Exploration of Effective Time-Velocity Distribution for Doppler-Radar-Based Personal Gait Identification Using Deep Learning

Personal identification based on radar gait measurement is an important application of biometric technology because it enables remote and continuous identification of people, irrespective of the lighting conditions and subjects’ outfits. This study explores an effective time-velocity distribution an...

Full description

Saved in:
Bibliographic Details
Published inSensors Vol. 23; no. 2; p. 604
Main Authors Shioiri, Keitaro, Saho, Kenshi
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 05.01.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23020604

Cover

Abstract Personal identification based on radar gait measurement is an important application of biometric technology because it enables remote and continuous identification of people, irrespective of the lighting conditions and subjects’ outfits. This study explores an effective time-velocity distribution and its relevant parameters for Doppler-radar-based personal gait identification using deep learning. Most conventional studies on radar-based gait identification used a short-time Fourier transform (STFT), which is a general method to obtain time-velocity distribution for motion recognition using Doppler radar. However, the length of the window function that controls the time and velocity resolutions of the time-velocity image was empirically selected, and several other methods for calculating high-resolution time-velocity distributions were not considered. In this study, we compared four types of representative time-velocity distributions calculated from the Doppler-radar-received signals: STFT, wavelet transform, Wigner–Ville distribution, and smoothed pseudo-Wigner–Ville distribution. In addition, the identification accuracies of various parameter settings were also investigated. We observed that the optimally tuned STFT outperformed other high-resolution distributions, and a short length of the window function in the STFT process led to a reasonable accuracy; the best identification accuracy was 99% for the identification of twenty-five test subjects. These results indicate that STFT is the optimal time-velocity distribution for gait-based personal identification using the Doppler radar, although the time and velocity resolutions of the other methods were better than those of the STFT.
AbstractList Personal identification based on radar gait measurement is an important application of biometric technology because it enables remote and continuous identification of people, irrespective of the lighting conditions and subjects' outfits. This study explores an effective time-velocity distribution and its relevant parameters for Doppler-radar-based personal gait identification using deep learning. Most conventional studies on radar-based gait identification used a short-time Fourier transform (STFT), which is a general method to obtain time-velocity distribution for motion recognition using Doppler radar. However, the length of the window function that controls the time and velocity resolutions of the time-velocity image was empirically selected, and several other methods for calculating high-resolution time-velocity distributions were not considered. In this study, we compared four types of representative time-velocity distributions calculated from the Doppler-radar-received signals: STFT, wavelet transform, Wigner-Ville distribution, and smoothed pseudo-Wigner-Ville distribution. In addition, the identification accuracies of various parameter settings were also investigated. We observed that the optimally tuned STFT outperformed other high-resolution distributions, and a short length of the window function in the STFT process led to a reasonable accuracy; the best identification accuracy was 99% for the identification of twenty-five test subjects. These results indicate that STFT is the optimal time-velocity distribution for gait-based personal identification using the Doppler radar, although the time and velocity resolutions of the other methods were better than those of the STFT.Personal identification based on radar gait measurement is an important application of biometric technology because it enables remote and continuous identification of people, irrespective of the lighting conditions and subjects' outfits. This study explores an effective time-velocity distribution and its relevant parameters for Doppler-radar-based personal gait identification using deep learning. Most conventional studies on radar-based gait identification used a short-time Fourier transform (STFT), which is a general method to obtain time-velocity distribution for motion recognition using Doppler radar. However, the length of the window function that controls the time and velocity resolutions of the time-velocity image was empirically selected, and several other methods for calculating high-resolution time-velocity distributions were not considered. In this study, we compared four types of representative time-velocity distributions calculated from the Doppler-radar-received signals: STFT, wavelet transform, Wigner-Ville distribution, and smoothed pseudo-Wigner-Ville distribution. In addition, the identification accuracies of various parameter settings were also investigated. We observed that the optimally tuned STFT outperformed other high-resolution distributions, and a short length of the window function in the STFT process led to a reasonable accuracy; the best identification accuracy was 99% for the identification of twenty-five test subjects. These results indicate that STFT is the optimal time-velocity distribution for gait-based personal identification using the Doppler radar, although the time and velocity resolutions of the other methods were better than those of the STFT.
Personal identification based on radar gait measurement is an important application of biometric technology because it enables remote and continuous identification of people, irrespective of the lighting conditions and subjects’ outfits. This study explores an effective time-velocity distribution and its relevant parameters for Doppler-radar-based personal gait identification using deep learning. Most conventional studies on radar-based gait identification used a short-time Fourier transform (STFT), which is a general method to obtain time-velocity distribution for motion recognition using Doppler radar. However, the length of the window function that controls the time and velocity resolutions of the time-velocity image was empirically selected, and several other methods for calculating high-resolution time-velocity distributions were not considered. In this study, we compared four types of representative time-velocity distributions calculated from the Doppler-radar-received signals: STFT, wavelet transform, Wigner–Ville distribution, and smoothed pseudo-Wigner–Ville distribution. In addition, the identification accuracies of various parameter settings were also investigated. We observed that the optimally tuned STFT outperformed other high-resolution distributions, and a short length of the window function in the STFT process led to a reasonable accuracy; the best identification accuracy was 99% for the identification of twenty-five test subjects. These results indicate that STFT is the optimal time-velocity distribution for gait-based personal identification using the Doppler radar, although the time and velocity resolutions of the other methods were better than those of the STFT.
Author Keitaro Shioiri
Kenshi Saho
AuthorAffiliation Department of Intelligent Robotics, Toyama Prefectural University, Imizu 939-0398, Japan
AuthorAffiliation_xml – name: Department of Intelligent Robotics, Toyama Prefectural University, Imizu 939-0398, Japan
Author_xml – sequence: 1
  givenname: Keitaro
  surname: Shioiri
  fullname: Shioiri, Keitaro
– sequence: 2
  givenname: Kenshi
  orcidid: 0000-0003-2088-1231
  surname: Saho
  fullname: Saho, Kenshi
BackLink https://cir.nii.ac.jp/crid/1870865117551647232$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/36679401$$D View this record in MEDLINE/PubMed
BookMark eNp9kl9rFDEUxQep2Fr74BeQAX1QYWySySQzL4J217qwoEjra8gkN2tKdjJNZqoLfnizO3Vpi_iSv78cTu65T7ODzneQZc8xeleWDTqNpEQEMUQfZUeYElrUhKCDO-vD7CRG2yJalaQsa_QkOywZ4w1F-Cj7Pf_VOx_kYH2Xe5PPjQE12BvIL-waiu_gvLLDJp_ZOATbjjvO-JDPfN87CMU3qWUoPsoIOv8KIfpOuvxc2iFfaOgGa6yaxC-j7Vb5DKDPlyBDl3bPssdGuggnt_NxdvlpfnH2uVh-OV-cfVgWqmJ0KDjhjWpqiavGlAZXxFBeIaa1xlhWmGoOmPLaaNJQgxgxuOWtItiY2mDWqvI4W0y62ssr0Qe7lmEjvLRid-DDSsgwWOVAAHBEqJQtazWtG9YgTKFCSkpccq1Q0no7aY1dLzc_pXN7QYzENhGxTyTB7ye4H9s1aJUKEqS75-D-TWd_iJW_EU3NaI1xEnh9KxD89QhxEGsbFTgnO_BjFISzFHGDmiqhLx-gV34MKY0dxVNtWL21_-Kuo72Vvx2RgNMJUMHHGMCIlP8uwWTQun9-8s2DF_8ryKuJ7axNwtsR1xzVrMKYVxVmlJPUpX8AS4jf7Q
CitedBy_id crossref_primary_10_1109_JMW_2025_3539957
Cites_doi 10.1109/JERM.2022.3198814
10.1007/s11042-018-6865-9
10.1109/JSEN.2020.3032960
10.1109/THMS.2022.3149408
10.1109/LMWC.2019.2907547
10.1109/TBME.2014.2367038
10.3390/s19112466
10.1049/iet-rsn.2017.0511
10.1049/rsn2.12147
10.1109/JSEN.2022.3165207
10.1002/mop.32125
10.1109/ACCESS.2021.3139850
10.1109/ACCESS.2019.2952065
10.1109/ACCESS.2018.2879896
10.1109/TIFS.2015.2398817
10.1109/TSP.2008.2007607
10.3390/s22062092
10.1016/j.cosrev.2021.100432
10.1007/s11831-019-09375-3
10.1049/iet-rsn.2020.0183
10.1049/iet-rsn.2019.0618
10.1109/TGRS.2018.2816812
10.1109/TNNLS.2020.3008938
10.1109/JSEN.2021.3118836
10.1016/j.phpro.2012.02.237
10.1109/MSP.2018.2890128
10.3390/rs12101685
10.1109/MSP.2016.2555335
10.3390/rs12142279
10.1109/TBIOM.2020.2973504
10.1109/LGRS.2018.2806940
10.1109/TIFS.2015.2415753
10.1016/j.gaitpost.2016.01.009
10.1109/ACCESS.2020.3033194
10.1109/JSEN.2022.3140787
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s23020604
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Publicly Available Content Database
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ee7024aab6bd48969014e50caa137dc0
10.3390/s23020604
PMC9864811
36679401
10_3390_s23020604
Genre Journal Article
GrantInformation_xml – fundername: Telecommunication Advancement Foundation
  grantid: R2
– fundername: Telecommunications Advancement Foundation (R2)
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
RYH
TUS
UKHRP
XSB
~8M
AAYXX
CITATION
PJZUB
PPXIY
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c564t-7279c98a159f3f152f47506ddd11a514d7e1478fd294f062f1b7bc21ff8f16bc3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Tue Oct 14 19:05:05 EDT 2025
Sun Oct 26 03:29:45 EDT 2025
Tue Sep 30 17:16:23 EDT 2025
Fri Sep 05 12:08:48 EDT 2025
Tue Oct 07 07:36:30 EDT 2025
Mon Jul 21 05:38:26 EDT 2025
Thu Oct 16 04:36:08 EDT 2025
Thu Apr 24 22:55:20 EDT 2025
Fri Jun 27 00:14:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords biometrics
deep learning
gait recognition
Doppler radar
person identification
time-velocity distribution
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-7279c98a159f3f152f47506ddd11a514d7e1478fd294f062f1b7bc21ff8f16bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2088-1231
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23020604
PMID 36679401
PQID 2767294680
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_ee7024aab6bd48969014e50caa137dc0
unpaywall_primary_10_3390_s23020604
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9864811
proquest_miscellaneous_2768229095
proquest_journals_2767294680
pubmed_primary_36679401
crossref_citationtrail_10_3390_s23020604
crossref_primary_10_3390_s23020604
nii_cinii_1870865117551647232
PublicationCentury 2000
PublicationDate 20230105
PublicationDateYYYYMMDD 2023-01-05
PublicationDate_xml – month: 1
  year: 2023
  text: 20230105
  day: 5
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lang (ref_19) 2020; 62
Lilly (ref_37) 2009; 57
Gurbuz (ref_36) 2019; 36
Pradhan (ref_39) 2020; 8
Bari (ref_10) 2019; 7
Su (ref_32) 2015; 62
Dong (ref_33) 2020; 14
Sprager (ref_13) 2015; 10
ref_35
ref_12
Singh (ref_6) 2021; 28
Vandersmissen (ref_21) 2018; 56
Menotti (ref_4) 2015; 10
Yu (ref_24) 2022; 52
Zhang (ref_25) 2012; 24
ref_15
Ni (ref_17) 2020; 14
Saho (ref_14) 2020; 21
Saho (ref_34) 2022; 6
Cao (ref_22) 2018; 12
Khare (ref_27) 2020; 32
Ni (ref_20) 2021; 71
Arab (ref_31) 2022; 22
Singh (ref_9) 2018; 6
Chen (ref_16) 2018; 15
ref_1
Lopac (ref_28) 2021; 10
ref_3
Manfredi (ref_26) 2021; 15
ref_29
Gianaria (ref_11) 2019; 78
Yang (ref_23) 2019; 29
Fujimoto (ref_38) 2016; 45
Patel (ref_7) 2016; 33
Ni (ref_18) 2022; 22
Khan (ref_8) 2021; 42
Tang (ref_30) 2021; 21
Zheng (ref_2) 2020; 2
ref_5
References_xml – volume: 6
  start-page: 461
  year: 2022
  ident: ref_34
  article-title: Estimation of Gait Parameters from Trunk Movement Measured by Doppler Radar
  publication-title: IEEE J. Electromagn. RF Microw. Med. Biol.
  doi: 10.1109/JERM.2022.3198814
– volume: 78
  start-page: 13925
  year: 2019
  ident: ref_11
  article-title: Robust gait identification using Kinect dynamic skeleton data
  publication-title: Multimed. Tool. Appl.
  doi: 10.1007/s11042-018-6865-9
– volume: 21
  start-page: 4563
  year: 2020
  ident: ref_14
  article-title: Accurate person identification based on combined sit-to-stand and stand-to-sit movements measured using Doppler radars
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3032960
– volume: 52
  start-page: 276
  year: 2022
  ident: ref_24
  article-title: SoDar: Multitarget gesture recognition based on SIMO Doppler radar
  publication-title: IEEE Trans. Hum. Mach. Syst.
  doi: 10.1109/THMS.2022.3149408
– ident: ref_3
– volume: 29
  start-page: 366
  year: 2019
  ident: ref_23
  article-title: Person identification using Micro-Doppler signatures of human motions and UWB radar
  publication-title: IEEE Microw. Wirel. Compon. Lett.
  doi: 10.1109/LMWC.2019.2907547
– volume: 62
  start-page: 865
  year: 2015
  ident: ref_32
  article-title: Doppler radar fall activity detection using the wavelet transform
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2367038
– ident: ref_12
  doi: 10.3390/s19112466
– volume: 12
  start-page: 729
  year: 2018
  ident: ref_22
  article-title: Radar-ID: Human identification based on radar micro-Doppler signatures using deep convolutional neural networks
  publication-title: IET Radar Sonar Navig.
  doi: 10.1049/iet-rsn.2017.0511
– volume: 15
  start-page: 1573
  year: 2021
  ident: ref_26
  article-title: Time-frequency characterisation of bistatic Doppler signature of a wooded area walk at L-band
  publication-title: IET Radar Sonar Navig.
  doi: 10.1049/rsn2.12147
– volume: 22
  start-page: 9713
  year: 2022
  ident: ref_18
  article-title: Gait-based person identification and intruder detection using mm-wave sensing in multi-person scenario
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3165207
– volume: 62
  start-page: 1060
  year: 2020
  ident: ref_19
  article-title: Person identification with limited training data using radar micro-Doppler signatures
  publication-title: Microw. Opt. Technol. Lett.
  doi: 10.1002/mop.32125
– volume: 10
  start-page: 2408
  year: 2021
  ident: ref_28
  article-title: Detection of Non-Stationary GW Signals in High Noise from Cohen’s Class of Time–Frequency Representations Using Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3139850
– volume: 7
  start-page: 162708
  year: 2019
  ident: ref_10
  article-title: Artificial neural network based gait recognition using Kinect sensor
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2952065
– ident: ref_1
– ident: ref_35
– volume: 6
  start-page: 70497
  year: 2018
  ident: ref_9
  article-title: Vision-based gait recognition: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2879896
– volume: 10
  start-page: 864
  year: 2015
  ident: ref_4
  article-title: Deep representations for iris, face, and fingerprint spoofing detection
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2015.2398817
– volume: 57
  start-page: 146
  year: 2009
  ident: ref_37
  article-title: Higher-Order Properties of Analytic Wavelets
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.2007607
– ident: ref_5
  doi: 10.3390/s22062092
– volume: 42
  start-page: 100432
  year: 2021
  ident: ref_8
  article-title: Vision-based approaches towards person identification using gait
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2021.100432
– volume: 28
  start-page: 107
  year: 2021
  ident: ref_6
  article-title: A survey of behavioral biometric gait recognition: Current success and future perspectives
  publication-title: Arch. Comp. Methods Eng.
  doi: 10.1007/s11831-019-09375-3
– volume: 14
  start-page: 1640
  year: 2020
  ident: ref_17
  article-title: Human identification based on natural gait micro-Doppler signatures using deep transfer learning
  publication-title: IET Radar Sonar Navig.
  doi: 10.1049/iet-rsn.2020.0183
– volume: 71
  start-page: 2501614
  year: 2021
  ident: ref_20
  article-title: Robust person gait identification based on limited radar measurements using set-based discriminative subspaces learning
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 14
  start-page: 1521
  year: 2020
  ident: ref_33
  article-title: Radar-based human identification using deep neural network for long-term stability
  publication-title: IET Radar Sonar Navig.
  doi: 10.1049/iet-rsn.2019.0618
– volume: 56
  start-page: 3941
  year: 2018
  ident: ref_21
  article-title: Indoor person identification using a low-power FMCW radar
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2816812
– volume: 32
  start-page: 2901
  year: 2020
  ident: ref_27
  article-title: Time–frequency representation and convolutional neural network-based emotion recognition
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3008938
– volume: 21
  start-page: 25950
  year: 2021
  ident: ref_30
  article-title: Human activity recognition based on mixed CNN With radar multi-spectrogram
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3118836
– volume: 24
  start-page: 1607
  year: 2012
  ident: ref_25
  article-title: Analysis of human gait radar signal using reassigned WVD
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2012.02.237
– volume: 36
  start-page: 16
  year: 2019
  ident: ref_36
  article-title: Radar-based human-motion recognition with deep learning: Promising applications for indoor monitoring
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2018.2890128
– ident: ref_29
  doi: 10.3390/rs12101685
– volume: 33
  start-page: 49
  year: 2016
  ident: ref_7
  article-title: Continuous User Authentication on Mobile Devices: Recent Progress and Remaining Challenges
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2016.2555335
– ident: ref_15
  doi: 10.3390/rs12142279
– volume: 2
  start-page: 194
  year: 2020
  ident: ref_2
  article-title: An automatic system for unconstrained video-based face recognition
  publication-title: IEEE Trans. Biom. Behav. Identity Sci.
  doi: 10.1109/TBIOM.2020.2973504
– volume: 15
  start-page: 669
  year: 2018
  ident: ref_16
  article-title: Personnel recognition and gait classification based on multistatic Micro-Doppler signatures using deep convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2806940
– volume: 10
  start-page: 1486
  year: 2015
  ident: ref_13
  article-title: An efficient HOS-based gait authentication of accelerometer data
  publication-title: IEEE Trans. Inf. Forensics Sec.
  doi: 10.1109/TIFS.2015.2415753
– volume: 45
  start-page: 121
  year: 2016
  ident: ref_38
  article-title: Sagittal plane momentum control during walking in elderly fallers
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.01.009
– volume: 8
  start-page: 193532
  year: 2020
  ident: ref_39
  article-title: Biomechanical parameters and clinical assessment scores for identifying elderly fallers based on balance and dynamic tasks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3033194
– volume: 22
  start-page: 4494
  year: 2022
  ident: ref_31
  article-title: A convolutional neural network for human motion recognition and classification using a millimeter-wave Doppler radar
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3140787
SSID ssib045323380
ssj0023338
ssib045318463
ssib045318440
ssib045317690
ssib045318460
ssib045320967
ssib045318445
ssib045318456
ssib045323835
ssib045315351
ssib045318454
ssib045316199
ssib045314840
ssib045319069
ssib045315347
ssib045315201
ssib045316148
ssib045318468
ssib045315722
ssib045314936
ssib045314816
ssib045315718
Score 2.3979053
Snippet Personal identification based on radar gait measurement is an important application of biometric technology because it enables remote and continuous...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 604
SubjectTerms Accuracy
Biometrics
biometrics; Doppler radar; gait recognition; person identification; deep learning; time-velocity distribution
Chemical technology
Deep Learning
Doppler radar
Facial recognition technology
Fourier Analysis
Gait
gait recognition
Humans
Methods
person identification
Privacy
Radar
Sensors
time-velocity distribution
TP1-1185
Ultrasonography, Doppler
Ultrasonography, Doppler - methods
Velocity
Walking
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Lb9QwEIct1EvhgHgTaCvzOHCxmsTvY9ulVEgghCjqLfITVlplV9tdIST-eMaON9oVRVy45LBxJGc89vwma3-D0GsnaADZrkkUrSNMMEd0YJrU3OgQbaQ2n6368FFcXLL3V_xqq9RX2hM24IEHwx2HICGMGGOF9UzpVD-JBV47YxoqvcvZeq30JpkqqRaFzGvgCFFI6o-vQWi3CROzE30ypB9iSj-d3qQv_9wmub_uF-bnDzObbcWg83vobhGP-GTo9H10K_QP0J0tpOBD9GvYVJftjecRD3RiWNJwOuxBvgYIXiC88SQBc0utKwzCFU_moEfDknw23izJKQQ3jz8VpY7fmekKD2d6Y_nIh_NmAzwJYYELpPXbI3R5_vbL2QUpFRaI44KtCIgX7bQyoGkijRDKIwMFIbz3TWNASnkZGiZV9K1msRZtbKy0rm1iVLER1tHHaK-f9-EpwlpS5zlvnVeMGaVsK52rE-7NGUqtrNCbjeU7V_DjqQrGrIM0JA1SNw5ShV6OTRcDc-OmRqdp-MYGCZOdfwDn6YrzdP9yngodwuBDf9K1gaVLCZ7YpTxR1kBrVuhg4xZdmdvXXSsFZCRMKHj8xXgbZmX6q8X0Yb7ObTJJX_MKPRm8aOwpFQIWwbqpkNzxr51X2b3TT79n8ndi6asGnnw1euLfLfTsf1joObrdwnTKH534AdpbLdfhEGTYyh7lGfcbrGcuwQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3Pb9MwFMefRncADojfBDZkfhy4WItjx0kOCFG6MSFRTRNDu0WOf4xKVVK6VgiJP55nxw2rGFxyaFzJyXvP72vH_jyA11pyi7K9ok5mmgopNK2sqGiaq8q6xvEmnK36PJXHZ-LTeX6-A9PNWRi_rXIzJoaB2nTar5EfZIVEHShkmb5bfKe-apT_uropoaFiaQXzNiDGbsBu5slYI9gdH05PTocpGMcZWc8X4jjZP7hEAZ55fMxWVgrwfsw17Wx2ne78e_vkzXW7UD9_qPn8Sm46ugt3oqgk73svuAc7tr0Pt6-gBh_Ar36zXbAD6RzpqcU41BF_CIR-tZjUUJCTiQfpxhpYBAUtmXSoU-2SniqjlnSMSc-Qk6jgyUc1W5H-rK-Li38kbEIgE2sXJMJbLx7C2dHhlw_HNFZeoDqXYkVR1FS6KhVqHccdpngnUFlIYwxjCiWWKSwTRekMWsSlMnOsKRqdMedKx2Sj-SMYtV1rnwCpCq5NnmfalEKosmyyQuvUY-C04rwpEnizefO1jlhyXx1jXuP0xBupHoyUwMuh6aJncVzXaOzNNzTw-OzwQ7e8qGM01tYWqE2UamRjRFn5olzC5qlWivHC6DSBfTQ-9sdfGQ5ppcw90zT39DXUoAnsbdyijjF_Wf_x0AReDLcxWv0nGNXabh3aBMJ-lSfwuPeioadcShwcU5ZAseVfW4-yfaedfQtEcM_YLxn-89Xgif9-Q0__3_lncCvDQAnLTPkejFbLtd1H4bVqnsdo-g0JWix-
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgewAOvB-BFpnHgYu78TPJCbWUUiFRVYhF5RT5WVassqt9gED8eMaJN-pCkRCXHJKxFG8-z3zjnfmM0HOruAfaXpGgmCVCCUsqLyqSS135YAI3bW_Vu2N1NBJvT-Vp2nBbpLJKSMXHrZOOXVgEIlg-ZHzIhioXw5kLL7-mnSSqopwbMHJ5GW0pCVx8gLZGxyd7n9qWojS2kxPikNsPF8C3WVSL2QhCrVY_hJZmPL6IZv5ZLXll1cz09296MjkXig5voHo9ia4C5cvuaml27Y_f9B3_f5Y30fXEUvFeB6tb6JJvbqNr57QL76CfXfVe-2HxNOBOBhl8J45dJeSjhygJDB8fRGXedKgWBoaMD6ZAfP2cvNdOz8k-RFGHT1JKgN_o8RJ3zcMh7SbitqoBH3g_w0kN9uwuGh2-_vDqiKSjHIiVSiwJsKTKVqUG8hR4AM4QBFAV5ZyjVANnc4WnoiiDY5UIuWKBmsJYRkMoA1XG8nto0Ewb_wDhquDWScmsK4XQZWlYYW0edeWs5twUGXqx_ra1TTrn8biNSQ35ToRB3cMgQ09701kn7nGR0X4ESG8Q9bjbG9P5WZ2Wd-19AWRHa6OME2UVT_kSXuZWa8oLZ_MM7QC84H3ilYKPLJWMIqkyyrkBqc3Q9hp4dXIii5oVClIfoUoY_qR_DMs__qejGz9dtTatZH8lM3S_w2n_plwp8LY5zVCxgeCNqWw-acafW4nxKNpfUhj5rMf633-hh_9k9QhdZUAQ2-0ruY0Gy_nK7wChW5rHadX-Au1RQyc
  priority: 102
  providerName: Unpaywall
Title Exploration of Effective Time-Velocity Distribution for Doppler-Radar-Based Personal Gait Identification Using Deep Learning
URI https://cir.nii.ac.jp/crid/1870865117551647232
https://www.ncbi.nlm.nih.gov/pubmed/36679401
https://www.proquest.com/docview/2767294680
https://www.proquest.com/docview/2768229095
https://pubmed.ncbi.nlm.nih.gov/PMC9864811
https://www.mdpi.com/1424-8220/23/2/604/pdf?version=1673936265
https://doaj.org/article/ee7024aab6bd48969014e50caa137dc0
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9NAFB51OQAHxI5LGw3LgYupl_EsB4Qa0rRCahRVBIWTNZ6lRIrs1E0ElfjxvBk7ViPCjYsP9rNkv2Xe92b5HkLvFE0NwHYRWpqokFCiQmGICKNMCmMLmxb-bNXFiJ5PyJdpNt1B6x6brQJvtpZ2rp_UpJ5_-HV9-wkC_qOrOKFkP74BGJ04EphdtA8JSrgODhekW0xIUijDGlKhTfGNVOQZ-yHBlLPZNrD5957Je6tyIW9_yvn8TkIaPkIPWySJTxrTP0Y7pnyCHtzhF3yKfjc77LzycWVxQ1UM4xt2Jz_CbwYyGaBwPHDsuW3jKwwoFg8qAKemDi-llnXYh0yn8biF7fhMzpa4OeBr2xk_7Hce4IExC9wytl49Q5Ph6dfP52HbbiFUGSXLEJCMUIJLADg2tZDXLQE4QbXWcSwBV2lmYsK41YkgNqKJjQtWqCS2ltuYFip9jvbKqjQvERYsVTrLEqU5IZLzImFKRY77Tck0LViA3q81n6uWi9y1xJjnUJM4I-WdkQL0phNdNAQc24T6znydgOPM9jeq-ipvQzA3hgEgkbKghSZcuE5cxGSRkjJOmVZRgI7A-PA97hrDOMZp5ohMM0e5BsAzQIdrt8jXfponjEJ5QiiH1193jyFE3bqLLE218jKeVl9kAXrReFH3pSmlMCJGcYDYhn9t_Mrmk3L2w9OAO2J9HsObbztP_LeGDv6Hhl6h-wmEk5-Byg7R3rJemSPAZMuih3bZlMGVD896aL9_Ohpf9vz8Rs_HItybjMYn3_8AWTg6eg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4q5VA4VOy4tDBsEpdRbc94xj4gRAklpYsQalFuZjxLiRTZIYuqSvwmfiNvbMdtROHWSw7xJJn4Ld_3xjPfA3ilBbNI2zPqRKwpF1zTzPKMhonKrCscK-qzVYdHon_CPw-SwQr8XpyF8dsqFzmxTtSm0n6NfDuWAnkgF2n4bvyT-q5R_unqooVG4xb79vwMS7bp270e2vd1HO9-PP7Qp21XAaoTwWcUATvTWaoQxx1zCF-OI2oKY0wUKaQPRtqIy9QZ_DUXithFhSx0HDmXukgUmuH33oCbnGEuwfiRg4sCj2G916gXMZaF21Ok97EXp1nCvLo1ACJZORxexWr_3py5Ni_H6vxMjUaXkG_3Dqy3lJW8b3zsLqzY8h7cviRkeB9-NVv5aiuTypFGExkTKfFHTOg3i5CJdJ_0vExv22GLIF0mvQpZsJ3Qr8qoCd1BSDXkS1sfkE9qOCPNSWLXLi2SeosD6Vk7Jq007OkDOLkWCzyE1bIq7WMgmWTaJEmsTcq5StMillqHXmROK8YKGcCbxZ3PdSt67ntvjHIsfryR8s5IAbzoho4bpY-rBu1483UDvDh3_UY1Oc3bWM-tlch8lCpEYXia-ZZf3CahVipi0ugwgC00Ps7Hv0aYMFOReMXUxGu7IcMNYHPhFnmbUab5hf8H8Ly7jLnAP-BRpa3m9Zhavz9LAnjUeFE3UyYEpt4wCkAu-dfSX1m-Ug5_1HrjXsE_jfCTLztP_Pcd2vj_5J_BWv_48CA_2DvafwK3YgyaekEr2YTV2WRut5DizYqndVwR-H7dgfwHG-liUw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQ-LygLgvsIG5SbxYTWLHTh4QYpSyMZgmxFDfguPLVqlKSi-aJvHL-HUcJ2m2isHbXvoQu6mbc_uOc_wdgJdaMIuwPaNOxJpywTXNLM9omKjMusKxoj5b9WVf7BzyT8NkuAa_l2dhfFnl0ifWjtpU2u-R92IpEAdykYY915ZFHPQHbyc_qe8g5d-0LttpNCqyZ09PMH2bvdnto6xfxfHgw7f3O7TtMEB1IvicYvDOdJYqjOmOOQxljmMEFcaYKFIIJYy0EZepM_jLLhSxiwpZ6DhyLnWRKDTD-16Bq5KxzJcTyuFZsscw92uYjHAw7M0Q6seeqGYl_tVtAjCqlaPRRQj370LN64tyok5P1Hh8LgoObsOtFr6Sd42-3YE1W96Fm-dIDe_Br6asr5Y4qRxp-JHRqRJ_3IR-txg-EfqTvqfsbbttEYTOpF8hIrZT-lUZNaXbGF4NOWhzBfJRjeakOVXs2m1GUpc7kL61E9LSxB7dh8NLkcADWC-r0m4AySTTJklibVLOVZoWsdQ69IRzWjFWyABeL598rlsCdN-HY5xjIuSFlHdCCuB5N3XSsH5cNGnbi6-b4Im66wvV9Chv7T63ViIKUqoQheFp5tt_cZuEWqmISaPDALZQ-Lge_xmh80xF4tlTE8_zhmg3gM2lWuStd5nlZ7YQwLNuGP2Cf9mjSlst6jk1l3-WBPCw0aJupUwIdMNhFIBc0a-Vv7I6Uo6Oa-5xz-afRvjNF50m_vsJPfr_4p_CNTTh_PPu_t5juBGjzdR7W8kmrM-nC7uFaG9ePKnNisCPy7bjP-cpZpY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgewAOvB-BFpnHgYu78TPJCbWUUiFRVYhF5RT5WVassqt9gED8eMaJN-pCkRCXHJKxFG8-z3zjnfmM0HOruAfaXpGgmCVCCUsqLyqSS135YAI3bW_Vu2N1NBJvT-Vp2nBbpLJKSMXHrZOOXVgEIlg-ZHzIhioXw5kLL7-mnSSqopwbMHJ5GW0pCVx8gLZGxyd7n9qWojS2kxPikNsPF8C3WVSL2QhCrVY_hJZmPL6IZv5ZLXll1cz09296MjkXig5voHo9ia4C5cvuaml27Y_f9B3_f5Y30fXEUvFeB6tb6JJvbqNr57QL76CfXfVe-2HxNOBOBhl8J45dJeSjhygJDB8fRGXedKgWBoaMD6ZAfP2cvNdOz8k-RFGHT1JKgN_o8RJ3zcMh7SbitqoBH3g_w0kN9uwuGh2-_vDqiKSjHIiVSiwJsKTKVqUG8hR4AM4QBFAV5ZyjVANnc4WnoiiDY5UIuWKBmsJYRkMoA1XG8nto0Ewb_wDhquDWScmsK4XQZWlYYW0edeWs5twUGXqx_ra1TTrn8biNSQ35ToRB3cMgQ09701kn7nGR0X4ESG8Q9bjbG9P5WZ2Wd-19AWRHa6OME2UVT_kSXuZWa8oLZ_MM7QC84H3ilYKPLJWMIqkyyrkBqc3Q9hp4dXIii5oVClIfoUoY_qR_DMs__qejGz9dtTatZH8lM3S_w2n_plwp8LY5zVCxgeCNqWw-acafW4nxKNpfUhj5rMf633-hh_9k9QhdZUAQ2-0ruY0Gy_nK7wChW5rHadX-Au1RQyc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+of+Effective+Time-Velocity+Distribution+for+Doppler-Radar-Based+Personal+Gait+Identification+Using+Deep+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Keitaro+Shioiri&rft.au=Kenshi+Saho&rft.date=2023-01-05&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=2&rft.spage=604&rft_id=info:doi/10.3390%2Fs23020604&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ee7024aab6bd48969014e50caa137dc0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon