Automated detection and classification of tumor histotypes on dynamic PET imaging data through machine-learning driven voxel classification
2-deoxy-2-fluorine-(18F)fluoro-d-glucose Positron Emission Tomography/Computed Tomography (18F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and staging of various cancer types, including lung cancer, which is the most common cancer worldwide. Since histopathologic subtypes of lung can...
        Saved in:
      
    
          | Published in | Computers in biology and medicine Vol. 145; p. 105423 | 
|---|---|
| Main Authors | , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Ltd
    
        01.06.2022
     Elsevier Limited  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0010-4825 1879-0534 1879-0534  | 
| DOI | 10.1016/j.compbiomed.2022.105423 | 
Cover
| Abstract | 2-deoxy-2-fluorine-(18F)fluoro-d-glucose Positron Emission Tomography/Computed Tomography (18F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and staging of various cancer types, including lung cancer, which is the most common cancer worldwide. Since histopathologic subtypes of lung cancer show different degree of 18F-FDG uptake, to date there are some diagnostic limits and uncertainties, hindering an 18F-FDG-PET-driven classification of histologic subtypes of lung cancers. On the other hand, since activated macrophages, neutrophils, fibroblasts and granulation tissues also show an increased 18F-FDG activity, infectious and/or inflammatory processes and post-surgical and post-radiation changes may cause false-positive results, especially for lymph-nodes assessment. Here we propose a model-free, machine-learning based algorithm for the automated classification of adenocarcinoma, the most common type of lung cancer, and other types of tumors. Input for the algorithm are dynamic acquisitions of PET data (dPET), providing for a spatially and temporally resolved characterization of the uptake kinetic. The algorithm consists in a trained Random Forest classifier which, relying contextually on several spatial and temporal features of 18F-FDG uptake, generates as an outcome probability maps allowing to distinguish adenocarcinoma from other lung histotype and to identify metastatic lymph-nodes, ultimately increasing the specificity of the technique. Its performance, evaluated on a dPET dataset of 19 patients affected by primary lung cancer, provides a probability 0.943 ± 0.090 for the detection of adenocarcinoma. The use of this algorithm will guarantee an automatic and more accurate localization and discrimination of tumors, also providing a powerful tool for detecting at which extent tumor has spread beyond a primary tumor into lymphatic system.
•Dynamic PET (dPET) data provide metabolic characterization of tissues FDG uptake.•Machine-learning (ML) based tools for dPET analysis still require kinetic modeling.•A model-free ML-based workflow provides automated classification of lung histotypes.•The algorithm can also identify tumor's spread into lymphatic system. | 
    
|---|---|
| AbstractList | 2-deoxy-2-fluorine-(18F)fluoro-d-glucose Positron Emission Tomography/Computed Tomography (18F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and staging of various cancer types, including lung cancer, which is the most common cancer worldwide. Since histopathologic subtypes of lung cancer show different degree of 18F-FDG uptake, to date there are some diagnostic limits and uncertainties, hindering an 18F-FDG-PET-driven classification of histologic subtypes of lung cancers. On the other hand, since activated macrophages, neutrophils, fibroblasts and granulation tissues also show an increased 18F-FDG activity, infectious and/or inflammatory processes and post-surgical and post-radiation changes may cause false-positive results, especially for lymph-nodes assessment. Here we propose a model-free, machine-learning based algorithm for the automated classification of adenocarcinoma, the most common type of lung cancer, and other types of tumors. Input for the algorithm are dynamic acquisitions of PET data (dPET), providing for a spatially and temporally resolved characterization of the uptake kinetic. The algorithm consists in a trained Random Forest classifier which, relying contextually on several spatial and temporal features of 18F-FDG uptake, generates as an outcome probability maps allowing to distinguish adenocarcinoma from other lung histotype and to identify metastatic lymph-nodes, ultimately increasing the specificity of the technique. Its performance, evaluated on a dPET dataset of 19 patients affected by primary lung cancer, provides a probability 0.943 ± 0.090 for the detection of adenocarcinoma. The use of this algorithm will guarantee an automatic and more accurate localization and discrimination of tumors, also providing a powerful tool for detecting at which extent tumor has spread beyond a primary tumor into lymphatic system.2-deoxy-2-fluorine-(18F)fluoro-d-glucose Positron Emission Tomography/Computed Tomography (18F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and staging of various cancer types, including lung cancer, which is the most common cancer worldwide. Since histopathologic subtypes of lung cancer show different degree of 18F-FDG uptake, to date there are some diagnostic limits and uncertainties, hindering an 18F-FDG-PET-driven classification of histologic subtypes of lung cancers. On the other hand, since activated macrophages, neutrophils, fibroblasts and granulation tissues also show an increased 18F-FDG activity, infectious and/or inflammatory processes and post-surgical and post-radiation changes may cause false-positive results, especially for lymph-nodes assessment. Here we propose a model-free, machine-learning based algorithm for the automated classification of adenocarcinoma, the most common type of lung cancer, and other types of tumors. Input for the algorithm are dynamic acquisitions of PET data (dPET), providing for a spatially and temporally resolved characterization of the uptake kinetic. The algorithm consists in a trained Random Forest classifier which, relying contextually on several spatial and temporal features of 18F-FDG uptake, generates as an outcome probability maps allowing to distinguish adenocarcinoma from other lung histotype and to identify metastatic lymph-nodes, ultimately increasing the specificity of the technique. Its performance, evaluated on a dPET dataset of 19 patients affected by primary lung cancer, provides a probability 0.943 ± 0.090 for the detection of adenocarcinoma. The use of this algorithm will guarantee an automatic and more accurate localization and discrimination of tumors, also providing a powerful tool for detecting at which extent tumor has spread beyond a primary tumor into lymphatic system. Abstract2-deoxy-2-fluorine-(18F)fluoro- d-glucose Positron Emission Tomography/Computed Tomography ( 18F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and staging of various cancer types, including lung cancer, which is the most common cancer worldwide. Since histopathologic subtypes of lung cancer show different degree of 18F-FDG uptake, to date there are some diagnostic limits and uncertainties, hindering an 18F-FDG-PET-driven classification of histologic subtypes of lung cancers. On the other hand, since activated macrophages, neutrophils, fibroblasts and granulation tissues also show an increased 18F-FDG activity, infectious and/or inflammatory processes and post-surgical and post-radiation changes may cause false-positive results, especially for lymph-nodes assessment. Here we propose a model-free, machine-learning based algorithm for the automated classification of adenocarcinoma, the most common type of lung cancer, and other types of tumors. Input for the algorithm are dynamic acquisitions of PET data (dPET), providing for a spatially and temporally resolved characterization of the uptake kinetic. The algorithm consists in a trained Random Forest classifier which, relying contextually on several spatial and temporal features of 18F-FDG uptake, generates as an outcome probability maps allowing to distinguish adenocarcinoma from other lung histotype and to identify metastatic lymph-nodes, ultimately increasing the specificity of the technique. Its performance, evaluated on a dPET dataset of 19 patients affected by primary lung cancer, provides a probability 0.943 ± 0.090 for the detection of adenocarcinoma. The use of this algorithm will guarantee an automatic and more accurate localization and discrimination of tumors, also providing a powerful tool for detecting at which extent tumor has spread beyond a primary tumor into lymphatic system. 2-deoxy-2-fluorine-( F)fluoro-d-glucose Positron Emission Tomography/Computed Tomography ( F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and staging of various cancer types, including lung cancer, which is the most common cancer worldwide. Since histopathologic subtypes of lung cancer show different degree of F-FDG uptake, to date there are some diagnostic limits and uncertainties, hindering an F-FDG-PET-driven classification of histologic subtypes of lung cancers. On the other hand, since activated macrophages, neutrophils, fibroblasts and granulation tissues also show an increased F-FDG activity, infectious and/or inflammatory processes and post-surgical and post-radiation changes may cause false-positive results, especially for lymph-nodes assessment. Here we propose a model-free, machine-learning based algorithm for the automated classification of adenocarcinoma, the most common type of lung cancer, and other types of tumors. Input for the algorithm are dynamic acquisitions of PET data (dPET), providing for a spatially and temporally resolved characterization of the uptake kinetic. The algorithm consists in a trained Random Forest classifier which, relying contextually on several spatial and temporal features of F-FDG uptake, generates as an outcome probability maps allowing to distinguish adenocarcinoma from other lung histotype and to identify metastatic lymph-nodes, ultimately increasing the specificity of the technique. Its performance, evaluated on a dPET dataset of 19 patients affected by primary lung cancer, provides a probability 0.943 ± 0.090 for the detection of adenocarcinoma. The use of this algorithm will guarantee an automatic and more accurate localization and discrimination of tumors, also providing a powerful tool for detecting at which extent tumor has spread beyond a primary tumor into lymphatic system. 2-deoxy-2-fluorine-(18F)fluoro-d-glucose Positron Emission Tomography/Computed Tomography (18F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and staging of various cancer types, including lung cancer, which is the most common cancer worldwide. Since histopathologic subtypes of lung cancer show different degree of 18F-FDG uptake, to date there are some diagnostic limits and uncertainties, hindering an 18F-FDG-PET-driven classification of histologic subtypes of lung cancers. On the other hand, since activated macrophages, neutrophils, fibroblasts and granulation tissues also show an increased 18F-FDG activity, infectious and/or inflammatory processes and post-surgical and post-radiation changes may cause false-positive results, especially for lymph-nodes assessment. Here we propose a model-free, machine-learning based algorithm for the automated classification of adenocarcinoma, the most common type of lung cancer, and other types of tumors. Input for the algorithm are dynamic acquisitions of PET data (dPET), providing for a spatially and temporally resolved characterization of the uptake kinetic. The algorithm consists in a trained Random Forest classifier which, relying contextually on several spatial and temporal features of 18F-FDG uptake, generates as an outcome probability maps allowing to distinguish adenocarcinoma from other lung histotype and to identify metastatic lymph-nodes, ultimately increasing the specificity of the technique. Its performance, evaluated on a dPET dataset of 19 patients affected by primary lung cancer, provides a probability 0.943 ± 0.090 for the detection of adenocarcinoma. The use of this algorithm will guarantee an automatic and more accurate localization and discrimination of tumors, also providing a powerful tool for detecting at which extent tumor has spread beyond a primary tumor into lymphatic system. 2-deoxy-2-fluorine-(18F)fluoro-d-glucose Positron Emission Tomography/Computed Tomography (18F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and staging of various cancer types, including lung cancer, which is the most common cancer worldwide. Since histopathologic subtypes of lung cancer show different degree of 18F-FDG uptake, to date there are some diagnostic limits and uncertainties, hindering an 18F-FDG-PET-driven classification of histologic subtypes of lung cancers. On the other hand, since activated macrophages, neutrophils, fibroblasts and granulation tissues also show an increased 18F-FDG activity, infectious and/or inflammatory processes and post-surgical and post-radiation changes may cause false-positive results, especially for lymph-nodes assessment. Here we propose a model-free, machine-learning based algorithm for the automated classification of adenocarcinoma, the most common type of lung cancer, and other types of tumors. Input for the algorithm are dynamic acquisitions of PET data (dPET), providing for a spatially and temporally resolved characterization of the uptake kinetic. The algorithm consists in a trained Random Forest classifier which, relying contextually on several spatial and temporal features of 18F-FDG uptake, generates as an outcome probability maps allowing to distinguish adenocarcinoma from other lung histotype and to identify metastatic lymph-nodes, ultimately increasing the specificity of the technique. Its performance, evaluated on a dPET dataset of 19 patients affected by primary lung cancer, provides a probability 0.943 ± 0.090 for the detection of adenocarcinoma. The use of this algorithm will guarantee an automatic and more accurate localization and discrimination of tumors, also providing a powerful tool for detecting at which extent tumor has spread beyond a primary tumor into lymphatic system. •Dynamic PET (dPET) data provide metabolic characterization of tissues FDG uptake.•Machine-learning (ML) based tools for dPET analysis still require kinetic modeling.•A model-free ML-based workflow provides automated classification of lung histotypes.•The algorithm can also identify tumor's spread into lymphatic system.  | 
    
