihZhSpNxmovAv9HsHfHeQfx2y4Rr8bmZhfFtl4xMXjtqOjX9HvkUwC8Timwi-VdZtEUfb3Q-TX4lnkPIrrQ2dRlCRfXdxjuXb9P3eNj7r14R0v5x83k1qhoHEMJ7PEp1pwgxm_NpqUkhtsR4qreVcarQEz8dFU-k60jKMZCS3hU4t_mVemhIjHR7wvNfguqBU-nZCMRTLmcyUhvEX9HMIAau7iEJvmW8XD-P1WKES8sbXZQum-0tD47-p7y24Ma8m-uJcj0Z_hcPuHbhd57Hxx6B4d2HNVfdgo1ev1N-HTzvJce-w_zbeORok2hiMbn5TChsf_3CnnidJV3HPs3mZ-BC91mk9Dhrjpz8_K32j2AMYXAmaD2G9GlfuMUJVskxTwSRjBlNKWtC8TAtmibYdVAEXgWigUqbezNxzaoxU07X2Uy1BVh5kFUCOIGslJ2FDjxVkZPM0VDOwii5WYdRZQVZcJuumta-YqkxNiUpVf7FVEmoKIYFmIIJ3rWSdDoU0Z8XrbjZqo9pLLY0ogpft1-hQ_CqRrtx4jr9Bj45lQ0azCB4FdWuBoqLDJBEyAtLq38ooPvn_Hb2ADTRo9W3vYP8p3PRyYeRzE9ZnZ3P3DHO_WfF8YWQxfL9qq_4Db8NqEQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VrcTxwFkgUFCQePUqsWM7hqe2oq2Qti1dVipPlmM7ErBNq-5GCH494zoJN1qQokhRMnEynsx8E88B8FxIyYSyOSmF86QoaUGqyqOzQm0tM-FyWYUf-pMDsT8rXp_wkzXI-lyYH9bvL-OwQmh1TEVHb47ScfBhhLwC64Ij-h7B-uzgaOtdVLhZGC1ELYYe2gTlq-iCd_52qz9ZpF8R5w241jbn5vMnM59_Z4V2b8Gb_vlj8MnHcbusxvbLT6Ud_-UFb8PNDpKmW1GG7sCab-7C1Um36H4PtvfI8eRw-iLdO5oRYy0aqlBfwqXH7_1paHlkmnQSGnPZ9BAV0GmX2ZniNm0v6hDztQGz3Vdvd_ZJ13qBWC6KJTG5odyiK2ScoZUyDh3F2jkhlEEVERqVsUz5UjmOJp4WrjKZQ1kQta0RAuDuPoyas8Y_RPbXPDdMcsW5RXTIKlbUWcUdNa6kUvgEZM9-bbu65KE9xlz3AWgf9DcW6cAiHVmUQD5QnsfaHCvQqH6GdZ97itpS47SsQCt_R-sX3We_0LleUJ3p6WXVI5RESmPHgAReDpQdsomIZcVxN3tR1MNQFL0ixRhyMIFnw2nUDWHBxzT-rMVrUDmjB5CzPIEHUYQHRjFZckWlSoAOMr0yFx_9D9FjuB6OYiLnJoyWF61_gohuWT3tPuKvnEBDMw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=G-RMOS%3A+GPU-accelerated+Riemannian+Metric+Optimization+on+Surfaces&rft.jtitle=Computers+in+biology+and+medicine&rft.date=2022-11-01&rft.pub=Elsevier+Limited&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=150&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.106167&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482522X00097%2Fcov150h.gif |