Performance evaluation of DWT based sigmoid entropy in time and frequency domains for automated detection of epileptic seizures using SVM classifier
The electroencephalogram (EEG) signal contains useful information on physiological states of the brain and has proven to be a potential biomarker to realize the complex dynamic behavior of the brain. Epilepsy is a brain disorder described by recurrent and unpredictable interruption of healthy brain...
Saved in:
| Published in | Computers in biology and medicine Vol. 110; pp. 127 - 143 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.07.2019
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2019.05.016 |
Cover
| Abstract | The electroencephalogram (EEG) signal contains useful information on physiological states of the brain and has proven to be a potential biomarker to realize the complex dynamic behavior of the brain. Epilepsy is a brain disorder described by recurrent and unpredictable interruption of healthy brain function. Diagnosis of patients with epilepsy requires monitoring and visual inspection of long-term EEG by the neurologist, which is found to be a time-consuming procedure. Therefore, this study proposes an automated seizure detection model using a novel computationally efficient feature named sigmoid entropy derived from discrete wavelet transforms. The sigmoid entropy was estimated from the wavelet coefficients in each sub-band and classified using a non-linear support vector machine classifier with leave-one-subject-out cross-validation. The performance of the proposed method was tested with the Ramaiah Medical College and Hospital (RMCH) database, which consists of the 58 Hours of EEG from 115 subjects, the University of Bonn (UBonn), and CHB-MIT databases. Results showed that sigmoid entropy exhibits lower values for epileptic EEG in contrary to other existing entropy methods. We observe a seizure detection rate of 96.34%, a false detection rate of 0.5/h and a mean detection delay of 1.2 s for the RMCH database. The highest sensitivity of 100% and 94.21% were achieved for UBonn and CHB-MIT databases respectively. The performance comparison confirms that sigmoid entropy was found to be better and computationally efficient as compared to other entropy methods. It can be concluded that the proposed sigmoid entropy could be used as a potential biomarker for recognition and detection of epileptic seizures.
[Display omitted]
•DWT based sigmoid entropy was proposed for epileptic seizure detection.•Five different mother wavelets have been studied on three EEG databases.•Classification was performed using both segment and event based approaches.•Bio3.1, Rbio3.1, and Haar wavelets were found to be best choice for seizure detection.•The Kappa coefficients obtained for all the databases were found to be either good or very good agreement category. |
|---|---|
| AbstractList | The electroencephalogram (EEG) signal contains useful information on physiological states of the brain and has proven to be a potential biomarker to realize the complex dynamic behavior of the brain. Epilepsy is a brain disorder described by recurrent and unpredictable interruption of healthy brain function. Diagnosis of patients with epilepsy requires monitoring and visual inspection of long-term EEG by the neurologist, which is found to be a time-consuming procedure. Therefore, this study proposes an automated seizure detection model using a novel computationally efficient feature named sigmoid entropy derived from discrete wavelet transforms. The sigmoid entropy was estimated from the wavelet coefficients in each sub-band and classified using a non-linear support vector machine classifier with leave-one-subject-out cross-validation. The performance of the proposed method was tested with the Ramaiah Medical College and Hospital (RMCH) database, which consists of the 58 Hours of EEG from 115 subjects, the University of Bonn (UBonn), and CHB-MIT databases. Results showed that sigmoid entropy exhibits lower values for epileptic EEG in contrary to other existing entropy methods. We observe a seizure detection rate of 96.34%, a false detection rate of 0.5/h and a mean detection delay of 1.2 s for the RMCH database. The highest sensitivity of 100% and 94.21% were achieved for UBonn and CHB-MIT databases respectively. The performance comparison confirms that sigmoid entropy was found to be better and computationally efficient as compared to other entropy methods. It can be concluded that the proposed sigmoid entropy could be used as a potential biomarker for recognition and detection of epileptic seizures. The electroencephalogram (EEG) signal contains useful information on physiological states of the brain and has proven to be a potential biomarker to realize the complex dynamic behavior of the brain. Epilepsy is a brain disorder described by recurrent and unpredictable interruption of healthy brain function. Diagnosis of patients with epilepsy requires monitoring and visual inspection of long-term EEG by the neurologist, which is found to be a time-consuming procedure. Therefore, this study proposes an automated seizure detection model using a novel computationally efficient feature named sigmoid entropy derived from discrete wavelet transforms. The sigmoid entropy was estimated from the wavelet coefficients in each sub-band and classified using a non-linear support vector machine classifier with leave-one-subject-out cross-validation. The performance of the proposed method was tested with the Ramaiah Medical College and Hospital (RMCH) database, which consists of the 58 Hours of EEG from 115 subjects, the University of Bonn (UBonn), and CHB-MIT databases. Results showed that sigmoid entropy exhibits lower values for epileptic EEG in contrary to other existing entropy methods. We observe a seizure detection rate of 96.34%, a false detection rate of 0.5/h and a mean detection delay of 1.2 s for the RMCH database. The highest sensitivity of 100% and 94.21% were achieved for UBonn and CHB-MIT databases respectively. The performance comparison confirms that sigmoid entropy was found to be better and computationally efficient as compared to other entropy methods. It can be concluded that the proposed sigmoid entropy could be used as a potential biomarker for recognition and detection of epileptic seizures.The electroencephalogram (EEG) signal contains useful information on physiological states of the brain and has proven to be a potential biomarker to realize the complex dynamic behavior of the brain. Epilepsy is a brain disorder described by recurrent and unpredictable interruption of healthy brain function. Diagnosis of patients with epilepsy requires monitoring and visual inspection of long-term EEG by the neurologist, which is found to be a time-consuming procedure. Therefore, this study proposes an automated seizure detection model using a novel computationally efficient feature named sigmoid entropy derived from discrete wavelet transforms. The sigmoid entropy was estimated from the wavelet coefficients in each sub-band and classified using a non-linear support vector machine classifier with leave-one-subject-out cross-validation. The performance of the proposed method was tested with the Ramaiah Medical College and Hospital (RMCH) database, which consists of the 58 Hours of EEG from 115 subjects, the University of Bonn (UBonn), and CHB-MIT databases. Results showed that sigmoid entropy exhibits lower values for epileptic EEG in contrary to other existing entropy methods. We observe a seizure detection rate of 96.34%, a false detection rate of 0.5/h and a mean detection delay of 1.2 s for the RMCH database. The highest sensitivity of 100% and 94.21% were achieved for UBonn and CHB-MIT databases respectively. The performance comparison confirms that sigmoid entropy was found to be better and computationally efficient as compared to other entropy methods. It can be concluded that the proposed sigmoid entropy could be used as a potential biomarker for recognition and detection of epileptic seizures. The electroencephalogram (EEG) signal contains useful information on physiological states of the brain and has proven to be a potential biomarker to realize the complex dynamic behavior of the brain. Epilepsy is a brain disorder described by recurrent and unpredictable interruption of healthy brain function. Diagnosis of patients with epilepsy requires monitoring and visual inspection of long-term EEG by the neurologist, which is found to be a time-consuming procedure. Therefore, this study proposes an automated seizure detection model using a novel computationally efficient feature named sigmoid entropy derived from discrete wavelet transforms. The sigmoid entropy was estimated from the wavelet coefficients in each sub-band and classified using a non-linear support vector machine classifier with leave-one-subject-out cross-validation. The performance of the proposed method was tested with the Ramaiah Medical College and Hospital (RMCH) database, which consists of the 58 Hours of EEG from 115 subjects, the University of Bonn (UBonn), and CHB-MIT databases. Results showed that sigmoid entropy exhibits lower values for epileptic EEG in contrary to other existing entropy methods. We observe a seizure detection rate of 96.34%, a false detection rate of 0.5/h and a mean detection delay of 1.2 s for the RMCH database. The highest sensitivity of 100% and 94.21% were achieved for UBonn and CHB-MIT databases respectively. The performance comparison confirms that sigmoid entropy was found to be better and computationally efficient as compared to other entropy methods. It can be concluded that the proposed sigmoid entropy could be used as a potential biomarker for recognition and detection of epileptic seizures. [Display omitted] •DWT based sigmoid entropy was proposed for epileptic seizure detection.•Five different mother wavelets have been studied on three EEG databases.•Classification was performed using both segment and event based approaches.•Bio3.1, Rbio3.1, and Haar wavelets were found to be best choice for seizure detection.•The Kappa coefficients obtained for all the databases were found to be either good or very good agreement category. AbstractThe electroencephalogram (EEG) signal contains useful information on physiological states of the brain and has proven to be a potential biomarker to realize the complex dynamic behavior of the brain. Epilepsy is a brain disorder described by recurrent and unpredictable interruption of healthy brain function. Diagnosis of patients with epilepsy requires monitoring and visual inspection of long-term EEG by the neurologist, which is found to be a time-consuming procedure. Therefore, this study proposes an automated seizure detection model using a novel computationally efficient feature named sigmoid entropy derived from discrete wavelet transforms. The sigmoid entropy was estimated from the wavelet coefficients in each sub-band and classified using a non-linear support vector machine classifier with leave-one-subject-out cross-validation. The performance of the proposed method was tested with the Ramaiah Medical College and Hospital (RMCH) database, which consists of the 58 Hours of EEG from 115 subjects, the University of Bonn (UBonn), and CHB-MIT databases. Results showed that sigmoid entropy exhibits lower values for epileptic EEG in contrary to other existing entropy methods. We observe a seizure detection rate of 96.34%, a false detection rate of 0.5/h and a mean detection delay of 1.2 s for the RMCH database. The highest sensitivity of 100% and 94.21% were achieved for UBonn and CHB-MIT databases respectively. The performance comparison confirms that sigmoid entropy was found to be better and computationally efficient as compared to other entropy methods. It can be concluded that the proposed sigmoid entropy could be used as a potential biomarker for recognition and detection of epileptic seizures. |
| Author | Temel, Yasin Raghu, S. Rao, Shyam Vasudeva Hegde, Alangar Satyaranjandas Sriraam, Natarajan Kubben, Pieter L. |
| Author_xml | – sequence: 1 givenname: S. surname: Raghu fullname: Raghu, S. email: r.raghu@maastrichtuniversity.nl organization: Department of Neurosurgery, School for Mental Health and Neuroscience of the Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands – sequence: 2 givenname: Natarajan surname: Sriraam fullname: Sriraam, Natarajan email: sriraam@msrit.edu organization: Center for Medical Electronics and Computing, M S Ramaiah Institute of Technology, Bengaluru, India – sequence: 3 givenname: Yasin surname: Temel fullname: Temel, Yasin organization: Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands – sequence: 4 givenname: Shyam Vasudeva surname: Rao fullname: Rao, Shyam Vasudeva organization: Maastricht University, Maastricht, the Netherlands – sequence: 5 givenname: Alangar Satyaranjandas surname: Hegde fullname: Hegde, Alangar Satyaranjandas organization: Institute of Neuroscience, Ramaiah Medical College and Hospitals, Bengaluru, India – sequence: 6 givenname: Pieter L. surname: Kubben fullname: Kubben, Pieter L. organization: Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31154257$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVUl1rFDEUDVKx2-pfkIAvvsyaZL52XopaP6Gi0KqPIR93StZMMk0ylfV3-IPNuF2FBWF9CuGec-6959wTdOS8A4QwJUtKaPNsvVR-GKXxA-glI7RbknqZC_fQgq7ariB1WR2hBSGUFNWK1cfoJMY1IaQiJXmAjktK64rV7QL9_ASh92EQTgGGW2EnkYx32Pf41dcrLEUEjaO5HrzRGFwKftxg43AyA2DhNO4D3Ezg1AZrPwjjIs5yWEwp_1LmakigdpIwGgtjMgpHMD-mABFP0bhrfPnlA1ZWxGh6A-Ehut8LG-HR3XuKPr95fXX-rrj4-Pb9-YuLQtVNlYq6bYXo5arWnQTFeibKhjVSs7IjSkPZtKArkKKTUpK2qZXsKCNtT9lM6VR5irqt7uRGsfkurOVjMIMIG04Jn53ma_7XaT47zUnNcyFzn265Y_DZgJj4YKICa4UDP0XOWFlVq5K1LEOf7EHXfgoub5ZRdW7TVk2XUY_vUJOcm-0m2WWVAWdbgAo-xgA9Vyb9TisFYewhI6_2BP5j25dbKuQ4bnNEPCqTUwdtQo6Xa28OETnbE1HWOKOE_QYbiH9MoTwyTvjlfL7z9dKuzB6xWeD5vwUOm-EX778Hfw |
| CitedBy_id | crossref_primary_10_1016_j_bbe_2019_11_002 crossref_primary_10_1109_ACCESS_2023_3294473 crossref_primary_10_1109_ACCESS_2023_3251105 crossref_primary_10_1007_s12652_022_03737_9 crossref_primary_10_1016_j_clinph_2020_03_033 crossref_primary_10_1108_WJE_06_2021_0348 crossref_primary_10_3390_s25010051 crossref_primary_10_1142_S0219467825500135 crossref_primary_10_1016_j_jneumeth_2022_109483 crossref_primary_10_1109_ACCESS_2022_3232563 crossref_primary_10_1016_j_clineuro_2023_107879 crossref_primary_10_1016_j_compbiomed_2020_104014 crossref_primary_10_3233_THC_218049 crossref_primary_10_1016_j_compbiomed_2021_104299 crossref_primary_10_1186_s12938_020_0754_y crossref_primary_10_1007_s10462_024_10799_y crossref_primary_10_1016_j_knosys_2024_112322 crossref_primary_10_1109_TBCAS_2024_3456825 crossref_primary_10_3389_fnhum_2022_943258 crossref_primary_10_1007_s11227_024_06036_6 crossref_primary_10_1016_j_measurement_2021_110292 crossref_primary_10_3390_brainsci13050820 crossref_primary_10_3390_app9235215 crossref_primary_10_1016_j_bspc_2024_107073 crossref_primary_10_1007_s00521_019_04389_1 crossref_primary_10_1007_s11227_023_05299_9 crossref_primary_10_1109_ACCESS_2021_3126065 crossref_primary_10_1109_TIM_2025_3527489 crossref_primary_10_3390_nu14040885 crossref_primary_10_3390_diagnostics13132261 crossref_primary_10_1016_j_compbiomed_2020_103671 crossref_primary_10_3390_diagnostics14222509 crossref_primary_10_1177_20552076231173569 crossref_primary_10_1016_j_bspc_2021_102916 crossref_primary_10_3389_fnsys_2021_685387 crossref_primary_10_1016_j_neunet_2020_01_017 crossref_primary_10_52876_jcs_1226579 crossref_primary_10_1007_s11042_025_20594_8 crossref_primary_10_1016_j_bbe_2023_04_003 crossref_primary_10_1007_s11042_023_15052_2 crossref_primary_10_1016_j_bspc_2022_104053 crossref_primary_10_1142_S0129065722500174 crossref_primary_10_3390_e24111540 crossref_primary_10_1016_j_bspc_2022_103755 crossref_primary_10_1016_j_jestch_2021_03_017 crossref_primary_10_1109_TBCAS_2021_3090995 crossref_primary_10_1016_j_neucom_2024_128644 crossref_primary_10_2139_ssrn_4161139 crossref_primary_10_1038_s41598_024_67855_4 crossref_primary_10_1109_TNSRE_2023_3317093 crossref_primary_10_3390_brainsci11050668 crossref_primary_10_7555_JBR_33_20190021 crossref_primary_10_1007_s10916_019_1504_1 crossref_primary_10_3389_fneur_2024_1378076 crossref_primary_10_1016_j_bspc_2021_102827 crossref_primary_10_1007_s40998_021_00437_6 crossref_primary_10_1142_S0129065722500423 crossref_primary_10_1016_j_eswa_2020_113239 crossref_primary_10_1016_j_bspc_2022_104022 crossref_primary_10_1088_1742_6596_2005_1_012048 crossref_primary_10_1093_bib_bbaa253 crossref_primary_10_1016_j_heliyon_2025_e42993 crossref_primary_10_1155_2020_5046315 crossref_primary_10_1016_j_bspc_2021_102699 crossref_primary_10_1016_j_bspc_2022_103726 crossref_primary_10_1007_s42979_023_01958_z crossref_primary_10_1109_ACCESS_2023_3235913 crossref_primary_10_1016_j_neucom_2020_04_144 crossref_primary_10_1038_s41598_022_22829_2 |
| Cites_doi | 10.1007/s10439-009-9755-5 10.1007/s10916-017-0800-x 10.1016/j.compbiomed.2017.09.017 10.1007/s11517-016-1468-y 10.1016/j.clinph.2004.08.004 10.1109/TNSRE.2017.2697920 10.1145/584091.584093 10.1016/j.compbiomed.2017.07.010 10.1016/j.eswa.2012.02.040 10.1016/j.compbiomed.2018.05.019 10.1016/j.yebeh.2004.05.005 10.3390/e16063049 10.1016/j.clinph.2013.12.104 10.1109/TNSRE.2012.2206054 10.1016/j.knosys.2015.08.004 10.1016/j.jneumeth.2015.01.015 10.1016/0013-4694(82)90038-4 10.1016/j.bbe.2016.03.001 10.1016/j.cmpb.2016.09.008 10.1109/34.192463 10.1016/j.compbiomed.2016.02.016 10.1016/j.knosys.2016.11.024 10.1016/j.eswa.2009.09.051 10.1016/j.eswa.2009.01.022 10.1103/PhysRevE.64.061907 10.1016/S0165-0270(02)00340-0 10.1109/IEMBS.2007.4353494 10.1016/j.eplepsyres.2007.08.002 10.1007/s00521-018-3621-z 10.1109/TNSRE.2016.2604393 10.1016/j.compbiomed.2018.06.018 10.1016/j.compeleceng.2015.09.001 10.1109/TNSRE.2016.2611601 10.1007/s00521-016-2646-4 10.1088/1741-2560/12/3/031001 10.1007/BF01016429 10.1016/j.bspc.2011.07.007 10.1007/s11571-016-9408-y 10.1016/j.compbiomed.2017.01.011 10.1016/j.seizure.2015.01.012 10.1016/j.eswa.2018.06.031 10.1016/j.artmed.2011.07.003 10.1016/j.jneumeth.2012.07.003 10.1016/j.dsp.2008.07.004 10.1177/001316446002000104 10.4018/IJBCE.2015010103 10.1109/TNSRE.2017.2748388 10.3109/03091902.2011.636859 10.1097/WNP.0b013e318246af3e 10.1007/s11760-012-0362-9 10.1109/TITB.2006.884369 10.1007/s10916-005-6133-1 10.1016/j.eswa.2017.07.029 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. 2019. Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. – notice: 2019. Elsevier Ltd |
| DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.compbiomed.2019.05.016 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest Health & Medical ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database Health & Medical Collection (Alumni) Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Research Library Prep PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 143 |
| ExternalDocumentID | 10.1016/j.compbiomed.2019.05.016 31154257 10_1016_j_compbiomed_2019_05_016 S0010482519301726 1_s2_0_S0010482519301726 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c564t-577aafb85d9bec2f2a3626bd2390cde367ed4eba9bbb0765cb91207f1285d99c3 |
| IEDL.DBID | BENPR |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sun Oct 26 04:15:49 EDT 2025 Thu Oct 02 09:47:13 EDT 2025 Tue Oct 07 06:37:24 EDT 2025 Thu Apr 03 07:02:02 EDT 2025 Wed Oct 01 04:07:29 EDT 2025 Thu Apr 24 23:03:58 EDT 2025 Fri Feb 23 02:24:56 EST 2024 Sun Feb 23 10:19:15 EST 2025 Tue Oct 14 19:33:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Support vector machine (SVM) Epileptic seizures Sigmoid entropy EEG Epilepsy Discrete wavelet transforms (DWT) |
| Language | English |
| License | Copyright © 2019 Elsevier Ltd. All rights reserved. public-domain |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c564t-577aafb85d9bec2f2a3626bd2390cde367ed4eba9bbb0765cb91207f1285d99c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ars.els-cdn.com/content/image/1-s2.0-S0010482519301726-fx1_lrg.jpg |
| PMID | 31154257 |
| PQID | 2251017469 |
| PQPubID | 1226355 |
| PageCount | 17 |
| ParticipantIDs | unpaywall_primary_10_1016_j_compbiomed_2019_05_016 proquest_miscellaneous_2234483272 proquest_journals_2251017469 pubmed_primary_31154257 crossref_citationtrail_10_1016_j_compbiomed_2019_05_016 crossref_primary_10_1016_j_compbiomed_2019_05_016 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_05_016 elsevier_clinicalkeyesjournals_1_s2_0_S0010482519301726 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_05_016 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-01 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Hassan, Siuly, Zhang (bib43) 2016; 137 Zhang, Chen (bib35) 2017; 25 Tsallis (bib57) 1988; 52 Lima, Coelho (bib30) 2011; 53 Subasi, Kevric, Abdullah Canbaz (bib54) 2017 Thodoroff, Pineau, Lim (bib33) Raghu, Sriraam, Hegde, Kubben (bib48) 2019; 127 Andrews (bib58) 1997 Jiang, Wu, Deng, Qian, Wang, Wang, lai Chung, Choi, Wang (bib31) 2017; 25 Faust, Acharya, Adeli, Adeli (bib27) 2015; 26 Mallat (bib52) 1989; 11 Pravin Kumar, Sriraam, Benakop, Jinaga (bib19) 2010; 37 Lima, Coelho, Chagas (bib25) 2009; 36 Tsiouris, Pezoulas, Zervakis, Konitsiotis, Koutsouris, Fotiadis (bib36) 2018; 99 Orosco, Correa, Diez, Laciar (bib16) 2016; 71 Li, Yan, Liu, Ouyang (bib11) 2014; 16 Li, Ouyang, Richards (bib8) 2007; 77 Zhao, Van-Eetvelt, Goh, Hudson, Wimalaratna, Ifeachor (bib4) 2007 Li, Chen, Zhang (bib44) 2018 Srinivasan, Eswaran, Sriraam (bib21) 2005; 29 Hopfengaertner, Kasper, Graf, Gollwitzer, Kreiselmeyer, Stefan, Hamer (bib67) 2014; 125 7 Geng, Zhou, Zhang, Geng (bib42) 2016; 36 Zandi, Javidan, Dumont, Tafreshi (bib46) 2010; 57 Khan, Ali (bib37) 2018; 100 Vidyaratne, Khan (bib7) 2017; 25 Saab, Gotman (bib64) 2005; 116 Adeli, Zhou, Dadmehr (bib40) 2003; 123 Magosso, Ursino, Zaniboni, Gardella (bib28) 2009; 207 Birjandtalab, Pouyan, Cogan, Nourani, Harvey (bib39) 2017; 82 Kumar, Dewal, Anand (bib12) 2014; 8 Tawfik, Youssef, Kholief (bib17) 2016; 53 Shoeb, Guttag (bib50) 2010 Mateo, Rieta (bib55) 2012; 362 Raghu, Sriraam (bib23) 2017; 89 Wang, Miao, Xie (bib22) 2011; 38 Shannon (bib56) 2001; 5 Sriraam, Raghu (bib60) 2017; 41 Shoeb, Edwards, Connolly, Bourgeois, Treves, Guttag (bib49) 2004; 5 Ubeyli (bib26) 2009; 19 Song, Crowcroft, Zhang (bib10) 2012; 210 2 Raghu, Sriraam, Kumar, Hegde (bib18) 2018; 65 Cohen (bib62) 1960; 20 Bhattacharyya, Sharma, Pachori, Sircar, Acharya (bib41) 2018; 29 Kuhlmann, Burkitt, Cook, Fuller, Grayden, Seiderer, Mareels (bib65) 2009; 37 Raghu, Sriraam, Kumar (bib14) 2015; 4 Raghu, Sriraam (bib59) 2018; 113 Nordqvist (bib2) 2017 Henderson, Ifeachor, Hudson, Goh, Outram, Wimalaratna, Percio, Vecchio (bib3) 2006; 53 Srinivasan, Eswaran, Sriraam (bib9) 2007; 11 Raghu, Sriraam, Kumar (bib20) 2016; 11 Zahra, Kanwal, ur Rehman, Ehsan, McDonald-Maier (bib38) 2017; 88 Xiang, Li, fang Li, Cao, Wang, Han, Chen (bib13) 2015; 243 Sharma, Dhere, Pachori, Acharya (bib45) 2017; 118 Kecman (bib61) 2011 Chen, Wan, Bao (bib24) 2017; 25 Bezerianos, Tong, Zhu, Thakor (bib63) 2001; vol. 2 Acharya, Molinari, Sree, Chattopadhyay, Ng, Suri (bib5) 2012; 7 Bogaarts, Gommer, Hilkman, van Kranen-Mastenbroek, Reulen (bib6) 2016; 54 Andrzejak, Lehnertz, Mormann, Rieke, David, Elger (bib47) 2001; 64 Acharya, Oh, Hagiwara, Tan, Adeli (bib32) 2018; 100 Acharya, Fujita, Sudarshan, Bhat, Koh (bib15) 2015; 88 Acharya, Sree, Alvin, Suri (bib29) 2012; 39 Liu, Zhou, Yuan, Chen (bib34) 2012; 20 Zandi, Javidan, Dumont, Tafreshi (bib66) 2012; 29 Urigüen, García-Zapirain (bib51) 2015; 12 Daubechies (bib53) 1992 Gotman (bib1) 1982; 54 Sriraam (10.1016/j.compbiomed.2019.05.016_bib60) 2017; 41 Orosco (10.1016/j.compbiomed.2019.05.016_bib16) 2016; 71 Tsiouris (10.1016/j.compbiomed.2019.05.016_bib36) 2018; 99 Urigüen (10.1016/j.compbiomed.2019.05.016_bib51) 2015; 12 Gotman (10.1016/j.compbiomed.2019.05.016_bib1) 1982; 54 Adeli (10.1016/j.compbiomed.2019.05.016_bib40) 2003; 123 Raghu (10.1016/j.compbiomed.2019.05.016_bib23) 2017; 89 Li (10.1016/j.compbiomed.2019.05.016_bib8) 2007; 77 Raghu (10.1016/j.compbiomed.2019.05.016_bib20) 2016; 11 Mallat (10.1016/j.compbiomed.2019.05.016_bib52) 1989; 11 Tawfik (10.1016/j.compbiomed.2019.05.016_bib17) 2016; 53 Raghu (10.1016/j.compbiomed.2019.05.016_bib14) 2015; 4 Kuhlmann (10.1016/j.compbiomed.2019.05.016_bib65) 2009; 37 Acharya (10.1016/j.compbiomed.2019.05.016_bib15) 2015; 88 Faust (10.1016/j.compbiomed.2019.05.016_bib27) 2015; 26 Liu (10.1016/j.compbiomed.2019.05.016_bib34) 2012; 20 Raghu (10.1016/j.compbiomed.2019.05.016_bib48) 2019; 127 Hopfengaertner (10.1016/j.compbiomed.2019.05.016_bib67) 2014; 125 7 Zandi (10.1016/j.compbiomed.2019.05.016_bib66) 2012; 29 Xiang (10.1016/j.compbiomed.2019.05.016_bib13) 2015; 243 Andrzejak (10.1016/j.compbiomed.2019.05.016_bib47) 2001; 64 Song (10.1016/j.compbiomed.2019.05.016_bib10) 2012; 210 2 Vidyaratne (10.1016/j.compbiomed.2019.05.016_bib7) 2017; 25 Geng (10.1016/j.compbiomed.2019.05.016_bib42) 2016; 36 Chen (10.1016/j.compbiomed.2019.05.016_bib24) 2017; 25 Birjandtalab (10.1016/j.compbiomed.2019.05.016_bib39) 2017; 82 Zhang (10.1016/j.compbiomed.2019.05.016_bib35) 2017; 25 Zhao (10.1016/j.compbiomed.2019.05.016_bib4) 2007 Subasi (10.1016/j.compbiomed.2019.05.016_bib54) 2017 Pravin Kumar (10.1016/j.compbiomed.2019.05.016_bib19) 2010; 37 Ubeyli (10.1016/j.compbiomed.2019.05.016_bib26) 2009; 19 Zandi (10.1016/j.compbiomed.2019.05.016_bib46) 2010; 57 Srinivasan (10.1016/j.compbiomed.2019.05.016_bib9) 2007; 11 Cohen (10.1016/j.compbiomed.2019.05.016_bib62) 1960; 20 Nordqvist (10.1016/j.compbiomed.2019.05.016_bib2) 2017 Acharya (10.1016/j.compbiomed.2019.05.016_bib29) 2012; 39 Kumar (10.1016/j.compbiomed.2019.05.016_bib12) 2014; 8 Magosso (10.1016/j.compbiomed.2019.05.016_bib28) 2009; 207 Thodoroff (10.1016/j.compbiomed.2019.05.016_bib33) Henderson (10.1016/j.compbiomed.2019.05.016_bib3) 2006; 53 Raghu (10.1016/j.compbiomed.2019.05.016_bib18) 2018; 65 Shoeb (10.1016/j.compbiomed.2019.05.016_bib49) 2004; 5 Shannon (10.1016/j.compbiomed.2019.05.016_bib56) 2001; 5 Khan (10.1016/j.compbiomed.2019.05.016_bib37) 2018; 100 Acharya (10.1016/j.compbiomed.2019.05.016_bib5) 2012; 7 Daubechies (10.1016/j.compbiomed.2019.05.016_bib53) 1992 Tsallis (10.1016/j.compbiomed.2019.05.016_bib57) 1988; 52 Saab (10.1016/j.compbiomed.2019.05.016_bib64) 2005; 116 Mateo (10.1016/j.compbiomed.2019.05.016_bib55) 2012; 362 Shoeb (10.1016/j.compbiomed.2019.05.016_bib50) 2010 Wang (10.1016/j.compbiomed.2019.05.016_bib22) 2011; 38 Lima (10.1016/j.compbiomed.2019.05.016_bib30) 2011; 53 Acharya (10.1016/j.compbiomed.2019.05.016_bib32) 2018; 100 Bhattacharyya (10.1016/j.compbiomed.2019.05.016_bib41) 2018; 29 Kecman (10.1016/j.compbiomed.2019.05.016_bib61) 2011 Andrews (10.1016/j.compbiomed.2019.05.016_bib58) 1997 Sharma (10.1016/j.compbiomed.2019.05.016_bib45) 2017; 118 Li (10.1016/j.compbiomed.2019.05.016_bib44) 2018 Bogaarts (10.1016/j.compbiomed.2019.05.016_bib6) 2016; 54 Jiang (10.1016/j.compbiomed.2019.05.016_bib31) 2017; 25 Hassan (10.1016/j.compbiomed.2019.05.016_bib43) 2016; 137 Bezerianos (10.1016/j.compbiomed.2019.05.016_bib63) 2001; vol. 2 Raghu (10.1016/j.compbiomed.2019.05.016_bib59) 2018; 113 Lima (10.1016/j.compbiomed.2019.05.016_bib25) 2009; 36 Li (10.1016/j.compbiomed.2019.05.016_bib11) 2014; 16 Srinivasan (10.1016/j.compbiomed.2019.05.016_bib21) 2005; 29 Zahra (10.1016/j.compbiomed.2019.05.016_bib38) 2017; 88 |
| References_xml | – volume: 29 start-page: 1 year: 2012 end-page: 16 ident: bib66 article-title: Detection of epileptic seizures in scalp electroencephalogram: an automated real-time wavelet-based approach publication-title: J. Clin. Neurophysiol. – volume: 53 start-page: 83 year: 2011 end-page: 95 ident: bib30 article-title: Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study publication-title: Artif. Intell. Med. – start-page: 975 year: 2010 end-page: 982 ident: bib50 article-title: Application of machine learning to epileptic seizure detection publication-title: Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10 – volume: 29 start-page: 47 year: 2018 end-page: 57 ident: bib41 article-title: A novel approach for automated detection of focal EEG signals using empirical wavelet transform publication-title: Neural Comput. Appl. – volume: 125 7 start-page: 1346 year: 2014 end-page: 1352 ident: bib67 article-title: Automatic seizure detection in long-term scalp EEG using an adaptive thresholding technique: a validation study for clinical routine publication-title: Clin. Neurophysiol. – year: 2011 ident: bib61 article-title: Learning and Soft Computing – volume: 19 start-page: 297 year: 2009 end-page: 308 ident: bib26 article-title: Combined neural network model employing wavelet coefficients for EEG signals classification publication-title: Digit. Signal Process. – volume: 4 start-page: 3243 year: 2015 ident: bib14 article-title: Effect of wavelet packet log energy entropy on electroencephalogram (EEG) signals publication-title: Int. J. Biomed. Clin. Eng. – volume: 29 start-page: 647 year: 2005 end-page: 660 ident: bib21 article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features publication-title: J. Med. Syst. – volume: 53 start-page: 177 year: 2016 end-page: 190 ident: bib17 article-title: A hybrid automated detection of epileptic seizures in EEG records publication-title: Comput. Electr. Eng. – volume: 116 start-page: 427 year: 2005 end-page: 442 ident: bib64 article-title: A system to detect the onset of epileptic seizures in scalp EEG publication-title: Clin. Neurophysiol. : Off. J. Int. Fed. Clin. Neurophysiol. – volume: 37 start-page: 2129 year: 2009 end-page: 2145 ident: bib65 article-title: Seizure detection using seizure probability estimation: comparison of features used to detect seizures publication-title: Ann. Biomed. Eng. – volume: 113 start-page: 18 year: 2018 end-page: 32 ident: bib59 article-title: Classification of focal and non-focal EEG signals using neighborhood component analysis and machine learning algorithms publication-title: Expert Syst. Appl. – volume: 11 start-page: 51 year: 2016 end-page: 66 ident: bib20 article-title: Classification of epileptic seizures using wavelet packet log energy and norm entropies with recurrent elman neural network classifier publication-title: Cognit. Neurodynamics – volume: 39 start-page: 9072 year: 2012 end-page: 9078 ident: bib29 article-title: Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework publication-title: Expert Syst. Appl. – ident: bib33 article-title: Learning robust features using deep learning for automatic seizure detection – volume: 137 start-page: 247 year: 2016 end-page: 259 ident: bib43 article-title: Epileptic seizure detection in EEG signals using tunable-q factor wavelet transform and bootstrap aggregating publication-title: Comput. Methods Progr. Biomed. – volume: 52 start-page: 479 year: 1988 end-page: 487 ident: bib57 article-title: Possible generalization of Boltzmann-gibbs statistics publication-title: J. Stat. Phys. – volume: 118 start-page: 217 year: 2017 end-page: 227 ident: bib45 article-title: An automatic detection of focal EEG signals using new class of timefrequency localized orthogonal wavelet filter banks publication-title: Knowl. Based Syst. – volume: 53 start-page: 1557 year: 2006 end-page: 1568 ident: bib3 article-title: Development and assessment of methods for detecting dementia using the human electroencephalogram publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 7 start-page: 401 year: 2012 end-page: 408 ident: bib5 article-title: Automated diagnosis of epileptic EEG using entropies publication-title: Biomed. Signal Process. Control – volume: 88 start-page: 85 year: 2015 end-page: 96 ident: bib15 article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: a review publication-title: Knowl. Based Syst. – volume: 41 start-page: 160 year: 2017 ident: bib60 article-title: Classification of focal and non focal epileptic seizures using multi-features and SVM classifier publication-title: J. Med. Syst. – volume: 20 start-page: 37 year: 1960 end-page: 46 ident: bib62 article-title: A coefficient of agreement for nominal scales publication-title: Educ. Psychol. Meas. – year: 2017 ident: bib2 article-title: Symptoms, Causes, and Treatment of Epilepsy – volume: 25 start-page: 2270 year: 2017 end-page: 2284 ident: bib31 article-title: Seizure classification from EEG signals using transfer learning, semi-supervised learning and tsk fuzzy system publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 5 start-page: 3 year: 2001 end-page: 55 ident: bib56 article-title: A mathematical theory of communication publication-title: Mob. Comput. Commun. Rev. – volume: 210 2 start-page: 132 year: 2012 end-page: 146 ident: bib10 article-title: Automatic epileptic seizure detection in eegs based on optimized sample entropy and extreme learning machine publication-title: J. Neurosci. Methods – year: 1997 ident: bib58 article-title: Special Functions of Mathematics for Engineers – volume: 71 start-page: 128 year: 2016 end-page: 134 ident: bib16 article-title: Patient non-specific algorithm for seizures detection in scalp EEG publication-title: Comput. Biol. Med. – volume: vol. 2 start-page: 1923 year: 2001 end-page: 1925 ident: bib63 article-title: Nonadditive information theory for the analysis of brain rhythms publication-title: Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 8 start-page: 1323 year: 2014 end-page: 1334 ident: bib12 article-title: Epileptic seizures detection in EEG using DWT-based apen and artificial neural network publication-title: Signal, Image and Video Process. – volume: 123 start-page: 69 year: 2003 end-page: 87 ident: bib40 article-title: Analysis of EEG records in an epileptic patient using wavelet transform publication-title: J. Neurosci. Methods – volume: 26 start-page: 56 year: 2015 end-page: 64 ident: bib27 article-title: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis publication-title: Seizure – volume: 100 start-page: 270 year: 2018 end-page: 278 ident: bib32 article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals publication-title: Comput. Biol. Med. – volume: 89 start-page: 205 year: 2017 end-page: 221 ident: bib23 article-title: Optimal configuration of multilayer perceptron neural network classifier for recognition of intracranial epileptic seizures publication-title: Expert Syst. Appl. – volume: 88 start-page: 132 year: 2017 end-page: 141 ident: bib38 article-title: Seizure detection from EEG signals using multivariate empirical mode decomposition publication-title: Comput. Biol. Med. – volume: 54 start-page: 530 year: 1982 end-page: 540 ident: bib1 article-title: Automatic recognition of epileptic seizures in the EEG publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 5 start-page: 483 year: 2004 end-page: 498 ident: bib49 article-title: Patient-specific seizure onset detection publication-title: Epilepsy Behav. – volume: 36 start-page: 375 year: 2016 end-page: 384 ident: bib42 article-title: Epileptic seizure detection based on improved wavelet neural networks in long-term intracranial EEG publication-title: Biocybern. and Biomed. Eng. – volume: 20 start-page: 749 year: 2012 end-page: 755 ident: bib34 article-title: Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 11 start-page: 288 year: 2007 end-page: 295 ident: bib9 article-title: Approximate entropy-based epileptic EEG detection using artificial neural networks publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 207 start-page: 42 year: 2009 end-page: 62 ident: bib28 article-title: A wavelet-based energetic approach for the analysis of biomedical signals: application to the electroencephalogram and electro-oculogram publication-title: Appl. Math. Comput. – volume: 12 year: 2015 ident: bib51 article-title: EEG artifact removal-state-of-the-art and guidelines publication-title: J. Neural Eng. – volume: 82 start-page: 49 year: 2017 end-page: 58 ident: bib39 article-title: Automated seizure detection using limited-channel EEG and non-linear dimension reduction publication-title: Comput. Biol. Med. – volume: 54 start-page: 1285 year: 2016 end-page: 1293 ident: bib6 article-title: Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection publication-title: Med. Biol. Eng. Comput. – volume: 64 year: 2001 ident: bib47 article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. E – volume: 77 start-page: 70 year: 2007 end-page: 74 ident: bib8 article-title: Predictability analysis of absence seizures with permutation entropy publication-title: Epilepsy Res. – volume: 25 start-page: 413 year: 2017 end-page: 425 ident: bib24 article-title: Epileptic focus localization using discrete wavelet transform based on interictal intracranial EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 65 start-page: 2612 year: 2018 end-page: 2621 ident: bib18 article-title: A novel approach for real time recognition of epileptic seizures using minimum variance modified fuzzy entropy publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 127 start-page: 323341 year: 2019 ident: bib48 article-title: A novel approach for classification of epileptic seizures using matrix determinant publication-title: Expert Syst. Appl. – volume: 25 start-page: 2146 year: 2017 end-page: 2156 ident: bib7 article-title: Real-time epileptic seizure detection using EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 243 start-page: 18 year: 2015 end-page: 25 ident: bib13 article-title: The detection of epileptic seizure signals based on fuzzy entropy publication-title: J. Neurosci. Methods – volume: 37 start-page: 3284 year: 2010 end-page: 3291 ident: bib19 article-title: Entropies based detection of epileptic seizures with artificial neural network classifiers publication-title: Expert Syst. Appl. – volume: 11 start-page: 674 year: 1989 end-page: 693 ident: bib52 article-title: A theory for multi-resolution signal decomposition: the wavelet representation publication-title: IEEE Trans. Pattern Anal. – volume: 57 start-page: 1639 year: 2010 end-page: 1651 ident: bib46 article-title: Automated real-time epileptic seizure detection in scalp EEG recordings using an algorithm based on wavelet packet transform publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 100 start-page: 10 year: 2018 end-page: 16 ident: bib37 article-title: A new feature for the classification of non-stationary signals based on the direction of signal energy in the timefrequency domain publication-title: Comput. Biol. Med. – year: 1992 ident: bib53 article-title: 10 Lectures on Wavelets – volume: 25 start-page: 1100 year: 2017 end-page: 1108 ident: bib35 article-title: Lmd based features for the automatic seizure detection of EEG signals using SVM publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 362 start-page: 90 year: 2012 end-page: 101 ident: bib55 article-title: Application of artificial neural networks for versatile preprocessing of electrocardiogram recordings publication-title: J. Med. Eng. Technol. – volume: 16 start-page: 3049 year: 2014 end-page: 3061 ident: bib11 article-title: Using permutation entropy to measure the changes in EEG signals during absence seizures publication-title: Entropy – start-page: 1 year: 2017 end-page: 9 ident: bib54 article-title: Epileptic seizure detection using hybrid machine learning methods publication-title: Neural Comput. Appl. – volume: 99 start-page: 24 year: 2018 end-page: 37 ident: bib36 article-title: A long short-term memory deep learning network for the prediction of epileptic seizures using eeg signals publication-title: Comput. Biol. Med. – start-page: 5127 year: 2007 end-page: 5131 ident: bib4 article-title: Characterization of EEGs in alzheimer's disease using information theoretic methods publication-title: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – year: 2018 ident: bib44 article-title: FuzzyEn-based features in FrFT-WPT domain for epileptic seizure detection publication-title: Neural Comput. Appl. – volume: 38 start-page: 14314 year: 2011 end-page: 14320 ident: bib22 article-title: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection publication-title: Expert Syst. Appl. – volume: 36 start-page: 10054 year: 2009 end-page: 10059 ident: bib25 article-title: Automatic EEG signal classification for epilepsy diagnosis with relevance vector machines publication-title: Expert Syst. Appl. – volume: 37 start-page: 2129 year: 2009 ident: 10.1016/j.compbiomed.2019.05.016_bib65 article-title: Seizure detection using seizure probability estimation: comparison of features used to detect seizures publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-009-9755-5 – volume: 41 start-page: 160 issue: 10 year: 2017 ident: 10.1016/j.compbiomed.2019.05.016_bib60 article-title: Classification of focal and non focal epileptic seizures using multi-features and SVM classifier publication-title: J. Med. Syst. doi: 10.1007/s10916-017-0800-x – volume: 100 start-page: 270 year: 2018 ident: 10.1016/j.compbiomed.2019.05.016_bib32 article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.09.017 – volume: 54 start-page: 1285 year: 2016 ident: 10.1016/j.compbiomed.2019.05.016_bib6 article-title: Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-016-1468-y – ident: 10.1016/j.compbiomed.2019.05.016_bib33 – volume: 116 start-page: 427 issue: 2 year: 2005 ident: 10.1016/j.compbiomed.2019.05.016_bib64 article-title: A system to detect the onset of epileptic seizures in scalp EEG publication-title: Clin. Neurophysiol. : Off. J. Int. Fed. Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.08.004 – volume: 25 start-page: 2146 year: 2017 ident: 10.1016/j.compbiomed.2019.05.016_bib7 article-title: Real-time epileptic seizure detection using EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2697920 – volume: 5 start-page: 3 year: 2001 ident: 10.1016/j.compbiomed.2019.05.016_bib56 article-title: A mathematical theory of communication publication-title: Mob. Comput. Commun. Rev. doi: 10.1145/584091.584093 – year: 1992 ident: 10.1016/j.compbiomed.2019.05.016_bib53 – volume: 88 start-page: 132 year: 2017 ident: 10.1016/j.compbiomed.2019.05.016_bib38 article-title: Seizure detection from EEG signals using multivariate empirical mode decomposition publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.07.010 – volume: 127 start-page: 323341 issue: 1 year: 2019 ident: 10.1016/j.compbiomed.2019.05.016_bib48 article-title: A novel approach for classification of epileptic seizures using matrix determinant publication-title: Expert Syst. Appl. – volume: 65 start-page: 2612 year: 2018 ident: 10.1016/j.compbiomed.2019.05.016_bib18 article-title: A novel approach for real time recognition of epileptic seizures using minimum variance modified fuzzy entropy publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 39 start-page: 9072 issue: 10 year: 2012 ident: 10.1016/j.compbiomed.2019.05.016_bib29 article-title: Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.02.040 – volume: 99 start-page: 24 year: 2018 ident: 10.1016/j.compbiomed.2019.05.016_bib36 article-title: A long short-term memory deep learning network for the prediction of epileptic seizures using eeg signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.05.019 – volume: 57 start-page: 1639 year: 2010 ident: 10.1016/j.compbiomed.2019.05.016_bib46 article-title: Automated real-time epileptic seizure detection in scalp EEG recordings using an algorithm based on wavelet packet transform publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 5 start-page: 483 issue: 4 year: 2004 ident: 10.1016/j.compbiomed.2019.05.016_bib49 article-title: Patient-specific seizure onset detection publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2004.05.005 – volume: 53 start-page: 1557 year: 2006 ident: 10.1016/j.compbiomed.2019.05.016_bib3 article-title: Development and assessment of methods for detecting dementia using the human electroencephalogram publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 16 start-page: 3049 year: 2014 ident: 10.1016/j.compbiomed.2019.05.016_bib11 article-title: Using permutation entropy to measure the changes in EEG signals during absence seizures publication-title: Entropy doi: 10.3390/e16063049 – volume: 125 7 start-page: 1346 year: 2014 ident: 10.1016/j.compbiomed.2019.05.016_bib67 article-title: Automatic seizure detection in long-term scalp EEG using an adaptive thresholding technique: a validation study for clinical routine publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2013.12.104 – volume: 20 start-page: 749 year: 2012 ident: 10.1016/j.compbiomed.2019.05.016_bib34 article-title: Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2206054 – volume: 88 start-page: 85 year: 2015 ident: 10.1016/j.compbiomed.2019.05.016_bib15 article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: a review publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2015.08.004 – volume: 243 start-page: 18 year: 2015 ident: 10.1016/j.compbiomed.2019.05.016_bib13 article-title: The detection of epileptic seizure signals based on fuzzy entropy publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.01.015 – volume: 54 start-page: 530 year: 1982 ident: 10.1016/j.compbiomed.2019.05.016_bib1 article-title: Automatic recognition of epileptic seizures in the EEG publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(82)90038-4 – volume: 36 start-page: 375 issue: 2 year: 2016 ident: 10.1016/j.compbiomed.2019.05.016_bib42 article-title: Epileptic seizure detection based on improved wavelet neural networks in long-term intracranial EEG publication-title: Biocybern. and Biomed. Eng. doi: 10.1016/j.bbe.2016.03.001 – volume: 137 start-page: 247 year: 2016 ident: 10.1016/j.compbiomed.2019.05.016_bib43 article-title: Epileptic seizure detection in EEG signals using tunable-q factor wavelet transform and bootstrap aggregating publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2016.09.008 – volume: 11 start-page: 674 year: 1989 ident: 10.1016/j.compbiomed.2019.05.016_bib52 article-title: A theory for multi-resolution signal decomposition: the wavelet representation publication-title: IEEE Trans. Pattern Anal. doi: 10.1109/34.192463 – volume: 71 start-page: 128 year: 2016 ident: 10.1016/j.compbiomed.2019.05.016_bib16 article-title: Patient non-specific algorithm for seizures detection in scalp EEG publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.02.016 – volume: 118 start-page: 217 year: 2017 ident: 10.1016/j.compbiomed.2019.05.016_bib45 article-title: An automatic detection of focal EEG signals using new class of timefrequency localized orthogonal wavelet filter banks publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2016.11.024 – volume: 37 start-page: 3284 year: 2010 ident: 10.1016/j.compbiomed.2019.05.016_bib19 article-title: Entropies based detection of epileptic seizures with artificial neural network classifiers publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.09.051 – volume: 36 start-page: 10054 year: 2009 ident: 10.1016/j.compbiomed.2019.05.016_bib25 article-title: Automatic EEG signal classification for epilepsy diagnosis with relevance vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.01.022 – volume: 64 year: 2001 ident: 10.1016/j.compbiomed.2019.05.016_bib47 article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.061907 – volume: 123 start-page: 69 issue: 1 year: 2003 ident: 10.1016/j.compbiomed.2019.05.016_bib40 article-title: Analysis of EEG records in an epileptic patient using wavelet transform publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(02)00340-0 – start-page: 5127 year: 2007 ident: 10.1016/j.compbiomed.2019.05.016_bib4 article-title: Characterization of EEGs in alzheimer's disease using information theoretic methods publication-title: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society doi: 10.1109/IEMBS.2007.4353494 – year: 2017 ident: 10.1016/j.compbiomed.2019.05.016_bib2 – year: 2011 ident: 10.1016/j.compbiomed.2019.05.016_bib61 – volume: 77 start-page: 70 year: 2007 ident: 10.1016/j.compbiomed.2019.05.016_bib8 article-title: Predictability analysis of absence seizures with permutation entropy publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2007.08.002 – year: 2018 ident: 10.1016/j.compbiomed.2019.05.016_bib44 article-title: FuzzyEn-based features in FrFT-WPT domain for epileptic seizure detection publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3621-z – volume: 25 start-page: 413 year: 2017 ident: 10.1016/j.compbiomed.2019.05.016_bib24 article-title: Epileptic focus localization using discrete wavelet transform based on interictal intracranial EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2604393 – volume: 100 start-page: 10 year: 2018 ident: 10.1016/j.compbiomed.2019.05.016_bib37 article-title: A new feature for the classification of non-stationary signals based on the direction of signal energy in the timefrequency domain publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.06.018 – volume: 207 start-page: 42 year: 2009 ident: 10.1016/j.compbiomed.2019.05.016_bib28 article-title: A wavelet-based energetic approach for the analysis of biomedical signals: application to the electroencephalogram and electro-oculogram publication-title: Appl. Math. Comput. – volume: 53 start-page: 177 year: 2016 ident: 10.1016/j.compbiomed.2019.05.016_bib17 article-title: A hybrid automated detection of epileptic seizures in EEG records publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2015.09.001 – volume: 25 start-page: 1100 year: 2017 ident: 10.1016/j.compbiomed.2019.05.016_bib35 article-title: Lmd based features for the automatic seizure detection of EEG signals using SVM publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2611601 – volume: 29 start-page: 47 issue: 8 year: 2018 ident: 10.1016/j.compbiomed.2019.05.016_bib41 article-title: A novel approach for automated detection of focal EEG signals using empirical wavelet transform publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2646-4 – volume: 12 issue: 3 year: 2015 ident: 10.1016/j.compbiomed.2019.05.016_bib51 article-title: EEG artifact removal-state-of-the-art and guidelines publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/3/031001 – volume: 52 start-page: 479 issue: 1 year: 1988 ident: 10.1016/j.compbiomed.2019.05.016_bib57 article-title: Possible generalization of Boltzmann-gibbs statistics publication-title: J. Stat. Phys. doi: 10.1007/BF01016429 – volume: 7 start-page: 401 issue: 4 year: 2012 ident: 10.1016/j.compbiomed.2019.05.016_bib5 article-title: Automated diagnosis of epileptic EEG using entropies publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2011.07.007 – year: 1997 ident: 10.1016/j.compbiomed.2019.05.016_bib58 – volume: 11 start-page: 51 year: 2016 ident: 10.1016/j.compbiomed.2019.05.016_bib20 article-title: Classification of epileptic seizures using wavelet packet log energy and norm entropies with recurrent elman neural network classifier publication-title: Cognit. Neurodynamics doi: 10.1007/s11571-016-9408-y – volume: 82 start-page: 49 year: 2017 ident: 10.1016/j.compbiomed.2019.05.016_bib39 article-title: Automated seizure detection using limited-channel EEG and non-linear dimension reduction publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.01.011 – volume: 26 start-page: 56 year: 2015 ident: 10.1016/j.compbiomed.2019.05.016_bib27 article-title: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis publication-title: Seizure doi: 10.1016/j.seizure.2015.01.012 – volume: 113 start-page: 18 year: 2018 ident: 10.1016/j.compbiomed.2019.05.016_bib59 article-title: Classification of focal and non-focal EEG signals using neighborhood component analysis and machine learning algorithms publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.06.031 – volume: 53 start-page: 83 year: 2011 ident: 10.1016/j.compbiomed.2019.05.016_bib30 article-title: Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2011.07.003 – volume: 210 2 start-page: 132 year: 2012 ident: 10.1016/j.compbiomed.2019.05.016_bib10 article-title: Automatic epileptic seizure detection in eegs based on optimized sample entropy and extreme learning machine publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2012.07.003 – volume: 19 start-page: 297 year: 2009 ident: 10.1016/j.compbiomed.2019.05.016_bib26 article-title: Combined neural network model employing wavelet coefficients for EEG signals classification publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2008.07.004 – start-page: 975 year: 2010 ident: 10.1016/j.compbiomed.2019.05.016_bib50 article-title: Application of machine learning to epileptic seizure detection – volume: 20 start-page: 37 issue: 1 year: 1960 ident: 10.1016/j.compbiomed.2019.05.016_bib62 article-title: A coefficient of agreement for nominal scales publication-title: Educ. Psychol. Meas. doi: 10.1177/001316446002000104 – volume: 4 start-page: 3243 issue: 1 year: 2015 ident: 10.1016/j.compbiomed.2019.05.016_bib14 article-title: Effect of wavelet packet log energy entropy on electroencephalogram (EEG) signals publication-title: Int. J. Biomed. Clin. Eng. doi: 10.4018/IJBCE.2015010103 – volume: 25 start-page: 2270 year: 2017 ident: 10.1016/j.compbiomed.2019.05.016_bib31 article-title: Seizure classification from EEG signals using transfer learning, semi-supervised learning and tsk fuzzy system publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2748388 – volume: 38 start-page: 14314 year: 2011 ident: 10.1016/j.compbiomed.2019.05.016_bib22 article-title: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection publication-title: Expert Syst. Appl. – volume: 362 start-page: 90 year: 2012 ident: 10.1016/j.compbiomed.2019.05.016_bib55 article-title: Application of artificial neural networks for versatile preprocessing of electrocardiogram recordings publication-title: J. Med. Eng. Technol. doi: 10.3109/03091902.2011.636859 – volume: 29 start-page: 1 year: 2012 ident: 10.1016/j.compbiomed.2019.05.016_bib66 article-title: Detection of epileptic seizures in scalp electroencephalogram: an automated real-time wavelet-based approach publication-title: J. Clin. Neurophysiol. doi: 10.1097/WNP.0b013e318246af3e – volume: 8 start-page: 1323 year: 2014 ident: 10.1016/j.compbiomed.2019.05.016_bib12 article-title: Epileptic seizures detection in EEG using DWT-based apen and artificial neural network publication-title: Signal, Image and Video Process. doi: 10.1007/s11760-012-0362-9 – volume: 11 start-page: 288 year: 2007 ident: 10.1016/j.compbiomed.2019.05.016_bib9 article-title: Approximate entropy-based epileptic EEG detection using artificial neural networks publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2006.884369 – volume: 29 start-page: 647 year: 2005 ident: 10.1016/j.compbiomed.2019.05.016_bib21 article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features publication-title: J. Med. Syst. doi: 10.1007/s10916-005-6133-1 – start-page: 1 year: 2017 ident: 10.1016/j.compbiomed.2019.05.016_bib54 article-title: Epileptic seizure detection using hybrid machine learning methods publication-title: Neural Comput. Appl. – volume: 89 start-page: 205 year: 2017 ident: 10.1016/j.compbiomed.2019.05.016_bib23 article-title: Optimal configuration of multilayer perceptron neural network classifier for recognition of intracranial epileptic seizures publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.07.029 – volume: vol. 2 start-page: 1923 year: 2001 ident: 10.1016/j.compbiomed.2019.05.016_bib63 article-title: Nonadditive information theory for the analysis of brain rhythms |
| SSID | ssj0004030 |
| Score | 2.5281274 |
| Snippet | The electroencephalogram (EEG) signal contains useful information on physiological states of the brain and has proven to be a potential biomarker to realize... AbstractThe electroencephalogram (EEG) signal contains useful information on physiological states of the brain and has proven to be a potential biomarker to... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 127 |
| SubjectTerms | Accuracy Algorithms Automation Biomarkers Brain Classification Classifiers Computational efficiency Convulsions & seizures Decomposition Discrete Wavelet Transform Discrete wavelet transforms (DWT) EEG Eigenvalues Electroencephalography Energy Entropy Epilepsy Epileptic seizures Human error Internal Medicine Methods Neural networks Other Performance evaluation Seizures Sigmoid entropy Support vector machine (SVM) Support vector machines Wavelet transforms |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9VAEF5KH7w8iHejVUbwNTZnc9kTfJJqKUJFsNW-LXtLSTlNQpMgxwd_hT_YmWySo1ThgI-5TJLdnXwzk3wzw9grLgorjFmGBiOgMElSHSIGCur1MnAWuVMDQfZjdnSafDhLz3bYwZQLQ7TKEfs9pg9oPe7ZH2dzvylLyvHFUGLIvIwpkKGy20kiqIvB6x8bmkcSxT4NBfGGzh7ZPJ7jRbRtn-ZOJK_c1_DM_mWirrugt9nNvmrU-ptarX4zS4d32Z3Rn4S3_pHvsR1X3Wc3jsc_5g_Yz0-bzADYlPaGuoB3X0-AjJiFtjy_rEsL9KW3btZQVkA950FVFoorT7Zeg60vVVm1gJcD1Xe4hd4qWNcNbK7hkq5BkEEQMtC68nuPoTwQsf4cPn85BkOOelngIB-y08P3JwdH4diJITRplnRhKoRShV6mNsc15wVXVMVGWx7nkbEuzoSzidMq11pHIkuNzhc8EgUaPxTJTfyI7VZ15Z4wWOostZpaHtuCisUrxBizzM1SJwgFCxUwMU2-NGOZcuqWsZITH-1CbpZN0rLJKJV4IGCLWbLxpTq2kMmn9ZVTKiqCp0R7soWs-Jusa0cUaOVCtlxG8pqmBuzNLPmHsm95371JEeV8K4RlAtckywP2cj6MUEH_f1Tl6p7OiTEYj7ngAXvsFXieKCq6RPAdMD5r9Naz-PS_xvOM3aItz4HeY7vdVe-eo6fX6RfDq_wLSfFUPA priority: 102 providerName: Elsevier – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb5RQED7RbeLlwfsFreaY-MoWWOBAfGrUpjFp06RdrU8n58aGdhc2C0S3v8Mf7AwHWGM12RgfCQyEs3O-mVm--YaQtwHLNFMqcRVUQG4YRtIFDGQ466XlLAZGtATZ4_hwGn46j847_hP2wkA1N4ag4Cpd2I4G1Ggq6r18Adtrz3erYOy5p62qTNt0OcEaJnaz7z6fr2bji-XsJtmJI8jLR2Rnenyy_9VCsefi9Vh9JSx1wfPCjtZjyV7I37b97sj2Sq2YZ_y3WHU9F71LbjfFUqy_ifn8l_h0cJ9c9m9maSmX46aWY3X1m-jj_3n1B-Rel8bSfet3D8kNUzwit466D_WPyY-TTUMC3SiK0zKjH76cUYydmlb5bFHmmuIfzOVyTfOC4qh7KgpNs5XleK-pLhciLyoKt6OiqeEIkmSqTd2SyNpbmiVgG2CfopXJr5qVqSjy-Wf09PMRVVgf5Bks6RMyPfh49v7Q7QZAuCqKw9qNGBMik0mkU3C1IAsEiudIHUxST2kziZnRoZEilVJ6LI6UTP3AYxnEXDBJ1eQpGRVlYZ4Tmsg40hInLesMNeoFQJtKUpXIEBDIFw5h_U_NVaeOjkM65rynwV3wjZNwdBLuRRxOOMQfLJdWIWQLm7T3Jt53wAJmcwhjW9iyP9maqgOfivu8CrjHr7mKQ94Nll1-ZfOmLZ-727s9Hx4F0QAxPYxTh7wZTgNC4WcnUZiywWsmYQiBgwUOeWa3y7BQqPWEUcMhwbB_tl7FF_9i9JLcwSPLuN4lo3rVmFeQV9bydQcYPwHHI3Zt priority: 102 providerName: Unpaywall |
| Title | Performance evaluation of DWT based sigmoid entropy in time and frequency domains for automated detection of epileptic seizures using SVM classifier |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519301726 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482519301726 https://dx.doi.org/10.1016/j.compbiomed.2019.05.016 https://www.ncbi.nlm.nih.gov/pubmed/31154257 https://www.proquest.com/docview/2251017469 https://www.proquest.com/docview/2234483272 https://ars.els-cdn.com/content/image/1-s2.0-S0010482519301726-fx1_lrg.jpg |
| UnpaywallVersion | publishedVersion |
| Volume | 110 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEF61icTxgLgbKNEi8Wpw1sfaQggFaAigRhFtIDyt9nLlKrVDnQiFB34FP5gZX0HiUF5sWfbYye74mxnvNzOEPGE8MVzryNEQATm-HygHMJBjr5eSs8isLAmyk3A889_Pg_kemTS5MEirbDCxBGqTa_xG_gz0DrUHormXy68Odo3C1dWmhYasWyuYF2WJsX3SZVgZq0O6r44m04_bTEnXq5JSAH18CI5qbk_F-EISd5X0jpSvuKroGf7LYP3pkF4nV9fZUm6-ycXiNyM1uklu1N4lHVbqcIvs2ew2uXJcr5_fIT-n2zwBui30TfOEvvl8StGkGVqkZxd5aih-982XG5pmFDvQU5kZmlxW1OsNNfmFTLOCwu2oXK_gCHxXauyq5HaVt7RLgByAJE0Lm35fQ2BPkWZ_Rk8-HVONbnuawJ-8S2ajo9PXY6fuy-DoIPRXTsC5lImKAhODBrCESaxpowzzYlcb64XcGt8qGSulXB4GWsUD5vIETCGIxNq7RzpZntkDQiMVBkZhA2STYOl4CYijo1hHygdgGMge4c3gC10XLcfeGQvRsNPOxXbaBE6bcAMBJ3pk0Eouq8IdO8jEzfyKJjEVoFSAddlBlv9N1hY1JhRiIAomXHFSlkQqM4Y9DMBB8nkrWbs9lTuz43MPG0UU7aO2L0uPPG5PA3DgapDMbL7GazwIzT3GWY_crxS4HSgswYRg3iOs1eidR_HB_3_RQ3INL64oz4eks7pc20fg2K1Un-w__TGALZ9z2Eajt33SHb77MJ706_cY9rPJdPjlF-QZVXQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VVqLwgLgTKLBI8GiRrNdxLFQhoK1S2kQVTWnflr25MkrtECeqwnfwPXwbM74FiYvy0kfLnrW9Oz4z4z0zA_CSh7ENjel5BiMgT4hAe4iBIfV6KTiL3KmCIDvs9k_Ex7PgbA1-1rkwRKusMbEAapsZ-kf-GvWOtAejubeTbx51jaLd1bqFhqpaK9jtosRYldhx4BaXGMLl2_s7uN6vON_bHX3oe1WXAc8EXTHzgjBUKta9wEb4Pjzmiiq0aMv9qG2s87uhs8JpFWmtMegPjI46vB3GCOwoEhkfx70GG8IXEQZ_G-93h0eflpmZbb9MgkG0ExiMVVyikmFGpPEyyZ4oZlFZQbT7LwP5pwN8Ezbn6UQtLtV4_JtR3LsNtypvlr0r1e8OrLn0LlwfVPv19-DH0TIvgS0Li7MsZjunI0Ym1LI8Ob_IEsvoP3M2WbAkZdTxnqnUsnhaUr0XzGYXKklzhsMxNZ_hEfrKzLpZwSUrhnQThDiEQMNyl3yfT13OiNZ_zo4_D5ihMCGJ8SXvw8mVrNADWE-z1D0C1tPdwGpquGxjKlWvEOFMLzI9LRCIOqoFYT350lRF0qlXx1jWbLivcrlskpZNtgOJJ1rQaSQnZaGQFWSien1lnQiL0C3Rmq0gG_5N1uUVBuWyI3Mu2_K4KMFUZCj7FPCj5JtGsnKzSvdpxftu1Yoom1stP84WvGhOI1DR7pNKXTana3wh0H6EvAUPSwVuJopKPpHxaAFvNHrlWXz8_yd6Dpv90eBQHu4PD57ADRIs6dZbsD6bzt1TdCpn-ln15TL4ctVg8QvlYY25 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VIhV4QNwJFFgkeLSarO1sLIQQIkQtpVWltpC3ZW-ujFI7xImq8B18DV_HjNd2kLgoL3207Fnbu-MzM94zMwAvuEitMGYQGIyAgiiKdYAYKKjXS8VZ5E5VBNnD_u5p9GEcjzfgZ5MLQ7TKBhMroLaFoX_kO6h3pD0Yze2kNS3iaDh6M_0WUAcp2mlt2ml4Fdl3ywsM38rXe0Nc65ecj96fvNsN6g4DgYn70TyIhVAq1YPYJvguPOWKqrNoy8Oka6wL-8LZyGmVaK0x4I-NTnq8K1IEdRRJTIjjXoGrIgwTohOKsVjlZHZDn_6COBdhGFaziDy3jOjiPr2eyGWJrx3a_5dp_NP1vQHXFvlULS_UZPKbORzdgpu1H8veesW7DRsuvwNbB_VO_V34cbTKSGCrkuKsSNnw8wkj42lZmZ2dF5ll9Ie5mC5ZljPqdc9Ublk68yTvJbPFucrykuFwTC3meIReMrNuXrHIqiHdFMENwc-w0mXfFzNXMiL0n7HjTwfMUICQpfiS9-D0UtbnPmzmRe4eAhvofmw1tVq2KRWpV4htZpCYgY4QgnqqA6KZfGnq8ujUpWMiGx7cV7laNknLJruxxBMd6LWSU18iZA2ZpFlf2aTAImhLtGNryIq_ybqyRp9S9mTJZVceV8WXqtzkkEJ9lHzVStYOlnec1rzvdqOIsr3V6rPswPP2NEIU7Tup3BULuiaMIrQcgnfggVfgdqKo2BOZjQ7wVqPXnsVH_3-iZ7CFECE_7h3uP4brJOd51tuwOZ8t3BP0Juf6afXZMvhy2TjxCxWoi1M |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb5RQED7RbeLlwfsFreaY-MoWWOBAfGrUpjFp06RdrU8n58aGdhc2C0S3v8Mf7AwHWGM12RgfCQyEs3O-mVm--YaQtwHLNFMqcRVUQG4YRtIFDGQ466XlLAZGtATZ4_hwGn46j847_hP2wkA1N4ag4Cpd2I4G1Ggq6r18Adtrz3erYOy5p62qTNt0OcEaJnaz7z6fr2bji-XsJtmJI8jLR2Rnenyy_9VCsefi9Vh9JSx1wfPCjtZjyV7I37b97sj2Sq2YZ_y3WHU9F71LbjfFUqy_ifn8l_h0cJ9c9m9maSmX46aWY3X1m-jj_3n1B-Rel8bSfet3D8kNUzwit466D_WPyY-TTUMC3SiK0zKjH76cUYydmlb5bFHmmuIfzOVyTfOC4qh7KgpNs5XleK-pLhciLyoKt6OiqeEIkmSqTd2SyNpbmiVgG2CfopXJr5qVqSjy-Wf09PMRVVgf5Bks6RMyPfh49v7Q7QZAuCqKw9qNGBMik0mkU3C1IAsEiudIHUxST2kziZnRoZEilVJ6LI6UTP3AYxnEXDBJ1eQpGRVlYZ4Tmsg40hInLesMNeoFQJtKUpXIEBDIFw5h_U_NVaeOjkM65rynwV3wjZNwdBLuRRxOOMQfLJdWIWQLm7T3Jt53wAJmcwhjW9iyP9maqgOfivu8CrjHr7mKQ94Nll1-ZfOmLZ-727s9Hx4F0QAxPYxTh7wZTgNC4WcnUZiywWsmYQiBgwUOeWa3y7BQqPWEUcMhwbB_tl7FF_9i9JLcwSPLuN4lo3rVmFeQV9bydQcYPwHHI3Zt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+DWT+based+sigmoid+entropy+in+time+and+frequency+domains+for+automated+detection+of+epileptic+seizures+using+SVM+classifier&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Raghu%2C+S&rft.au=Sriraam%2C+Natarajan&rft.au=Temel%2C+Yasin&rft.au=Rao%2C+Shyam+Vasudeva&rft.date=2019-07-01&rft.issn=0010-4825&rft.volume=110&rft.spage=127&rft.epage=143&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.05.016&rft.externalDBID=ECK1-s2.0-S0010482519301726&rft.externalDocID=1_s2_0_S0010482519301726 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482519X00062%2Fcov150h.gif |