| ArticleNumber | 105423 | 
    
| Author | Vaccaro, M. Capotosti, A. Calcagni, M.L. Bianchetti, G. Mattoli, M.V. Scolozzi, V. De Spirito, M. Taralli, S. Indovina, L. Maulucci, G. Giordano, A.  | 
    
| Author_xml | – sequence: 1 givenname: G. orcidid: 0000-0003-1257-2295 surname: Bianchetti fullname: Bianchetti, G. organization: Neuroscience Department, Biophysics Section, Università Cattolica del Sacro Cuore, 00168, Rome, Italy – sequence: 2 givenname: S. orcidid: 0000-0002-1715-9953 surname: Taralli fullname: Taralli, S. organization: Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Unità di Medicina Nucleare, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy – sequence: 3 givenname: M. orcidid: 0000-0002-4275-0729 surname: Vaccaro fullname: Vaccaro, M. organization: Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168, Rome, Italy – sequence: 4 givenname: L. surname: Indovina fullname: Indovina, L. organization: Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168, Rome, Italy – sequence: 5 givenname: M.V. surname: Mattoli fullname: Mattoli, M.V. organization: Department of Neurosciences, Imaging and Clinical Sciences, “G. D'Annunzio” Chieti-Pescara University, Chieti, Italy – sequence: 6 givenname: A. orcidid: 0000-0002-3537-3187 surname: Capotosti fullname: Capotosti, A. organization: Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168, Rome, Italy – sequence: 7 givenname: V. surname: Scolozzi fullname: Scolozzi, V. organization: Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Unità di Medicina Nucleare, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy – sequence: 8 givenname: M.L. surname: Calcagni fullname: Calcagni, M.L. organization: Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Unità di Medicina Nucleare, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy – sequence: 9 givenname: A. surname: Giordano fullname: Giordano, A. organization: Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Unità di Medicina Nucleare, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy – sequence: 10 givenname: M. surname: De Spirito fullname: De Spirito, M. organization: Neuroscience Department, Biophysics Section, Università Cattolica del Sacro Cuore, 00168, Rome, Italy – sequence: 11 givenname: G. orcidid: 0000-0002-2154-319X surname: Maulucci fullname: Maulucci, G. email: giuseppe.maulucci@unicatt.it organization: Neuroscience Department, Biophysics Section, Università Cattolica del Sacro Cuore, 00168, Rome, Italy  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35367782$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqVkt1u1DAQhSNURLeFV0CWuOEmi__iJDeIUpUfqRJIlGvLcSa7XhI72M7CPgMvjbPbFmklpPbK0vib4-Mzc5adWGchyxDBS4KJeLNZajeMjXEDtEuKKU3lglP2JFuQqqxzXDB-ki0wJjjnFS1Os7MQNhhjjhl-lp2ygomyrOgi-3MxRTeoCC1qIYKOxlmkbIt0r0IwndFqX3IditPgPFqbEF3cjRBQKrc7qwaj0derG2QGtTJ2hVoVFYpr76bVGg1Kr42FvAfl7f7Wmy1YtHW_oT965Hn2tFN9gBe353n2_cPVzeWn_PrLx8-XF9e5LgSPecmV6CjWRclwy6hQtFS4rhpCBSmoKqkA0ogCWFc3HYW660CTrmIN1LxUULHzrD7oTnZUu1-q7-Xok3u_kwTLOWC5kf8ClnPA8hBw6n196B29-zlBiHIwQUPfKwtuCpIKLmrOqlIk9NURunGTt-lniRKM4JpxnqiXt9TUzI_dObkbUQKqA6C9C8FD9xizb49atYn7qKNXpn-IwPuDAKRxbA14GbQBq6E1Pu2KbJ15hIt7Ed0bm2be_4AdhPtQiAxUYvlt3tp5aSnFmJJiFnj3f4GHefgLs9sDIg | 
    
| CitedBy_id | crossref_primary_10_1007_s11831_024_10209_0 crossref_primary_10_1186_s12967_023_04158_8 crossref_primary_10_1016_j_anucene_2024_110444 crossref_primary_10_3389_fonc_2024_1422623 crossref_primary_10_3390_antiox12020339 crossref_primary_10_1016_j_semcancer_2023_03_005 crossref_primary_10_3390_diagnostics12081878 crossref_primary_10_3390_nu15183931 crossref_primary_10_3390_antiox11061072 crossref_primary_10_3390_diagnostics13050834 crossref_primary_10_3390_su15054602 crossref_primary_10_3390_diagnostics13050854  | 
    
| Cites_doi | 10.1097/JTO.0b013e318206a221 10.1016/j.aca.2020.04.076 10.1007/s00259-013-2488-6 10.1007/s00259-006-0224-1 10.1016/j.mri.2012.05.008 10.1186/s13550-018-0439-8 10.1016/j.cpet.2007.08.003 10.1007/s00259-002-1055-3 10.1016/j.ins.2017.02.009 10.1080/01431160412331269698 10.1007/s11280-020-00820-z 10.1016/j.eswa.2017.04.054 10.1038/s41592-019-0582-9 10.1016/j.ejmp.2020.07.028 10.1097/MNM.0000000000000254 10.1053/j.semnuclmed.2020.10.003 10.1148/rg.242025724 10.1016/j.neucom.2018.03.037 10.1007/BF02285464 10.4103/0256-4947.75771 10.3389/fonc.2019.01215 10.1102/1470-7330.2012.0033 10.1088/1361-6560/aa6244 10.1053/j.seminoncol.2010.11.012 10.1016/j.knosys.2020.105679 10.1177/1536012119869070 10.1364/BOE.399655 10.1186/s13550-018-0369-5 10.1109/TNS.2002.998752 10.1634/theoncologist.9-6-633 10.1093/annonc/mdu089 10.1007/s00259-004-1566-1 10.1016/j.ejmp.2021.03.008 10.1007/978-1-4939-9686-5_21 10.1118/1.3499298 10.1002/mp.12623 10.1007/BF02984655 10.1016/j.knosys.2018.06.004 10.1016/j.aca.2020.12.048 10.3322/caac.21660  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved. 2022. The Authors  | 
    
| Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved. – notice: 2022. The Authors  | 
    
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1016/j.compbiomed.2022.105423 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database (Proquest) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database Health & Medical Collection (Alumni Edition) Medical Database Research Library Biological science database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1879-0534 | 
    
| EndPage | 105423 | 
    
| ExternalDocumentID | 10.1016/j.compbiomed.2022.105423 35367782 10_1016_j_compbiomed_2022_105423 S0010482522002153 1_s2_0_S0010482522002153  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GeographicLocations | Rome Italy Italy  | 
    
| GeographicLocations_xml | – name: Rome Italy – name: Italy  | 
    
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG 6I. AAFTH AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c564t-74a6f20c5730d326a27a098b126152a726e1b65e3f9bf2e9ffec1f83be947ae83 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0010-4825 1879-0534  | 
    
| IngestDate | Sun Oct 26 04:16:42 EDT 2025 Wed Oct 01 14:50:42 EDT 2025 Tue Oct 07 06:36:09 EDT 2025 Wed Feb 19 02:26:16 EST 2025 Wed Oct 01 05:24:53 EDT 2025 Thu Apr 24 23:01:30 EDT 2025 Fri Feb 23 02:39:54 EST 2024 Tue Feb 25 20:03:26 EST 2025 Tue Oct 14 19:33:12 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Dynamic PET imaging Metastasis Automated classification Lung histotypes Machine learning  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved. cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c564t-74a6f20c5730d326a27a098b126152a726e1b65e3f9bf2e9ffec1f83be947ae83 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-2154-319X 0000-0002-4275-0729 0000-0002-3537-3187 0000-0003-1257-2295 0000-0002-1715-9953  | 
    
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0010482522002153 | 
    
| PMID | 35367782 | 
    
| PQID | 2663109344 | 
    
| PQPubID | 1226355 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_compbiomed_2022_105423 proquest_miscellaneous_2646943876 proquest_journals_2663109344 pubmed_primary_35367782 crossref_primary_10_1016_j_compbiomed_2022_105423 crossref_citationtrail_10_1016_j_compbiomed_2022_105423 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_105423 elsevier_clinicalkeyesjournals_1_s2_0_S0010482522002153 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_105423  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-06-01 | 
    
| PublicationDateYYYYMMDD | 2022-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Oxford  | 
    
| PublicationTitle | Computers in biology and medicine | 
    
| PublicationTitleAlternate | Comput Biol Med | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier Ltd Elsevier Limited  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited  | 
    
| References | Duffy, Boyle, Vasdev (bib11) 2019; 18 Wu, Shen, Lian, Su, Chen (bib49) 2020; 195 WD, E, M, AG, KR, Y, DG, CA, GJ, PE, K, JH, H, VW, FR, G, T, RM, Y, J, M, JP, T, M, J, I, PC, D, C, D, W, A, M, P, D, B, D, K, K, JS, VA, I, V, R, N, E, M, D (bib31) 2011; 6 Almuhaideb, Papathanasiou, Bomanji (bib9) 2011; 31 Bianchetti, di Giacinto, de Spirito, Maulucci (bib46) 2020; 1121 Vanhove, Graulus, Mesotten, Thomeer, Derveaux, Noben, Guedens, Adriaensens (bib3) 2019; 9 Dimitrakopoulou-Strauss, Pan, Strauss (bib17) 2012; 12 Wu, Lei, Li, Huang, Zheng, Chen, Xu (bib48) 2017; 84 Yan, Li, Wu, Wang, Yu (bib50) 2020; 23 Cohade, Osman, Marshall, Wahl (bib15) 2003; 30 Westerterp, Pruim, Oyen, Hoekstra, Paans, Visser, van Lanschot, Sloof, Boellaard (bib19) 2007; 34 Pal (bib35) 2005; 26 Osman, Cohade, Nakamoto, Marshall, Leal, Wahl (bib16) 2003; 44 Wang, Lei, Fu, Curran, Liu, Nye, Yang (bib12) 2020; 76 Boellaard, Krak, Hoekstra, a Lammertsma, Jaskowiak, a Bianco, Perlman, Fine, 英彦表 (bib24) 2002; 45 Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal, Bray (bib6) 2021; 71 Sommer, Köthe, Straehle, Hamprecht (bib36) 2011 Berg, Kutra, Kroeger, Straehle, Kausler, Haubold, Schiegg, Ales, Beier, Rudy, Eren, Cervantes, Xu, Beuttenmueller, Wolny, Zhang, Koethe, Hamprecht, Kreshuk (bib34) 2019; 16 Kreshuk, Zhang (bib37) 2019 Wu, Zhu, Li, Cui, Huang, Li, Chen, Xu (bib47) 2017; 393 Barta, Powell, Wisnivesky (bib32) 2019; 85 Almuhaideb, Papathanasiou, Bomanji (bib40) 2011; 31 Vansteenkiste, Crinò, Dooms, Douillard, Faivre-Finn, Lim, Rocco, Senan, van Schil, Veronesi, Stahel, Peters, Felip, Kerr, Besse, Eberhardt, Edelman, Mok, O'Byrne, Novello, Bubendorf, Marchetti, Baas, Reck, Syrigos, Paz-Ares, Smit, Meldgaard, Adjei, Nicolson, Weder, de Ruysscher, le Pechoux, de Leyn, Westeel (bib5) 2014; 25 Silvestri, Scolozzi, Rizzo, Indovina, Castellaro, Mattoli, Graziano, Cardillo, Bertoldo, Calcagni (bib33) 2018; 8 Krak, Boellaard, Hoekstra, Twisk, Hoekstra, Lammertsma (bib23) 2005; 32 Mansor, Pfaehler, Heijtel, Lodge, Boellaard, Yaqub (bib26) 2017; 44 Arabi, AkhavanAllaf, Sanaat, Shiri, Zaidi (bib13) 2021; 83 Osman, Cohade, Nakamoto, Marshall, Leal, Wahl (bib42) 2003; 44 Calcagni, Mattoli, Blasi, Petrone, Sammarco, Indovina, Mulè, Rufini, Giordano (bib20) 2013; 40 Calcagni, Indovina, di Franco, Rufini, Leccisotti, Giordano, Galli (bib22) 2018; 62 Kapoor, McCook, Torok (bib2) 2004; 24 Yu, Yang, Tan, Wang, Sun, Sun, Tang (bib39) 2018; 304 Bianchetti, de Spirito, Maulucci (bib45) 2020; 11 Bianchetti, Ciccarone, Ciriolo, de Spirito, Pani, Maulucci (bib44) 2021; 1148 Bentourkia, Zaidi (bib29) 2007; 2 Cohade, Osman, Marshall, Wahl (bib41) 2003; 30 Watabe, Ikoma, Kimura, Naganawa, Shidahara (bib28) 2006; 20 Suárez-Piñera, Belda-Sanchis, Taus, Sánchez-Font, Mestre-Fusco, Jiménez, Pijuan (bib8) 2018; 8 Zhu, Lee, Shim (bib1) 2011; 38 Schrevens, Lorent, Dooms, Vansteenkiste (bib4) 2004; 9 Song, Lee, Kim, Kim, Jin, Park, Choi, Chung, Lee, Cho, Choi, Kim, Choi, Moon, Lee, Jeong, Jang, Kim, Kim (bib7) 2015; 36 Wong, Feng, Meikle, Fulham (bib10) 2002; 49 Wei, El Naqa (bib14) 2021; 51 Doot, Scheuermann, Christian, Karp, Kinahan (bib25) 2010; 37 Yang, Li, Guo, Ma, Zheng (bib43) 2018; 159 Muzi, O'Sullivan, Mankoff, Doot, Pierce, Kurland, Linden, Kinahan (bib18) 2012; 30 Laffon, Calcagni, Galli, Giordano, Capotosti, Marthan, Indovina (bib21) 2018; 8 Pan, Cheng, Haberkorn, Dimitrakopoulou-Strauss (bib30) 2017; 62 Takahama, Kurose, Mukuta, Abe, Fukayama, Yoshizawa, Kitagawa, Harada (bib38) 2019 Kuikka, Bassingthwaighte, Henrich, Feinendegen (bib27) 1991; 18 Calcagni (10.1016/j.compbiomed.2022.105423_bib22) 2018; 62 Kreshuk (10.1016/j.compbiomed.2022.105423_bib37) 2019 Krak (10.1016/j.compbiomed.2022.105423_bib23) 2005; 32 Laffon (10.1016/j.compbiomed.2022.105423_bib21) 2018; 8 Westerterp (10.1016/j.compbiomed.2022.105423_bib19) 2007; 34 Song (10.1016/j.compbiomed.2022.105423_bib7) 2015; 36 Cohade (10.1016/j.compbiomed.2022.105423_bib41) 2003; 30 Wang (10.1016/j.compbiomed.2022.105423_bib12) 2020; 76 Mansor (10.1016/j.compbiomed.2022.105423_bib26) 2017; 44 Vansteenkiste (10.1016/j.compbiomed.2022.105423_bib5) 2014; 25 Bentourkia (10.1016/j.compbiomed.2022.105423_bib29) 2007; 2 Sommer (10.1016/j.compbiomed.2022.105423_bib36) 2011 Osman (10.1016/j.compbiomed.2022.105423_bib16) 2003; 44 Wu (10.1016/j.compbiomed.2022.105423_bib48) 2017; 84 Yu (10.1016/j.compbiomed.2022.105423_bib39) 2018; 304 Bianchetti (10.1016/j.compbiomed.2022.105423_bib44) 2021; 1148 Zhu (10.1016/j.compbiomed.2022.105423_bib1) 2011; 38 Takahama (10.1016/j.compbiomed.2022.105423_bib38) 2019 Yan (10.1016/j.compbiomed.2022.105423_bib50) 2020; 23 Arabi (10.1016/j.compbiomed.2022.105423_bib13) 2021; 83 Pal (10.1016/j.compbiomed.2022.105423_bib35) 2005; 26 Boellaard (10.1016/j.compbiomed.2022.105423_bib24) 2002; 45 Osman (10.1016/j.compbiomed.2022.105423_bib42) 2003; 44 Calcagni (10.1016/j.compbiomed.2022.105423_bib20) 2013; 40 Schrevens (10.1016/j.compbiomed.2022.105423_bib4) 2004; 9 Cohade (10.1016/j.compbiomed.2022.105423_bib15) 2003; 30 Berg (10.1016/j.compbiomed.2022.105423_bib34) 2019; 16 Silvestri (10.1016/j.compbiomed.2022.105423_bib33) 2018; 8 Muzi (10.1016/j.compbiomed.2022.105423_bib18) 2012; 30 Doot (10.1016/j.compbiomed.2022.105423_bib25) 2010; 37 Sung (10.1016/j.compbiomed.2022.105423_bib6) 2021; 71 Almuhaideb (10.1016/j.compbiomed.2022.105423_bib9) 2011; 31 Wei (10.1016/j.compbiomed.2022.105423_bib14) 2021; 51 Bianchetti (10.1016/j.compbiomed.2022.105423_bib46) 2020; 1121 Dimitrakopoulou-Strauss (10.1016/j.compbiomed.2022.105423_bib17) 2012; 12 Watabe (10.1016/j.compbiomed.2022.105423_bib28) 2006; 20 Wu (10.1016/j.compbiomed.2022.105423_bib47) 2017; 393 Suárez-Piñera (10.1016/j.compbiomed.2022.105423_bib8) 2018; 8 Vanhove (10.1016/j.compbiomed.2022.105423_bib3) 2019; 9 WD (10.1016/j.compbiomed.2022.105423_bib31) 2011; 6 Kuikka (10.1016/j.compbiomed.2022.105423_bib27) 1991; 18 Barta (10.1016/j.compbiomed.2022.105423_bib32) 2019; 85 Wong (10.1016/j.compbiomed.2022.105423_bib10) 2002; 49 Almuhaideb (10.1016/j.compbiomed.2022.105423_bib40) 2011; 31 Yang (10.1016/j.compbiomed.2022.105423_bib43) 2018; 159 Pan (10.1016/j.compbiomed.2022.105423_bib30) 2017; 62 Wu (10.1016/j.compbiomed.2022.105423_bib49) 2020; 195 Duffy (10.1016/j.compbiomed.2022.105423_bib11) 2019; 18 Kapoor (10.1016/j.compbiomed.2022.105423_bib2) 2004; 24 Bianchetti (10.1016/j.compbiomed.2022.105423_bib45) 2020; 11  | 
    
| References_xml | – volume: 18 start-page: 1 year: 2019 end-page: 11 ident: bib11 article-title: Improving PET imaging acquisition and analysis with machine learning: a narrative review with focus on alzheimer's disease and oncology publication-title: Mol. Imag. – volume: 8 year: 2018 ident: bib21 article-title: Comparison of three-parameter kinetic model analysis to standard Patlak's analysis in 18 F-FDG PET imaging of lung cancer patients publication-title: EJNMMI Res. – volume: 195 year: 2020 ident: bib49 article-title: A dummy-based user privacy protection approach for text information retrieval publication-title: Knowl. Base Syst. – volume: 26 start-page: 217 year: 2005 end-page: 222 ident: bib35 article-title: Random forest classifier for remote sensing classification publication-title: Int. J. Rem. Sens. – volume: 8 start-page: 1 year: 2018 end-page: 8 ident: bib33 article-title: The kinetics of 18F-FDG in lung cancer: compartmental models and voxel analysis publication-title: EJNMMI Res. – volume: 31 start-page: 3 year: 2011 end-page: 13 ident: bib9 article-title: 18F-FDG PET/CT imaging in oncology publication-title: Ann. Saudi Med. – volume: 25 start-page: 1462 year: 2014 end-page: 1474 ident: bib5 article-title: 2nd ESMO consensus conference on lung cancer: early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up publication-title: Ann. Oncol. – volume: 9 start-page: 633 year: 2004 end-page: 643 ident: bib4 article-title: The role of PET scan in diagnosis, staging, and management of non‐small cell lung cancer publication-title: Oncol. – volume: 76 start-page: 294 year: 2020 end-page: 306 ident: bib12 article-title: Machine learning in quantitative PET: a review of attenuation correction and low-count image reconstruction methods publication-title: Phys. Med. – volume: 85 year: 2019 ident: bib32 article-title: Global epidemiology of lung cancer publication-title: Ann. Glob. Health – volume: 84 start-page: 12 year: 2017 end-page: 23 ident: bib48 article-title: A topic modeling based approach to novel document automatic summarization publication-title: Expert Syst. Appl. – volume: 37 start-page: 6035 year: 2010 end-page: 6046 ident: bib25 article-title: Instrumentation factors affecting variance and bias of quantifying tracer uptake with PET/CT publication-title: Med. Phys. – volume: 159 start-page: 51 year: 2018 end-page: 62 ident: bib43 article-title: Compact real-valued teaching-learning based optimization with the applications to neural network training publication-title: Knowl. Base Syst. – volume: 304 start-page: 82 year: 2018 end-page: 103 ident: bib39 article-title: Methods and datasets on semantic segmentation: a review publication-title: Neurocomputing – volume: 51 start-page: 157 year: 2021 end-page: 169 ident: bib14 article-title: Artificial intelligence for response evaluation with PET/CT publication-title: Semin. Nucl. Med. – volume: 2 start-page: 267 year: 2007 end-page: 277 ident: bib29 article-title: Tracer kinetic modeling in PET publication-title: Pet. Clin. – volume: 40 start-page: 1682 year: 2013 end-page: 1691 ident: bib20 article-title: A prospective analysis of publication-title: Eur. J. Nucl. Med. Mol. Imag. – volume: 83 start-page: 122 year: 2021 end-page: 137 ident: bib13 article-title: The promise of artificial intelligence and deep learning in PET and SPECT imaging publication-title: Phys. Med. – volume: 36 start-page: 319 year: 2015 end-page: 327 ident: bib7 article-title: Predictability of preoperative 18F-FDG PET for histopathological differentiation and early recurrence of primary malignant intrahepatic tumors publication-title: Nucl. Med. Commun. – volume: 1121 start-page: 57 year: 2020 end-page: 66 ident: bib46 article-title: Machine-learning assisted confocal imaging of intracellular sites of triglycerides and cholesteryl esters formation and storage publication-title: Anal. Chim. Acta – year: 2019 ident: bib38 article-title: Multi-Stage Pathological Image Classification Using Semantic Segmentation – volume: 30 start-page: 721 year: 2003 end-page: 726 ident: bib15 article-title: PET-CT: accuracy of PET and CT spatial registration of lung lesions publication-title: Eur. J. Nucl. Med. Mol. Imag. – volume: 6 start-page: 244 year: 2011 end-page: 285 ident: bib31 article-title: International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma publication-title: J. Thorac. Oncol. : Off. Publ. Int. Associat. Study of Lung Cancer – volume: 38 start-page: 55 year: 2011 end-page: 69 ident: bib1 article-title: Metabolic positron emission tomography imaging in cancer detection and therapy response publication-title: Semin. Oncol. – volume: 23 start-page: 3055 year: 2020 end-page: 3081 ident: bib50 article-title: Extracting diverse-shapelets for early classification on time series publication-title: World Wide Web – volume: 34 start-page: 392 year: 2007 end-page: 404 ident: bib19 article-title: Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters publication-title: Eur. J. Nucl. Med. Mol. Imag. – volume: 8 start-page: 100 year: 2018 ident: bib8 article-title: FDG PET-CT SUVmax and IASLC/ATS/ERS histologic classification: a new profile of lung adenocarcinoma with prognostic value publication-title: Am. J. Nucl. Med. Molecul. Imag. – volume: 20 start-page: 583 year: 2006 end-page: 588 ident: bib28 article-title: PET kinetic analysis - compartmental model publication-title: Ann. Nucl. Med. – volume: 62 start-page: 3566 year: 2017 end-page: 3581 ident: bib30 article-title: Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data publication-title: Phys. Med. Biol. – volume: 71 start-page: 209 year: 2021 end-page: 249 ident: bib6 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA publication-title: A Cancer J. Clinic. – volume: 44 start-page: 6413 year: 2017 end-page: 6424 ident: bib26 article-title: Impact of PET/CT system, reconstruction protocol, data analysis method, and repositioning on PET/CT precision: an experimental evaluation using an oncology and brain phantom: an publication-title: Med. Phys. – volume: 44 year: 2003 ident: bib16 article-title: Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients publication-title: J. Nucl. Med. – volume: 12 start-page: 283 year: 2012 end-page: 289 ident: bib17 article-title: Quantitative approaches of dynamic FDG-PET and PET/CT studies (dPET/CT) for the evaluation of oncological patients publication-title: Cancer Imag. – volume: 30 start-page: 1203 year: 2012 end-page: 1215 ident: bib18 article-title: Quantitative assessment of dynamic PET imaging data in cancer imaging publication-title: Magn. Reson. Imag. – volume: 62 start-page: 190 year: 2018 end-page: 199 ident: bib22 article-title: Are the simplified methods to estimate K i in 18 F-FDG PET studies feasible in clinical routine? Comparison between three simplified methods publication-title: Q. J. Nucl. Med. Mol. Imag. – volume: 44 year: 2003 ident: bib42 article-title: Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients publication-title: J. Nucl. Med. – volume: 30 start-page: 721 year: 2003 end-page: 726 ident: bib41 article-title: PET-CT: accuracy of PET and CT spatial registration of lung lesions publication-title: Eur. J. Nucl. Med. Mol. Imag. – volume: 49 start-page: 200 year: 2002 end-page: 207 ident: bib10 article-title: Segmentation of dynamic PET images using cluster analysis publication-title: IEEE Trans. Nucl. Sci. – start-page: 449 year: 2019 end-page: 463 ident: bib37 article-title: Machine learning: advanced image segmentation using ilastik publication-title: Methods in Molecular Biology – year: 2011 ident: bib36 article-title: Ilastik: Interactive Learning and Segmentation Toolkit Learning Complex Stochastic Models with Invertible Neural Networks: a New Approach to Bayesian Inference View Project Ilastik: Interactive Learning and Segmentation Toolkit – volume: 9 year: 2019 ident: bib3 article-title: The metabolic landscape of lung cancer: new insights in a disturbed glucose metabolism publication-title: Front. Oncol. – volume: 1148 start-page: 238173 year: 2021 ident: bib44 article-title: Label-free metabolic clustering through unsupervised pixel classification of multiparametric fluorescent images publication-title: Anal. Chim. Acta – volume: 45 start-page: 670 year: 2002 end-page: 678 ident: bib24 article-title: Effects of noise, image resolution, and roi definition on the accuracy of standard uptake values: a simulation study publication-title: J. Nucl. Med. : Off. Publ. Soc. Nuclear Med. – volume: 393 start-page: 15 year: 2017 end-page: 28 ident: bib47 article-title: An efficient Wikipedia semantic matching approach to text document classification publication-title: Inf. Sci. – volume: 31 start-page: 3 year: 2011 end-page: 13 ident: bib40 article-title: 18F-FDG PET/CT imaging in oncology publication-title: Ann. Saudi Med. – volume: 18 start-page: 351 year: 1991 end-page: 362 ident: bib27 article-title: Mathematical modelling in nuclear medicine publication-title: Eur. J. Nucl. Med. – volume: 11 start-page: 5728 year: 2020 ident: bib45 article-title: Unsupervised clustering of multiparametric fluorescent images extends the spectrum of detectable cell membrane phases with sub-micrometric resolution publication-title: Biomed. Opt Express – volume: 32 start-page: 294 year: 2005 end-page: 301 ident: bib23 article-title: Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial publication-title: Eur. J. Nucl. Med. Mol. Imag. – volume: 24 start-page: 523 year: 2004 end-page: 543 ident: bib2 article-title: An introduction to PET-CT imaging publication-title: Radiographics – volume: 16 start-page: 1226 year: 2019 end-page: 1232 ident: bib34 article-title: ilastik: interactive machine learning for (bio)image analysis publication-title: Nat. Methods – volume: 6 start-page: 244 year: 2011 ident: 10.1016/j.compbiomed.2022.105423_bib31 article-title: International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma publication-title: J. Thorac. Oncol. : Off. Publ. Int. Associat. Study of Lung Cancer doi: 10.1097/JTO.0b013e318206a221 – volume: 1121 start-page: 57 year: 2020 ident: 10.1016/j.compbiomed.2022.105423_bib46 article-title: Machine-learning assisted confocal imaging of intracellular sites of triglycerides and cholesteryl esters formation and storage publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2020.04.076 – volume: 40 start-page: 1682 year: 2013 ident: 10.1016/j.compbiomed.2022.105423_bib20 article-title: A prospective analysis of 18F-FDG PET/CT in patients with uveal melanoma: comparison between metabolic rate of glucose (MRglu) and standardized uptake value (SUV) and correlations with histopathological features publication-title: Eur. J. Nucl. Med. Mol. Imag. doi: 10.1007/s00259-013-2488-6 – volume: 34 start-page: 392 year: 2007 ident: 10.1016/j.compbiomed.2022.105423_bib19 article-title: Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters publication-title: Eur. J. Nucl. Med. Mol. Imag. doi: 10.1007/s00259-006-0224-1 – volume: 30 start-page: 1203 year: 2012 ident: 10.1016/j.compbiomed.2022.105423_bib18 article-title: Quantitative assessment of dynamic PET imaging data in cancer imaging publication-title: Magn. Reson. Imag. doi: 10.1016/j.mri.2012.05.008 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.compbiomed.2022.105423_bib33 article-title: The kinetics of 18F-FDG in lung cancer: compartmental models and voxel analysis publication-title: EJNMMI Res. doi: 10.1186/s13550-018-0439-8 – volume: 2 start-page: 267 year: 2007 ident: 10.1016/j.compbiomed.2022.105423_bib29 article-title: Tracer kinetic modeling in PET publication-title: Pet. Clin. doi: 10.1016/j.cpet.2007.08.003 – volume: 62 start-page: 190 year: 2018 ident: 10.1016/j.compbiomed.2022.105423_bib22 article-title: Are the simplified methods to estimate K i in 18 F-FDG PET studies feasible in clinical routine? Comparison between three simplified methods publication-title: Q. J. Nucl. Med. Mol. Imag. – volume: 30 start-page: 721 year: 2003 ident: 10.1016/j.compbiomed.2022.105423_bib41 article-title: PET-CT: accuracy of PET and CT spatial registration of lung lesions publication-title: Eur. J. Nucl. Med. Mol. Imag. doi: 10.1007/s00259-002-1055-3 – volume: 393 start-page: 15 year: 2017 ident: 10.1016/j.compbiomed.2022.105423_bib47 article-title: An efficient Wikipedia semantic matching approach to text document classification publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.02.009 – volume: 26 start-page: 217 year: 2005 ident: 10.1016/j.compbiomed.2022.105423_bib35 article-title: Random forest classifier for remote sensing classification publication-title: Int. J. Rem. Sens. doi: 10.1080/01431160412331269698 – volume: 23 start-page: 3055 year: 2020 ident: 10.1016/j.compbiomed.2022.105423_bib50 article-title: Extracting diverse-shapelets for early classification on time series publication-title: World Wide Web doi: 10.1007/s11280-020-00820-z – volume: 84 start-page: 12 year: 2017 ident: 10.1016/j.compbiomed.2022.105423_bib48 article-title: A topic modeling based approach to novel document automatic summarization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.04.054 – volume: 16 start-page: 1226 year: 2019 ident: 10.1016/j.compbiomed.2022.105423_bib34 article-title: ilastik: interactive machine learning for (bio)image analysis publication-title: Nat. Methods doi: 10.1038/s41592-019-0582-9 – volume: 30 start-page: 721 year: 2003 ident: 10.1016/j.compbiomed.2022.105423_bib15 article-title: PET-CT: accuracy of PET and CT spatial registration of lung lesions publication-title: Eur. J. Nucl. Med. Mol. Imag. doi: 10.1007/s00259-002-1055-3 – volume: 8 start-page: 100 year: 2018 ident: 10.1016/j.compbiomed.2022.105423_bib8 article-title: FDG PET-CT SUVmax and IASLC/ATS/ERS histologic classification: a new profile of lung adenocarcinoma with prognostic value publication-title: Am. J. Nucl. Med. Molecul. Imag. – volume: 76 start-page: 294 year: 2020 ident: 10.1016/j.compbiomed.2022.105423_bib12 article-title: Machine learning in quantitative PET: a review of attenuation correction and low-count image reconstruction methods publication-title: Phys. Med. doi: 10.1016/j.ejmp.2020.07.028 – volume: 36 start-page: 319 year: 2015 ident: 10.1016/j.compbiomed.2022.105423_bib7 article-title: Predictability of preoperative 18F-FDG PET for histopathological differentiation and early recurrence of primary malignant intrahepatic tumors publication-title: Nucl. Med. Commun. doi: 10.1097/MNM.0000000000000254 – volume: 44 year: 2003 ident: 10.1016/j.compbiomed.2022.105423_bib16 article-title: Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients publication-title: J. Nucl. Med. – volume: 51 start-page: 157 year: 2021 ident: 10.1016/j.compbiomed.2022.105423_bib14 article-title: Artificial intelligence for response evaluation with PET/CT publication-title: Semin. Nucl. Med. doi: 10.1053/j.semnuclmed.2020.10.003 – volume: 24 start-page: 523 year: 2004 ident: 10.1016/j.compbiomed.2022.105423_bib2 article-title: An introduction to PET-CT imaging publication-title: Radiographics doi: 10.1148/rg.242025724 – volume: 304 start-page: 82 year: 2018 ident: 10.1016/j.compbiomed.2022.105423_bib39 article-title: Methods and datasets on semantic segmentation: a review publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.03.037 – volume: 18 start-page: 351 year: 1991 ident: 10.1016/j.compbiomed.2022.105423_bib27 article-title: Mathematical modelling in nuclear medicine publication-title: Eur. J. Nucl. Med. doi: 10.1007/BF02285464 – volume: 31 start-page: 3 year: 2011 ident: 10.1016/j.compbiomed.2022.105423_bib40 article-title: 18F-FDG PET/CT imaging in oncology publication-title: Ann. Saudi Med. doi: 10.4103/0256-4947.75771 – volume: 9 year: 2019 ident: 10.1016/j.compbiomed.2022.105423_bib3 article-title: The metabolic landscape of lung cancer: new insights in a disturbed glucose metabolism publication-title: Front. Oncol. doi: 10.3389/fonc.2019.01215 – volume: 44 year: 2003 ident: 10.1016/j.compbiomed.2022.105423_bib42 article-title: Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients publication-title: J. Nucl. Med. – year: 2019 ident: 10.1016/j.compbiomed.2022.105423_bib38 – volume: 85 year: 2019 ident: 10.1016/j.compbiomed.2022.105423_bib32 article-title: Global epidemiology of lung cancer publication-title: Ann. Glob. Health – volume: 12 start-page: 283 year: 2012 ident: 10.1016/j.compbiomed.2022.105423_bib17 article-title: Quantitative approaches of dynamic FDG-PET and PET/CT studies (dPET/CT) for the evaluation of oncological patients publication-title: Cancer Imag. doi: 10.1102/1470-7330.2012.0033 – volume: 62 start-page: 3566 year: 2017 ident: 10.1016/j.compbiomed.2022.105423_bib30 article-title: Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa6244 – volume: 38 start-page: 55 year: 2011 ident: 10.1016/j.compbiomed.2022.105423_bib1 article-title: Metabolic positron emission tomography imaging in cancer detection and therapy response publication-title: Semin. Oncol. doi: 10.1053/j.seminoncol.2010.11.012 – volume: 195 year: 2020 ident: 10.1016/j.compbiomed.2022.105423_bib49 article-title: A dummy-based user privacy protection approach for text information retrieval publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2020.105679 – volume: 18 start-page: 1 year: 2019 ident: 10.1016/j.compbiomed.2022.105423_bib11 article-title: Improving PET imaging acquisition and analysis with machine learning: a narrative review with focus on alzheimer's disease and oncology publication-title: Mol. Imag. doi: 10.1177/1536012119869070 – volume: 11 start-page: 5728 year: 2020 ident: 10.1016/j.compbiomed.2022.105423_bib45 article-title: Unsupervised clustering of multiparametric fluorescent images extends the spectrum of detectable cell membrane phases with sub-micrometric resolution publication-title: Biomed. Opt Express doi: 10.1364/BOE.399655 – volume: 8 year: 2018 ident: 10.1016/j.compbiomed.2022.105423_bib21 article-title: Comparison of three-parameter kinetic model analysis to standard Patlak's analysis in 18 F-FDG PET imaging of lung cancer patients publication-title: EJNMMI Res. doi: 10.1186/s13550-018-0369-5 – volume: 49 start-page: 200 year: 2002 ident: 10.1016/j.compbiomed.2022.105423_bib10 article-title: Segmentation of dynamic PET images using cluster analysis publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2002.998752 – volume: 9 start-page: 633 year: 2004 ident: 10.1016/j.compbiomed.2022.105423_bib4 article-title: The role of PET scan in diagnosis, staging, and management of non‐small cell lung cancer publication-title: Oncol. doi: 10.1634/theoncologist.9-6-633 – volume: 45 start-page: 670 year: 2002 ident: 10.1016/j.compbiomed.2022.105423_bib24 article-title: Effects of noise, image resolution, and roi definition on the accuracy of standard uptake values: a simulation study publication-title: J. Nucl. Med. : Off. Publ. Soc. Nuclear Med. – volume: 25 start-page: 1462 year: 2014 ident: 10.1016/j.compbiomed.2022.105423_bib5 article-title: 2nd ESMO consensus conference on lung cancer: early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up publication-title: Ann. Oncol. doi: 10.1093/annonc/mdu089 – volume: 32 start-page: 294 year: 2005 ident: 10.1016/j.compbiomed.2022.105423_bib23 article-title: Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial publication-title: Eur. J. Nucl. Med. Mol. Imag. doi: 10.1007/s00259-004-1566-1 – volume: 31 start-page: 3 year: 2011 ident: 10.1016/j.compbiomed.2022.105423_bib9 article-title: 18F-FDG PET/CT imaging in oncology publication-title: Ann. Saudi Med. doi: 10.4103/0256-4947.75771 – volume: 83 start-page: 122 year: 2021 ident: 10.1016/j.compbiomed.2022.105423_bib13 article-title: The promise of artificial intelligence and deep learning in PET and SPECT imaging publication-title: Phys. Med. doi: 10.1016/j.ejmp.2021.03.008 – start-page: 449 year: 2019 ident: 10.1016/j.compbiomed.2022.105423_bib37 article-title: Machine learning: advanced image segmentation using ilastik doi: 10.1007/978-1-4939-9686-5_21 – volume: 37 start-page: 6035 year: 2010 ident: 10.1016/j.compbiomed.2022.105423_bib25 article-title: Instrumentation factors affecting variance and bias of quantifying tracer uptake with PET/CT publication-title: Med. Phys. doi: 10.1118/1.3499298 – volume: 44 start-page: 6413 year: 2017 ident: 10.1016/j.compbiomed.2022.105423_bib26 article-title: Impact of PET/CT system, reconstruction protocol, data analysis method, and repositioning on PET/CT precision: an experimental evaluation using an oncology and brain phantom: an publication-title: Med. Phys. doi: 10.1002/mp.12623 – volume: 20 start-page: 583 year: 2006 ident: 10.1016/j.compbiomed.2022.105423_bib28 article-title: PET kinetic analysis - compartmental model publication-title: Ann. Nucl. Med. doi: 10.1007/BF02984655 – volume: 159 start-page: 51 year: 2018 ident: 10.1016/j.compbiomed.2022.105423_bib43 article-title: Compact real-valued teaching-learning based optimization with the applications to neural network training publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2018.06.004 – volume: 1148 start-page: 238173 year: 2021 ident: 10.1016/j.compbiomed.2022.105423_bib44 article-title: Label-free metabolic clustering through unsupervised pixel classification of multiparametric fluorescent images publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2020.12.048 – year: 2011 ident: 10.1016/j.compbiomed.2022.105423_bib36 – volume: 71 start-page: 209 year: 2021 ident: 10.1016/j.compbiomed.2022.105423_bib6 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA publication-title: A Cancer J. Clinic. doi: 10.3322/caac.21660  | 
    
| SSID | ssj0004030 | 
    
| Score | 2.4155724 | 
    
| Snippet | 2-deoxy-2-fluorine-(18F)fluoro-d-glucose Positron Emission Tomography/Computed Tomography (18F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and... Abstract2-deoxy-2-fluorine-(18F)fluoro- d-glucose Positron Emission Tomography/Computed Tomography ( 18F-FDG-PET/CT) is widely used in oncology mainly for... 2-deoxy-2-fluorine-( F)fluoro-d-glucose Positron Emission Tomography/Computed Tomography ( F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and...  | 
    
| SourceID | unpaywall proquest pubmed crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 105423 | 
    
| SubjectTerms | Adenocarcinoma Algorithms Automated classification Automation Classification Computed tomography Data acquisition Dynamic PET imaging Fibroblasts Fluorine Fluorine isotopes Fluorodeoxyglucose F18 Gamma rays Glucose Granulation Humans Inflammation Internal Medicine Kinetics Learning algorithms Leukocytes (neutrophilic) Localization Lung cancer Lung histotypes Lung Neoplasms - diagnostic imaging Lung Neoplasms - pathology Lymph Lymph Nodes - pathology Lymphatic Metastasis - pathology Lymphatic system Machine Learning Macrophages Medical imaging Metabolism Metastases Metastasis Nodes Other Physiology Positron emission Positron emission tomography Positron Emission Tomography Computed Tomography - methods Positron-Emission Tomography - methods Post-radiation Radiation Radiopharmaceuticals Temporal variations Thoracic surgery Tomography Tumors  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ti9QwEB7OPfDlg_h-1VMi-LXYpklfEJFT9jiEWw69g_sW0iYFZbddd7un_gb_tDNN2hXf2K_bDlky05lJ8uR5AF4Q4Yss4zSURptQxLkJtbZFWGtdRJGpc21pa-B0lp5ciPeX8nIPZsNdGIJVDjmxT9SmrWiP_CUWEiKxTIR4s_wSkmoUna4OEhraSyuY1z3F2DXY58SMNYH9t9PZ2YftTckocZdSMPsIXBx5bI9DfBGI2116x3Uj5ySBK3jyr4L1Z0N6C25smqX-_lXP578UqeM7cNt3l-zIhcNd2LPNPbh-6s_P78OPo03XYo9qDTO261FYDdONYRU10YQa6h3F2pp1m0W7Yj0dMW3Trhn-bJx8PTubnrNPi17fiBHElHm1H7booZk29FoU-HRF2ZRdtd_s_LdBHsDF8fT83Uno5RjCSqaiCzOh05pHlcSkYLDr0zzTUZGXMS7CJNcZT21cptImdVHW3BaER4nrPCltITJt8-QhTJq2sQfAiqrMa3Qn9g64_iGCHlml2grJKy2yNAogG-ZcVZ6rnCQz5moApX1WW28p8pZy3gogHi2Xjq9jB5ticKsa7qNiBlVYVHawzf5ma9c-FaxVrNZcRepjz4SEIcd7WIxEy1ejpe92XBez47iHQ_ypcajtNxLA8_Ex5gs6BNKNbTf0jkgLkWARDOCRi9txohKZEJ8gD4CPgbzzLD7-_z96AjfpZYeyO4RJt9rYp9jPdeUz_5H-BEnWS68 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VrQT0wDclUJCRuLpKHNtJxGmFWlVIrYroSuVkOYkjAbtJtZsU6F_on-44dgKUDy0cd7OzTsaT8bP9_AbglRV8EXkkqSh1SXmUllRrk9FK6ywMyyrVxi4NHB7Jgxl_eypONyAczsL8tH_f87AstdodRcfZHGO2MC1CgBuwKQWi7wlszo6Opx9cwg0pT_s6q7aGNsX44p6887e_-tOI9Cvi3IJbXX2mv33R8_kPo9D-XXg33L8jn3ze7dp8t7i4Ju34Lw94D-54SEqmLobuw4apH8DNQ7_p_hAup13bILA1JSlN21O3aqLrkhQWeVuqUd-7pKlI2y2aJek1jO3a7org16WreU-O907Ix0VfFIlYXirxJYLIoudzGuoLWODVpU3B5Lz5aubXGnkEs_29kzcH1NdwoIWQvKUJ17JiYSEwk5QIFTVLdJileYQzN8F0wqSJcilMXGV5xUxmSSxRlca5yXiiTRo_hknd1OYJkKzI0wrRKAIOnDRZVR9RSG24YIXmiQwDSIZ-VIUXOLd1NuZqYLJ9Ut99rayvlfN1ANFoeeZEPtawyYZQUcMhVky7Cvt3Ddvkd7Zm5fPHSkVqxVSo3vfySRjSrOfSCLR8PVp6iOSgz5rt7gwxrcamEKFZddiY8wBejpcxydidI12bprO_4TLjMY6cAWy7d2F0VCxiK0LIAmDjy7G2F5_-j9EzuG0_OcLeDkzaZWeeIzRs8xc-G1wB9CJgQQ priority: 102 providerName: Unpaywall  | 
    
| Title | Automated detection and classification of tumor histotypes on dynamic PET imaging data through machine-learning driven voxel classification | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522002153 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522002153 https://dx.doi.org/10.1016/j.compbiomed.2022.105423 https://www.ncbi.nlm.nih.gov/pubmed/35367782 https://www.proquest.com/docview/2663109344 https://www.proquest.com/docview/2646943876 https://doi.org/10.1016/j.compbiomed.2022.105423  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 145 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dj5NAEN9czsSPB-O36HlZE1_xYNllIT7VS2vVXNOYa1KfNgssSU0LTUvv9MV_wH_aGXbh1NOkiS-QApOlO8Psb-A3M4S8woIvIgtjXxS68HmYFL7WJvVLrdMgKMpEG3w1cDaJxzP-YS7mB-S0y4VBWqXz_dant97aHTlxs3myXiwwxxdCCQhwWMszEFjxk3OJXQxef7-iefAgsmko4G_wasfmsRwvpG3bNHeIFBnDprecRf9aoq5D0Dvk1q5a62-Xern8ZVka3SN3HZ6kA3vL98mBqR6Qm2fui_lD8mOwa2pApaaghWla3lVFdVXQHGEz8oRa1dC6pM1uVW9oW4AYX8xuKRwubMN6Oh2e08Wq7WhEkVRKXX8fumrJmMZ33Sfg7Ab9J72ov5rlH4M8IrPR8Px07LsGDH4uYt74kuu4ZEEuwA0UgPM0kzpIkyyEsEswLVlswiwWJirTrGQmRQZKWCZRZlIutUmix-SwqivzlNA0z5ISoCSgBYh4sCSPyGNtuGC55jIOPCK7OVe5q06OTTKWqqOhfVFX2lKoLWW15ZGwl1zbCh17yKSdWlWXgQo-U8Eysoes_Jus2bqHf6tCtWUqUNcM1CNvesnfbHzPcY86-1P9UACvsLRrxLlHXvanwUPgZx9dmXqH1_A45REsex55Yu22n6hIRFhBkHmE9Ya89yw--6__85zcxl-WdndEDpvNzrwAgNdkx-0TDFs5l7BNRu-OyY3B-4_jCezfDifTT7CfTaaDzz8BvetW4w | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjF4QNwXGGAkeIxIHDsXoQkN6NSxtZqgk_ZmnNiRNrVJaVNGfwP_id_GOYmTIm7qy16bnrryOTkX-zvnI-QFDnwRqR-6Qivtcj_WrlImcXOlEs_TeawMHg0MhmH_lH84E2cb5EfbC4OwytYn1o5alxmekb-CQIJDLAPO30y_uMgahberLYWGstQKeq8eMWYbO47M8hJKuPne4XvQ90vGDnqjd33Xsgy4mQh55UZchTnzMgG2riGZUSxSXhKnPtQWgqmIhcZPQ2GCPElzZhKEWfh5HKQm4ZEycQC_e41s8YAnUPxtve0NTz6uOjO9oGmCAW_HoRizWKIGYYag8abJHupUxpByl7PgXwHyzwT4JtleFFO1vFTj8S9B8eA2uWWzWbrfmN8dsmGKu-T6wN7X3yPf9xdVCTmx0VSbqkZ9FVQVmmaYtCNKqTYMWua0WkzKGa3HH-Ox8JzCx3pZqMl5Rk96I3o-qfmUKEJaqWUXopMaCmpcy30BT2fovenX8psZ_7bIfXJ6JYp5QDaLsjA7hCZZGudgPpCrQL2FA4FEFirDBcsUj0LPIVG75zKzs9GRomMsWxDchVxpS6K2ZKMth_id5LSZD7KGTNKqVbb9r-CxJQSxNWSjv8mauXU9c-nLOZOe_FRPXgKTYzUMR4Dk607SZldN1rTmurut_cluqdU76ZDn3WPwT3jppApTLvA7PEx4AEHXIQ8bu-02KhABzi9kDmGdIa-9i4_-_4-eke3-aHAsjw-HR4_JDRRsEH67ZLOaLcwTyCWr9Kl9YSn5fNU-4idHWIh_ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VIhX6gLgVAgUWCR6t2nvxRQihijZqKa0q0Up5W9b2WipK7DR2KPkG_oivY8a3IG7KS1_jTDbaGc-c2T0zA_CKGr6o2PMdlZrUkV6YOsbYyMmMiVw3zUJj6Wjg-MQ_OJcfRmq0Bj-6WhiiVXY-sXbUaZHQGfkOBhJqYimk3MlaWsTp3vDd9NKhCVJ009qN02hM5MgurjB9K98e7qGuX3M-3D97f-C0EwacRPmycgJp_Iy7iUI7TxHIGB4YNwpjD_MKxU3AfevFvrIii-KM24goFl4WithGMjA2FPi7N-BmIEREdMJgFCxrMl3RlL-gn5OYhrUsooZbRnTxprweM1TOadiu5OJfofFP6LsJt-b51CyuzHj8Szgc3oU7LY5lu43h3YM1m9-HjeP2pv4BfN-dVwWiYZuy1FY13ytnJk9ZQnCd-Em1SbAiY9V8UsxY3fiYDoRLhh-ni9xMLhJ2un_GLib1JCVGZFbWzhVik5oEap126gU-nZHfZl-Lb3b82yIP4fxa1LIF63mR28fAoiQOMzQcRCmYaVErIJX4xkrFEyMD3x1A0O25Ttqu6DScY6w7-tsXvdSWJm3pRlsD8HrJadMZZAWZqFOr7ipf0VdrDF8ryAZ_k7Vl63RK7emSa1d_qnsuocnxmoCjUPJNL9niqgYvrbjudmd_ul9q-TYO4GX_GD0TXTeZ3BZz-o70Iykw3A7gUWO3_UYJJahzIR8A7w155V188v9_9AI20DPoj4cnR0_hNsk11L5tWK9mc_sMQWQVP6_fVgafr9s9_ASL5YYZ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VrQT0wDclUJCRuLpKHNtJxGmFWlVIrYroSuVkOYkjAbtJtZsU6F_on-44dgKUDy0cd7OzTsaT8bP9_AbglRV8EXkkqSh1SXmUllRrk9FK6ywMyyrVxi4NHB7Jgxl_eypONyAczsL8tH_f87AstdodRcfZHGO2MC1CgBuwKQWi7wlszo6Opx9cwg0pT_s6q7aGNsX44p6887e_-tOI9Cvi3IJbXX2mv33R8_kPo9D-XXg33L8jn3ze7dp8t7i4Ju34Lw94D-54SEqmLobuw4apH8DNQ7_p_hAup13bILA1JSlN21O3aqLrkhQWeVuqUd-7pKlI2y2aJek1jO3a7org16WreU-O907Ix0VfFIlYXirxJYLIoudzGuoLWODVpU3B5Lz5aubXGnkEs_29kzcH1NdwoIWQvKUJ17JiYSEwk5QIFTVLdJileYQzN8F0wqSJcilMXGV5xUxmSSxRlca5yXiiTRo_hknd1OYJkKzI0wrRKAIOnDRZVR9RSG24YIXmiQwDSIZ-VIUXOLd1NuZqYLJ9Ut99rayvlfN1ANFoeeZEPtawyYZQUcMhVky7Cvt3Ddvkd7Zm5fPHSkVqxVSo3vfySRjSrOfSCLR8PVp6iOSgz5rt7gwxrcamEKFZddiY8wBejpcxydidI12bprO_4TLjMY6cAWy7d2F0VCxiK0LIAmDjy7G2F5_-j9EzuG0_OcLeDkzaZWeeIzRs8xc-G1wB9CJgQQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+detection+and+classification+of+tumor+histotypes+on+dynamic+PET+imaging+data+through+machine-learning+driven+voxel+classification&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Bianchetti%2C+G.&rft.au=Taralli%2C+S.&rft.au=Vaccaro%2C+M.&rft.au=Indovina%2C+L.&rft.date=2022-06-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=145&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.105423&rft.externalDocID=S0010482522002153 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |