G-RMOS: GPU-accelerated Riemannian Metric Optimization on Surfaces

Surface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer’s disease. Riemannian metrics on surface (RMOS) is a state-of-the-art surface mapping algorithm that optimizes Riemannian metrics to establish one-to-one correspondences between su...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 150; p. 106167
Main Authors Jo, Jeong Won, Gahm, Jin Kyu
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.11.2022
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2022.106167

Cover

Abstract Surface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer’s disease. Riemannian metrics on surface (RMOS) is a state-of-the-art surface mapping algorithm that optimizes Riemannian metrics to establish one-to-one correspondences between surfaces in the Laplace–Beltrami embedding space. However, owing to the complex calculation with accurate one-to-one correspondences, RMOS registration takes a long time. In this study, we propose G-RMOS, a graphics processing unit (GPU)-accelerated RMOS registration pipeline that uses three GPU kernel design strategies: 1. using GPU computing capability with a batch scheme; 2. using the cache in the GPU block to minimize memory latency in register and shared memory; and 3. maximizing the effective number of instructions per GPU cycle using instruction level parallelism. Using the experimental results, we compare the acceleration speed of the G-RMOS framework with that of RMOS using hippocampus and cortical surfaces, and show that G-RMOS achieves a significant speedup in surface mapping. We also compare the memory requirements for cortical surface mapping and show that G-RMOS uses less memory than RMOS. [Display omitted] •Propose a GPU-accelerated parallel framework for fast surface mapping.•Design a batch scheme with a GPU kernel using instruction level parallelism.•Demonstrate improvement in computational time for brain surface mapping.
AbstractList Surface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer’s disease. Riemannian metrics on surface (RMOS) is a state-of-the-art surface mapping algorithm that optimizes Riemannian metrics to establish one-to-one correspondences between surfaces in the Laplace–Beltrami embedding space. However, owing to the complex calculation with accurate one-to-one correspondences, RMOS registration takes a long time. In this study, we propose G-RMOS, a graphics processing unit (GPU)-accelerated RMOS registration pipeline that uses three GPU kernel design strategies: 1. using GPU computing capability with a batch scheme; 2. using the cache in the GPU block to minimize memory latency in register and shared memory; and 3. maximizing the effective number of instructions per GPU cycle using instruction level parallelism. Using the experimental results, we compare the acceleration speed of the G-RMOS framework with that of RMOS using hippocampus and cortical surfaces, and show that G-RMOS achieves a significant speedup in surface mapping. We also compare the memory requirements for cortical surface mapping and show that G-RMOS uses less memory than RMOS. [Display omitted] •Propose a GPU-accelerated parallel framework for fast surface mapping.•Design a batch scheme with a GPU kernel using instruction level parallelism.•Demonstrate improvement in computational time for brain surface mapping.
AbstractSurface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer’s disease. Riemannian metrics on surface (RMOS) is a state-of-the-art surface mapping algorithm that optimizes Riemannian metrics to establish one-to-one correspondences between surfaces in the Laplace–Beltrami embedding space. However, owing to the complex calculation with accurate one-to-one correspondences, RMOS registration takes a long time. In this study, we propose G-RMOS, a graphics processing unit (GPU)-accelerated RMOS registration pipeline that uses three GPU kernel design strategies: 1. using GPU computing capability with a batch scheme; 2. using the cache in the GPU block to minimize memory latency in register and shared memory; and 3. maximizing the effective number of instructions per GPU cycle using instruction level parallelism. Using the experimental results, we compare the acceleration speed of the G-RMOS framework with that of RMOS using hippocampus and cortical surfaces, and show that G-RMOS achieves a significant speedup in surface mapping. We also compare the memory requirements for cortical surface mapping and show that G-RMOS uses less memory than RMOS.
Surface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer's disease. Riemannian metrics on surface (RMOS) is a state-of-the-art surface mapping algorithm that optimizes Riemannian metrics to establish one-to-one correspondences between surfaces in the Laplace-Beltrami embedding space. However, owing to the complex calculation with accurate one-to-one correspondences, RMOS registration takes a long time. In this study, we propose G-RMOS, a graphics processing unit (GPU)-accelerated RMOS registration pipeline that uses three GPU kernel design strategies: 1. using GPU computing capability with a batch scheme; 2. using the cache in the GPU block to minimize memory latency in register and shared memory; and 3. maximizing the effective number of instructions per GPU cycle using instruction level parallelism. Using the experimental results, we compare the acceleration speed of the G-RMOS framework with that of RMOS using hippocampus and cortical surfaces, and show that G-RMOS achieves a significant speedup in surface mapping. We also compare the memory requirements for cortical surface mapping and show that G-RMOS uses less memory than RMOS.Surface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer's disease. Riemannian metrics on surface (RMOS) is a state-of-the-art surface mapping algorithm that optimizes Riemannian metrics to establish one-to-one correspondences between surfaces in the Laplace-Beltrami embedding space. However, owing to the complex calculation with accurate one-to-one correspondences, RMOS registration takes a long time. In this study, we propose G-RMOS, a graphics processing unit (GPU)-accelerated RMOS registration pipeline that uses three GPU kernel design strategies: 1. using GPU computing capability with a batch scheme; 2. using the cache in the GPU block to minimize memory latency in register and shared memory; and 3. maximizing the effective number of instructions per GPU cycle using instruction level parallelism. Using the experimental results, we compare the acceleration speed of the G-RMOS framework with that of RMOS using hippocampus and cortical surfaces, and show that G-RMOS achieves a significant speedup in surface mapping. We also compare the memory requirements for cortical surface mapping and show that G-RMOS uses less memory than RMOS.
Surface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer's disease. Riemannian metrics on surface (RMOS) is a state-of-the-art surface mapping algorithm that optimizes Riemannian metrics to establish one-to-one correspondences between surfaces in the Laplace-Beltrami embedding space. However, owing to the complex calculation with accurate one-to-one correspondences, RMOS registration takes a long time. In this study, we propose G-RMOS, a graphics processing unit (GPU)-accelerated RMOS registration pipeline that uses three GPU kernel design strategies: 1. using GPU computing capability with a batch scheme; 2. using the cache in the GPU block to minimize memory latency in register and shared memory; and 3. maximizing the effective number of instructions per GPU cycle using instruction level parallelism. Using the experimental results, we compare the acceleration speed of the G-RMOS framework with that of RMOS using hippocampus and cortical surfaces, and show that G-RMOS achieves a significant speedup in surface mapping. We also compare the memory requirements for cortical surface mapping and show that G-RMOS uses less memory than RMOS.
ArticleNumber 106167
Author Jo, Jeong Won
Gahm, Jin Kyu
Author_xml – sequence: 1
  givenname: Jeong Won
  surname: Jo
  fullname: Jo, Jeong Won
  organization: Department of Information Convergence Engineering, Pusan National University, 2, Busandaehak-ro 63, Busan, 46241, Republic of Korea
– sequence: 2
  givenname: Jin Kyu
  orcidid: 0000-0001-8827-402X
  surname: Gahm
  fullname: Gahm, Jin Kyu
  email: gahmj@pusan.ac.kr
  organization: School of Computer Science and Engineering, Pusan National University, 2, Busandaehak-ro 63, Busan, 46241, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37859279$$D View this record in MEDLINE/PubMed
BookMark eNqVklGL1DAUhYOsuLOrf0EKvvjS8SZt08aHxd1FR2GXkR33OdxJUsjYpjVplfHXm9pdhQFhhJBAOOfk3i_3jJy4zhlCEgpLCpS_2S1V1_Zb27VGLxkwFq855eUTsqBVKVIosvyELAAopHnFilNyFsIOAHLI4Bk5zcqqEKwUC3K1Su9u15u3yerzfYpKmcZ4HIxO7qxp0TmLLrk1g7cqWfeDbe1PHGznkrg2o69RmfCcPK2xCebFw3lO7j-8_3L9Mb1Zrz5dX96kquD5kCJFVijBOWpkW4G6ZLTWmnOBJWQly6oMhKmELljOWK63CFop5LWqs4rG7ZyIOXd0Pe5_YNPI3tsW_V5SkBMXuZN_uciJi5y5RO_r2dv77ttowiBbG2KzDTrTjUGyqgIQgmY0Sl8dSHfd6F3sTLKSCZFlrORR9fJBNW6nxx4reSQbBRezQPkuBG9qqezwm93g0TbHlFwdBPxHt1ez1cTv-G6Nl0FZ45TR1hs1SN3ZY0IuDkJUY51V2Hw1exP-QKEyMAlyMw3bNGuMAVRlMQW8-3fAcTX8AkDh5ok
CitedBy_id crossref_primary_10_3390_s24051591
Cites_doi 10.3390/rs14061442
10.21037/qims.2018.03.07
10.1016/j.cag.2021.04.019
10.1109/TCSVT.2018.2879833
10.1145/2602143
10.1016/j.gmod.2012.03.009
10.1016/j.neuroimage.2004.03.040
10.1016/j.eswa.2021.116158
10.1109/TMI.2021.3069645
10.1109/TMI.2014.2313812
10.1016/j.neuroimage.2019.02.053
10.1016/j.jfluidstructs.2021.103312
10.1145/2458523.2458536
10.1016/j.media.2019.06.013
10.1016/j.neuroimage.2013.05.041
10.1016/j.compeleceng.2022.107761
10.1016/j.cie.2021.107250
10.1016/j.neuroimage.2020.117161
10.1145/3293883.3295712
10.1002/cpe.4460
10.1007/s00234-021-02698-8
10.1145/3453688.3461510
10.1016/j.ijchp.2019.01.001
10.1109/TCBB.2011.68
10.1016/j.media.2018.03.004
10.1145/77726.255144
ContentType Journal Article
Copyright 2022 The Authors
The Authors
Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
2022. The Authors
Copyright_xml – notice: 2022 The Authors
– notice: The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
– notice: 2022. The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
DOI 10.1016/j.compbiomed.2022.106167
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological science database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Research Library Prep

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 106167
ExternalDocumentID 10.1016/j.compbiomed.2022.106167
37859279
10_1016_j_compbiomed_2022_106167
S0010482522008757
1_s2_0_S0010482522008757
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
6I.
AAFTH
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c564t-a1a25c966ada2b9ad721fdd669a7037238309e89d524224dba0dcca6fcf381cf3
IEDL.DBID BENPR
ISSN 0010-4825
1879-0534
IngestDate Tue Aug 19 15:55:37 EDT 2025
Sat Sep 27 18:48:05 EDT 2025
Tue Oct 07 06:30:06 EDT 2025
Mon Jul 21 05:55:02 EDT 2025
Wed Oct 01 05:27:31 EDT 2025
Thu Apr 24 22:52:38 EDT 2025
Fri Feb 23 02:39:20 EST 2024
Tue Feb 25 20:12:01 EST 2025
Tue Oct 14 19:33:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords GPU-acceleration
Surface mapping
Embedding registration
Hippocampus
Cortex
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-a1a25c966ada2b9ad721fdd669a7037238309e89d524224dba0dcca6fcf381cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8827-402X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0010482522008757
PMID 37859279
PQID 2729933276
PQPubID 1226355
PageCount 1
ParticipantIDs unpaywall_primary_10_1016_j_compbiomed_2022_106167
proquest_miscellaneous_2880099131
proquest_journals_2729933276
pubmed_primary_37859279
crossref_citationtrail_10_1016_j_compbiomed_2022_106167
crossref_primary_10_1016_j_compbiomed_2022_106167
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_106167
elsevier_clinicalkeyesjournals_1_s2_0_S0010482522008757
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_106167
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References NVIDIA, Vingelmann, Fitzek (b46) 2020
S. Grauer-Gray, W. Killian, R. Searles, J. Cavazos, Accelerating financial applications on the GPU, in: Proceedings of the 6th Workshop on General Purpose Processor using Graphics Processing Units, 2013, pp. 127–136.
Nagasaka, Nukada, Kojima, Matsuoka (b51) 2019
Gahm, Shi (b12) 2018; 46
Zhao, Xia, Wu, Wang, Chen, Lin, Gilmore, Shen, Li (b42) 2019
Gale, Zaharia, Young, Elsen (b47) 2020
Croquet, Christiaens, Weinberg, Bronstein, Vandermeulen, Claes (b4) 2021
Torrecillas-Martínez, Catena, O’Valle, Padial-Molina, Galindo-Moreno (b14) 2019; 19
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (b52) 2013; 80
Shi, Lai, Gill, Pelletier, Mohr, Sicotte, Toga (b28) 2011
Lyu, Kang, Woodward, Styner, Landman (b6) 2019; 57
Zhang, Shi (b13) 2021
Yang, Buluç, Owens (b48) 2018
Liu, Englot, Morgan, Taylor, Wei, Oguz, Landman, Lyu (b2) 2021; vol. 11596
He, Razlighi (b7) 2020
Bell, Garland (b34) 2008
Pang, Cheung, Liu, Lou, Lin (b40) 2018; 29
Bo, Di, Liu, Wang, Liu, Xin, Cheng, Yin (b8) 2022; 14
Lo, Kumar, Tan, Lock, Keong (b15) 2021; 63
Bustamam, Burrage, Hamilton (b23) 2012; 9
Croquet, Christiaens, Weinberg, Bronstein, Vandermeulen, Claes (b45) 2021
Alavani, Varma, Sarkar (b33) 2018
Gahm, Shi (b9) 2016
Marinescu, Eshaghi, Lorenzi, Young, Oxtoby, Garbarino, Crutch, Alexander, Initiative (b16) 2019; 192
Ronneberger, Fischer, Brox (b43) 2015
O’Connor, Rogers (b26) 2021; 104
F.d. Goes, P. Memari, P. Mullen, M. Desbrun, Weighted triangulations for geometry processing, ACM Trans. Graph. 33.
Shi, Lai, Wang, Pelletier, Mohr, Sicotte, Toga (b17) 2014; 33
Zhao, Wu, Wang, Lin, Xia, Shen, Wang, Li (b44) 2021; 40
Grimes, Kincaid, Young (b36) 1979
Nasikun, Brandt, Hildebrandt (b18) 2018; vol. 37
Zhao, Wu, Wang, Lin, Xia, Shen, Li, Consortium (b5) 2020
Shi, Liu, Zhang, Xie, Wang (b20) 2012; 2
Potluri, Fasih, Vutukuru, Al Machot, Kyamakya (b21) 2011
Gahm, Tang, Shi (b11) 2018
T. Song, X. Chen, Y. Han, Eliminating Iterations of Iterative Methods: Solving Large-Scale Sparse Linear System in O (1) with RRAM-Based In-Memory Accelerator, in: Proceedings of the 2021 on Great Lakes Symposium on VLSI, 2021, pp. 71–76.
Abualigah, Abd Elaziz, Sumari, Geem, Gandomi (b54) 2022; 191
Skorkovská, Kolingerová, Vanecek (b25) 2019
Merrill, Garland (b49) 2016
E.N. Houstis, J.R. Rice, N. Chrisochoides, H. Karathanasis, P. Papachiou, M. Samartzis, E. Vavalis, K.Y. Wang, S. Weerawarana, //ELLPACK: A numerical simulation programming environment for parallel MIMD machines, in: Proceedings of the 4th International Conference on Supercomputing, 1990, pp. 96–107.
Coors, Condurache, Geiger (b41) 2018
Tasoulas, Anagnostopoulos (b31) 2018
Cheng, Dalca, Fischl, Zöllei, Initiative (b3) 2020; 221
Mousa, Hussein (b27) 2022; 99
Serpa, Moreira, Navaux, Cruz, Diener, Griebler, Fernandes (b32) 2019
Gahm, Shi (b10) 2017
Thompson, Hayashi, De Zubicaray, Janke, Rose, Semple, Hong, Herman, Gravano, Doddrell (b1) 2004; 22
Xu, Lin, Hu, He (b19) 2021; 97
Wang, Peng, Chang, Liang (b24) 2018; 8
Abualigah, Yousri, Abd Elaziz, Ewees, Al-Qaness, Gandomi (b53) 2021; 157
C. Hong, A. Sukumaran-Rajam, I. Nisa, K. Singh, P. Sadayappan, Adaptive sparse tiling for sparse matrix multiplication, in: Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming, 2019, pp. 300–314.
Zeng, Guo, Luo, Gu (b29) 2012; 74
Anzt, Dongarra, Flegar, Higham, Quintana-Ortí (b37) 2019; 31
Koskela, Matveev, Yang, Adedoyin, Belenov, Thierry, Zhao, Gayatri, Shan, Oliker (b39) 2018
Grimes (10.1016/j.compbiomed.2022.106167_b36) 1979
Pang (10.1016/j.compbiomed.2022.106167_b40) 2018; 29
Van Essen (10.1016/j.compbiomed.2022.106167_b52) 2013; 80
O’Connor (10.1016/j.compbiomed.2022.106167_b26) 2021; 104
Shi (10.1016/j.compbiomed.2022.106167_b28) 2011
10.1016/j.compbiomed.2022.106167_b50
Abualigah (10.1016/j.compbiomed.2022.106167_b54) 2022; 191
Gahm (10.1016/j.compbiomed.2022.106167_b11) 2018
Serpa (10.1016/j.compbiomed.2022.106167_b32) 2019
Liu (10.1016/j.compbiomed.2022.106167_b2) 2021; vol. 11596
Shi (10.1016/j.compbiomed.2022.106167_b17) 2014; 33
Zhao (10.1016/j.compbiomed.2022.106167_b42) 2019
Thompson (10.1016/j.compbiomed.2022.106167_b1) 2004; 22
Tasoulas (10.1016/j.compbiomed.2022.106167_b31) 2018
Skorkovská (10.1016/j.compbiomed.2022.106167_b25) 2019
Cheng (10.1016/j.compbiomed.2022.106167_b3) 2020; 221
Zeng (10.1016/j.compbiomed.2022.106167_b29) 2012; 74
He (10.1016/j.compbiomed.2022.106167_b7) 2020
Zhang (10.1016/j.compbiomed.2022.106167_b13) 2021
Marinescu (10.1016/j.compbiomed.2022.106167_b16) 2019; 192
Zhao (10.1016/j.compbiomed.2022.106167_b44) 2021; 40
Gale (10.1016/j.compbiomed.2022.106167_b47) 2020
Croquet (10.1016/j.compbiomed.2022.106167_b4) 2021
Bell (10.1016/j.compbiomed.2022.106167_b34) 2008
Ronneberger (10.1016/j.compbiomed.2022.106167_b43) 2015
Abualigah (10.1016/j.compbiomed.2022.106167_b53) 2021; 157
Anzt (10.1016/j.compbiomed.2022.106167_b37) 2019; 31
Torrecillas-Martínez (10.1016/j.compbiomed.2022.106167_b14) 2019; 19
10.1016/j.compbiomed.2022.106167_b22
Gahm (10.1016/j.compbiomed.2022.106167_b12) 2018; 46
Bo (10.1016/j.compbiomed.2022.106167_b8) 2022; 14
Lo (10.1016/j.compbiomed.2022.106167_b15) 2021; 63
Koskela (10.1016/j.compbiomed.2022.106167_b39) 2018
Croquet (10.1016/j.compbiomed.2022.106167_b45) 2021
Zhao (10.1016/j.compbiomed.2022.106167_b5) 2020
10.1016/j.compbiomed.2022.106167_b38
Wang (10.1016/j.compbiomed.2022.106167_b24) 2018; 8
10.1016/j.compbiomed.2022.106167_b30
10.1016/j.compbiomed.2022.106167_b35
Yang (10.1016/j.compbiomed.2022.106167_b48) 2018
Nasikun (10.1016/j.compbiomed.2022.106167_b18) 2018; vol. 37
Potluri (10.1016/j.compbiomed.2022.106167_b21) 2011
Mousa (10.1016/j.compbiomed.2022.106167_b27) 2022; 99
Alavani (10.1016/j.compbiomed.2022.106167_b33) 2018
Merrill (10.1016/j.compbiomed.2022.106167_b49) 2016
Xu (10.1016/j.compbiomed.2022.106167_b19) 2021; 97
Shi (10.1016/j.compbiomed.2022.106167_b20) 2012; 2
Coors (10.1016/j.compbiomed.2022.106167_b41) 2018
Nagasaka (10.1016/j.compbiomed.2022.106167_b51) 2019
Gahm (10.1016/j.compbiomed.2022.106167_b9) 2016
Gahm (10.1016/j.compbiomed.2022.106167_b10) 2017
Lyu (10.1016/j.compbiomed.2022.106167_b6) 2019; 57
Bustamam (10.1016/j.compbiomed.2022.106167_b23) 2012; 9
NVIDIA (10.1016/j.compbiomed.2022.106167_b46) 2020
References_xml – volume: 22
  start-page: 1754
  year: 2004
  end-page: 1766
  ident: b1
  article-title: Mapping hippocampal and ventricular change in Alzheimer disease
  publication-title: Neuroimage
– volume: vol. 11596
  start-page: 253
  year: 2021
  end-page: 260
  ident: b2
  article-title: Establishing surface correspondence for post-surgical cortical thickness changes in temporal lobe epilepsy
  publication-title: Medical Imaging 2021: Image Processing
– start-page: 226
  year: 2018
  end-page: 245
  ident: b39
  article-title: A novel multi-level integrated roofline model approach for performance characterization
  publication-title: International Conference on High Performance Computing
– start-page: 231
  year: 2019
  end-page: 240
  ident: b51
  article-title: Batched sparse matrix multiplication for accelerating graph convolutional networks
  publication-title: 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
– start-page: 228
  year: 2016
  end-page: 236
  ident: b9
  article-title: Riemannian metric optimization for connectivity-driven surface mapping
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 1882
  year: 2019
  end-page: 1886
  ident: b42
  article-title: Spherical U-net for infant cortical surface parcellation
  publication-title: 2019 IEEE 16th International Symposium on Biomedical Imaging
– volume: 74
  start-page: 121
  year: 2012
  end-page: 129
  ident: b29
  article-title: Discrete heat kernel determines discrete Riemannian metric
  publication-title: Graph. Models
– volume: vol. 37
  start-page: 121
  year: 2018
  end-page: 134
  ident: b18
  article-title: Fast approximation of Laplace-Beltrami eigenproblems
  publication-title: Computer Graphics Forum
– start-page: 234
  year: 2015
  end-page: 241
  ident: b43
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 21
  year: 2017
  end-page: 30
  ident: b10
  article-title: Holistic mapping of striatum surfaces in the Laplace-beltrami embedding space
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 14
  start-page: 1442
  year: 2022
  ident: b8
  article-title: High-precision registration of lunar global mapping products based on spherical triangular mesh
  publication-title: Remote Sens.
– volume: 99
  year: 2022
  ident: b27
  article-title: Toward high-performance computation of surface approximation using a GPU
  publication-title: Comput. Electr. Eng.
– volume: 104
  year: 2021
  ident: b26
  article-title: A fluid–structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU
  publication-title: J. Fluids Struct.
– volume: 33
  start-page: 1447
  year: 2014
  end-page: 1463
  ident: b17
  article-title: Metric optimization for surface analysis in the Laplace-Beltrami embedding space
  publication-title: IEEE Trans. Med. Imaging
– volume: 97
  start-page: 236
  year: 2021
  end-page: 247
  ident: b19
  article-title: Fast calculation of Laplace-Beltrami eigenproblems via subdivision linear subspace
  publication-title: Comput. Graphics
– start-page: 689
  year: 2018
  end-page: 697
  ident: b11
  article-title: Patch-based mapping of transentorhinal cortex with a distributed atlas
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 672
  year: 2018
  end-page: 687
  ident: b48
  article-title: Design principles for sparse matrix multiplication on the gpu
  publication-title: European Conference on Parallel Processing
– volume: 221
  year: 2020
  ident: b3
  article-title: Cortical surface registration using unsupervised learning
  publication-title: NeuroImage
– volume: 63
  start-page: 1689
  year: 2021
  end-page: 1699
  ident: b15
  article-title: The topology of ventricle surfaces and its application in the analysis of hydrocephalic ventricles: A proof-of-concept study
  publication-title: Neuroradiology
– reference: S. Grauer-Gray, W. Killian, R. Searles, J. Cavazos, Accelerating financial applications on the GPU, in: Proceedings of the 6th Workshop on General Purpose Processor using Graphics Processing Units, 2013, pp. 127–136.
– volume: 46
  start-page: 189
  year: 2018
  end-page: 201
  ident: b12
  article-title: Riemannian metric optimization on surfaces (RMOS) for intrinsic brain mapping in the Laplace–Beltrami embedding space
  publication-title: Med. Image Anal.
– start-page: 710
  year: 2021
  end-page: 720
  ident: b13
  article-title: Personalized matching and analysis of cortical folding patterns via patch-based intrinsic brain mapping
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 57
  start-page: 72
  year: 2019
  end-page: 88
  ident: b6
  article-title: Hierarchical spherical deformation for cortical surface registration
  publication-title: Med. Image Anal.
– volume: 8
  start-page: 196
  year: 2018
  ident: b24
  article-title: A survey of GPU-based acceleration techniques in MRI reconstructions
  publication-title: Quant. Imaging Med. Surg.
– volume: 40
  start-page: 1964
  year: 2021
  end-page: 1976
  ident: b44
  article-title: S3Reg: Superfast spherical surface registration based on deep learning
  publication-title: IEEE Trans. Med. Imaging
– start-page: 678
  year: 2016
  end-page: 689
  ident: b49
  article-title: Merge-based parallel sparse matrix-vector multiplication
  publication-title: SC’16: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
– volume: 2
  start-page: 188
  year: 2012
  ident: b20
  article-title: A survey of GPU-based medical image computing techniques
  publication-title: Quant. Imaging Med. Surg.
– volume: 19
  start-page: 115
  year: 2019
  end-page: 123
  ident: b14
  article-title: Does experienced pain affects local brain volumes? Insights from a clinical acute pain model
  publication-title: Int. J. Clin. Health Psychol.
– start-page: 118
  year: 2021
  end-page: 128
  ident: b4
  article-title: Unsupervised diffeomorphic surface registration and non-linear modelling
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 157
  year: 2021
  ident: b53
  article-title: Aquila optimizer: A novel meta-heuristic optimization algorithm
  publication-title: Comput. Ind. Eng.
– volume: 191
  year: 2022
  ident: b54
  article-title: Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer
  publication-title: Expert Syst. Appl.
– start-page: 1
  year: 2011
  end-page: 7
  ident: b21
  article-title: CNN based high performance computing for real time image processing on GPU
  publication-title: Proceedings of the Joint INDS’11 & ISTET’11
– year: 1979
  ident: b36
  article-title: ITPACK 2.0 User’s Guide
– reference: T. Song, X. Chen, Y. Han, Eliminating Iterations of Iterative Methods: Solving Large-Scale Sparse Linear System in O (1) with RRAM-Based In-Memory Accelerator, in: Proceedings of the 2021 on Great Lakes Symposium on VLSI, 2021, pp. 71–76.
– start-page: 122
  year: 2019
  end-page: 133
  ident: b25
  article-title: A unified curvature-driven approach for weathering and hydraulic erosion simulation on triangular meshes
  publication-title: VISIGRAPP (1: GRAPP)
– volume: 192
  start-page: 166
  year: 2019
  end-page: 177
  ident: b16
  article-title: DIVE: A spatiotemporal progression model of brain pathology in neurodegenerative disorders
  publication-title: NeuroImage
– reference: F.d. Goes, P. Memari, P. Mullen, M. Desbrun, Weighted triangulations for geometry processing, ACM Trans. Graph. 33.
– start-page: 621
  year: 2018
  end-page: 624
  ident: b31
  article-title: Optimizing performance of GPU applications with SM activity divergence minimization
  publication-title: 2018 25th IEEE International Conference on Electronics, Circuits and Systems
– volume: 29
  start-page: 3184
  year: 2018
  end-page: 3198
  ident: b40
  article-title: Toward efficient image representation: Sparse concept discriminant matrix factorization
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 1
  year: 2020
  end-page: 14
  ident: b47
  article-title: Sparse GPU kernels for deep learning
  publication-title: SC20: International Conference for High Performance Computing, Networking, Storage and Analysis
– start-page: 233
  year: 2019
  end-page: 236
  ident: b32
  article-title: Memory performance and bottlenecks in multicore and GPU architectures
  publication-title: 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing
– start-page: 118
  year: 2021
  end-page: 128
  ident: b45
  article-title: Unsupervised diffeomorphic surface registration and non-linear modelling
  publication-title: Medical Image Computing and Computer Assisted Intervention
– year: 2020
  ident: b46
  article-title: CUDA, release: 10.2.89
– start-page: 948
  year: 2018
  end-page: 955
  ident: b33
  article-title: Predicting execution time of CUDA kernel using static analysis
  publication-title: 2018 IEEE Intl Conf on Parallel Distributed Processing with Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable Computing Communications
– volume: 31
  year: 2019
  ident: b37
  article-title: Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers
  publication-title: Concurr. Comput.: Pract. Exper.
– reference: E.N. Houstis, J.R. Rice, N. Chrisochoides, H. Karathanasis, P. Papachiou, M. Samartzis, E. Vavalis, K.Y. Wang, S. Weerawarana, //ELLPACK: A numerical simulation programming environment for parallel MIMD machines, in: Proceedings of the 4th International Conference on Supercomputing, 1990, pp. 96–107.
– start-page: 1412
  year: 2020
  end-page: 1417
  ident: b7
  article-title: Volumetric registration of Brain Cortical Regions by automatic landmark matching and large deformation diffeomorphisms
  publication-title: 2020 IEEE 17th International Symposium on Biomedical Imaging
– year: 2008
  ident: b34
  article-title: Efficient Sparse Matrix-Vector Multiplication on CUDA
– reference: C. Hong, A. Sukumaran-Rajam, I. Nisa, K. Singh, P. Sadayappan, Adaptive sparse tiling for sparse matrix multiplication, in: Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming, 2019, pp. 300–314.
– start-page: 373
  year: 2020
  end-page: 383
  ident: b5
  article-title: Unsupervised learning for spherical surface registration
  publication-title: International Workshop on Machine Learning in Medical Imaging
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: b52
  article-title: The WU-minn human connectome project: an overview
  publication-title: Neuroimage
– start-page: 525
  year: 2018
  end-page: 541
  ident: b41
  article-title: SphereNet: Learning spherical representations for detection and classification in omnidirectional images
  publication-title: Computer Vision – ECCV 2018
– start-page: 327
  year: 2011
  end-page: 334
  ident: b28
  article-title: Conformal metric optimization on surface (CMOS) for deformation and mapping in Laplace-Beltrami embedding space
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 9
  start-page: 679
  year: 2012
  end-page: 692
  ident: b23
  article-title: Fast parallel Markov clustering in bioinformatics using massively parallel computing on GPU with CUDA and ELLPACK-R sparse format
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 14
  start-page: 1442
  issue: 6
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106167_b8
  article-title: High-precision registration of lunar global mapping products based on spherical triangular mesh
  publication-title: Remote Sens.
  doi: 10.3390/rs14061442
– year: 2020
  ident: 10.1016/j.compbiomed.2022.106167_b46
– volume: 8
  start-page: 196
  issue: 2
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106167_b24
  article-title: A survey of GPU-based acceleration techniques in MRI reconstructions
  publication-title: Quant. Imaging Med. Surg.
  doi: 10.21037/qims.2018.03.07
– start-page: 1412
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106167_b7
  article-title: Volumetric registration of Brain Cortical Regions by automatic landmark matching and large deformation diffeomorphisms
– volume: 97
  start-page: 236
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106167_b19
  article-title: Fast calculation of Laplace-Beltrami eigenproblems via subdivision linear subspace
  publication-title: Comput. Graphics
  doi: 10.1016/j.cag.2021.04.019
– start-page: 228
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106167_b9
  article-title: Riemannian metric optimization for connectivity-driven surface mapping
– start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106167_b47
  article-title: Sparse GPU kernels for deep learning
– start-page: 21
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106167_b10
  article-title: Holistic mapping of striatum surfaces in the Laplace-beltrami embedding space
– volume: 29
  start-page: 3184
  issue: 11
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106167_b40
  article-title: Toward efficient image representation: Sparse concept discriminant matrix factorization
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2018.2879833
– ident: 10.1016/j.compbiomed.2022.106167_b30
  doi: 10.1145/2602143
– start-page: 233
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106167_b32
  article-title: Memory performance and bottlenecks in multicore and GPU architectures
– volume: 74
  start-page: 121
  issue: 4
  year: 2012
  ident: 10.1016/j.compbiomed.2022.106167_b29
  article-title: Discrete heat kernel determines discrete Riemannian metric
  publication-title: Graph. Models
  doi: 10.1016/j.gmod.2012.03.009
– year: 2008
  ident: 10.1016/j.compbiomed.2022.106167_b34
– volume: 22
  start-page: 1754
  issue: 4
  year: 2004
  ident: 10.1016/j.compbiomed.2022.106167_b1
  article-title: Mapping hippocampal and ventricular change in Alzheimer disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.03.040
– volume: vol. 37
  start-page: 121
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106167_b18
  article-title: Fast approximation of Laplace-Beltrami eigenproblems
– volume: 191
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106167_b54
  article-title: Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116158
– year: 1979
  ident: 10.1016/j.compbiomed.2022.106167_b36
– volume: 40
  start-page: 1964
  issue: 8
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106167_b44
  article-title: S3Reg: Superfast spherical surface registration based on deep learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3069645
– volume: 33
  start-page: 1447
  issue: 7
  year: 2014
  ident: 10.1016/j.compbiomed.2022.106167_b17
  article-title: Metric optimization for surface analysis in the Laplace-Beltrami embedding space
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2313812
– start-page: 234
  year: 2015
  ident: 10.1016/j.compbiomed.2022.106167_b43
  article-title: U-net: Convolutional networks for biomedical image segmentation
– start-page: 678
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106167_b49
  article-title: Merge-based parallel sparse matrix-vector multiplication
– start-page: 118
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106167_b4
  article-title: Unsupervised diffeomorphic surface registration and non-linear modelling
– start-page: 327
  year: 2011
  ident: 10.1016/j.compbiomed.2022.106167_b28
  article-title: Conformal metric optimization on surface (CMOS) for deformation and mapping in Laplace-Beltrami embedding space
– volume: 192
  start-page: 166
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106167_b16
  article-title: DIVE: A spatiotemporal progression model of brain pathology in neurodegenerative disorders
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.02.053
– start-page: 621
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106167_b31
  article-title: Optimizing performance of GPU applications with SM activity divergence minimization
– start-page: 1
  year: 2011
  ident: 10.1016/j.compbiomed.2022.106167_b21
  article-title: CNN based high performance computing for real time image processing on GPU
– volume: 104
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106167_b26
  article-title: A fluid–structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2021.103312
– ident: 10.1016/j.compbiomed.2022.106167_b22
  doi: 10.1145/2458523.2458536
– volume: 57
  start-page: 72
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106167_b6
  article-title: Hierarchical spherical deformation for cortical surface registration
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.06.013
– start-page: 1882
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106167_b42
  article-title: Spherical U-net for infant cortical surface parcellation
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.compbiomed.2022.106167_b52
  article-title: The WU-minn human connectome project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 99
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106167_b27
  article-title: Toward high-performance computation of surface approximation using a GPU
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.107761
– start-page: 118
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106167_b45
  article-title: Unsupervised diffeomorphic surface registration and non-linear modelling
– volume: 157
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106167_b53
  article-title: Aquila optimizer: A novel meta-heuristic optimization algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107250
– start-page: 373
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106167_b5
  article-title: Unsupervised learning for spherical surface registration
– start-page: 672
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106167_b48
  article-title: Design principles for sparse matrix multiplication on the gpu
– volume: 221
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106167_b3
  article-title: Cortical surface registration using unsupervised learning
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117161
– ident: 10.1016/j.compbiomed.2022.106167_b50
  doi: 10.1145/3293883.3295712
– start-page: 226
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106167_b39
  article-title: A novel multi-level integrated roofline model approach for performance characterization
– start-page: 122
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106167_b25
  article-title: A unified curvature-driven approach for weathering and hydraulic erosion simulation on triangular meshes
– start-page: 948
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106167_b33
  article-title: Predicting execution time of CUDA kernel using static analysis
– volume: 31
  issue: 6
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106167_b37
  article-title: Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers
  publication-title: Concurr. Comput.: Pract. Exper.
  doi: 10.1002/cpe.4460
– volume: 63
  start-page: 1689
  issue: 10
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106167_b15
  article-title: The topology of ventricle surfaces and its application in the analysis of hydrocephalic ventricles: A proof-of-concept study
  publication-title: Neuroradiology
  doi: 10.1007/s00234-021-02698-8
– ident: 10.1016/j.compbiomed.2022.106167_b38
  doi: 10.1145/3453688.3461510
– start-page: 231
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106167_b51
  article-title: Batched sparse matrix multiplication for accelerating graph convolutional networks
– start-page: 525
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106167_b41
  article-title: SphereNet: Learning spherical representations for detection and classification in omnidirectional images
– volume: 19
  start-page: 115
  issue: 2
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106167_b14
  article-title: Does experienced pain affects local brain volumes? Insights from a clinical acute pain model
  publication-title: Int. J. Clin. Health Psychol.
  doi: 10.1016/j.ijchp.2019.01.001
– volume: 2
  start-page: 188
  issue: 3
  year: 2012
  ident: 10.1016/j.compbiomed.2022.106167_b20
  article-title: A survey of GPU-based medical image computing techniques
  publication-title: Quant. Imaging Med. Surg.
– volume: 9
  start-page: 679
  issue: 3
  year: 2012
  ident: 10.1016/j.compbiomed.2022.106167_b23
  article-title: Fast parallel Markov clustering in bioinformatics using massively parallel computing on GPU with CUDA and ELLPACK-R sparse format
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2011.68
– volume: vol. 11596
  start-page: 253
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106167_b2
  article-title: Establishing surface correspondence for post-surgical cortical thickness changes in temporal lobe epilepsy
– start-page: 710
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106167_b13
  article-title: Personalized matching and analysis of cortical folding patterns via patch-based intrinsic brain mapping
– volume: 46
  start-page: 189
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106167_b12
  article-title: Riemannian metric optimization on surfaces (RMOS) for intrinsic brain mapping in the Laplace–Beltrami embedding space
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.03.004
– start-page: 689
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106167_b11
  article-title: Patch-based mapping of transentorhinal cortex with a distributed atlas
– ident: 10.1016/j.compbiomed.2022.106167_b35
  doi: 10.1145/77726.255144
SSID ssj0004030
Score 2.3502665
Snippet Surface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer’s disease. Riemannian metrics on...
AbstractSurface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer’s disease. Riemannian metrics...
Surface mapping is used in various brain imaging studies, such as for mapping gray matter atrophy patterns in Alzheimer's disease. Riemannian metrics on...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106167
SubjectTerms Acceleration
Algorithms
Alzheimer's disease
Atrophy
Brain mapping
Brain Mapping - methods
Cortex
Embedding
Embedding registration
GPU-acceleration
Graphics processing units
Gray Matter - diagnostic imaging
Hippocampus
Internal Medicine
Latency
Mapping
Neurodegenerative diseases
Neuroimaging
Optimization
Other
Pipelining (computers)
Substantia grisea
Surface mapping
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hDtAeKkpfKVClUq-BxI7tGE6ACqjSlgq6EjfLsR1pqyWs2F0hLvx2xmsntILDSpWiSEk8cvJ5PI94xgPwjQtBuTRFVnHrsrIiZVbXDp0VYhqRc1uI2v_QH_zkZ8PyxxW7WoHjLhfGh1VG2R9k-kJaxzt7Ec29yWjkc3zRlUAHh5CwLbvPYC-Fr2Kw-_AU5lHmNKShoLzxrWM0T4jx8mHbIc0dPUVCdr1_tKg4_6KKem6Cvob1eTvR93d6PP5LLZ1swJtoT6aH4ZXfwoprN2FtEFfM38HRaXYxOL_cT09_DTNtDGoZvzmETS9G7trXK9JtOvBVtUx6jtLjOqZlpnhczm8bH7D1HoYn338fn2WxbkJmGC9nmS40YQb9GG01qaW26OU11nIuNc5vX2WM5tJV0jLUz6S0tc4tDiRvTIP6G08fYLW9ad0nhKphhaaCScYMmna0pmWT18wSbSsiuEtAdFApEzcV97UtxqqLHvujnkBWHmQVQE6g6CknYWONJWhkNxqqSxxFUadQ-i9BK16iddM4Z6eqUFOicvWMrxI46Cn_Yc0l-93u2Eb1XRF0aSSliGACX_vHOLH9ao1u3c0c26BkRfO9oEUCHwO79UBRUTFJhEyA9Py3NIqf_-t7tuCVvwrpmNuwOrudux20y2b1l8XEewSJRjM0
  priority: 102
  providerName: Elsevier
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VrcTxwFkgUFCQePUqsWM7hqe2oq2Qti1dVipPlmM7ErBNq-5GCH494zoJN1qQokhRMnEynsx8E88B8FxIyYSyOSmF86QoaUGqyqOzQm0tM-FyWYUf-pMDsT8rXp_wkzXI-lyYH9bvL-OwQmh1TEVHb47ScfBhhLwC64Ij-h7B-uzgaOtdVLhZGC1ELYYe2gTlq-iCd_52qz9ZpF8R5w241jbn5vMnM59_Z4V2b8Gb_vlj8MnHcbusxvbLT6Ud_-UFb8PNDpKmW1GG7sCab-7C1Um36H4PtvfI8eRw-iLdO5oRYy0aqlBfwqXH7_1paHlkmnQSGnPZ9BAV0GmX2ZniNm0v6hDztQGz3Vdvd_ZJ13qBWC6KJTG5odyiK2ScoZUyDh3F2jkhlEEVERqVsUz5UjmOJp4WrjKZQ1kQta0RAuDuPoyas8Y_RPbXPDdMcsW5RXTIKlbUWcUdNa6kUvgEZM9-bbu65KE9xlz3AWgf9DcW6cAiHVmUQD5QnsfaHCvQqH6GdZ97itpS47SsQCt_R-sX3We_0LleUJ3p6WXVI5RESmPHgAReDpQdsomIZcVxN3tR1MNQFL0ixRhyMIFnw2nUDWHBxzT-rMVrUDmjB5CzPIEHUYQHRjFZckWlSoAOMr0yFx_9D9FjuB6OYiLnJoyWF61_gohuWT3tPuKvnEBDMw
  priority: 102
  providerName: Unpaywall
Title G-RMOS: GPU-accelerated Riemannian Metric Optimization on Surfaces
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522008757
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522008757
https://dx.doi.org/10.1016/j.compbiomed.2022.106167
https://www.ncbi.nlm.nih.gov/pubmed/37859279
https://www.proquest.com/docview/2729933276
https://www.proquest.com/docview/2880099131
https://doi.org/10.1016/j.compbiomed.2022.106167
UnpaywallVersion publishedVersion
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_uWvDjQfw2epYIvuZMNtndRBHpybVVaa-0FnpPyya7AaWX1muL-OLf7mx3kwoeUgibh2RIMjs7H9mZ-QG8ZpzHLCuiIGVKB0lKkiDPNQYrpCh5yFTEc_NDfzhig1nyeU7nRzCqa2FMWmWtE3eKWi0L84_8DUEvEINvwtmH1Y_AoEaZ3dUaQkM6aAX1ftdi7BjaxHTGakH77Hw0nuwrJcPYFqWg9sEXoy63x2Z8mSRuW_SOcSMhpyZa2uHP32iw_nVI78LtbbWSv37KxeIvI9W7D_ecd-l3rTg8gCNdPYRbQ7d__gjO-sFkeDF96_fHswC_Bm2OaRWh_Mk3fWXQi2TlDw3GVuFfoC65ckWaPh7T7XVp0rcew6x3_vXjIHAoCkFBWbIJZCQJLTCqkUqSPJMKY75SKcYyiavdYI7FYabTTFG01iRRuQwVTisrixKtOQ5PoFUtK_0MWVXSSMacZpQW6OjFeZyUYU4VkSrFidEe8JpVonAtxg3SxULUuWTfxZ7JwjBZWCZ7EDWUK9tm4wCarJ4NUZeRouITaAsOoOU30eq1W8FrEYk1EaGY7hoYoaQQYpv_e_CuoXROinU-DnzuSS02onnUXrQ9eNVcxmVu9m5kpZdbvAf1LDrzURx58NSKW8OomKc0IzzzgDTydzAXn___jV7AHXOzrb48gdbmeqtfohu2yTtwfPo7wpHPOY5pr9-BdvfTl8Go41YdnmejcffyD91yNLA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWLwgPheYECQ4DEscWInBk2IwbaOLd3UrtLejBM70lCXlrXVtH-Ov41z7aRITKgvk6q8tJekv5zvI767H8A7lqYx42UUZEzpIMlIEhSFxmSFlFUaMhWlhXmhn3dZZ5B8P6NnK_C76YUxZZWNTZwbajUqzTvyLYJRICbfJGWfx78CwxpldlcbCg3pqBXU9nzEmGvsONTXV5jCTbYPvuHzfk_I3u7p107gWAaCkrJkGshIElpi1C-VJAWXCnOiSinGuMTVYDi54pDrjCuK3owkqpChwr_NqrJCb4cHPO8dWEvihGPyt7az2z3pLTozw9g2waC1QyCoqyWyFWamaNw22WOeSsgHk53N-e5vdJD_BsD3YX1Wj-X1lRwO_3KKew_hgYtm_S9W_R7Biq4fw93c7dc_gZ39oJcf9z_6-yeDANFDH2dGUyi_d64vDFuSrP3ccHqV_jHargvXFOrjpz-7rEy52FMY3Aqez2C1HtV6A6GqaCTjlHJKSwws4yJOqrCgikiVoSJoD9IGKlG6keaGWWMomtq1n2IBsjAgCwuyB1ErObZjPZaQ4c3TEE3bKhpagb5nCdn0Jlk9cRZjIiIxISIU_fnAJNQUQizZgAefWkkXFNlgZ8nrbjZqI9pLLZaSB2_br9GsmL0iWevRDH-Ddh2ThyiOPHhu1a0FKk4zyknKPSCt_i2N4ov_39EbWO-c5kfi6KB7-BLuGUHb-bkJq9PLmX6FIeC0eO3WmQ8_bntp_wFv0mx3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQxrwgLgTGBAkeAxL7NiuQQgBo9sY3aZ1lfpmHNuRQF1a1lbT_hq_juM6SZGYUF8mVXlpT5J-Odf4HH8Ar7gQlEuTJR1uXZJ3SJ4UhcNihZhSpNxmovAv9HsHfHeQfx2y4Rr8bmZhfFtl4xMXjtqOjX9HvkUwC8Timwi-VdZtEUfb3Q-TX4lnkPIrrQ2dRlCRfXdxjuXb9P3eNj7r14R0v5x83k1qhoHEMJ7PEp1pwgxm_NpqUkhtsR4qreVcarQEz8dFU-k60jKMZCS3hU4t_mVemhIjHR7wvNfguqBU-nZCMRTLmcyUhvEX9HMIAau7iEJvmW8XD-P1WKES8sbXZQum-0tD47-p7y24Ma8m-uJcj0Z_hcPuHbhd57Hxx6B4d2HNVfdgo1ev1N-HTzvJce-w_zbeORok2hiMbn5TChsf_3CnnidJV3HPs3mZ-BC91mk9Dhrjpz8_K32j2AMYXAmaD2G9GlfuMUJVskxTwSRjBlNKWtC8TAtmibYdVAEXgWigUqbezNxzaoxU07X2Uy1BVh5kFUCOIGslJ2FDjxVkZPM0VDOwii5WYdRZQVZcJuumta-YqkxNiUpVf7FVEmoKIYFmIIJ3rWSdDoU0Z8XrbjZqo9pLLY0ogpft1-hQ_CqRrtx4jr9Bj45lQ0azCB4FdWuBoqLDJBEyAtLq38ooPvn_Hb2ADTRo9W3vYP8p3PRyYeRzE9ZnZ3P3DHO_WfF8YWQxfL9qq_4Db8NqEQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VrcTxwFkgUFCQePUqsWM7hqe2oq2Qti1dVipPlmM7ErBNq-5GCH494zoJN1qQokhRMnEynsx8E88B8FxIyYSyOSmF86QoaUGqyqOzQm0tM-FyWYUf-pMDsT8rXp_wkzXI-lyYH9bvL-OwQmh1TEVHb47ScfBhhLwC64Ij-h7B-uzgaOtdVLhZGC1ELYYe2gTlq-iCd_52qz9ZpF8R5w241jbn5vMnM59_Z4V2b8Gb_vlj8MnHcbusxvbLT6Ud_-UFb8PNDpKmW1GG7sCab-7C1Um36H4PtvfI8eRw-iLdO5oRYy0aqlBfwqXH7_1paHlkmnQSGnPZ9BAV0GmX2ZniNm0v6hDztQGz3Vdvd_ZJ13qBWC6KJTG5odyiK2ScoZUyDh3F2jkhlEEVERqVsUz5UjmOJp4WrjKZQ1kQta0RAuDuPoyas8Y_RPbXPDdMcsW5RXTIKlbUWcUdNa6kUvgEZM9-bbu65KE9xlz3AWgf9DcW6cAiHVmUQD5QnsfaHCvQqH6GdZ97itpS47SsQCt_R-sX3We_0LleUJ3p6WXVI5RESmPHgAReDpQdsomIZcVxN3tR1MNQFL0ixRhyMIFnw2nUDWHBxzT-rMVrUDmjB5CzPIEHUYQHRjFZckWlSoAOMr0yFx_9D9FjuB6OYiLnJoyWF61_gohuWT3tPuKvnEBDMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=G-RMOS%3A+GPU-accelerated+Riemannian+Metric+Optimization+on+Surfaces&rft.jtitle=Computers+in+biology+and+medicine&rft.date=2022-11-01&rft.pub=Elsevier+Limited&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=150&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.106167&rft.externalDBID=HAS_PDF_LINK
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482522X00097%2Fcov150h.gif