Automated detection and classification of tumor histotypes on dynamic PET imaging data through machine-learning driven voxel classification

2-deoxy-2-fluorine-(18F)fluoro-d-glucose Positron Emission Tomography/Computed Tomography (18F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and staging of various cancer types, including lung cancer, which is the most common cancer worldwide. Since histopathologic subtypes of lung can...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 145; p. 105423
Main Authors Bianchetti, G., Taralli, S., Vaccaro, M., Indovina, L., Mattoli, M.V., Capotosti, A., Scolozzi, V., Calcagni, M.L., Giordano, A., De Spirito, M., Maulucci, G.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.06.2022
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2022.105423

Cover

Abstract 2-deoxy-2-fluorine-(18F)fluoro-d-glucose Positron Emission Tomography/Computed Tomography (18F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and staging of various cancer types, including lung cancer, which is the most common cancer worldwide. Since histopathologic subtypes of lung cancer show different degree of 18F-FDG uptake, to date there are some diagnostic limits and uncertainties, hindering an 18F-FDG-PET-driven classification of histologic subtypes of lung cancers. On the other hand, since activated macrophages, neutrophils, fibroblasts and granulation tissues also show an increased 18F-FDG activity, infectious and/or inflammatory processes and post-surgical and post-radiation changes may cause false-positive results, especially for lymph-nodes assessment. Here we propose a model-free, machine-learning based algorithm for the automated classification of adenocarcinoma, the most common type of lung cancer, and other types of tumors. Input for the algorithm are dynamic acquisitions of PET data (dPET), providing for a spatially and temporally resolved characterization of the uptake kinetic. The algorithm consists in a trained Random Forest classifier which, relying contextually on several spatial and temporal features of 18F-FDG uptake, generates as an outcome probability maps allowing to distinguish adenocarcinoma from other lung histotype and to identify metastatic lymph-nodes, ultimately increasing the specificity of the technique. Its performance, evaluated on a dPET dataset of 19 patients affected by primary lung cancer, provides a probability 0.943 ± 0.090 for the detection of adenocarcinoma. The use of this algorithm will guarantee an automatic and more accurate localization and discrimination of tumors, also providing a powerful tool for detecting at which extent tumor has spread beyond a primary tumor into lymphatic system. •Dynamic PET (dPET) data provide metabolic characterization of tissues FDG uptake.•Machine-learning (ML) based tools for dPET analysis still require kinetic modeling.•A model-free ML-based workflow provides automated classification of lung histotypes.•The algorithm can also identify tumor's spread into lymphatic system.
AbstractList 2-deoxy-2-fluorine-(18F)fluoro-d-glucose Positron Emission Tomography/Computed Tomography (18F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and staging of various cancer types, including lung cancer, which is the most common cancer worldwide. Since histopathologic subtypes of lung cancer show different degree of 18F-FDG uptake, to date there are some diagnostic limits and uncertainties, hindering an 18F-FDG-PET-driven classification of histologic subtypes of lung cancers. On the other hand, since activated macrophages, neutrophils, fibroblasts and granulation tissues also show an increased 18F-FDG activity, infectious and/or inflammatory processes and post-surgical and post-radiation changes may cause false-positive results, especially for lymph-nodes assessment. Here we propose a model-free, machine-learning based algorithm for the automated classification of adenocarcinoma, the most common type of lung cancer, and other types of tumors. Input for the algorithm are dynamic acquisitions of PET data (dPET), providing for a spatially and temporally resolved characterization of the uptake kinetic. The algorithm consists in a trained Random Forest classifier which, relying contextually on several spatial and temporal features of 18F-FDG uptake, generates as an outcome probability maps allowing to distinguish adenocarcinoma from other lung histotype and to identify metastatic lymph-nodes, ultimately increasing the specificity of the technique. Its performance, evaluated on a dPET dataset of 19 patients affected by primary lung cancer, provides a probability 0.943 ± 0.090 for the detection of adenocarcinoma. The use of this algorithm will guarantee an automatic and more accurate localization and discrimination of tumors, also providing a powerful tool for detecting at which extent tumor has spread beyond a primary tumor into lymphatic system.2-deoxy-2-fluorine-(18F)fluoro-d-glucose Positron Emission Tomography/Computed Tomography (18F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and staging of various cancer types, including lung cancer, which is the most common cancer worldwide. Since histopathologic subtypes of lung cancer show different degree of 18F-FDG uptake, to date there are some diagnostic limits and uncertainties, hindering an 18F-FDG-PET-driven classification of histologic subtypes of lung cancers. On the other hand, since activated macrophages, neutrophils, fibroblasts and granulation tissues also show an increased 18F-FDG activity, infectious and/or inflammatory processes and post-surgical and post-radiation changes may cause false-positive results, especially for lymph-nodes assessment. Here we propose a model-free, machine-learning based algorithm for the automated classification of adenocarcinoma, the most common type of lung cancer, and other types of tumors. Input for the algorithm are dynamic acquisitions of PET data (dPET), providing for a spatially and temporally resolved characterization of the uptake kinetic. The algorithm consists in a trained Random Forest classifier which, relying contextually on several spatial and temporal features of 18F-FDG uptake, generates as an outcome probability maps allowing to distinguish adenocarcinoma from other lung histotype and to identify metastatic lymph-nodes, ultimately increasing the specificity of the technique. Its performance, evaluated on a dPET dataset of 19 patients affected by primary lung cancer, provides a probability 0.943 ± 0.090 for the detection of adenocarcinoma. The use of this algorithm will guarantee an automatic and more accurate localization and discrimination of tumors, also providing a powerful tool for detecting at which extent tumor has spread beyond a primary tumor into lymphatic system.
Abstract2-deoxy-2-fluorine-(18F)fluoro- d-glucose Positron Emission Tomography/Computed Tomography ( 18F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and staging of various cancer types, including lung cancer, which is the most common cancer worldwide. Since histopathologic subtypes of lung cancer show different degree of 18F-FDG uptake, to date there are some diagnostic limits and uncertainties, hindering an 18F-FDG-PET-driven classification of histologic subtypes of lung cancers. On the other hand, since activated macrophages, neutrophils, fibroblasts and granulation tissues also show an increased 18F-FDG activity, infectious and/or inflammatory processes and post-surgical and post-radiation changes may cause false-positive results, especially for lymph-nodes assessment. Here we propose a model-free, machine-learning based algorithm for the automated classification of adenocarcinoma, the most common type of lung cancer, and other types of tumors. Input for the algorithm are dynamic acquisitions of PET data (dPET), providing for a spatially and temporally resolved characterization of the uptake kinetic. The algorithm consists in a trained Random Forest classifier which, relying contextually on several spatial and temporal features of 18F-FDG uptake, generates as an outcome probability maps allowing to distinguish adenocarcinoma from other lung histotype and to identify metastatic lymph-nodes, ultimately increasing the specificity of the technique. Its performance, evaluated on a dPET dataset of 19 patients affected by primary lung cancer, provides a probability 0.943 ± 0.090 for the detection of adenocarcinoma. The use of this algorithm will guarantee an automatic and more accurate localization and discrimination of tumors, also providing a powerful tool for detecting at which extent tumor has spread beyond a primary tumor into lymphatic system.
2-deoxy-2-fluorine-( F)fluoro-d-glucose Positron Emission Tomography/Computed Tomography ( F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and staging of various cancer types, including lung cancer, which is the most common cancer worldwide. Since histopathologic subtypes of lung cancer show different degree of F-FDG uptake, to date there are some diagnostic limits and uncertainties, hindering an F-FDG-PET-driven classification of histologic subtypes of lung cancers. On the other hand, since activated macrophages, neutrophils, fibroblasts and granulation tissues also show an increased F-FDG activity, infectious and/or inflammatory processes and post-surgical and post-radiation changes may cause false-positive results, especially for lymph-nodes assessment. Here we propose a model-free, machine-learning based algorithm for the automated classification of adenocarcinoma, the most common type of lung cancer, and other types of tumors. Input for the algorithm are dynamic acquisitions of PET data (dPET), providing for a spatially and temporally resolved characterization of the uptake kinetic. The algorithm consists in a trained Random Forest classifier which, relying contextually on several spatial and temporal features of F-FDG uptake, generates as an outcome probability maps allowing to distinguish adenocarcinoma from other lung histotype and to identify metastatic lymph-nodes, ultimately increasing the specificity of the technique. Its performance, evaluated on a dPET dataset of 19 patients affected by primary lung cancer, provides a probability 0.943 ± 0.090 for the detection of adenocarcinoma. The use of this algorithm will guarantee an automatic and more accurate localization and discrimination of tumors, also providing a powerful tool for detecting at which extent tumor has spread beyond a primary tumor into lymphatic system.
2-deoxy-2-fluorine-(18F)fluoro-d-glucose Positron Emission Tomography/Computed Tomography (18F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and staging of various cancer types, including lung cancer, which is the most common cancer worldwide. Since histopathologic subtypes of lung cancer show different degree of 18F-FDG uptake, to date there are some diagnostic limits and uncertainties, hindering an 18F-FDG-PET-driven classification of histologic subtypes of lung cancers. On the other hand, since activated macrophages, neutrophils, fibroblasts and granulation tissues also show an increased 18F-FDG activity, infectious and/or inflammatory processes and post-surgical and post-radiation changes may cause false-positive results, especially for lymph-nodes assessment. Here we propose a model-free, machine-learning based algorithm for the automated classification of adenocarcinoma, the most common type of lung cancer, and other types of tumors. Input for the algorithm are dynamic acquisitions of PET data (dPET), providing for a spatially and temporally resolved characterization of the uptake kinetic. The algorithm consists in a trained Random Forest classifier which, relying contextually on several spatial and temporal features of 18F-FDG uptake, generates as an outcome probability maps allowing to distinguish adenocarcinoma from other lung histotype and to identify metastatic lymph-nodes, ultimately increasing the specificity of the technique. Its performance, evaluated on a dPET dataset of 19 patients affected by primary lung cancer, provides a probability 0.943 ± 0.090 for the detection of adenocarcinoma. The use of this algorithm will guarantee an automatic and more accurate localization and discrimination of tumors, also providing a powerful tool for detecting at which extent tumor has spread beyond a primary tumor into lymphatic system.
2-deoxy-2-fluorine-(18F)fluoro-d-glucose Positron Emission Tomography/Computed Tomography (18F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and staging of various cancer types, including lung cancer, which is the most common cancer worldwide. Since histopathologic subtypes of lung cancer show different degree of 18F-FDG uptake, to date there are some diagnostic limits and uncertainties, hindering an 18F-FDG-PET-driven classification of histologic subtypes of lung cancers. On the other hand, since activated macrophages, neutrophils, fibroblasts and granulation tissues also show an increased 18F-FDG activity, infectious and/or inflammatory processes and post-surgical and post-radiation changes may cause false-positive results, especially for lymph-nodes assessment. Here we propose a model-free, machine-learning based algorithm for the automated classification of adenocarcinoma, the most common type of lung cancer, and other types of tumors. Input for the algorithm are dynamic acquisitions of PET data (dPET), providing for a spatially and temporally resolved characterization of the uptake kinetic. The algorithm consists in a trained Random Forest classifier which, relying contextually on several spatial and temporal features of 18F-FDG uptake, generates as an outcome probability maps allowing to distinguish adenocarcinoma from other lung histotype and to identify metastatic lymph-nodes, ultimately increasing the specificity of the technique. Its performance, evaluated on a dPET dataset of 19 patients affected by primary lung cancer, provides a probability 0.943 ± 0.090 for the detection of adenocarcinoma. The use of this algorithm will guarantee an automatic and more accurate localization and discrimination of tumors, also providing a powerful tool for detecting at which extent tumor has spread beyond a primary tumor into lymphatic system. •Dynamic PET (dPET) data provide metabolic characterization of tissues FDG uptake.•Machine-learning (ML) based tools for dPET analysis still require kinetic modeling.•A model-free ML-based workflow provides automated classification of lung histotypes.•The algorithm can also identify tumor's spread into lymphatic system.
ArticleNumber 105423
Author Vaccaro, M.
Capotosti, A.
Calcagni, M.L.
Bianchetti, G.
Mattoli, M.V.
Scolozzi, V.
De Spirito, M.
Taralli, S.
Indovina, L.
Maulucci, G.
Giordano, A.
Author_xml – sequence: 1
  givenname: G.
  orcidid: 0000-0003-1257-2295
  surname: Bianchetti
  fullname: Bianchetti, G.
  organization: Neuroscience Department, Biophysics Section, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
– sequence: 2
  givenname: S.
  orcidid: 0000-0002-1715-9953
  surname: Taralli
  fullname: Taralli, S.
  organization: Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Unità di Medicina Nucleare, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
– sequence: 3
  givenname: M.
  orcidid: 0000-0002-4275-0729
  surname: Vaccaro
  fullname: Vaccaro, M.
  organization: Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168, Rome, Italy
– sequence: 4
  givenname: L.
  surname: Indovina
  fullname: Indovina, L.
  organization: Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168, Rome, Italy
– sequence: 5
  givenname: M.V.
  surname: Mattoli
  fullname: Mattoli, M.V.
  organization: Department of Neurosciences, Imaging and Clinical Sciences, “G. D'Annunzio” Chieti-Pescara University, Chieti, Italy
– sequence: 6
  givenname: A.
  orcidid: 0000-0002-3537-3187
  surname: Capotosti
  fullname: Capotosti, A.
  organization: Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168, Rome, Italy
– sequence: 7
  givenname: V.
  surname: Scolozzi
  fullname: Scolozzi, V.
  organization: Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Unità di Medicina Nucleare, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
– sequence: 8
  givenname: M.L.
  surname: Calcagni
  fullname: Calcagni, M.L.
  organization: Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Unità di Medicina Nucleare, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
– sequence: 9
  givenname: A.
  surname: Giordano
  fullname: Giordano, A.
  organization: Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Unità di Medicina Nucleare, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
– sequence: 10
  givenname: M.
  surname: De Spirito
  fullname: De Spirito, M.
  organization: Neuroscience Department, Biophysics Section, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
– sequence: 11
  givenname: G.
  orcidid: 0000-0002-2154-319X
  surname: Maulucci
  fullname: Maulucci, G.
  email: giuseppe.maulucci@unicatt.it
  organization: Neuroscience Department, Biophysics Section, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35367782$$D View this record in MEDLINE/PubMed
BookMark eNqVkt1u1DAQhSNURLeFV0CWuOEmi__iJDeIUpUfqRJIlGvLcSa7XhI72M7CPgMvjbPbFmklpPbK0vib4-Mzc5adWGchyxDBS4KJeLNZajeMjXEDtEuKKU3lglP2JFuQqqxzXDB-ki0wJjjnFS1Os7MQNhhjjhl-lp2ygomyrOgi-3MxRTeoCC1qIYKOxlmkbIt0r0IwndFqX3IditPgPFqbEF3cjRBQKrc7qwaj0derG2QGtTJ2hVoVFYpr76bVGg1Kr42FvAfl7f7Wmy1YtHW_oT965Hn2tFN9gBe353n2_cPVzeWn_PrLx8-XF9e5LgSPecmV6CjWRclwy6hQtFS4rhpCBSmoKqkA0ogCWFc3HYW660CTrmIN1LxUULHzrD7oTnZUu1-q7-Xok3u_kwTLOWC5kf8ClnPA8hBw6n196B29-zlBiHIwQUPfKwtuCpIKLmrOqlIk9NURunGTt-lniRKM4JpxnqiXt9TUzI_dObkbUQKqA6C9C8FD9xizb49atYn7qKNXpn-IwPuDAKRxbA14GbQBq6E1Pu2KbJ15hIt7Ed0bm2be_4AdhPtQiAxUYvlt3tp5aSnFmJJiFnj3f4GHefgLs9sDIg
CitedBy_id crossref_primary_10_1007_s11831_024_10209_0
crossref_primary_10_1186_s12967_023_04158_8
crossref_primary_10_1016_j_anucene_2024_110444
crossref_primary_10_3389_fonc_2024_1422623
crossref_primary_10_3390_antiox12020339
crossref_primary_10_1016_j_semcancer_2023_03_005
crossref_primary_10_3390_diagnostics12081878
crossref_primary_10_3390_nu15183931
crossref_primary_10_3390_antiox11061072
crossref_primary_10_3390_diagnostics13050834
crossref_primary_10_3390_su15054602
crossref_primary_10_3390_diagnostics13050854
Cites_doi 10.1097/JTO.0b013e318206a221
10.1016/j.aca.2020.04.076
10.1007/s00259-013-2488-6
10.1007/s00259-006-0224-1
10.1016/j.mri.2012.05.008
10.1186/s13550-018-0439-8
10.1016/j.cpet.2007.08.003
10.1007/s00259-002-1055-3
10.1016/j.ins.2017.02.009
10.1080/01431160412331269698
10.1007/s11280-020-00820-z
10.1016/j.eswa.2017.04.054
10.1038/s41592-019-0582-9
10.1016/j.ejmp.2020.07.028
10.1097/MNM.0000000000000254
10.1053/j.semnuclmed.2020.10.003
10.1148/rg.242025724
10.1016/j.neucom.2018.03.037
10.1007/BF02285464
10.4103/0256-4947.75771
10.3389/fonc.2019.01215
10.1102/1470-7330.2012.0033
10.1088/1361-6560/aa6244
10.1053/j.seminoncol.2010.11.012
10.1016/j.knosys.2020.105679
10.1177/1536012119869070
10.1364/BOE.399655
10.1186/s13550-018-0369-5
10.1109/TNS.2002.998752
10.1634/theoncologist.9-6-633
10.1093/annonc/mdu089
10.1007/s00259-004-1566-1
10.1016/j.ejmp.2021.03.008
10.1007/978-1-4939-9686-5_21
10.1118/1.3499298
10.1002/mp.12623
10.1007/BF02984655
10.1016/j.knosys.2018.06.004
10.1016/j.aca.2020.12.048
10.3322/caac.21660
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
2022. The Authors
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
– notice: 2022. The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
DOI 10.1016/j.compbiomed.2022.105423
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database (Proquest)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Biological science database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Research Library Prep


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 105423
ExternalDocumentID 10.1016/j.compbiomed.2022.105423
35367782
10_1016_j_compbiomed_2022_105423
S0010482522002153
1_s2_0_S0010482522002153
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Rome Italy
Italy
GeographicLocations_xml – name: Rome Italy
– name: Italy
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
6I.
AAFTH
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c564t-74a6f20c5730d326a27a098b126152a726e1b65e3f9bf2e9ffec1f83be947ae83
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Sun Oct 26 04:16:42 EDT 2025
Wed Oct 01 14:50:42 EDT 2025
Tue Oct 07 06:36:09 EDT 2025
Wed Feb 19 02:26:16 EST 2025
Wed Oct 01 05:24:53 EDT 2025
Thu Apr 24 23:01:30 EDT 2025
Fri Feb 23 02:39:54 EST 2024
Tue Feb 25 20:03:26 EST 2025
Tue Oct 14 19:33:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dynamic PET imaging
Metastasis
Automated classification
Lung histotypes
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-74a6f20c5730d326a27a098b126152a726e1b65e3f9bf2e9ffec1f83be947ae83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2154-319X
0000-0002-4275-0729
0000-0002-3537-3187
0000-0003-1257-2295
0000-0002-1715-9953
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0010482522002153
PMID 35367782
PQID 2663109344
PQPubID 1226355
PageCount 1
ParticipantIDs unpaywall_primary_10_1016_j_compbiomed_2022_105423
proquest_miscellaneous_2646943876
proquest_journals_2663109344
pubmed_primary_35367782
crossref_primary_10_1016_j_compbiomed_2022_105423
crossref_citationtrail_10_1016_j_compbiomed_2022_105423
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_105423
elsevier_clinicalkeyesjournals_1_s2_0_S0010482522002153
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_105423
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Duffy, Boyle, Vasdev (bib11) 2019; 18
Wu, Shen, Lian, Su, Chen (bib49) 2020; 195
WD, E, M, AG, KR, Y, DG, CA, GJ, PE, K, JH, H, VW, FR, G, T, RM, Y, J, M, JP, T, M, J, I, PC, D, C, D, W, A, M, P, D, B, D, K, K, JS, VA, I, V, R, N, E, M, D (bib31) 2011; 6
Almuhaideb, Papathanasiou, Bomanji (bib9) 2011; 31
Bianchetti, di Giacinto, de Spirito, Maulucci (bib46) 2020; 1121
Vanhove, Graulus, Mesotten, Thomeer, Derveaux, Noben, Guedens, Adriaensens (bib3) 2019; 9
Dimitrakopoulou-Strauss, Pan, Strauss (bib17) 2012; 12
Wu, Lei, Li, Huang, Zheng, Chen, Xu (bib48) 2017; 84
Yan, Li, Wu, Wang, Yu (bib50) 2020; 23
Cohade, Osman, Marshall, Wahl (bib15) 2003; 30
Westerterp, Pruim, Oyen, Hoekstra, Paans, Visser, van Lanschot, Sloof, Boellaard (bib19) 2007; 34
Pal (bib35) 2005; 26
Osman, Cohade, Nakamoto, Marshall, Leal, Wahl (bib16) 2003; 44
Wang, Lei, Fu, Curran, Liu, Nye, Yang (bib12) 2020; 76
Boellaard, Krak, Hoekstra, a Lammertsma, Jaskowiak, a Bianco, Perlman, Fine, 英彦表 (bib24) 2002; 45
Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal, Bray (bib6) 2021; 71
Sommer, Köthe, Straehle, Hamprecht (bib36) 2011
Berg, Kutra, Kroeger, Straehle, Kausler, Haubold, Schiegg, Ales, Beier, Rudy, Eren, Cervantes, Xu, Beuttenmueller, Wolny, Zhang, Koethe, Hamprecht, Kreshuk (bib34) 2019; 16
Kreshuk, Zhang (bib37) 2019
Wu, Zhu, Li, Cui, Huang, Li, Chen, Xu (bib47) 2017; 393
Barta, Powell, Wisnivesky (bib32) 2019; 85
Almuhaideb, Papathanasiou, Bomanji (bib40) 2011; 31
Vansteenkiste, Crinò, Dooms, Douillard, Faivre-Finn, Lim, Rocco, Senan, van Schil, Veronesi, Stahel, Peters, Felip, Kerr, Besse, Eberhardt, Edelman, Mok, O'Byrne, Novello, Bubendorf, Marchetti, Baas, Reck, Syrigos, Paz-Ares, Smit, Meldgaard, Adjei, Nicolson, Weder, de Ruysscher, le Pechoux, de Leyn, Westeel (bib5) 2014; 25
Silvestri, Scolozzi, Rizzo, Indovina, Castellaro, Mattoli, Graziano, Cardillo, Bertoldo, Calcagni (bib33) 2018; 8
Krak, Boellaard, Hoekstra, Twisk, Hoekstra, Lammertsma (bib23) 2005; 32
Mansor, Pfaehler, Heijtel, Lodge, Boellaard, Yaqub (bib26) 2017; 44
Arabi, AkhavanAllaf, Sanaat, Shiri, Zaidi (bib13) 2021; 83
Osman, Cohade, Nakamoto, Marshall, Leal, Wahl (bib42) 2003; 44
Calcagni, Mattoli, Blasi, Petrone, Sammarco, Indovina, Mulè, Rufini, Giordano (bib20) 2013; 40
Calcagni, Indovina, di Franco, Rufini, Leccisotti, Giordano, Galli (bib22) 2018; 62
Kapoor, McCook, Torok (bib2) 2004; 24
Yu, Yang, Tan, Wang, Sun, Sun, Tang (bib39) 2018; 304
Bianchetti, de Spirito, Maulucci (bib45) 2020; 11
Bianchetti, Ciccarone, Ciriolo, de Spirito, Pani, Maulucci (bib44) 2021; 1148
Bentourkia, Zaidi (bib29) 2007; 2
Cohade, Osman, Marshall, Wahl (bib41) 2003; 30
Watabe, Ikoma, Kimura, Naganawa, Shidahara (bib28) 2006; 20
Suárez-Piñera, Belda-Sanchis, Taus, Sánchez-Font, Mestre-Fusco, Jiménez, Pijuan (bib8) 2018; 8
Zhu, Lee, Shim (bib1) 2011; 38
Schrevens, Lorent, Dooms, Vansteenkiste (bib4) 2004; 9
Song, Lee, Kim, Kim, Jin, Park, Choi, Chung, Lee, Cho, Choi, Kim, Choi, Moon, Lee, Jeong, Jang, Kim, Kim (bib7) 2015; 36
Wong, Feng, Meikle, Fulham (bib10) 2002; 49
Wei, El Naqa (bib14) 2021; 51
Doot, Scheuermann, Christian, Karp, Kinahan (bib25) 2010; 37
Yang, Li, Guo, Ma, Zheng (bib43) 2018; 159
Muzi, O'Sullivan, Mankoff, Doot, Pierce, Kurland, Linden, Kinahan (bib18) 2012; 30
Laffon, Calcagni, Galli, Giordano, Capotosti, Marthan, Indovina (bib21) 2018; 8
Pan, Cheng, Haberkorn, Dimitrakopoulou-Strauss (bib30) 2017; 62
Takahama, Kurose, Mukuta, Abe, Fukayama, Yoshizawa, Kitagawa, Harada (bib38) 2019
Kuikka, Bassingthwaighte, Henrich, Feinendegen (bib27) 1991; 18
Calcagni (10.1016/j.compbiomed.2022.105423_bib22) 2018; 62
Kreshuk (10.1016/j.compbiomed.2022.105423_bib37) 2019
Krak (10.1016/j.compbiomed.2022.105423_bib23) 2005; 32
Laffon (10.1016/j.compbiomed.2022.105423_bib21) 2018; 8
Westerterp (10.1016/j.compbiomed.2022.105423_bib19) 2007; 34
Song (10.1016/j.compbiomed.2022.105423_bib7) 2015; 36
Cohade (10.1016/j.compbiomed.2022.105423_bib41) 2003; 30
Wang (10.1016/j.compbiomed.2022.105423_bib12) 2020; 76
Mansor (10.1016/j.compbiomed.2022.105423_bib26) 2017; 44
Vansteenkiste (10.1016/j.compbiomed.2022.105423_bib5) 2014; 25
Bentourkia (10.1016/j.compbiomed.2022.105423_bib29) 2007; 2
Sommer (10.1016/j.compbiomed.2022.105423_bib36) 2011
Osman (10.1016/j.compbiomed.2022.105423_bib16) 2003; 44
Wu (10.1016/j.compbiomed.2022.105423_bib48) 2017; 84
Yu (10.1016/j.compbiomed.2022.105423_bib39) 2018; 304
Bianchetti (10.1016/j.compbiomed.2022.105423_bib44) 2021; 1148
Zhu (10.1016/j.compbiomed.2022.105423_bib1) 2011; 38
Takahama (10.1016/j.compbiomed.2022.105423_bib38) 2019
Yan (10.1016/j.compbiomed.2022.105423_bib50) 2020; 23
Arabi (10.1016/j.compbiomed.2022.105423_bib13) 2021; 83
Pal (10.1016/j.compbiomed.2022.105423_bib35) 2005; 26
Boellaard (10.1016/j.compbiomed.2022.105423_bib24) 2002; 45
Osman (10.1016/j.compbiomed.2022.105423_bib42) 2003; 44
Calcagni (10.1016/j.compbiomed.2022.105423_bib20) 2013; 40
Schrevens (10.1016/j.compbiomed.2022.105423_bib4) 2004; 9
Cohade (10.1016/j.compbiomed.2022.105423_bib15) 2003; 30
Berg (10.1016/j.compbiomed.2022.105423_bib34) 2019; 16
Silvestri (10.1016/j.compbiomed.2022.105423_bib33) 2018; 8
Muzi (10.1016/j.compbiomed.2022.105423_bib18) 2012; 30
Doot (10.1016/j.compbiomed.2022.105423_bib25) 2010; 37
Sung (10.1016/j.compbiomed.2022.105423_bib6) 2021; 71
Almuhaideb (10.1016/j.compbiomed.2022.105423_bib9) 2011; 31
Wei (10.1016/j.compbiomed.2022.105423_bib14) 2021; 51
Bianchetti (10.1016/j.compbiomed.2022.105423_bib46) 2020; 1121
Dimitrakopoulou-Strauss (10.1016/j.compbiomed.2022.105423_bib17) 2012; 12
Watabe (10.1016/j.compbiomed.2022.105423_bib28) 2006; 20
Wu (10.1016/j.compbiomed.2022.105423_bib47) 2017; 393
Suárez-Piñera (10.1016/j.compbiomed.2022.105423_bib8) 2018; 8
Vanhove (10.1016/j.compbiomed.2022.105423_bib3) 2019; 9
WD (10.1016/j.compbiomed.2022.105423_bib31) 2011; 6
Kuikka (10.1016/j.compbiomed.2022.105423_bib27) 1991; 18
Barta (10.1016/j.compbiomed.2022.105423_bib32) 2019; 85
Wong (10.1016/j.compbiomed.2022.105423_bib10) 2002; 49
Almuhaideb (10.1016/j.compbiomed.2022.105423_bib40) 2011; 31
Yang (10.1016/j.compbiomed.2022.105423_bib43) 2018; 159
Pan (10.1016/j.compbiomed.2022.105423_bib30) 2017; 62
Wu (10.1016/j.compbiomed.2022.105423_bib49) 2020; 195
Duffy (10.1016/j.compbiomed.2022.105423_bib11) 2019; 18
Kapoor (10.1016/j.compbiomed.2022.105423_bib2) 2004; 24
Bianchetti (10.1016/j.compbiomed.2022.105423_bib45) 2020; 11
References_xml – volume: 18
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib11
  article-title: Improving PET imaging acquisition and analysis with machine learning: a narrative review with focus on alzheimer's disease and oncology
  publication-title: Mol. Imag.
– volume: 8
  year: 2018
  ident: bib21
  article-title: Comparison of three-parameter kinetic model analysis to standard Patlak's analysis in 18 F-FDG PET imaging of lung cancer patients
  publication-title: EJNMMI Res.
– volume: 195
  year: 2020
  ident: bib49
  article-title: A dummy-based user privacy protection approach for text information retrieval
  publication-title: Knowl. Base Syst.
– volume: 26
  start-page: 217
  year: 2005
  end-page: 222
  ident: bib35
  article-title: Random forest classifier for remote sensing classification
  publication-title: Int. J. Rem. Sens.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib33
  article-title: The kinetics of 18F-FDG in lung cancer: compartmental models and voxel analysis
  publication-title: EJNMMI Res.
– volume: 31
  start-page: 3
  year: 2011
  end-page: 13
  ident: bib9
  article-title: 18F-FDG PET/CT imaging in oncology
  publication-title: Ann. Saudi Med.
– volume: 25
  start-page: 1462
  year: 2014
  end-page: 1474
  ident: bib5
  article-title: 2nd ESMO consensus conference on lung cancer: early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up
  publication-title: Ann. Oncol.
– volume: 9
  start-page: 633
  year: 2004
  end-page: 643
  ident: bib4
  article-title: The role of PET scan in diagnosis, staging, and management of non‐small cell lung cancer
  publication-title: Oncol.
– volume: 76
  start-page: 294
  year: 2020
  end-page: 306
  ident: bib12
  article-title: Machine learning in quantitative PET: a review of attenuation correction and low-count image reconstruction methods
  publication-title: Phys. Med.
– volume: 85
  year: 2019
  ident: bib32
  article-title: Global epidemiology of lung cancer
  publication-title: Ann. Glob. Health
– volume: 84
  start-page: 12
  year: 2017
  end-page: 23
  ident: bib48
  article-title: A topic modeling based approach to novel document automatic summarization
  publication-title: Expert Syst. Appl.
– volume: 37
  start-page: 6035
  year: 2010
  end-page: 6046
  ident: bib25
  article-title: Instrumentation factors affecting variance and bias of quantifying tracer uptake with PET/CT
  publication-title: Med. Phys.
– volume: 159
  start-page: 51
  year: 2018
  end-page: 62
  ident: bib43
  article-title: Compact real-valued teaching-learning based optimization with the applications to neural network training
  publication-title: Knowl. Base Syst.
– volume: 304
  start-page: 82
  year: 2018
  end-page: 103
  ident: bib39
  article-title: Methods and datasets on semantic segmentation: a review
  publication-title: Neurocomputing
– volume: 51
  start-page: 157
  year: 2021
  end-page: 169
  ident: bib14
  article-title: Artificial intelligence for response evaluation with PET/CT
  publication-title: Semin. Nucl. Med.
– volume: 2
  start-page: 267
  year: 2007
  end-page: 277
  ident: bib29
  article-title: Tracer kinetic modeling in PET
  publication-title: Pet. Clin.
– volume: 40
  start-page: 1682
  year: 2013
  end-page: 1691
  ident: bib20
  article-title: A prospective analysis of
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
– volume: 83
  start-page: 122
  year: 2021
  end-page: 137
  ident: bib13
  article-title: The promise of artificial intelligence and deep learning in PET and SPECT imaging
  publication-title: Phys. Med.
– volume: 36
  start-page: 319
  year: 2015
  end-page: 327
  ident: bib7
  article-title: Predictability of preoperative 18F-FDG PET for histopathological differentiation and early recurrence of primary malignant intrahepatic tumors
  publication-title: Nucl. Med. Commun.
– volume: 1121
  start-page: 57
  year: 2020
  end-page: 66
  ident: bib46
  article-title: Machine-learning assisted confocal imaging of intracellular sites of triglycerides and cholesteryl esters formation and storage
  publication-title: Anal. Chim. Acta
– year: 2019
  ident: bib38
  article-title: Multi-Stage Pathological Image Classification Using Semantic Segmentation
– volume: 30
  start-page: 721
  year: 2003
  end-page: 726
  ident: bib15
  article-title: PET-CT: accuracy of PET and CT spatial registration of lung lesions
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
– volume: 6
  start-page: 244
  year: 2011
  end-page: 285
  ident: bib31
  article-title: International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma
  publication-title: J. Thorac. Oncol. : Off. Publ. Int. Associat. Study of Lung Cancer
– volume: 38
  start-page: 55
  year: 2011
  end-page: 69
  ident: bib1
  article-title: Metabolic positron emission tomography imaging in cancer detection and therapy response
  publication-title: Semin. Oncol.
– volume: 23
  start-page: 3055
  year: 2020
  end-page: 3081
  ident: bib50
  article-title: Extracting diverse-shapelets for early classification on time series
  publication-title: World Wide Web
– volume: 34
  start-page: 392
  year: 2007
  end-page: 404
  ident: bib19
  article-title: Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
– volume: 8
  start-page: 100
  year: 2018
  ident: bib8
  article-title: FDG PET-CT SUVmax and IASLC/ATS/ERS histologic classification: a new profile of lung adenocarcinoma with prognostic value
  publication-title: Am. J. Nucl. Med. Molecul. Imag.
– volume: 20
  start-page: 583
  year: 2006
  end-page: 588
  ident: bib28
  article-title: PET kinetic analysis - compartmental model
  publication-title: Ann. Nucl. Med.
– volume: 62
  start-page: 3566
  year: 2017
  end-page: 3581
  ident: bib30
  article-title: Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data
  publication-title: Phys. Med. Biol.
– volume: 71
  start-page: 209
  year: 2021
  end-page: 249
  ident: bib6
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA
  publication-title: A Cancer J. Clinic.
– volume: 44
  start-page: 6413
  year: 2017
  end-page: 6424
  ident: bib26
  article-title: Impact of PET/CT system, reconstruction protocol, data analysis method, and repositioning on PET/CT precision: an experimental evaluation using an oncology and brain phantom: an
  publication-title: Med. Phys.
– volume: 44
  year: 2003
  ident: bib16
  article-title: Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients
  publication-title: J. Nucl. Med.
– volume: 12
  start-page: 283
  year: 2012
  end-page: 289
  ident: bib17
  article-title: Quantitative approaches of dynamic FDG-PET and PET/CT studies (dPET/CT) for the evaluation of oncological patients
  publication-title: Cancer Imag.
– volume: 30
  start-page: 1203
  year: 2012
  end-page: 1215
  ident: bib18
  article-title: Quantitative assessment of dynamic PET imaging data in cancer imaging
  publication-title: Magn. Reson. Imag.
– volume: 62
  start-page: 190
  year: 2018
  end-page: 199
  ident: bib22
  article-title: Are the simplified methods to estimate K i in 18 F-FDG PET studies feasible in clinical routine? Comparison between three simplified methods
  publication-title: Q. J. Nucl. Med. Mol. Imag.
– volume: 44
  year: 2003
  ident: bib42
  article-title: Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients
  publication-title: J. Nucl. Med.
– volume: 30
  start-page: 721
  year: 2003
  end-page: 726
  ident: bib41
  article-title: PET-CT: accuracy of PET and CT spatial registration of lung lesions
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
– volume: 49
  start-page: 200
  year: 2002
  end-page: 207
  ident: bib10
  article-title: Segmentation of dynamic PET images using cluster analysis
  publication-title: IEEE Trans. Nucl. Sci.
– start-page: 449
  year: 2019
  end-page: 463
  ident: bib37
  article-title: Machine learning: advanced image segmentation using ilastik
  publication-title: Methods in Molecular Biology
– year: 2011
  ident: bib36
  article-title: Ilastik: Interactive Learning and Segmentation Toolkit Learning Complex Stochastic Models with Invertible Neural Networks: a New Approach to Bayesian Inference View Project Ilastik: Interactive Learning and Segmentation Toolkit
– volume: 9
  year: 2019
  ident: bib3
  article-title: The metabolic landscape of lung cancer: new insights in a disturbed glucose metabolism
  publication-title: Front. Oncol.
– volume: 1148
  start-page: 238173
  year: 2021
  ident: bib44
  article-title: Label-free metabolic clustering through unsupervised pixel classification of multiparametric fluorescent images
  publication-title: Anal. Chim. Acta
– volume: 45
  start-page: 670
  year: 2002
  end-page: 678
  ident: bib24
  article-title: Effects of noise, image resolution, and roi definition on the accuracy of standard uptake values: a simulation study
  publication-title: J. Nucl. Med. : Off. Publ. Soc. Nuclear Med.
– volume: 393
  start-page: 15
  year: 2017
  end-page: 28
  ident: bib47
  article-title: An efficient Wikipedia semantic matching approach to text document classification
  publication-title: Inf. Sci.
– volume: 31
  start-page: 3
  year: 2011
  end-page: 13
  ident: bib40
  article-title: 18F-FDG PET/CT imaging in oncology
  publication-title: Ann. Saudi Med.
– volume: 18
  start-page: 351
  year: 1991
  end-page: 362
  ident: bib27
  article-title: Mathematical modelling in nuclear medicine
  publication-title: Eur. J. Nucl. Med.
– volume: 11
  start-page: 5728
  year: 2020
  ident: bib45
  article-title: Unsupervised clustering of multiparametric fluorescent images extends the spectrum of detectable cell membrane phases with sub-micrometric resolution
  publication-title: Biomed. Opt Express
– volume: 32
  start-page: 294
  year: 2005
  end-page: 301
  ident: bib23
  article-title: Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
– volume: 24
  start-page: 523
  year: 2004
  end-page: 543
  ident: bib2
  article-title: An introduction to PET-CT imaging
  publication-title: Radiographics
– volume: 16
  start-page: 1226
  year: 2019
  end-page: 1232
  ident: bib34
  article-title: ilastik: interactive machine learning for (bio)image analysis
  publication-title: Nat. Methods
– volume: 6
  start-page: 244
  year: 2011
  ident: 10.1016/j.compbiomed.2022.105423_bib31
  article-title: International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma
  publication-title: J. Thorac. Oncol. : Off. Publ. Int. Associat. Study of Lung Cancer
  doi: 10.1097/JTO.0b013e318206a221
– volume: 1121
  start-page: 57
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105423_bib46
  article-title: Machine-learning assisted confocal imaging of intracellular sites of triglycerides and cholesteryl esters formation and storage
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2020.04.076
– volume: 40
  start-page: 1682
  year: 2013
  ident: 10.1016/j.compbiomed.2022.105423_bib20
  article-title: A prospective analysis of 18F-FDG PET/CT in patients with uveal melanoma: comparison between metabolic rate of glucose (MRglu) and standardized uptake value (SUV) and correlations with histopathological features
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
  doi: 10.1007/s00259-013-2488-6
– volume: 34
  start-page: 392
  year: 2007
  ident: 10.1016/j.compbiomed.2022.105423_bib19
  article-title: Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
  doi: 10.1007/s00259-006-0224-1
– volume: 30
  start-page: 1203
  year: 2012
  ident: 10.1016/j.compbiomed.2022.105423_bib18
  article-title: Quantitative assessment of dynamic PET imaging data in cancer imaging
  publication-title: Magn. Reson. Imag.
  doi: 10.1016/j.mri.2012.05.008
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105423_bib33
  article-title: The kinetics of 18F-FDG in lung cancer: compartmental models and voxel analysis
  publication-title: EJNMMI Res.
  doi: 10.1186/s13550-018-0439-8
– volume: 2
  start-page: 267
  year: 2007
  ident: 10.1016/j.compbiomed.2022.105423_bib29
  article-title: Tracer kinetic modeling in PET
  publication-title: Pet. Clin.
  doi: 10.1016/j.cpet.2007.08.003
– volume: 62
  start-page: 190
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105423_bib22
  article-title: Are the simplified methods to estimate K i in 18 F-FDG PET studies feasible in clinical routine? Comparison between three simplified methods
  publication-title: Q. J. Nucl. Med. Mol. Imag.
– volume: 30
  start-page: 721
  year: 2003
  ident: 10.1016/j.compbiomed.2022.105423_bib41
  article-title: PET-CT: accuracy of PET and CT spatial registration of lung lesions
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
  doi: 10.1007/s00259-002-1055-3
– volume: 393
  start-page: 15
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105423_bib47
  article-title: An efficient Wikipedia semantic matching approach to text document classification
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.02.009
– volume: 26
  start-page: 217
  year: 2005
  ident: 10.1016/j.compbiomed.2022.105423_bib35
  article-title: Random forest classifier for remote sensing classification
  publication-title: Int. J. Rem. Sens.
  doi: 10.1080/01431160412331269698
– volume: 23
  start-page: 3055
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105423_bib50
  article-title: Extracting diverse-shapelets for early classification on time series
  publication-title: World Wide Web
  doi: 10.1007/s11280-020-00820-z
– volume: 84
  start-page: 12
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105423_bib48
  article-title: A topic modeling based approach to novel document automatic summarization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.04.054
– volume: 16
  start-page: 1226
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105423_bib34
  article-title: ilastik: interactive machine learning for (bio)image analysis
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0582-9
– volume: 30
  start-page: 721
  year: 2003
  ident: 10.1016/j.compbiomed.2022.105423_bib15
  article-title: PET-CT: accuracy of PET and CT spatial registration of lung lesions
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
  doi: 10.1007/s00259-002-1055-3
– volume: 8
  start-page: 100
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105423_bib8
  article-title: FDG PET-CT SUVmax and IASLC/ATS/ERS histologic classification: a new profile of lung adenocarcinoma with prognostic value
  publication-title: Am. J. Nucl. Med. Molecul. Imag.
– volume: 76
  start-page: 294
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105423_bib12
  article-title: Machine learning in quantitative PET: a review of attenuation correction and low-count image reconstruction methods
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2020.07.028
– volume: 36
  start-page: 319
  year: 2015
  ident: 10.1016/j.compbiomed.2022.105423_bib7
  article-title: Predictability of preoperative 18F-FDG PET for histopathological differentiation and early recurrence of primary malignant intrahepatic tumors
  publication-title: Nucl. Med. Commun.
  doi: 10.1097/MNM.0000000000000254
– volume: 44
  year: 2003
  ident: 10.1016/j.compbiomed.2022.105423_bib16
  article-title: Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients
  publication-title: J. Nucl. Med.
– volume: 51
  start-page: 157
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105423_bib14
  article-title: Artificial intelligence for response evaluation with PET/CT
  publication-title: Semin. Nucl. Med.
  doi: 10.1053/j.semnuclmed.2020.10.003
– volume: 24
  start-page: 523
  year: 2004
  ident: 10.1016/j.compbiomed.2022.105423_bib2
  article-title: An introduction to PET-CT imaging
  publication-title: Radiographics
  doi: 10.1148/rg.242025724
– volume: 304
  start-page: 82
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105423_bib39
  article-title: Methods and datasets on semantic segmentation: a review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.037
– volume: 18
  start-page: 351
  year: 1991
  ident: 10.1016/j.compbiomed.2022.105423_bib27
  article-title: Mathematical modelling in nuclear medicine
  publication-title: Eur. J. Nucl. Med.
  doi: 10.1007/BF02285464
– volume: 31
  start-page: 3
  year: 2011
  ident: 10.1016/j.compbiomed.2022.105423_bib40
  article-title: 18F-FDG PET/CT imaging in oncology
  publication-title: Ann. Saudi Med.
  doi: 10.4103/0256-4947.75771
– volume: 9
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105423_bib3
  article-title: The metabolic landscape of lung cancer: new insights in a disturbed glucose metabolism
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2019.01215
– volume: 44
  year: 2003
  ident: 10.1016/j.compbiomed.2022.105423_bib42
  article-title: Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients
  publication-title: J. Nucl. Med.
– year: 2019
  ident: 10.1016/j.compbiomed.2022.105423_bib38
– volume: 85
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105423_bib32
  article-title: Global epidemiology of lung cancer
  publication-title: Ann. Glob. Health
– volume: 12
  start-page: 283
  year: 2012
  ident: 10.1016/j.compbiomed.2022.105423_bib17
  article-title: Quantitative approaches of dynamic FDG-PET and PET/CT studies (dPET/CT) for the evaluation of oncological patients
  publication-title: Cancer Imag.
  doi: 10.1102/1470-7330.2012.0033
– volume: 62
  start-page: 3566
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105423_bib30
  article-title: Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa6244
– volume: 38
  start-page: 55
  year: 2011
  ident: 10.1016/j.compbiomed.2022.105423_bib1
  article-title: Metabolic positron emission tomography imaging in cancer detection and therapy response
  publication-title: Semin. Oncol.
  doi: 10.1053/j.seminoncol.2010.11.012
– volume: 195
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105423_bib49
  article-title: A dummy-based user privacy protection approach for text information retrieval
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2020.105679
– volume: 18
  start-page: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105423_bib11
  article-title: Improving PET imaging acquisition and analysis with machine learning: a narrative review with focus on alzheimer's disease and oncology
  publication-title: Mol. Imag.
  doi: 10.1177/1536012119869070
– volume: 11
  start-page: 5728
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105423_bib45
  article-title: Unsupervised clustering of multiparametric fluorescent images extends the spectrum of detectable cell membrane phases with sub-micrometric resolution
  publication-title: Biomed. Opt Express
  doi: 10.1364/BOE.399655
– volume: 8
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105423_bib21
  article-title: Comparison of three-parameter kinetic model analysis to standard Patlak's analysis in 18 F-FDG PET imaging of lung cancer patients
  publication-title: EJNMMI Res.
  doi: 10.1186/s13550-018-0369-5
– volume: 49
  start-page: 200
  year: 2002
  ident: 10.1016/j.compbiomed.2022.105423_bib10
  article-title: Segmentation of dynamic PET images using cluster analysis
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2002.998752
– volume: 9
  start-page: 633
  year: 2004
  ident: 10.1016/j.compbiomed.2022.105423_bib4
  article-title: The role of PET scan in diagnosis, staging, and management of non‐small cell lung cancer
  publication-title: Oncol.
  doi: 10.1634/theoncologist.9-6-633
– volume: 45
  start-page: 670
  year: 2002
  ident: 10.1016/j.compbiomed.2022.105423_bib24
  article-title: Effects of noise, image resolution, and roi definition on the accuracy of standard uptake values: a simulation study
  publication-title: J. Nucl. Med. : Off. Publ. Soc. Nuclear Med.
– volume: 25
  start-page: 1462
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105423_bib5
  article-title: 2nd ESMO consensus conference on lung cancer: early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdu089
– volume: 32
  start-page: 294
  year: 2005
  ident: 10.1016/j.compbiomed.2022.105423_bib23
  article-title: Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
  doi: 10.1007/s00259-004-1566-1
– volume: 31
  start-page: 3
  year: 2011
  ident: 10.1016/j.compbiomed.2022.105423_bib9
  article-title: 18F-FDG PET/CT imaging in oncology
  publication-title: Ann. Saudi Med.
  doi: 10.4103/0256-4947.75771
– volume: 83
  start-page: 122
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105423_bib13
  article-title: The promise of artificial intelligence and deep learning in PET and SPECT imaging
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2021.03.008
– start-page: 449
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105423_bib37
  article-title: Machine learning: advanced image segmentation using ilastik
  doi: 10.1007/978-1-4939-9686-5_21
– volume: 37
  start-page: 6035
  year: 2010
  ident: 10.1016/j.compbiomed.2022.105423_bib25
  article-title: Instrumentation factors affecting variance and bias of quantifying tracer uptake with PET/CT
  publication-title: Med. Phys.
  doi: 10.1118/1.3499298
– volume: 44
  start-page: 6413
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105423_bib26
  article-title: Impact of PET/CT system, reconstruction protocol, data analysis method, and repositioning on PET/CT precision: an experimental evaluation using an oncology and brain phantom: an
  publication-title: Med. Phys.
  doi: 10.1002/mp.12623
– volume: 20
  start-page: 583
  year: 2006
  ident: 10.1016/j.compbiomed.2022.105423_bib28
  article-title: PET kinetic analysis - compartmental model
  publication-title: Ann. Nucl. Med.
  doi: 10.1007/BF02984655
– volume: 159
  start-page: 51
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105423_bib43
  article-title: Compact real-valued teaching-learning based optimization with the applications to neural network training
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2018.06.004
– volume: 1148
  start-page: 238173
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105423_bib44
  article-title: Label-free metabolic clustering through unsupervised pixel classification of multiparametric fluorescent images
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2020.12.048
– year: 2011
  ident: 10.1016/j.compbiomed.2022.105423_bib36
– volume: 71
  start-page: 209
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105423_bib6
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA
  publication-title: A Cancer J. Clinic.
  doi: 10.3322/caac.21660
SSID ssj0004030
Score 2.4155724
Snippet 2-deoxy-2-fluorine-(18F)fluoro-d-glucose Positron Emission Tomography/Computed Tomography (18F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and...
Abstract2-deoxy-2-fluorine-(18F)fluoro- d-glucose Positron Emission Tomography/Computed Tomography ( 18F-FDG-PET/CT) is widely used in oncology mainly for...
2-deoxy-2-fluorine-( F)fluoro-d-glucose Positron Emission Tomography/Computed Tomography ( F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105423
SubjectTerms Adenocarcinoma
Algorithms
Automated classification
Automation
Classification
Computed tomography
Data acquisition
Dynamic PET imaging
Fibroblasts
Fluorine
Fluorine isotopes
Fluorodeoxyglucose F18
Gamma rays
Glucose
Granulation
Humans
Inflammation
Internal Medicine
Kinetics
Learning algorithms
Leukocytes (neutrophilic)
Localization
Lung cancer
Lung histotypes
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - pathology
Lymph
Lymph Nodes - pathology
Lymphatic Metastasis - pathology
Lymphatic system
Machine Learning
Macrophages
Medical imaging
Metabolism
Metastases
Metastasis
Nodes
Other
Physiology
Positron emission
Positron emission tomography
Positron Emission Tomography Computed Tomography - methods
Positron-Emission Tomography - methods
Post-radiation
Radiation
Radiopharmaceuticals
Temporal variations
Thoracic surgery
Tomography
Tumors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ti9QwEB7OPfDlg_h-1VMi-LXYpklfEJFT9jiEWw69g_sW0iYFZbddd7un_gb_tDNN2hXf2K_bDlky05lJ8uR5AF4Q4Yss4zSURptQxLkJtbZFWGtdRJGpc21pa-B0lp5ciPeX8nIPZsNdGIJVDjmxT9SmrWiP_CUWEiKxTIR4s_wSkmoUna4OEhraSyuY1z3F2DXY58SMNYH9t9PZ2YftTckocZdSMPsIXBx5bI9DfBGI2116x3Uj5ySBK3jyr4L1Z0N6C25smqX-_lXP578UqeM7cNt3l-zIhcNd2LPNPbh-6s_P78OPo03XYo9qDTO261FYDdONYRU10YQa6h3F2pp1m0W7Yj0dMW3Trhn-bJx8PTubnrNPi17fiBHElHm1H7booZk29FoU-HRF2ZRdtd_s_LdBHsDF8fT83Uno5RjCSqaiCzOh05pHlcSkYLDr0zzTUZGXMS7CJNcZT21cptImdVHW3BaER4nrPCltITJt8-QhTJq2sQfAiqrMa3Qn9g64_iGCHlml2grJKy2yNAogG-ZcVZ6rnCQz5moApX1WW28p8pZy3gogHi2Xjq9jB5ticKsa7qNiBlVYVHawzf5ma9c-FaxVrNZcRepjz4SEIcd7WIxEy1ejpe92XBez47iHQ_ypcajtNxLA8_Ex5gs6BNKNbTf0jkgLkWARDOCRi9txohKZEJ8gD4CPgbzzLD7-_z96AjfpZYeyO4RJt9rYp9jPdeUz_5H-BEnWS68
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VrQT0wDclUJCRuLpKHNtJxGmFWlVIrYroSuVkOYkjAbtJtZsU6F_on-44dgKUDy0cd7OzTsaT8bP9_AbglRV8EXkkqSh1SXmUllRrk9FK6ywMyyrVxi4NHB7Jgxl_eypONyAczsL8tH_f87AstdodRcfZHGO2MC1CgBuwKQWi7wlszo6Opx9cwg0pT_s6q7aGNsX44p6887e_-tOI9Cvi3IJbXX2mv33R8_kPo9D-XXg33L8jn3ze7dp8t7i4Ju34Lw94D-54SEqmLobuw4apH8DNQ7_p_hAup13bILA1JSlN21O3aqLrkhQWeVuqUd-7pKlI2y2aJek1jO3a7org16WreU-O907Ix0VfFIlYXirxJYLIoudzGuoLWODVpU3B5Lz5aubXGnkEs_29kzcH1NdwoIWQvKUJ17JiYSEwk5QIFTVLdJileYQzN8F0wqSJcilMXGV5xUxmSSxRlca5yXiiTRo_hknd1OYJkKzI0wrRKAIOnDRZVR9RSG24YIXmiQwDSIZ-VIUXOLd1NuZqYLJ9Ut99rayvlfN1ANFoeeZEPtawyYZQUcMhVky7Cvt3Ddvkd7Zm5fPHSkVqxVSo3vfySRjSrOfSCLR8PVp6iOSgz5rt7gwxrcamEKFZddiY8wBejpcxydidI12bprO_4TLjMY6cAWy7d2F0VCxiK0LIAmDjy7G2F5_-j9EzuG0_OcLeDkzaZWeeIzRs8xc-G1wB9CJgQQ
  priority: 102
  providerName: Unpaywall
Title Automated detection and classification of tumor histotypes on dynamic PET imaging data through machine-learning driven voxel classification
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522002153
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522002153
https://dx.doi.org/10.1016/j.compbiomed.2022.105423
https://www.ncbi.nlm.nih.gov/pubmed/35367782
https://www.proquest.com/docview/2663109344
https://www.proquest.com/docview/2646943876
https://doi.org/10.1016/j.compbiomed.2022.105423
UnpaywallVersion publishedVersion
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dj5NAEN9czsSPB-O36HlZE1_xYNllIT7VS2vVXNOYa1KfNgssSU0LTUvv9MV_wH_aGXbh1NOkiS-QApOlO8Psb-A3M4S8woIvIgtjXxS68HmYFL7WJvVLrdMgKMpEG3w1cDaJxzP-YS7mB-S0y4VBWqXz_dant97aHTlxs3myXiwwxxdCCQhwWMszEFjxk3OJXQxef7-iefAgsmko4G_wasfmsRwvpG3bNHeIFBnDprecRf9aoq5D0Dvk1q5a62-Xern8ZVka3SN3HZ6kA3vL98mBqR6Qm2fui_lD8mOwa2pApaaghWla3lVFdVXQHGEz8oRa1dC6pM1uVW9oW4AYX8xuKRwubMN6Oh2e08Wq7WhEkVRKXX8fumrJmMZ33Sfg7Ab9J72ov5rlH4M8IrPR8Px07LsGDH4uYt74kuu4ZEEuwA0UgPM0kzpIkyyEsEswLVlswiwWJirTrGQmRQZKWCZRZlIutUmix-SwqivzlNA0z5ISoCSgBYh4sCSPyGNtuGC55jIOPCK7OVe5q06OTTKWqqOhfVFX2lKoLWW15ZGwl1zbCh17yKSdWlWXgQo-U8Eysoes_Jus2bqHf6tCtWUqUNcM1CNvesnfbHzPcY86-1P9UACvsLRrxLlHXvanwUPgZx9dmXqH1_A45REsex55Yu22n6hIRFhBkHmE9Ya89yw--6__85zcxl-WdndEDpvNzrwAgNdkx-0TDFs5l7BNRu-OyY3B-4_jCezfDifTT7CfTaaDzz8BvetW4w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjF4QNwXGGAkeIxIHDsXoQkN6NSxtZqgk_ZmnNiRNrVJaVNGfwP_id_GOYmTIm7qy16bnrryOTkX-zvnI-QFDnwRqR-6Qivtcj_WrlImcXOlEs_TeawMHg0MhmH_lH84E2cb5EfbC4OwytYn1o5alxmekb-CQIJDLAPO30y_uMgahberLYWGstQKeq8eMWYbO47M8hJKuPne4XvQ90vGDnqjd33Xsgy4mQh55UZchTnzMgG2riGZUSxSXhKnPtQWgqmIhcZPQ2GCPElzZhKEWfh5HKQm4ZEycQC_e41s8YAnUPxtve0NTz6uOjO9oGmCAW_HoRizWKIGYYag8abJHupUxpByl7PgXwHyzwT4JtleFFO1vFTj8S9B8eA2uWWzWbrfmN8dsmGKu-T6wN7X3yPf9xdVCTmx0VSbqkZ9FVQVmmaYtCNKqTYMWua0WkzKGa3HH-Ox8JzCx3pZqMl5Rk96I3o-qfmUKEJaqWUXopMaCmpcy30BT2fovenX8psZ_7bIfXJ6JYp5QDaLsjA7hCZZGudgPpCrQL2FA4FEFirDBcsUj0LPIVG75zKzs9GRomMsWxDchVxpS6K2ZKMth_id5LSZD7KGTNKqVbb9r-CxJQSxNWSjv8mauXU9c-nLOZOe_FRPXgKTYzUMR4Dk607SZldN1rTmurut_cluqdU76ZDn3WPwT3jppApTLvA7PEx4AEHXIQ8bu-02KhABzi9kDmGdIa-9i4_-_4-eke3-aHAsjw-HR4_JDRRsEH67ZLOaLcwTyCWr9Kl9YSn5fNU-4idHWIh_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VIhX6gLgVAgUWCR6t2nvxRQihijZqKa0q0Up5W9b2WipK7DR2KPkG_oivY8a3IG7KS1_jTDbaGc-c2T0zA_CKGr6o2PMdlZrUkV6YOsbYyMmMiVw3zUJj6Wjg-MQ_OJcfRmq0Bj-6WhiiVXY-sXbUaZHQGfkOBhJqYimk3MlaWsTp3vDd9NKhCVJ009qN02hM5MgurjB9K98e7qGuX3M-3D97f-C0EwacRPmycgJp_Iy7iUI7TxHIGB4YNwpjD_MKxU3AfevFvrIii-KM24goFl4WithGMjA2FPi7N-BmIEREdMJgFCxrMl3RlL-gn5OYhrUsooZbRnTxprweM1TOadiu5OJfofFP6LsJt-b51CyuzHj8Szgc3oU7LY5lu43h3YM1m9-HjeP2pv4BfN-dVwWiYZuy1FY13ytnJk9ZQnCd-Em1SbAiY9V8UsxY3fiYDoRLhh-ni9xMLhJ2un_GLib1JCVGZFbWzhVik5oEap126gU-nZHfZl-Lb3b82yIP4fxa1LIF63mR28fAoiQOMzQcRCmYaVErIJX4xkrFEyMD3x1A0O25Ttqu6DScY6w7-tsXvdSWJm3pRlsD8HrJadMZZAWZqFOr7ipf0VdrDF8ryAZ_k7Vl63RK7emSa1d_qnsuocnxmoCjUPJNL9niqgYvrbjudmd_ul9q-TYO4GX_GD0TXTeZ3BZz-o70Iykw3A7gUWO3_UYJJahzIR8A7w155V188v9_9AI20DPoj4cnR0_hNsk11L5tWK9mc_sMQWQVP6_fVgafr9s9_ASL5YYZ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VrQT0wDclUJCRuLpKHNtJxGmFWlVIrYroSuVkOYkjAbtJtZsU6F_on-44dgKUDy0cd7OzTsaT8bP9_AbglRV8EXkkqSh1SXmUllRrk9FK6ywMyyrVxi4NHB7Jgxl_eypONyAczsL8tH_f87AstdodRcfZHGO2MC1CgBuwKQWi7wlszo6Opx9cwg0pT_s6q7aGNsX44p6887e_-tOI9Cvi3IJbXX2mv33R8_kPo9D-XXg33L8jn3ze7dp8t7i4Ju34Lw94D-54SEqmLobuw4apH8DNQ7_p_hAup13bILA1JSlN21O3aqLrkhQWeVuqUd-7pKlI2y2aJek1jO3a7org16WreU-O907Ix0VfFIlYXirxJYLIoudzGuoLWODVpU3B5Lz5aubXGnkEs_29kzcH1NdwoIWQvKUJ17JiYSEwk5QIFTVLdJileYQzN8F0wqSJcilMXGV5xUxmSSxRlca5yXiiTRo_hknd1OYJkKzI0wrRKAIOnDRZVR9RSG24YIXmiQwDSIZ-VIUXOLd1NuZqYLJ9Ut99rayvlfN1ANFoeeZEPtawyYZQUcMhVky7Cvt3Ddvkd7Zm5fPHSkVqxVSo3vfySRjSrOfSCLR8PVp6iOSgz5rt7gwxrcamEKFZddiY8wBejpcxydidI12bprO_4TLjMY6cAWy7d2F0VCxiK0LIAmDjy7G2F5_-j9EzuG0_OcLeDkzaZWeeIzRs8xc-G1wB9CJgQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+detection+and+classification+of+tumor+histotypes+on+dynamic+PET+imaging+data+through+machine-learning+driven+voxel+classification&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Bianchetti%2C+G.&rft.au=Taralli%2C+S.&rft.au=Vaccaro%2C+M.&rft.au=Indovina%2C+L.&rft.date=2022-06-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=145&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.105423&rft.externalDocID=S0010482522002153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon