Exploration of Effective Time-Velocity Distribution for Doppler-Radar-Based Personal Gait Identification Using Deep Learning
Personal identification based on radar gait measurement is an important application of biometric technology because it enables remote and continuous identification of people, irrespective of the lighting conditions and subjects’ outfits. This study explores an effective time-velocity distribution an...
Saved in:
| Published in | Sensors Vol. 23; no. 2; p. 604 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
05.01.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s23020604 |
Cover
| Abstract | Personal identification based on radar gait measurement is an important application of biometric technology because it enables remote and continuous identification of people, irrespective of the lighting conditions and subjects’ outfits. This study explores an effective time-velocity distribution and its relevant parameters for Doppler-radar-based personal gait identification using deep learning. Most conventional studies on radar-based gait identification used a short-time Fourier transform (STFT), which is a general method to obtain time-velocity distribution for motion recognition using Doppler radar. However, the length of the window function that controls the time and velocity resolutions of the time-velocity image was empirically selected, and several other methods for calculating high-resolution time-velocity distributions were not considered. In this study, we compared four types of representative time-velocity distributions calculated from the Doppler-radar-received signals: STFT, wavelet transform, Wigner–Ville distribution, and smoothed pseudo-Wigner–Ville distribution. In addition, the identification accuracies of various parameter settings were also investigated. We observed that the optimally tuned STFT outperformed other high-resolution distributions, and a short length of the window function in the STFT process led to a reasonable accuracy; the best identification accuracy was 99% for the identification of twenty-five test subjects. These results indicate that STFT is the optimal time-velocity distribution for gait-based personal identification using the Doppler radar, although the time and velocity resolutions of the other methods were better than those of the STFT. |
|---|---|
| AbstractList | Personal identification based on radar gait measurement is an important application of biometric technology because it enables remote and continuous identification of people, irrespective of the lighting conditions and subjects' outfits. This study explores an effective time-velocity distribution and its relevant parameters for Doppler-radar-based personal gait identification using deep learning. Most conventional studies on radar-based gait identification used a short-time Fourier transform (STFT), which is a general method to obtain time-velocity distribution for motion recognition using Doppler radar. However, the length of the window function that controls the time and velocity resolutions of the time-velocity image was empirically selected, and several other methods for calculating high-resolution time-velocity distributions were not considered. In this study, we compared four types of representative time-velocity distributions calculated from the Doppler-radar-received signals: STFT, wavelet transform, Wigner-Ville distribution, and smoothed pseudo-Wigner-Ville distribution. In addition, the identification accuracies of various parameter settings were also investigated. We observed that the optimally tuned STFT outperformed other high-resolution distributions, and a short length of the window function in the STFT process led to a reasonable accuracy; the best identification accuracy was 99% for the identification of twenty-five test subjects. These results indicate that STFT is the optimal time-velocity distribution for gait-based personal identification using the Doppler radar, although the time and velocity resolutions of the other methods were better than those of the STFT.Personal identification based on radar gait measurement is an important application of biometric technology because it enables remote and continuous identification of people, irrespective of the lighting conditions and subjects' outfits. This study explores an effective time-velocity distribution and its relevant parameters for Doppler-radar-based personal gait identification using deep learning. Most conventional studies on radar-based gait identification used a short-time Fourier transform (STFT), which is a general method to obtain time-velocity distribution for motion recognition using Doppler radar. However, the length of the window function that controls the time and velocity resolutions of the time-velocity image was empirically selected, and several other methods for calculating high-resolution time-velocity distributions were not considered. In this study, we compared four types of representative time-velocity distributions calculated from the Doppler-radar-received signals: STFT, wavelet transform, Wigner-Ville distribution, and smoothed pseudo-Wigner-Ville distribution. In addition, the identification accuracies of various parameter settings were also investigated. We observed that the optimally tuned STFT outperformed other high-resolution distributions, and a short length of the window function in the STFT process led to a reasonable accuracy; the best identification accuracy was 99% for the identification of twenty-five test subjects. These results indicate that STFT is the optimal time-velocity distribution for gait-based personal identification using the Doppler radar, although the time and velocity resolutions of the other methods were better than those of the STFT. Personal identification based on radar gait measurement is an important application of biometric technology because it enables remote and continuous identification of people, irrespective of the lighting conditions and subjects’ outfits. This study explores an effective time-velocity distribution and its relevant parameters for Doppler-radar-based personal gait identification using deep learning. Most conventional studies on radar-based gait identification used a short-time Fourier transform (STFT), which is a general method to obtain time-velocity distribution for motion recognition using Doppler radar. However, the length of the window function that controls the time and velocity resolutions of the time-velocity image was empirically selected, and several other methods for calculating high-resolution time-velocity distributions were not considered. In this study, we compared four types of representative time-velocity distributions calculated from the Doppler-radar-received signals: STFT, wavelet transform, Wigner–Ville distribution, and smoothed pseudo-Wigner–Ville distribution. In addition, the identification accuracies of various parameter settings were also investigated. We observed that the optimally tuned STFT outperformed other high-resolution distributions, and a short length of the window function in the STFT process led to a reasonable accuracy; the best identification accuracy was 99% for the identification of twenty-five test subjects. These results indicate that STFT is the optimal time-velocity distribution for gait-based personal identification using the Doppler radar, although the time and velocity resolutions of the other methods were better than those of the STFT. |
| Author | Keitaro Shioiri Kenshi Saho |
| AuthorAffiliation | Department of Intelligent Robotics, Toyama Prefectural University, Imizu 939-0398, Japan |
| AuthorAffiliation_xml | – name: Department of Intelligent Robotics, Toyama Prefectural University, Imizu 939-0398, Japan |
| Author_xml | – sequence: 1 givenname: Keitaro surname: Shioiri fullname: Shioiri, Keitaro – sequence: 2 givenname: Kenshi orcidid: 0000-0003-2088-1231 surname: Saho fullname: Saho, Kenshi |
| BackLink | https://cir.nii.ac.jp/crid/1870865117551647232$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/36679401$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kl9rFDEUxQep2Fr74BeQAX1QYWySySQzL4J217qwoEjra8gkN2tKdjJNZqoLfnizO3Vpi_iSv78cTu65T7ODzneQZc8xeleWDTqNpEQEMUQfZUeYElrUhKCDO-vD7CRG2yJalaQsa_QkOywZ4w1F-Cj7Pf_VOx_kYH2Xe5PPjQE12BvIL-waiu_gvLLDJp_ZOATbjjvO-JDPfN87CMU3qWUoPsoIOv8KIfpOuvxc2iFfaOgGa6yaxC-j7Vb5DKDPlyBDl3bPssdGuggnt_NxdvlpfnH2uVh-OV-cfVgWqmJ0KDjhjWpqiavGlAZXxFBeIaa1xlhWmGoOmPLaaNJQgxgxuOWtItiY2mDWqvI4W0y62ssr0Qe7lmEjvLRid-DDSsgwWOVAAHBEqJQtazWtG9YgTKFCSkpccq1Q0no7aY1dLzc_pXN7QYzENhGxTyTB7ye4H9s1aJUKEqS75-D-TWd_iJW_EU3NaI1xEnh9KxD89QhxEGsbFTgnO_BjFISzFHGDmiqhLx-gV34MKY0dxVNtWL21_-Kuo72Vvx2RgNMJUMHHGMCIlP8uwWTQun9-8s2DF_8ryKuJ7axNwtsR1xzVrMKYVxVmlJPUpX8AS4jf7Q |
| CitedBy_id | crossref_primary_10_1109_JMW_2025_3539957 |
| Cites_doi | 10.1109/JERM.2022.3198814 10.1007/s11042-018-6865-9 10.1109/JSEN.2020.3032960 10.1109/THMS.2022.3149408 10.1109/LMWC.2019.2907547 10.1109/TBME.2014.2367038 10.3390/s19112466 10.1049/iet-rsn.2017.0511 10.1049/rsn2.12147 10.1109/JSEN.2022.3165207 10.1002/mop.32125 10.1109/ACCESS.2021.3139850 10.1109/ACCESS.2019.2952065 10.1109/ACCESS.2018.2879896 10.1109/TIFS.2015.2398817 10.1109/TSP.2008.2007607 10.3390/s22062092 10.1016/j.cosrev.2021.100432 10.1007/s11831-019-09375-3 10.1049/iet-rsn.2020.0183 10.1049/iet-rsn.2019.0618 10.1109/TGRS.2018.2816812 10.1109/TNNLS.2020.3008938 10.1109/JSEN.2021.3118836 10.1016/j.phpro.2012.02.237 10.1109/MSP.2018.2890128 10.3390/rs12101685 10.1109/MSP.2016.2555335 10.3390/rs12142279 10.1109/TBIOM.2020.2973504 10.1109/LGRS.2018.2806940 10.1109/TIFS.2015.2415753 10.1016/j.gaitpost.2016.01.009 10.1109/ACCESS.2020.3033194 10.1109/JSEN.2022.3140787 |
| ContentType | Journal Article |
| Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s23020604 |
| DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_ee7024aab6bd48969014e50caa137dc0 10.3390/s23020604 PMC9864811 36679401 10_3390_s23020604 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Telecommunication Advancement Foundation grantid: R2 – fundername: Telecommunications Advancement Foundation (R2) |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM RYH TUS UKHRP XSB ~8M AAYXX CITATION PJZUB PPXIY CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c564t-7279c98a159f3f152f47506ddd11a514d7e1478fd294f062f1b7bc21ff8f16bc3 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:05:05 EDT 2025 Sun Oct 26 03:29:45 EDT 2025 Tue Sep 30 17:16:23 EDT 2025 Fri Sep 05 12:08:48 EDT 2025 Tue Oct 07 07:36:30 EDT 2025 Mon Jul 21 05:38:26 EDT 2025 Thu Oct 16 04:36:08 EDT 2025 Thu Apr 24 22:55:20 EDT 2025 Fri Jun 27 00:14:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | biometrics deep learning gait recognition Doppler radar person identification time-velocity distribution |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c564t-7279c98a159f3f152f47506ddd11a514d7e1478fd294f062f1b7bc21ff8f16bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2088-1231 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23020604 |
| PMID | 36679401 |
| PQID | 2767294680 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ee7024aab6bd48969014e50caa137dc0 unpaywall_primary_10_3390_s23020604 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9864811 proquest_miscellaneous_2768229095 proquest_journals_2767294680 pubmed_primary_36679401 crossref_citationtrail_10_3390_s23020604 crossref_primary_10_3390_s23020604 nii_cinii_1870865117551647232 |
| PublicationCentury | 2000 |
| PublicationDate | 20230105 |
| PublicationDateYYYYMMDD | 2023-01-05 |
| PublicationDate_xml | – month: 1 year: 2023 text: 20230105 day: 5 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Lang (ref_19) 2020; 62 Lilly (ref_37) 2009; 57 Gurbuz (ref_36) 2019; 36 Pradhan (ref_39) 2020; 8 Bari (ref_10) 2019; 7 Su (ref_32) 2015; 62 Dong (ref_33) 2020; 14 Sprager (ref_13) 2015; 10 ref_35 ref_12 Singh (ref_6) 2021; 28 Vandersmissen (ref_21) 2018; 56 Menotti (ref_4) 2015; 10 Yu (ref_24) 2022; 52 Zhang (ref_25) 2012; 24 ref_15 Ni (ref_17) 2020; 14 Saho (ref_14) 2020; 21 Saho (ref_34) 2022; 6 Cao (ref_22) 2018; 12 Khare (ref_27) 2020; 32 Ni (ref_20) 2021; 71 Arab (ref_31) 2022; 22 Singh (ref_9) 2018; 6 Chen (ref_16) 2018; 15 ref_1 Lopac (ref_28) 2021; 10 ref_3 Manfredi (ref_26) 2021; 15 ref_29 Gianaria (ref_11) 2019; 78 Yang (ref_23) 2019; 29 Fujimoto (ref_38) 2016; 45 Patel (ref_7) 2016; 33 Ni (ref_18) 2022; 22 Khan (ref_8) 2021; 42 Tang (ref_30) 2021; 21 Zheng (ref_2) 2020; 2 ref_5 |
| References_xml | – volume: 6 start-page: 461 year: 2022 ident: ref_34 article-title: Estimation of Gait Parameters from Trunk Movement Measured by Doppler Radar publication-title: IEEE J. Electromagn. RF Microw. Med. Biol. doi: 10.1109/JERM.2022.3198814 – volume: 78 start-page: 13925 year: 2019 ident: ref_11 article-title: Robust gait identification using Kinect dynamic skeleton data publication-title: Multimed. Tool. Appl. doi: 10.1007/s11042-018-6865-9 – volume: 21 start-page: 4563 year: 2020 ident: ref_14 article-title: Accurate person identification based on combined sit-to-stand and stand-to-sit movements measured using Doppler radars publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3032960 – volume: 52 start-page: 276 year: 2022 ident: ref_24 article-title: SoDar: Multitarget gesture recognition based on SIMO Doppler radar publication-title: IEEE Trans. Hum. Mach. Syst. doi: 10.1109/THMS.2022.3149408 – ident: ref_3 – volume: 29 start-page: 366 year: 2019 ident: ref_23 article-title: Person identification using Micro-Doppler signatures of human motions and UWB radar publication-title: IEEE Microw. Wirel. Compon. Lett. doi: 10.1109/LMWC.2019.2907547 – volume: 62 start-page: 865 year: 2015 ident: ref_32 article-title: Doppler radar fall activity detection using the wavelet transform publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2367038 – ident: ref_12 doi: 10.3390/s19112466 – volume: 12 start-page: 729 year: 2018 ident: ref_22 article-title: Radar-ID: Human identification based on radar micro-Doppler signatures using deep convolutional neural networks publication-title: IET Radar Sonar Navig. doi: 10.1049/iet-rsn.2017.0511 – volume: 15 start-page: 1573 year: 2021 ident: ref_26 article-title: Time-frequency characterisation of bistatic Doppler signature of a wooded area walk at L-band publication-title: IET Radar Sonar Navig. doi: 10.1049/rsn2.12147 – volume: 22 start-page: 9713 year: 2022 ident: ref_18 article-title: Gait-based person identification and intruder detection using mm-wave sensing in multi-person scenario publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3165207 – volume: 62 start-page: 1060 year: 2020 ident: ref_19 article-title: Person identification with limited training data using radar micro-Doppler signatures publication-title: Microw. Opt. Technol. Lett. doi: 10.1002/mop.32125 – volume: 10 start-page: 2408 year: 2021 ident: ref_28 article-title: Detection of Non-Stationary GW Signals in High Noise from Cohen’s Class of Time–Frequency Representations Using Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3139850 – volume: 7 start-page: 162708 year: 2019 ident: ref_10 article-title: Artificial neural network based gait recognition using Kinect sensor publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2952065 – ident: ref_1 – ident: ref_35 – volume: 6 start-page: 70497 year: 2018 ident: ref_9 article-title: Vision-based gait recognition: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2879896 – volume: 10 start-page: 864 year: 2015 ident: ref_4 article-title: Deep representations for iris, face, and fingerprint spoofing detection publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2015.2398817 – volume: 57 start-page: 146 year: 2009 ident: ref_37 article-title: Higher-Order Properties of Analytic Wavelets publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.2007607 – ident: ref_5 doi: 10.3390/s22062092 – volume: 42 start-page: 100432 year: 2021 ident: ref_8 article-title: Vision-based approaches towards person identification using gait publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2021.100432 – volume: 28 start-page: 107 year: 2021 ident: ref_6 article-title: A survey of behavioral biometric gait recognition: Current success and future perspectives publication-title: Arch. Comp. Methods Eng. doi: 10.1007/s11831-019-09375-3 – volume: 14 start-page: 1640 year: 2020 ident: ref_17 article-title: Human identification based on natural gait micro-Doppler signatures using deep transfer learning publication-title: IET Radar Sonar Navig. doi: 10.1049/iet-rsn.2020.0183 – volume: 71 start-page: 2501614 year: 2021 ident: ref_20 article-title: Robust person gait identification based on limited radar measurements using set-based discriminative subspaces learning publication-title: IEEE Trans. Instrum. Meas. – volume: 14 start-page: 1521 year: 2020 ident: ref_33 article-title: Radar-based human identification using deep neural network for long-term stability publication-title: IET Radar Sonar Navig. doi: 10.1049/iet-rsn.2019.0618 – volume: 56 start-page: 3941 year: 2018 ident: ref_21 article-title: Indoor person identification using a low-power FMCW radar publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2816812 – volume: 32 start-page: 2901 year: 2020 ident: ref_27 article-title: Time–frequency representation and convolutional neural network-based emotion recognition publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3008938 – volume: 21 start-page: 25950 year: 2021 ident: ref_30 article-title: Human activity recognition based on mixed CNN With radar multi-spectrogram publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3118836 – volume: 24 start-page: 1607 year: 2012 ident: ref_25 article-title: Analysis of human gait radar signal using reassigned WVD publication-title: Phys. Procedia doi: 10.1016/j.phpro.2012.02.237 – volume: 36 start-page: 16 year: 2019 ident: ref_36 article-title: Radar-based human-motion recognition with deep learning: Promising applications for indoor monitoring publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2018.2890128 – ident: ref_29 doi: 10.3390/rs12101685 – volume: 33 start-page: 49 year: 2016 ident: ref_7 article-title: Continuous User Authentication on Mobile Devices: Recent Progress and Remaining Challenges publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2016.2555335 – ident: ref_15 doi: 10.3390/rs12142279 – volume: 2 start-page: 194 year: 2020 ident: ref_2 article-title: An automatic system for unconstrained video-based face recognition publication-title: IEEE Trans. Biom. Behav. Identity Sci. doi: 10.1109/TBIOM.2020.2973504 – volume: 15 start-page: 669 year: 2018 ident: ref_16 article-title: Personnel recognition and gait classification based on multistatic Micro-Doppler signatures using deep convolutional neural networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2806940 – volume: 10 start-page: 1486 year: 2015 ident: ref_13 article-title: An efficient HOS-based gait authentication of accelerometer data publication-title: IEEE Trans. Inf. Forensics Sec. doi: 10.1109/TIFS.2015.2415753 – volume: 45 start-page: 121 year: 2016 ident: ref_38 article-title: Sagittal plane momentum control during walking in elderly fallers publication-title: Gait Posture doi: 10.1016/j.gaitpost.2016.01.009 – volume: 8 start-page: 193532 year: 2020 ident: ref_39 article-title: Biomechanical parameters and clinical assessment scores for identifying elderly fallers based on balance and dynamic tasks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3033194 – volume: 22 start-page: 4494 year: 2022 ident: ref_31 article-title: A convolutional neural network for human motion recognition and classification using a millimeter-wave Doppler radar publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3140787 |
| SSID | ssib045323380 ssj0023338 ssib045318463 ssib045318440 ssib045317690 ssib045318460 ssib045320967 ssib045318445 ssib045318456 ssib045323835 ssib045315351 ssib045318454 ssib045316199 ssib045314840 ssib045319069 ssib045315347 ssib045315201 ssib045316148 ssib045318468 ssib045315722 ssib045314936 ssib045314816 ssib045315718 |
| Score | 2.3979053 |
| Snippet | Personal identification based on radar gait measurement is an important application of biometric technology because it enables remote and continuous... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref nii |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 604 |
| SubjectTerms | Accuracy Biometrics biometrics; Doppler radar; gait recognition; person identification; deep learning; time-velocity distribution Chemical technology Deep Learning Doppler radar Facial recognition technology Fourier Analysis Gait gait recognition Humans Methods person identification Privacy Radar Sensors time-velocity distribution TP1-1185 Ultrasonography, Doppler Ultrasonography, Doppler - methods Velocity Walking Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Lb9QwEIct1EvhgHgTaCvzOHCxmsTvY9ulVEgghCjqLfITVlplV9tdIST-eMaON9oVRVy45LBxJGc89vwma3-D0GsnaADZrkkUrSNMMEd0YJrU3OgQbaQ2n6368FFcXLL3V_xqq9RX2hM24IEHwx2HICGMGGOF9UzpVD-JBV47YxoqvcvZeq30JpkqqRaFzGvgCFFI6o-vQWi3CROzE30ypB9iSj-d3qQv_9wmub_uF-bnDzObbcWg83vobhGP-GTo9H10K_QP0J0tpOBD9GvYVJftjecRD3RiWNJwOuxBvgYIXiC88SQBc0utKwzCFU_moEfDknw23izJKQQ3jz8VpY7fmekKD2d6Y_nIh_NmAzwJYYELpPXbI3R5_vbL2QUpFRaI44KtCIgX7bQyoGkijRDKIwMFIbz3TWNASnkZGiZV9K1msRZtbKy0rm1iVLER1tHHaK-f9-EpwlpS5zlvnVeMGaVsK52rE-7NGUqtrNCbjeU7V_DjqQrGrIM0JA1SNw5ShV6OTRcDc-OmRqdp-MYGCZOdfwDn6YrzdP9yngodwuBDf9K1gaVLCZ7YpTxR1kBrVuhg4xZdmdvXXSsFZCRMKHj8xXgbZmX6q8X0Yb7ObTJJX_MKPRm8aOwpFQIWwbqpkNzxr51X2b3TT79n8ndi6asGnnw1euLfLfTsf1joObrdwnTKH534AdpbLdfhEGTYyh7lGfcbrGcuwQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3Pb9MwFMefRncADojfBDZkfhy4WItjx0kOCFG6MSFRTRNDu0WOf4xKVVK6VgiJP55nxw2rGFxyaFzJyXvP72vH_jyA11pyi7K9ok5mmgopNK2sqGiaq8q6xvEmnK36PJXHZ-LTeX6-A9PNWRi_rXIzJoaB2nTar5EfZIVEHShkmb5bfKe-apT_uropoaFiaQXzNiDGbsBu5slYI9gdH05PTocpGMcZWc8X4jjZP7hEAZ55fMxWVgrwfsw17Wx2ne78e_vkzXW7UD9_qPn8Sm46ugt3oqgk73svuAc7tr0Pt6-gBh_Ar36zXbAD6RzpqcU41BF_CIR-tZjUUJCTiQfpxhpYBAUtmXSoU-2SniqjlnSMSc-Qk6jgyUc1W5H-rK-Li38kbEIgE2sXJMJbLx7C2dHhlw_HNFZeoDqXYkVR1FS6KhVqHccdpngnUFlIYwxjCiWWKSwTRekMWsSlMnOsKRqdMedKx2Sj-SMYtV1rnwCpCq5NnmfalEKosmyyQuvUY-C04rwpEnizefO1jlhyXx1jXuP0xBupHoyUwMuh6aJncVzXaOzNNzTw-OzwQ7e8qGM01tYWqE2UamRjRFn5olzC5qlWivHC6DSBfTQ-9sdfGQ5ppcw90zT39DXUoAnsbdyijjF_Wf_x0AReDLcxWv0nGNXabh3aBMJ-lSfwuPeioadcShwcU5ZAseVfW4-yfaedfQtEcM_YLxn-89Xgif9-Q0__3_lncCvDQAnLTPkejFbLtd1H4bVqnsdo-g0JWix- priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgewAOvB-BFpnHgYu78TPJCbWUUiFRVYhF5RT5WVassqt9gED8eMaJN-pCkRCXHJKxFG8-z3zjnfmM0HOruAfaXpGgmCVCCUsqLyqSS135YAI3bW_Vu2N1NBJvT-Vp2nBbpLJKSMXHrZOOXVgEIlg-ZHzIhioXw5kLL7-mnSSqopwbMHJ5GW0pCVx8gLZGxyd7n9qWojS2kxPikNsPF8C3WVSL2QhCrVY_hJZmPL6IZv5ZLXll1cz09296MjkXig5voHo9ia4C5cvuaml27Y_f9B3_f5Y30fXEUvFeB6tb6JJvbqNr57QL76CfXfVe-2HxNOBOBhl8J45dJeSjhygJDB8fRGXedKgWBoaMD6ZAfP2cvNdOz8k-RFGHT1JKgN_o8RJ3zcMh7SbitqoBH3g_w0kN9uwuGh2-_vDqiKSjHIiVSiwJsKTKVqUG8hR4AM4QBFAV5ZyjVANnc4WnoiiDY5UIuWKBmsJYRkMoA1XG8nto0Ewb_wDhquDWScmsK4XQZWlYYW0edeWs5twUGXqx_ra1TTrn8biNSQ35ToRB3cMgQ09701kn7nGR0X4ESG8Q9bjbG9P5WZ2Wd-19AWRHa6OME2UVT_kSXuZWa8oLZ_MM7QC84H3ilYKPLJWMIqkyyrkBqc3Q9hp4dXIii5oVClIfoUoY_qR_DMs__qejGz9dtTatZH8lM3S_w2n_plwp8LY5zVCxgeCNqWw-acafW4nxKNpfUhj5rMf633-hh_9k9QhdZUAQ2-0ruY0Gy_nK7wChW5rHadX-Au1RQyc priority: 102 providerName: Unpaywall |
| Title | Exploration of Effective Time-Velocity Distribution for Doppler-Radar-Based Personal Gait Identification Using Deep Learning |
| URI | https://cir.nii.ac.jp/crid/1870865117551647232 https://www.ncbi.nlm.nih.gov/pubmed/36679401 https://www.proquest.com/docview/2767294680 https://www.proquest.com/docview/2768229095 https://pubmed.ncbi.nlm.nih.gov/PMC9864811 https://www.mdpi.com/1424-8220/23/2/604/pdf?version=1673936265 https://doaj.org/article/ee7024aab6bd48969014e50caa137dc0 |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9NAFB51OQAHxI5LGw3LgYupl_EsB4Qa0rRCahRVBIWTNZ6lRIrs1E0ElfjxvBk7ViPCjYsP9rNkv2Xe92b5HkLvFE0NwHYRWpqokFCiQmGICKNMCmMLmxb-bNXFiJ5PyJdpNt1B6x6brQJvtpZ2rp_UpJ5_-HV9-wkC_qOrOKFkP74BGJ04EphdtA8JSrgODhekW0xIUijDGlKhTfGNVOQZ-yHBlLPZNrD5957Je6tyIW9_yvn8TkIaPkIPWySJTxrTP0Y7pnyCHtzhF3yKfjc77LzycWVxQ1UM4xt2Jz_CbwYyGaBwPHDsuW3jKwwoFg8qAKemDi-llnXYh0yn8biF7fhMzpa4OeBr2xk_7Hce4IExC9wytl49Q5Ph6dfP52HbbiFUGSXLEJCMUIJLADg2tZDXLQE4QbXWcSwBV2lmYsK41YkgNqKJjQtWqCS2ltuYFip9jvbKqjQvERYsVTrLEqU5IZLzImFKRY77Tck0LViA3q81n6uWi9y1xJjnUJM4I-WdkQL0phNdNAQc24T6znydgOPM9jeq-ipvQzA3hgEgkbKghSZcuE5cxGSRkjJOmVZRgI7A-PA97hrDOMZp5ohMM0e5BsAzQIdrt8jXfponjEJ5QiiH1193jyFE3bqLLE218jKeVl9kAXrReFH3pSmlMCJGcYDYhn9t_Mrmk3L2w9OAO2J9HsObbztP_LeGDv6Hhl6h-wmEk5-Byg7R3rJemSPAZMuih3bZlMGVD896aL9_Ohpf9vz8Rs_HItybjMYn3_8AWTg6eg |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4q5VA4VOy4tDBsEpdRbc94xj4gRAklpYsQalFuZjxLiRTZIYuqSvwmfiNvbMdtROHWSw7xJJn4Ld_3xjPfA3ilBbNI2zPqRKwpF1zTzPKMhonKrCscK-qzVYdHon_CPw-SwQr8XpyF8dsqFzmxTtSm0n6NfDuWAnkgF2n4bvyT-q5R_unqooVG4xb79vwMS7bp270e2vd1HO9-PP7Qp21XAaoTwWcUATvTWaoQxx1zCF-OI2oKY0wUKaQPRtqIy9QZ_DUXithFhSx0HDmXukgUmuH33oCbnGEuwfiRg4sCj2G916gXMZaF21Ok97EXp1nCvLo1ACJZORxexWr_3py5Ni_H6vxMjUaXkG_3Dqy3lJW8b3zsLqzY8h7cviRkeB9-NVv5aiuTypFGExkTKfFHTOg3i5CJdJ_0vExv22GLIF0mvQpZsJ3Qr8qoCd1BSDXkS1sfkE9qOCPNSWLXLi2SeosD6Vk7Jq007OkDOLkWCzyE1bIq7WMgmWTaJEmsTcq5StMillqHXmROK8YKGcCbxZ3PdSt67ntvjHIsfryR8s5IAbzoho4bpY-rBu1483UDvDh3_UY1Oc3bWM-tlch8lCpEYXia-ZZf3CahVipi0ugwgC00Ps7Hv0aYMFOReMXUxGu7IcMNYHPhFnmbUab5hf8H8Ly7jLnAP-BRpa3m9Zhavz9LAnjUeFE3UyYEpt4wCkAu-dfSX1m-Ug5_1HrjXsE_jfCTLztP_Pcd2vj_5J_BWv_48CA_2DvafwK3YgyaekEr2YTV2WRut5DizYqndVwR-H7dgfwHG-liUw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQ-LygLgvsIG5SbxYTWLHTh4QYpSyMZgmxFDfguPLVqlKSi-aJvHL-HUcJ2m2isHbXvoQu6mbc_uOc_wdgJdaMIuwPaNOxJpywTXNLM9omKjMusKxoj5b9WVf7BzyT8NkuAa_l2dhfFnl0ifWjtpU2u-R92IpEAdykYY915ZFHPQHbyc_qe8g5d-0LttpNCqyZ09PMH2bvdnto6xfxfHgw7f3O7TtMEB1IvicYvDOdJYqjOmOOQxljmMEFcaYKFIIJYy0EZepM_jLLhSxiwpZ6DhyLnWRKDTD-16Bq5KxzJcTyuFZsscw92uYjHAw7M0Q6seeqGYl_tVtAjCqlaPRRQj370LN64tyok5P1Hh8LgoObsOtFr6Sd42-3YE1W96Fm-dIDe_Br6asr5Y4qRxp-JHRqRJ_3IR-txg-EfqTvqfsbbttEYTOpF8hIrZT-lUZNaXbGF4NOWhzBfJRjeakOVXs2m1GUpc7kL61E9LSxB7dh8NLkcADWC-r0m4AySTTJklibVLOVZoWsdQ69IRzWjFWyABeL598rlsCdN-HY5xjIuSFlHdCCuB5N3XSsH5cNGnbi6-b4Im66wvV9Chv7T63ViIKUqoQheFp5tt_cZuEWqmISaPDALZQ-Lge_xmh80xF4tlTE8_zhmg3gM2lWuStd5nlZ7YQwLNuGP2Cf9mjSlst6jk1l3-WBPCw0aJupUwIdMNhFIBc0a-Vv7I6Uo6Oa-5xz-afRvjNF50m_vsJPfr_4p_CNTTh_PPu_t5juBGjzdR7W8kmrM-nC7uFaG9ePKnNisCPy7bjP-cpZpY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgewAOvB-BFpnHgYu78TPJCbWUUiFRVYhF5RT5WVassqt9gED8eMaJN-pCkRCXHJKxFG8-z3zjnfmM0HOruAfaXpGgmCVCCUsqLyqSS135YAI3bW_Vu2N1NBJvT-Vp2nBbpLJKSMXHrZOOXVgEIlg-ZHzIhioXw5kLL7-mnSSqopwbMHJ5GW0pCVx8gLZGxyd7n9qWojS2kxPikNsPF8C3WVSL2QhCrVY_hJZmPL6IZv5ZLXll1cz09296MjkXig5voHo9ia4C5cvuaml27Y_f9B3_f5Y30fXEUvFeB6tb6JJvbqNr57QL76CfXfVe-2HxNOBOBhl8J45dJeSjhygJDB8fRGXedKgWBoaMD6ZAfP2cvNdOz8k-RFGHT1JKgN_o8RJ3zcMh7SbitqoBH3g_w0kN9uwuGh2-_vDqiKSjHIiVSiwJsKTKVqUG8hR4AM4QBFAV5ZyjVANnc4WnoiiDY5UIuWKBmsJYRkMoA1XG8nto0Ewb_wDhquDWScmsK4XQZWlYYW0edeWs5twUGXqx_ra1TTrn8biNSQ35ToRB3cMgQ09701kn7nGR0X4ESG8Q9bjbG9P5WZ2Wd-19AWRHa6OME2UVT_kSXuZWa8oLZ_MM7QC84H3ilYKPLJWMIqkyyrkBqc3Q9hp4dXIii5oVClIfoUoY_qR_DMs__qejGz9dtTatZH8lM3S_w2n_plwp8LY5zVCxgeCNqWw-acafW4nxKNpfUhj5rMf633-hh_9k9QhdZUAQ2-0ruY0Gy_nK7wChW5rHadX-Au1RQyc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+of+Effective+Time-Velocity+Distribution+for+Doppler-Radar-Based+Personal+Gait+Identification+Using+Deep+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Keitaro+Shioiri&rft.au=Kenshi+Saho&rft.date=2023-01-05&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=2&rft.spage=604&rft_id=info:doi/10.3390%2Fs23020604&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ee7024aab6bd48969014e50caa137dc0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |