Performance evaluation of DWT based sigmoid entropy in time and frequency domains for automated detection of epileptic seizures using SVM classifier

The electroencephalogram (EEG) signal contains useful information on physiological states of the brain and has proven to be a potential biomarker to realize the complex dynamic behavior of the brain. Epilepsy is a brain disorder described by recurrent and unpredictable interruption of healthy brain...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 110; pp. 127 - 143
Main Authors Raghu, S., Sriraam, Natarajan, Temel, Yasin, Rao, Shyam Vasudeva, Hegde, Alangar Satyaranjandas, Kubben, Pieter L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.07.2019
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2019.05.016

Cover

Abstract The electroencephalogram (EEG) signal contains useful information on physiological states of the brain and has proven to be a potential biomarker to realize the complex dynamic behavior of the brain. Epilepsy is a brain disorder described by recurrent and unpredictable interruption of healthy brain function. Diagnosis of patients with epilepsy requires monitoring and visual inspection of long-term EEG by the neurologist, which is found to be a time-consuming procedure. Therefore, this study proposes an automated seizure detection model using a novel computationally efficient feature named sigmoid entropy derived from discrete wavelet transforms. The sigmoid entropy was estimated from the wavelet coefficients in each sub-band and classified using a non-linear support vector machine classifier with leave-one-subject-out cross-validation. The performance of the proposed method was tested with the Ramaiah Medical College and Hospital (RMCH) database, which consists of the 58 Hours of EEG from 115 subjects, the University of Bonn (UBonn), and CHB-MIT databases. Results showed that sigmoid entropy exhibits lower values for epileptic EEG in contrary to other existing entropy methods. We observe a seizure detection rate of 96.34%, a false detection rate of 0.5/h and a mean detection delay of 1.2 s for the RMCH database. The highest sensitivity of 100% and 94.21% were achieved for UBonn and CHB-MIT databases respectively. The performance comparison confirms that sigmoid entropy was found to be better and computationally efficient as compared to other entropy methods. It can be concluded that the proposed sigmoid entropy could be used as a potential biomarker for recognition and detection of epileptic seizures. [Display omitted] •DWT based sigmoid entropy was proposed for epileptic seizure detection.•Five different mother wavelets have been studied on three EEG databases.•Classification was performed using both segment and event based approaches.•Bio3.1, Rbio3.1, and Haar wavelets were found to be best choice for seizure detection.•The Kappa coefficients obtained for all the databases were found to be either good or very good agreement category.
AbstractList The electroencephalogram (EEG) signal contains useful information on physiological states of the brain and has proven to be a potential biomarker to realize the complex dynamic behavior of the brain. Epilepsy is a brain disorder described by recurrent and unpredictable interruption of healthy brain function. Diagnosis of patients with epilepsy requires monitoring and visual inspection of long-term EEG by the neurologist, which is found to be a time-consuming procedure. Therefore, this study proposes an automated seizure detection model using a novel computationally efficient feature named sigmoid entropy derived from discrete wavelet transforms. The sigmoid entropy was estimated from the wavelet coefficients in each sub-band and classified using a non-linear support vector machine classifier with leave-one-subject-out cross-validation. The performance of the proposed method was tested with the Ramaiah Medical College and Hospital (RMCH) database, which consists of the 58 Hours of EEG from 115 subjects, the University of Bonn (UBonn), and CHB-MIT databases. Results showed that sigmoid entropy exhibits lower values for epileptic EEG in contrary to other existing entropy methods. We observe a seizure detection rate of 96.34%, a false detection rate of 0.5/h and a mean detection delay of 1.2 s for the RMCH database. The highest sensitivity of 100% and 94.21% were achieved for UBonn and CHB-MIT databases respectively. The performance comparison confirms that sigmoid entropy was found to be better and computationally efficient as compared to other entropy methods. It can be concluded that the proposed sigmoid entropy could be used as a potential biomarker for recognition and detection of epileptic seizures.
The electroencephalogram (EEG) signal contains useful information on physiological states of the brain and has proven to be a potential biomarker to realize the complex dynamic behavior of the brain. Epilepsy is a brain disorder described by recurrent and unpredictable interruption of healthy brain function. Diagnosis of patients with epilepsy requires monitoring and visual inspection of long-term EEG by the neurologist, which is found to be a time-consuming procedure. Therefore, this study proposes an automated seizure detection model using a novel computationally efficient feature named sigmoid entropy derived from discrete wavelet transforms. The sigmoid entropy was estimated from the wavelet coefficients in each sub-band and classified using a non-linear support vector machine classifier with leave-one-subject-out cross-validation. The performance of the proposed method was tested with the Ramaiah Medical College and Hospital (RMCH) database, which consists of the 58 Hours of EEG from 115 subjects, the University of Bonn (UBonn), and CHB-MIT databases. Results showed that sigmoid entropy exhibits lower values for epileptic EEG in contrary to other existing entropy methods. We observe a seizure detection rate of 96.34%, a false detection rate of 0.5/h and a mean detection delay of 1.2 s for the RMCH database. The highest sensitivity of 100% and 94.21% were achieved for UBonn and CHB-MIT databases respectively. The performance comparison confirms that sigmoid entropy was found to be better and computationally efficient as compared to other entropy methods. It can be concluded that the proposed sigmoid entropy could be used as a potential biomarker for recognition and detection of epileptic seizures.The electroencephalogram (EEG) signal contains useful information on physiological states of the brain and has proven to be a potential biomarker to realize the complex dynamic behavior of the brain. Epilepsy is a brain disorder described by recurrent and unpredictable interruption of healthy brain function. Diagnosis of patients with epilepsy requires monitoring and visual inspection of long-term EEG by the neurologist, which is found to be a time-consuming procedure. Therefore, this study proposes an automated seizure detection model using a novel computationally efficient feature named sigmoid entropy derived from discrete wavelet transforms. The sigmoid entropy was estimated from the wavelet coefficients in each sub-band and classified using a non-linear support vector machine classifier with leave-one-subject-out cross-validation. The performance of the proposed method was tested with the Ramaiah Medical College and Hospital (RMCH) database, which consists of the 58 Hours of EEG from 115 subjects, the University of Bonn (UBonn), and CHB-MIT databases. Results showed that sigmoid entropy exhibits lower values for epileptic EEG in contrary to other existing entropy methods. We observe a seizure detection rate of 96.34%, a false detection rate of 0.5/h and a mean detection delay of 1.2 s for the RMCH database. The highest sensitivity of 100% and 94.21% were achieved for UBonn and CHB-MIT databases respectively. The performance comparison confirms that sigmoid entropy was found to be better and computationally efficient as compared to other entropy methods. It can be concluded that the proposed sigmoid entropy could be used as a potential biomarker for recognition and detection of epileptic seizures.
The electroencephalogram (EEG) signal contains useful information on physiological states of the brain and has proven to be a potential biomarker to realize the complex dynamic behavior of the brain. Epilepsy is a brain disorder described by recurrent and unpredictable interruption of healthy brain function. Diagnosis of patients with epilepsy requires monitoring and visual inspection of long-term EEG by the neurologist, which is found to be a time-consuming procedure. Therefore, this study proposes an automated seizure detection model using a novel computationally efficient feature named sigmoid entropy derived from discrete wavelet transforms. The sigmoid entropy was estimated from the wavelet coefficients in each sub-band and classified using a non-linear support vector machine classifier with leave-one-subject-out cross-validation. The performance of the proposed method was tested with the Ramaiah Medical College and Hospital (RMCH) database, which consists of the 58 Hours of EEG from 115 subjects, the University of Bonn (UBonn), and CHB-MIT databases. Results showed that sigmoid entropy exhibits lower values for epileptic EEG in contrary to other existing entropy methods. We observe a seizure detection rate of 96.34%, a false detection rate of 0.5/h and a mean detection delay of 1.2 s for the RMCH database. The highest sensitivity of 100% and 94.21% were achieved for UBonn and CHB-MIT databases respectively. The performance comparison confirms that sigmoid entropy was found to be better and computationally efficient as compared to other entropy methods. It can be concluded that the proposed sigmoid entropy could be used as a potential biomarker for recognition and detection of epileptic seizures. [Display omitted] •DWT based sigmoid entropy was proposed for epileptic seizure detection.•Five different mother wavelets have been studied on three EEG databases.•Classification was performed using both segment and event based approaches.•Bio3.1, Rbio3.1, and Haar wavelets were found to be best choice for seizure detection.•The Kappa coefficients obtained for all the databases were found to be either good or very good agreement category.
AbstractThe electroencephalogram (EEG) signal contains useful information on physiological states of the brain and has proven to be a potential biomarker to realize the complex dynamic behavior of the brain. Epilepsy is a brain disorder described by recurrent and unpredictable interruption of healthy brain function. Diagnosis of patients with epilepsy requires monitoring and visual inspection of long-term EEG by the neurologist, which is found to be a time-consuming procedure. Therefore, this study proposes an automated seizure detection model using a novel computationally efficient feature named sigmoid entropy derived from discrete wavelet transforms. The sigmoid entropy was estimated from the wavelet coefficients in each sub-band and classified using a non-linear support vector machine classifier with leave-one-subject-out cross-validation. The performance of the proposed method was tested with the Ramaiah Medical College and Hospital (RMCH) database, which consists of the 58 Hours of EEG from 115 subjects, the University of Bonn (UBonn), and CHB-MIT databases. Results showed that sigmoid entropy exhibits lower values for epileptic EEG in contrary to other existing entropy methods. We observe a seizure detection rate of 96.34%, a false detection rate of 0.5/h and a mean detection delay of 1.2 s for the RMCH database. The highest sensitivity of 100% and 94.21% were achieved for UBonn and CHB-MIT databases respectively. The performance comparison confirms that sigmoid entropy was found to be better and computationally efficient as compared to other entropy methods. It can be concluded that the proposed sigmoid entropy could be used as a potential biomarker for recognition and detection of epileptic seizures.
Author Temel, Yasin
Raghu, S.
Rao, Shyam Vasudeva
Hegde, Alangar Satyaranjandas
Sriraam, Natarajan
Kubben, Pieter L.
Author_xml – sequence: 1
  givenname: S.
  surname: Raghu
  fullname: Raghu, S.
  email: r.raghu@maastrichtuniversity.nl
  organization: Department of Neurosurgery, School for Mental Health and Neuroscience of the Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
– sequence: 2
  givenname: Natarajan
  surname: Sriraam
  fullname: Sriraam, Natarajan
  email: sriraam@msrit.edu
  organization: Center for Medical Electronics and Computing, M S Ramaiah Institute of Technology, Bengaluru, India
– sequence: 3
  givenname: Yasin
  surname: Temel
  fullname: Temel, Yasin
  organization: Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
– sequence: 4
  givenname: Shyam Vasudeva
  surname: Rao
  fullname: Rao, Shyam Vasudeva
  organization: Maastricht University, Maastricht, the Netherlands
– sequence: 5
  givenname: Alangar Satyaranjandas
  surname: Hegde
  fullname: Hegde, Alangar Satyaranjandas
  organization: Institute of Neuroscience, Ramaiah Medical College and Hospitals, Bengaluru, India
– sequence: 6
  givenname: Pieter L.
  surname: Kubben
  fullname: Kubben, Pieter L.
  organization: Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31154257$$D View this record in MEDLINE/PubMed
BookMark eNqVUl1rFDEUDVKx2-pfkIAvvsyaZL52XopaP6Gi0KqPIR93StZMMk0ylfV3-IPNuF2FBWF9CuGec-6959wTdOS8A4QwJUtKaPNsvVR-GKXxA-glI7RbknqZC_fQgq7ariB1WR2hBSGUFNWK1cfoJMY1IaQiJXmAjktK64rV7QL9_ASh92EQTgGGW2EnkYx32Pf41dcrLEUEjaO5HrzRGFwKftxg43AyA2DhNO4D3Ezg1AZrPwjjIs5yWEwp_1LmakigdpIwGgtjMgpHMD-mABFP0bhrfPnlA1ZWxGh6A-Ehut8LG-HR3XuKPr95fXX-rrj4-Pb9-YuLQtVNlYq6bYXo5arWnQTFeibKhjVSs7IjSkPZtKArkKKTUpK2qZXsKCNtT9lM6VR5irqt7uRGsfkurOVjMIMIG04Jn53ma_7XaT47zUnNcyFzn265Y_DZgJj4YKICa4UDP0XOWFlVq5K1LEOf7EHXfgoub5ZRdW7TVk2XUY_vUJOcm-0m2WWVAWdbgAo-xgA9Vyb9TisFYewhI6_2BP5j25dbKuQ4bnNEPCqTUwdtQo6Xa28OETnbE1HWOKOE_QYbiH9MoTwyTvjlfL7z9dKuzB6xWeD5vwUOm-EX778Hfw
CitedBy_id crossref_primary_10_1016_j_bbe_2019_11_002
crossref_primary_10_1109_ACCESS_2023_3294473
crossref_primary_10_1109_ACCESS_2023_3251105
crossref_primary_10_1007_s12652_022_03737_9
crossref_primary_10_1016_j_clinph_2020_03_033
crossref_primary_10_1108_WJE_06_2021_0348
crossref_primary_10_3390_s25010051
crossref_primary_10_1142_S0219467825500135
crossref_primary_10_1016_j_jneumeth_2022_109483
crossref_primary_10_1109_ACCESS_2022_3232563
crossref_primary_10_1016_j_clineuro_2023_107879
crossref_primary_10_1016_j_compbiomed_2020_104014
crossref_primary_10_3233_THC_218049
crossref_primary_10_1016_j_compbiomed_2021_104299
crossref_primary_10_1186_s12938_020_0754_y
crossref_primary_10_1007_s10462_024_10799_y
crossref_primary_10_1016_j_knosys_2024_112322
crossref_primary_10_1109_TBCAS_2024_3456825
crossref_primary_10_3389_fnhum_2022_943258
crossref_primary_10_1007_s11227_024_06036_6
crossref_primary_10_1016_j_measurement_2021_110292
crossref_primary_10_3390_brainsci13050820
crossref_primary_10_3390_app9235215
crossref_primary_10_1016_j_bspc_2024_107073
crossref_primary_10_1007_s00521_019_04389_1
crossref_primary_10_1007_s11227_023_05299_9
crossref_primary_10_1109_ACCESS_2021_3126065
crossref_primary_10_1109_TIM_2025_3527489
crossref_primary_10_3390_nu14040885
crossref_primary_10_3390_diagnostics13132261
crossref_primary_10_1016_j_compbiomed_2020_103671
crossref_primary_10_3390_diagnostics14222509
crossref_primary_10_1177_20552076231173569
crossref_primary_10_1016_j_bspc_2021_102916
crossref_primary_10_3389_fnsys_2021_685387
crossref_primary_10_1016_j_neunet_2020_01_017
crossref_primary_10_52876_jcs_1226579
crossref_primary_10_1007_s11042_025_20594_8
crossref_primary_10_1016_j_bbe_2023_04_003
crossref_primary_10_1007_s11042_023_15052_2
crossref_primary_10_1016_j_bspc_2022_104053
crossref_primary_10_1142_S0129065722500174
crossref_primary_10_3390_e24111540
crossref_primary_10_1016_j_bspc_2022_103755
crossref_primary_10_1016_j_jestch_2021_03_017
crossref_primary_10_1109_TBCAS_2021_3090995
crossref_primary_10_1016_j_neucom_2024_128644
crossref_primary_10_2139_ssrn_4161139
crossref_primary_10_1038_s41598_024_67855_4
crossref_primary_10_1109_TNSRE_2023_3317093
crossref_primary_10_3390_brainsci11050668
crossref_primary_10_7555_JBR_33_20190021
crossref_primary_10_1007_s10916_019_1504_1
crossref_primary_10_3389_fneur_2024_1378076
crossref_primary_10_1016_j_bspc_2021_102827
crossref_primary_10_1007_s40998_021_00437_6
crossref_primary_10_1142_S0129065722500423
crossref_primary_10_1016_j_eswa_2020_113239
crossref_primary_10_1016_j_bspc_2022_104022
crossref_primary_10_1088_1742_6596_2005_1_012048
crossref_primary_10_1093_bib_bbaa253
crossref_primary_10_1016_j_heliyon_2025_e42993
crossref_primary_10_1155_2020_5046315
crossref_primary_10_1016_j_bspc_2021_102699
crossref_primary_10_1016_j_bspc_2022_103726
crossref_primary_10_1007_s42979_023_01958_z
crossref_primary_10_1109_ACCESS_2023_3235913
crossref_primary_10_1016_j_neucom_2020_04_144
crossref_primary_10_1038_s41598_022_22829_2
Cites_doi 10.1007/s10439-009-9755-5
10.1007/s10916-017-0800-x
10.1016/j.compbiomed.2017.09.017
10.1007/s11517-016-1468-y
10.1016/j.clinph.2004.08.004
10.1109/TNSRE.2017.2697920
10.1145/584091.584093
10.1016/j.compbiomed.2017.07.010
10.1016/j.eswa.2012.02.040
10.1016/j.compbiomed.2018.05.019
10.1016/j.yebeh.2004.05.005
10.3390/e16063049
10.1016/j.clinph.2013.12.104
10.1109/TNSRE.2012.2206054
10.1016/j.knosys.2015.08.004
10.1016/j.jneumeth.2015.01.015
10.1016/0013-4694(82)90038-4
10.1016/j.bbe.2016.03.001
10.1016/j.cmpb.2016.09.008
10.1109/34.192463
10.1016/j.compbiomed.2016.02.016
10.1016/j.knosys.2016.11.024
10.1016/j.eswa.2009.09.051
10.1016/j.eswa.2009.01.022
10.1103/PhysRevE.64.061907
10.1016/S0165-0270(02)00340-0
10.1109/IEMBS.2007.4353494
10.1016/j.eplepsyres.2007.08.002
10.1007/s00521-018-3621-z
10.1109/TNSRE.2016.2604393
10.1016/j.compbiomed.2018.06.018
10.1016/j.compeleceng.2015.09.001
10.1109/TNSRE.2016.2611601
10.1007/s00521-016-2646-4
10.1088/1741-2560/12/3/031001
10.1007/BF01016429
10.1016/j.bspc.2011.07.007
10.1007/s11571-016-9408-y
10.1016/j.compbiomed.2017.01.011
10.1016/j.seizure.2015.01.012
10.1016/j.eswa.2018.06.031
10.1016/j.artmed.2011.07.003
10.1016/j.jneumeth.2012.07.003
10.1016/j.dsp.2008.07.004
10.1177/001316446002000104
10.4018/IJBCE.2015010103
10.1109/TNSRE.2017.2748388
10.3109/03091902.2011.636859
10.1097/WNP.0b013e318246af3e
10.1007/s11760-012-0362-9
10.1109/TITB.2006.884369
10.1007/s10916-005-6133-1
10.1016/j.eswa.2017.07.029
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
2019. Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
– notice: 2019. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
DOI 10.1016/j.compbiomed.2019.05.016
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Health & Medical
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep
PubMed
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 143
ExternalDocumentID 10.1016/j.compbiomed.2019.05.016
31154257
10_1016_j_compbiomed_2019_05_016
S0010482519301726
1_s2_0_S0010482519301726
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c564t-577aafb85d9bec2f2a3626bd2390cde367ed4eba9bbb0765cb91207f1285d99c3
IEDL.DBID BENPR
ISSN 0010-4825
1879-0534
IngestDate Sun Oct 26 04:15:49 EDT 2025
Thu Oct 02 09:47:13 EDT 2025
Tue Oct 07 06:37:24 EDT 2025
Thu Apr 03 07:02:02 EDT 2025
Wed Oct 01 04:07:29 EDT 2025
Thu Apr 24 23:03:58 EDT 2025
Fri Feb 23 02:24:56 EST 2024
Sun Feb 23 10:19:15 EST 2025
Tue Oct 14 19:33:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Support vector machine (SVM)
Epileptic seizures
Sigmoid entropy
EEG
Epilepsy
Discrete wavelet transforms (DWT)
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
public-domain
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-577aafb85d9bec2f2a3626bd2390cde367ed4eba9bbb0765cb91207f1285d99c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ars.els-cdn.com/content/image/1-s2.0-S0010482519301726-fx1_lrg.jpg
PMID 31154257
PQID 2251017469
PQPubID 1226355
PageCount 17
ParticipantIDs unpaywall_primary_10_1016_j_compbiomed_2019_05_016
proquest_miscellaneous_2234483272
proquest_journals_2251017469
pubmed_primary_31154257
crossref_citationtrail_10_1016_j_compbiomed_2019_05_016
crossref_primary_10_1016_j_compbiomed_2019_05_016
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_05_016
elsevier_clinicalkeyesjournals_1_s2_0_S0010482519301726
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_05_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Hassan, Siuly, Zhang (bib43) 2016; 137
Zhang, Chen (bib35) 2017; 25
Tsallis (bib57) 1988; 52
Lima, Coelho (bib30) 2011; 53
Subasi, Kevric, Abdullah Canbaz (bib54) 2017
Thodoroff, Pineau, Lim (bib33)
Raghu, Sriraam, Hegde, Kubben (bib48) 2019; 127
Andrews (bib58) 1997
Jiang, Wu, Deng, Qian, Wang, Wang, lai Chung, Choi, Wang (bib31) 2017; 25
Faust, Acharya, Adeli, Adeli (bib27) 2015; 26
Mallat (bib52) 1989; 11
Pravin Kumar, Sriraam, Benakop, Jinaga (bib19) 2010; 37
Lima, Coelho, Chagas (bib25) 2009; 36
Tsiouris, Pezoulas, Zervakis, Konitsiotis, Koutsouris, Fotiadis (bib36) 2018; 99
Orosco, Correa, Diez, Laciar (bib16) 2016; 71
Li, Yan, Liu, Ouyang (bib11) 2014; 16
Li, Ouyang, Richards (bib8) 2007; 77
Zhao, Van-Eetvelt, Goh, Hudson, Wimalaratna, Ifeachor (bib4) 2007
Li, Chen, Zhang (bib44) 2018
Srinivasan, Eswaran, Sriraam (bib21) 2005; 29
Hopfengaertner, Kasper, Graf, Gollwitzer, Kreiselmeyer, Stefan, Hamer (bib67) 2014; 125 7
Geng, Zhou, Zhang, Geng (bib42) 2016; 36
Zandi, Javidan, Dumont, Tafreshi (bib46) 2010; 57
Khan, Ali (bib37) 2018; 100
Vidyaratne, Khan (bib7) 2017; 25
Saab, Gotman (bib64) 2005; 116
Adeli, Zhou, Dadmehr (bib40) 2003; 123
Magosso, Ursino, Zaniboni, Gardella (bib28) 2009; 207
Birjandtalab, Pouyan, Cogan, Nourani, Harvey (bib39) 2017; 82
Kumar, Dewal, Anand (bib12) 2014; 8
Tawfik, Youssef, Kholief (bib17) 2016; 53
Shoeb, Guttag (bib50) 2010
Mateo, Rieta (bib55) 2012; 362
Raghu, Sriraam (bib23) 2017; 89
Wang, Miao, Xie (bib22) 2011; 38
Shannon (bib56) 2001; 5
Sriraam, Raghu (bib60) 2017; 41
Shoeb, Edwards, Connolly, Bourgeois, Treves, Guttag (bib49) 2004; 5
Ubeyli (bib26) 2009; 19
Song, Crowcroft, Zhang (bib10) 2012; 210 2
Raghu, Sriraam, Kumar, Hegde (bib18) 2018; 65
Cohen (bib62) 1960; 20
Bhattacharyya, Sharma, Pachori, Sircar, Acharya (bib41) 2018; 29
Kuhlmann, Burkitt, Cook, Fuller, Grayden, Seiderer, Mareels (bib65) 2009; 37
Raghu, Sriraam, Kumar (bib14) 2015; 4
Raghu, Sriraam (bib59) 2018; 113
Nordqvist (bib2) 2017
Henderson, Ifeachor, Hudson, Goh, Outram, Wimalaratna, Percio, Vecchio (bib3) 2006; 53
Srinivasan, Eswaran, Sriraam (bib9) 2007; 11
Raghu, Sriraam, Kumar (bib20) 2016; 11
Zahra, Kanwal, ur Rehman, Ehsan, McDonald-Maier (bib38) 2017; 88
Xiang, Li, fang Li, Cao, Wang, Han, Chen (bib13) 2015; 243
Sharma, Dhere, Pachori, Acharya (bib45) 2017; 118
Kecman (bib61) 2011
Chen, Wan, Bao (bib24) 2017; 25
Bezerianos, Tong, Zhu, Thakor (bib63) 2001; vol. 2
Acharya, Molinari, Sree, Chattopadhyay, Ng, Suri (bib5) 2012; 7
Bogaarts, Gommer, Hilkman, van Kranen-Mastenbroek, Reulen (bib6) 2016; 54
Andrzejak, Lehnertz, Mormann, Rieke, David, Elger (bib47) 2001; 64
Acharya, Oh, Hagiwara, Tan, Adeli (bib32) 2018; 100
Acharya, Fujita, Sudarshan, Bhat, Koh (bib15) 2015; 88
Acharya, Sree, Alvin, Suri (bib29) 2012; 39
Liu, Zhou, Yuan, Chen (bib34) 2012; 20
Zandi, Javidan, Dumont, Tafreshi (bib66) 2012; 29
Urigüen, García-Zapirain (bib51) 2015; 12
Daubechies (bib53) 1992
Gotman (bib1) 1982; 54
Sriraam (10.1016/j.compbiomed.2019.05.016_bib60) 2017; 41
Orosco (10.1016/j.compbiomed.2019.05.016_bib16) 2016; 71
Tsiouris (10.1016/j.compbiomed.2019.05.016_bib36) 2018; 99
Urigüen (10.1016/j.compbiomed.2019.05.016_bib51) 2015; 12
Gotman (10.1016/j.compbiomed.2019.05.016_bib1) 1982; 54
Adeli (10.1016/j.compbiomed.2019.05.016_bib40) 2003; 123
Raghu (10.1016/j.compbiomed.2019.05.016_bib23) 2017; 89
Li (10.1016/j.compbiomed.2019.05.016_bib8) 2007; 77
Raghu (10.1016/j.compbiomed.2019.05.016_bib20) 2016; 11
Mallat (10.1016/j.compbiomed.2019.05.016_bib52) 1989; 11
Tawfik (10.1016/j.compbiomed.2019.05.016_bib17) 2016; 53
Raghu (10.1016/j.compbiomed.2019.05.016_bib14) 2015; 4
Kuhlmann (10.1016/j.compbiomed.2019.05.016_bib65) 2009; 37
Acharya (10.1016/j.compbiomed.2019.05.016_bib15) 2015; 88
Faust (10.1016/j.compbiomed.2019.05.016_bib27) 2015; 26
Liu (10.1016/j.compbiomed.2019.05.016_bib34) 2012; 20
Raghu (10.1016/j.compbiomed.2019.05.016_bib48) 2019; 127
Hopfengaertner (10.1016/j.compbiomed.2019.05.016_bib67) 2014; 125 7
Zandi (10.1016/j.compbiomed.2019.05.016_bib66) 2012; 29
Xiang (10.1016/j.compbiomed.2019.05.016_bib13) 2015; 243
Andrzejak (10.1016/j.compbiomed.2019.05.016_bib47) 2001; 64
Song (10.1016/j.compbiomed.2019.05.016_bib10) 2012; 210 2
Vidyaratne (10.1016/j.compbiomed.2019.05.016_bib7) 2017; 25
Geng (10.1016/j.compbiomed.2019.05.016_bib42) 2016; 36
Chen (10.1016/j.compbiomed.2019.05.016_bib24) 2017; 25
Birjandtalab (10.1016/j.compbiomed.2019.05.016_bib39) 2017; 82
Zhang (10.1016/j.compbiomed.2019.05.016_bib35) 2017; 25
Zhao (10.1016/j.compbiomed.2019.05.016_bib4) 2007
Subasi (10.1016/j.compbiomed.2019.05.016_bib54) 2017
Pravin Kumar (10.1016/j.compbiomed.2019.05.016_bib19) 2010; 37
Ubeyli (10.1016/j.compbiomed.2019.05.016_bib26) 2009; 19
Zandi (10.1016/j.compbiomed.2019.05.016_bib46) 2010; 57
Srinivasan (10.1016/j.compbiomed.2019.05.016_bib9) 2007; 11
Cohen (10.1016/j.compbiomed.2019.05.016_bib62) 1960; 20
Nordqvist (10.1016/j.compbiomed.2019.05.016_bib2) 2017
Acharya (10.1016/j.compbiomed.2019.05.016_bib29) 2012; 39
Kumar (10.1016/j.compbiomed.2019.05.016_bib12) 2014; 8
Magosso (10.1016/j.compbiomed.2019.05.016_bib28) 2009; 207
Thodoroff (10.1016/j.compbiomed.2019.05.016_bib33)
Henderson (10.1016/j.compbiomed.2019.05.016_bib3) 2006; 53
Raghu (10.1016/j.compbiomed.2019.05.016_bib18) 2018; 65
Shoeb (10.1016/j.compbiomed.2019.05.016_bib49) 2004; 5
Shannon (10.1016/j.compbiomed.2019.05.016_bib56) 2001; 5
Khan (10.1016/j.compbiomed.2019.05.016_bib37) 2018; 100
Acharya (10.1016/j.compbiomed.2019.05.016_bib5) 2012; 7
Daubechies (10.1016/j.compbiomed.2019.05.016_bib53) 1992
Tsallis (10.1016/j.compbiomed.2019.05.016_bib57) 1988; 52
Saab (10.1016/j.compbiomed.2019.05.016_bib64) 2005; 116
Mateo (10.1016/j.compbiomed.2019.05.016_bib55) 2012; 362
Shoeb (10.1016/j.compbiomed.2019.05.016_bib50) 2010
Wang (10.1016/j.compbiomed.2019.05.016_bib22) 2011; 38
Lima (10.1016/j.compbiomed.2019.05.016_bib30) 2011; 53
Acharya (10.1016/j.compbiomed.2019.05.016_bib32) 2018; 100
Bhattacharyya (10.1016/j.compbiomed.2019.05.016_bib41) 2018; 29
Kecman (10.1016/j.compbiomed.2019.05.016_bib61) 2011
Andrews (10.1016/j.compbiomed.2019.05.016_bib58) 1997
Sharma (10.1016/j.compbiomed.2019.05.016_bib45) 2017; 118
Li (10.1016/j.compbiomed.2019.05.016_bib44) 2018
Bogaarts (10.1016/j.compbiomed.2019.05.016_bib6) 2016; 54
Jiang (10.1016/j.compbiomed.2019.05.016_bib31) 2017; 25
Hassan (10.1016/j.compbiomed.2019.05.016_bib43) 2016; 137
Bezerianos (10.1016/j.compbiomed.2019.05.016_bib63) 2001; vol. 2
Raghu (10.1016/j.compbiomed.2019.05.016_bib59) 2018; 113
Lima (10.1016/j.compbiomed.2019.05.016_bib25) 2009; 36
Li (10.1016/j.compbiomed.2019.05.016_bib11) 2014; 16
Srinivasan (10.1016/j.compbiomed.2019.05.016_bib21) 2005; 29
Zahra (10.1016/j.compbiomed.2019.05.016_bib38) 2017; 88
References_xml – volume: 29
  start-page: 1
  year: 2012
  end-page: 16
  ident: bib66
  article-title: Detection of epileptic seizures in scalp electroencephalogram: an automated real-time wavelet-based approach
  publication-title: J. Clin. Neurophysiol.
– volume: 53
  start-page: 83
  year: 2011
  end-page: 95
  ident: bib30
  article-title: Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study
  publication-title: Artif. Intell. Med.
– start-page: 975
  year: 2010
  end-page: 982
  ident: bib50
  article-title: Application of machine learning to epileptic seizure detection
  publication-title: Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10
– volume: 29
  start-page: 47
  year: 2018
  end-page: 57
  ident: bib41
  article-title: A novel approach for automated detection of focal EEG signals using empirical wavelet transform
  publication-title: Neural Comput. Appl.
– volume: 125 7
  start-page: 1346
  year: 2014
  end-page: 1352
  ident: bib67
  article-title: Automatic seizure detection in long-term scalp EEG using an adaptive thresholding technique: a validation study for clinical routine
  publication-title: Clin. Neurophysiol.
– year: 2011
  ident: bib61
  article-title: Learning and Soft Computing
– volume: 19
  start-page: 297
  year: 2009
  end-page: 308
  ident: bib26
  article-title: Combined neural network model employing wavelet coefficients for EEG signals classification
  publication-title: Digit. Signal Process.
– volume: 4
  start-page: 3243
  year: 2015
  ident: bib14
  article-title: Effect of wavelet packet log energy entropy on electroencephalogram (EEG) signals
  publication-title: Int. J. Biomed. Clin. Eng.
– volume: 29
  start-page: 647
  year: 2005
  end-page: 660
  ident: bib21
  article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features
  publication-title: J. Med. Syst.
– volume: 53
  start-page: 177
  year: 2016
  end-page: 190
  ident: bib17
  article-title: A hybrid automated detection of epileptic seizures in EEG records
  publication-title: Comput. Electr. Eng.
– volume: 116
  start-page: 427
  year: 2005
  end-page: 442
  ident: bib64
  article-title: A system to detect the onset of epileptic seizures in scalp EEG
  publication-title: Clin. Neurophysiol. : Off. J. Int. Fed. Clin. Neurophysiol.
– volume: 37
  start-page: 2129
  year: 2009
  end-page: 2145
  ident: bib65
  article-title: Seizure detection using seizure probability estimation: comparison of features used to detect seizures
  publication-title: Ann. Biomed. Eng.
– volume: 113
  start-page: 18
  year: 2018
  end-page: 32
  ident: bib59
  article-title: Classification of focal and non-focal EEG signals using neighborhood component analysis and machine learning algorithms
  publication-title: Expert Syst. Appl.
– volume: 11
  start-page: 51
  year: 2016
  end-page: 66
  ident: bib20
  article-title: Classification of epileptic seizures using wavelet packet log energy and norm entropies with recurrent elman neural network classifier
  publication-title: Cognit. Neurodynamics
– volume: 39
  start-page: 9072
  year: 2012
  end-page: 9078
  ident: bib29
  article-title: Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework
  publication-title: Expert Syst. Appl.
– ident: bib33
  article-title: Learning robust features using deep learning for automatic seizure detection
– volume: 137
  start-page: 247
  year: 2016
  end-page: 259
  ident: bib43
  article-title: Epileptic seizure detection in EEG signals using tunable-q factor wavelet transform and bootstrap aggregating
  publication-title: Comput. Methods Progr. Biomed.
– volume: 52
  start-page: 479
  year: 1988
  end-page: 487
  ident: bib57
  article-title: Possible generalization of Boltzmann-gibbs statistics
  publication-title: J. Stat. Phys.
– volume: 118
  start-page: 217
  year: 2017
  end-page: 227
  ident: bib45
  article-title: An automatic detection of focal EEG signals using new class of timefrequency localized orthogonal wavelet filter banks
  publication-title: Knowl. Based Syst.
– volume: 53
  start-page: 1557
  year: 2006
  end-page: 1568
  ident: bib3
  article-title: Development and assessment of methods for detecting dementia using the human electroencephalogram
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 7
  start-page: 401
  year: 2012
  end-page: 408
  ident: bib5
  article-title: Automated diagnosis of epileptic EEG using entropies
  publication-title: Biomed. Signal Process. Control
– volume: 88
  start-page: 85
  year: 2015
  end-page: 96
  ident: bib15
  article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: a review
  publication-title: Knowl. Based Syst.
– volume: 41
  start-page: 160
  year: 2017
  ident: bib60
  article-title: Classification of focal and non focal epileptic seizures using multi-features and SVM classifier
  publication-title: J. Med. Syst.
– volume: 20
  start-page: 37
  year: 1960
  end-page: 46
  ident: bib62
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ. Psychol. Meas.
– year: 2017
  ident: bib2
  article-title: Symptoms, Causes, and Treatment of Epilepsy
– volume: 25
  start-page: 2270
  year: 2017
  end-page: 2284
  ident: bib31
  article-title: Seizure classification from EEG signals using transfer learning, semi-supervised learning and tsk fuzzy system
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 5
  start-page: 3
  year: 2001
  end-page: 55
  ident: bib56
  article-title: A mathematical theory of communication
  publication-title: Mob. Comput. Commun. Rev.
– volume: 210 2
  start-page: 132
  year: 2012
  end-page: 146
  ident: bib10
  article-title: Automatic epileptic seizure detection in eegs based on optimized sample entropy and extreme learning machine
  publication-title: J. Neurosci. Methods
– year: 1997
  ident: bib58
  article-title: Special Functions of Mathematics for Engineers
– volume: 71
  start-page: 128
  year: 2016
  end-page: 134
  ident: bib16
  article-title: Patient non-specific algorithm for seizures detection in scalp EEG
  publication-title: Comput. Biol. Med.
– volume: vol. 2
  start-page: 1923
  year: 2001
  end-page: 1925
  ident: bib63
  article-title: Nonadditive information theory for the analysis of brain rhythms
  publication-title: Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 8
  start-page: 1323
  year: 2014
  end-page: 1334
  ident: bib12
  article-title: Epileptic seizures detection in EEG using DWT-based apen and artificial neural network
  publication-title: Signal, Image and Video Process.
– volume: 123
  start-page: 69
  year: 2003
  end-page: 87
  ident: bib40
  article-title: Analysis of EEG records in an epileptic patient using wavelet transform
  publication-title: J. Neurosci. Methods
– volume: 26
  start-page: 56
  year: 2015
  end-page: 64
  ident: bib27
  article-title: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis
  publication-title: Seizure
– volume: 100
  start-page: 270
  year: 2018
  end-page: 278
  ident: bib32
  article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
  publication-title: Comput. Biol. Med.
– volume: 89
  start-page: 205
  year: 2017
  end-page: 221
  ident: bib23
  article-title: Optimal configuration of multilayer perceptron neural network classifier for recognition of intracranial epileptic seizures
  publication-title: Expert Syst. Appl.
– volume: 88
  start-page: 132
  year: 2017
  end-page: 141
  ident: bib38
  article-title: Seizure detection from EEG signals using multivariate empirical mode decomposition
  publication-title: Comput. Biol. Med.
– volume: 54
  start-page: 530
  year: 1982
  end-page: 540
  ident: bib1
  article-title: Automatic recognition of epileptic seizures in the EEG
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 5
  start-page: 483
  year: 2004
  end-page: 498
  ident: bib49
  article-title: Patient-specific seizure onset detection
  publication-title: Epilepsy Behav.
– volume: 36
  start-page: 375
  year: 2016
  end-page: 384
  ident: bib42
  article-title: Epileptic seizure detection based on improved wavelet neural networks in long-term intracranial EEG
  publication-title: Biocybern. and Biomed. Eng.
– volume: 20
  start-page: 749
  year: 2012
  end-page: 755
  ident: bib34
  article-title: Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 11
  start-page: 288
  year: 2007
  end-page: 295
  ident: bib9
  article-title: Approximate entropy-based epileptic EEG detection using artificial neural networks
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 207
  start-page: 42
  year: 2009
  end-page: 62
  ident: bib28
  article-title: A wavelet-based energetic approach for the analysis of biomedical signals: application to the electroencephalogram and electro-oculogram
  publication-title: Appl. Math. Comput.
– volume: 12
  year: 2015
  ident: bib51
  article-title: EEG artifact removal-state-of-the-art and guidelines
  publication-title: J. Neural Eng.
– volume: 82
  start-page: 49
  year: 2017
  end-page: 58
  ident: bib39
  article-title: Automated seizure detection using limited-channel EEG and non-linear dimension reduction
  publication-title: Comput. Biol. Med.
– volume: 54
  start-page: 1285
  year: 2016
  end-page: 1293
  ident: bib6
  article-title: Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection
  publication-title: Med. Biol. Eng. Comput.
– volume: 64
  year: 2001
  ident: bib47
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev. E
– volume: 77
  start-page: 70
  year: 2007
  end-page: 74
  ident: bib8
  article-title: Predictability analysis of absence seizures with permutation entropy
  publication-title: Epilepsy Res.
– volume: 25
  start-page: 413
  year: 2017
  end-page: 425
  ident: bib24
  article-title: Epileptic focus localization using discrete wavelet transform based on interictal intracranial EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 65
  start-page: 2612
  year: 2018
  end-page: 2621
  ident: bib18
  article-title: A novel approach for real time recognition of epileptic seizures using minimum variance modified fuzzy entropy
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 127
  start-page: 323341
  year: 2019
  ident: bib48
  article-title: A novel approach for classification of epileptic seizures using matrix determinant
  publication-title: Expert Syst. Appl.
– volume: 25
  start-page: 2146
  year: 2017
  end-page: 2156
  ident: bib7
  article-title: Real-time epileptic seizure detection using EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 243
  start-page: 18
  year: 2015
  end-page: 25
  ident: bib13
  article-title: The detection of epileptic seizure signals based on fuzzy entropy
  publication-title: J. Neurosci. Methods
– volume: 37
  start-page: 3284
  year: 2010
  end-page: 3291
  ident: bib19
  article-title: Entropies based detection of epileptic seizures with artificial neural network classifiers
  publication-title: Expert Syst. Appl.
– volume: 11
  start-page: 674
  year: 1989
  end-page: 693
  ident: bib52
  article-title: A theory for multi-resolution signal decomposition: the wavelet representation
  publication-title: IEEE Trans. Pattern Anal.
– volume: 57
  start-page: 1639
  year: 2010
  end-page: 1651
  ident: bib46
  article-title: Automated real-time epileptic seizure detection in scalp EEG recordings using an algorithm based on wavelet packet transform
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 100
  start-page: 10
  year: 2018
  end-page: 16
  ident: bib37
  article-title: A new feature for the classification of non-stationary signals based on the direction of signal energy in the timefrequency domain
  publication-title: Comput. Biol. Med.
– year: 1992
  ident: bib53
  article-title: 10 Lectures on Wavelets
– volume: 25
  start-page: 1100
  year: 2017
  end-page: 1108
  ident: bib35
  article-title: Lmd based features for the automatic seizure detection of EEG signals using SVM
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 362
  start-page: 90
  year: 2012
  end-page: 101
  ident: bib55
  article-title: Application of artificial neural networks for versatile preprocessing of electrocardiogram recordings
  publication-title: J. Med. Eng. Technol.
– volume: 16
  start-page: 3049
  year: 2014
  end-page: 3061
  ident: bib11
  article-title: Using permutation entropy to measure the changes in EEG signals during absence seizures
  publication-title: Entropy
– start-page: 1
  year: 2017
  end-page: 9
  ident: bib54
  article-title: Epileptic seizure detection using hybrid machine learning methods
  publication-title: Neural Comput. Appl.
– volume: 99
  start-page: 24
  year: 2018
  end-page: 37
  ident: bib36
  article-title: A long short-term memory deep learning network for the prediction of epileptic seizures using eeg signals
  publication-title: Comput. Biol. Med.
– start-page: 5127
  year: 2007
  end-page: 5131
  ident: bib4
  article-title: Characterization of EEGs in alzheimer's disease using information theoretic methods
  publication-title: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– year: 2018
  ident: bib44
  article-title: FuzzyEn-based features in FrFT-WPT domain for epileptic seizure detection
  publication-title: Neural Comput. Appl.
– volume: 38
  start-page: 14314
  year: 2011
  end-page: 14320
  ident: bib22
  article-title: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection
  publication-title: Expert Syst. Appl.
– volume: 36
  start-page: 10054
  year: 2009
  end-page: 10059
  ident: bib25
  article-title: Automatic EEG signal classification for epilepsy diagnosis with relevance vector machines
  publication-title: Expert Syst. Appl.
– volume: 37
  start-page: 2129
  year: 2009
  ident: 10.1016/j.compbiomed.2019.05.016_bib65
  article-title: Seizure detection using seizure probability estimation: comparison of features used to detect seizures
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-009-9755-5
– volume: 41
  start-page: 160
  issue: 10
  year: 2017
  ident: 10.1016/j.compbiomed.2019.05.016_bib60
  article-title: Classification of focal and non focal epileptic seizures using multi-features and SVM classifier
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-017-0800-x
– volume: 100
  start-page: 270
  year: 2018
  ident: 10.1016/j.compbiomed.2019.05.016_bib32
  article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.09.017
– volume: 54
  start-page: 1285
  year: 2016
  ident: 10.1016/j.compbiomed.2019.05.016_bib6
  article-title: Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-016-1468-y
– ident: 10.1016/j.compbiomed.2019.05.016_bib33
– volume: 116
  start-page: 427
  issue: 2
  year: 2005
  ident: 10.1016/j.compbiomed.2019.05.016_bib64
  article-title: A system to detect the onset of epileptic seizures in scalp EEG
  publication-title: Clin. Neurophysiol. : Off. J. Int. Fed. Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2004.08.004
– volume: 25
  start-page: 2146
  year: 2017
  ident: 10.1016/j.compbiomed.2019.05.016_bib7
  article-title: Real-time epileptic seizure detection using EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2697920
– volume: 5
  start-page: 3
  year: 2001
  ident: 10.1016/j.compbiomed.2019.05.016_bib56
  article-title: A mathematical theory of communication
  publication-title: Mob. Comput. Commun. Rev.
  doi: 10.1145/584091.584093
– year: 1992
  ident: 10.1016/j.compbiomed.2019.05.016_bib53
– volume: 88
  start-page: 132
  year: 2017
  ident: 10.1016/j.compbiomed.2019.05.016_bib38
  article-title: Seizure detection from EEG signals using multivariate empirical mode decomposition
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.07.010
– volume: 127
  start-page: 323341
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2019.05.016_bib48
  article-title: A novel approach for classification of epileptic seizures using matrix determinant
  publication-title: Expert Syst. Appl.
– volume: 65
  start-page: 2612
  year: 2018
  ident: 10.1016/j.compbiomed.2019.05.016_bib18
  article-title: A novel approach for real time recognition of epileptic seizures using minimum variance modified fuzzy entropy
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 39
  start-page: 9072
  issue: 10
  year: 2012
  ident: 10.1016/j.compbiomed.2019.05.016_bib29
  article-title: Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.02.040
– volume: 99
  start-page: 24
  year: 2018
  ident: 10.1016/j.compbiomed.2019.05.016_bib36
  article-title: A long short-term memory deep learning network for the prediction of epileptic seizures using eeg signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.05.019
– volume: 57
  start-page: 1639
  year: 2010
  ident: 10.1016/j.compbiomed.2019.05.016_bib46
  article-title: Automated real-time epileptic seizure detection in scalp EEG recordings using an algorithm based on wavelet packet transform
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 5
  start-page: 483
  issue: 4
  year: 2004
  ident: 10.1016/j.compbiomed.2019.05.016_bib49
  article-title: Patient-specific seizure onset detection
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2004.05.005
– volume: 53
  start-page: 1557
  year: 2006
  ident: 10.1016/j.compbiomed.2019.05.016_bib3
  article-title: Development and assessment of methods for detecting dementia using the human electroencephalogram
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 16
  start-page: 3049
  year: 2014
  ident: 10.1016/j.compbiomed.2019.05.016_bib11
  article-title: Using permutation entropy to measure the changes in EEG signals during absence seizures
  publication-title: Entropy
  doi: 10.3390/e16063049
– volume: 125 7
  start-page: 1346
  year: 2014
  ident: 10.1016/j.compbiomed.2019.05.016_bib67
  article-title: Automatic seizure detection in long-term scalp EEG using an adaptive thresholding technique: a validation study for clinical routine
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2013.12.104
– volume: 20
  start-page: 749
  year: 2012
  ident: 10.1016/j.compbiomed.2019.05.016_bib34
  article-title: Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2206054
– volume: 88
  start-page: 85
  year: 2015
  ident: 10.1016/j.compbiomed.2019.05.016_bib15
  article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: a review
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.08.004
– volume: 243
  start-page: 18
  year: 2015
  ident: 10.1016/j.compbiomed.2019.05.016_bib13
  article-title: The detection of epileptic seizure signals based on fuzzy entropy
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.01.015
– volume: 54
  start-page: 530
  year: 1982
  ident: 10.1016/j.compbiomed.2019.05.016_bib1
  article-title: Automatic recognition of epileptic seizures in the EEG
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(82)90038-4
– volume: 36
  start-page: 375
  issue: 2
  year: 2016
  ident: 10.1016/j.compbiomed.2019.05.016_bib42
  article-title: Epileptic seizure detection based on improved wavelet neural networks in long-term intracranial EEG
  publication-title: Biocybern. and Biomed. Eng.
  doi: 10.1016/j.bbe.2016.03.001
– volume: 137
  start-page: 247
  year: 2016
  ident: 10.1016/j.compbiomed.2019.05.016_bib43
  article-title: Epileptic seizure detection in EEG signals using tunable-q factor wavelet transform and bootstrap aggregating
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2016.09.008
– volume: 11
  start-page: 674
  year: 1989
  ident: 10.1016/j.compbiomed.2019.05.016_bib52
  article-title: A theory for multi-resolution signal decomposition: the wavelet representation
  publication-title: IEEE Trans. Pattern Anal.
  doi: 10.1109/34.192463
– volume: 71
  start-page: 128
  year: 2016
  ident: 10.1016/j.compbiomed.2019.05.016_bib16
  article-title: Patient non-specific algorithm for seizures detection in scalp EEG
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.02.016
– volume: 118
  start-page: 217
  year: 2017
  ident: 10.1016/j.compbiomed.2019.05.016_bib45
  article-title: An automatic detection of focal EEG signals using new class of timefrequency localized orthogonal wavelet filter banks
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.11.024
– volume: 37
  start-page: 3284
  year: 2010
  ident: 10.1016/j.compbiomed.2019.05.016_bib19
  article-title: Entropies based detection of epileptic seizures with artificial neural network classifiers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.09.051
– volume: 36
  start-page: 10054
  year: 2009
  ident: 10.1016/j.compbiomed.2019.05.016_bib25
  article-title: Automatic EEG signal classification for epilepsy diagnosis with relevance vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.01.022
– volume: 64
  year: 2001
  ident: 10.1016/j.compbiomed.2019.05.016_bib47
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.061907
– volume: 123
  start-page: 69
  issue: 1
  year: 2003
  ident: 10.1016/j.compbiomed.2019.05.016_bib40
  article-title: Analysis of EEG records in an epileptic patient using wavelet transform
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(02)00340-0
– start-page: 5127
  year: 2007
  ident: 10.1016/j.compbiomed.2019.05.016_bib4
  article-title: Characterization of EEGs in alzheimer's disease using information theoretic methods
  publication-title: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  doi: 10.1109/IEMBS.2007.4353494
– year: 2017
  ident: 10.1016/j.compbiomed.2019.05.016_bib2
– year: 2011
  ident: 10.1016/j.compbiomed.2019.05.016_bib61
– volume: 77
  start-page: 70
  year: 2007
  ident: 10.1016/j.compbiomed.2019.05.016_bib8
  article-title: Predictability analysis of absence seizures with permutation entropy
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2007.08.002
– year: 2018
  ident: 10.1016/j.compbiomed.2019.05.016_bib44
  article-title: FuzzyEn-based features in FrFT-WPT domain for epileptic seizure detection
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3621-z
– volume: 25
  start-page: 413
  year: 2017
  ident: 10.1016/j.compbiomed.2019.05.016_bib24
  article-title: Epileptic focus localization using discrete wavelet transform based on interictal intracranial EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2604393
– volume: 100
  start-page: 10
  year: 2018
  ident: 10.1016/j.compbiomed.2019.05.016_bib37
  article-title: A new feature for the classification of non-stationary signals based on the direction of signal energy in the timefrequency domain
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.06.018
– volume: 207
  start-page: 42
  year: 2009
  ident: 10.1016/j.compbiomed.2019.05.016_bib28
  article-title: A wavelet-based energetic approach for the analysis of biomedical signals: application to the electroencephalogram and electro-oculogram
  publication-title: Appl. Math. Comput.
– volume: 53
  start-page: 177
  year: 2016
  ident: 10.1016/j.compbiomed.2019.05.016_bib17
  article-title: A hybrid automated detection of epileptic seizures in EEG records
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2015.09.001
– volume: 25
  start-page: 1100
  year: 2017
  ident: 10.1016/j.compbiomed.2019.05.016_bib35
  article-title: Lmd based features for the automatic seizure detection of EEG signals using SVM
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2611601
– volume: 29
  start-page: 47
  issue: 8
  year: 2018
  ident: 10.1016/j.compbiomed.2019.05.016_bib41
  article-title: A novel approach for automated detection of focal EEG signals using empirical wavelet transform
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2646-4
– volume: 12
  issue: 3
  year: 2015
  ident: 10.1016/j.compbiomed.2019.05.016_bib51
  article-title: EEG artifact removal-state-of-the-art and guidelines
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/3/031001
– volume: 52
  start-page: 479
  issue: 1
  year: 1988
  ident: 10.1016/j.compbiomed.2019.05.016_bib57
  article-title: Possible generalization of Boltzmann-gibbs statistics
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01016429
– volume: 7
  start-page: 401
  issue: 4
  year: 2012
  ident: 10.1016/j.compbiomed.2019.05.016_bib5
  article-title: Automated diagnosis of epileptic EEG using entropies
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2011.07.007
– year: 1997
  ident: 10.1016/j.compbiomed.2019.05.016_bib58
– volume: 11
  start-page: 51
  year: 2016
  ident: 10.1016/j.compbiomed.2019.05.016_bib20
  article-title: Classification of epileptic seizures using wavelet packet log energy and norm entropies with recurrent elman neural network classifier
  publication-title: Cognit. Neurodynamics
  doi: 10.1007/s11571-016-9408-y
– volume: 82
  start-page: 49
  year: 2017
  ident: 10.1016/j.compbiomed.2019.05.016_bib39
  article-title: Automated seizure detection using limited-channel EEG and non-linear dimension reduction
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.01.011
– volume: 26
  start-page: 56
  year: 2015
  ident: 10.1016/j.compbiomed.2019.05.016_bib27
  article-title: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis
  publication-title: Seizure
  doi: 10.1016/j.seizure.2015.01.012
– volume: 113
  start-page: 18
  year: 2018
  ident: 10.1016/j.compbiomed.2019.05.016_bib59
  article-title: Classification of focal and non-focal EEG signals using neighborhood component analysis and machine learning algorithms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.06.031
– volume: 53
  start-page: 83
  year: 2011
  ident: 10.1016/j.compbiomed.2019.05.016_bib30
  article-title: Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2011.07.003
– volume: 210 2
  start-page: 132
  year: 2012
  ident: 10.1016/j.compbiomed.2019.05.016_bib10
  article-title: Automatic epileptic seizure detection in eegs based on optimized sample entropy and extreme learning machine
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2012.07.003
– volume: 19
  start-page: 297
  year: 2009
  ident: 10.1016/j.compbiomed.2019.05.016_bib26
  article-title: Combined neural network model employing wavelet coefficients for EEG signals classification
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2008.07.004
– start-page: 975
  year: 2010
  ident: 10.1016/j.compbiomed.2019.05.016_bib50
  article-title: Application of machine learning to epileptic seizure detection
– volume: 20
  start-page: 37
  issue: 1
  year: 1960
  ident: 10.1016/j.compbiomed.2019.05.016_bib62
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316446002000104
– volume: 4
  start-page: 3243
  issue: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2019.05.016_bib14
  article-title: Effect of wavelet packet log energy entropy on electroencephalogram (EEG) signals
  publication-title: Int. J. Biomed. Clin. Eng.
  doi: 10.4018/IJBCE.2015010103
– volume: 25
  start-page: 2270
  year: 2017
  ident: 10.1016/j.compbiomed.2019.05.016_bib31
  article-title: Seizure classification from EEG signals using transfer learning, semi-supervised learning and tsk fuzzy system
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2748388
– volume: 38
  start-page: 14314
  year: 2011
  ident: 10.1016/j.compbiomed.2019.05.016_bib22
  article-title: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection
  publication-title: Expert Syst. Appl.
– volume: 362
  start-page: 90
  year: 2012
  ident: 10.1016/j.compbiomed.2019.05.016_bib55
  article-title: Application of artificial neural networks for versatile preprocessing of electrocardiogram recordings
  publication-title: J. Med. Eng. Technol.
  doi: 10.3109/03091902.2011.636859
– volume: 29
  start-page: 1
  year: 2012
  ident: 10.1016/j.compbiomed.2019.05.016_bib66
  article-title: Detection of epileptic seizures in scalp electroencephalogram: an automated real-time wavelet-based approach
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/WNP.0b013e318246af3e
– volume: 8
  start-page: 1323
  year: 2014
  ident: 10.1016/j.compbiomed.2019.05.016_bib12
  article-title: Epileptic seizures detection in EEG using DWT-based apen and artificial neural network
  publication-title: Signal, Image and Video Process.
  doi: 10.1007/s11760-012-0362-9
– volume: 11
  start-page: 288
  year: 2007
  ident: 10.1016/j.compbiomed.2019.05.016_bib9
  article-title: Approximate entropy-based epileptic EEG detection using artificial neural networks
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2006.884369
– volume: 29
  start-page: 647
  year: 2005
  ident: 10.1016/j.compbiomed.2019.05.016_bib21
  article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-005-6133-1
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2019.05.016_bib54
  article-title: Epileptic seizure detection using hybrid machine learning methods
  publication-title: Neural Comput. Appl.
– volume: 89
  start-page: 205
  year: 2017
  ident: 10.1016/j.compbiomed.2019.05.016_bib23
  article-title: Optimal configuration of multilayer perceptron neural network classifier for recognition of intracranial epileptic seizures
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.07.029
– volume: vol. 2
  start-page: 1923
  year: 2001
  ident: 10.1016/j.compbiomed.2019.05.016_bib63
  article-title: Nonadditive information theory for the analysis of brain rhythms
SSID ssj0004030
Score 2.5281274
Snippet The electroencephalogram (EEG) signal contains useful information on physiological states of the brain and has proven to be a potential biomarker to realize...
AbstractThe electroencephalogram (EEG) signal contains useful information on physiological states of the brain and has proven to be a potential biomarker to...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 127
SubjectTerms Accuracy
Algorithms
Automation
Biomarkers
Brain
Classification
Classifiers
Computational efficiency
Convulsions & seizures
Decomposition
Discrete Wavelet Transform
Discrete wavelet transforms (DWT)
EEG
Eigenvalues
Electroencephalography
Energy
Entropy
Epilepsy
Epileptic seizures
Human error
Internal Medicine
Methods
Neural networks
Other
Performance evaluation
Seizures
Sigmoid entropy
Support vector machine (SVM)
Support vector machines
Wavelet transforms
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9VAEF5KH7w8iHejVUbwNTZnc9kTfJJqKUJFsNW-LXtLSTlNQpMgxwd_hT_YmWySo1ThgI-5TJLdnXwzk3wzw9grLgorjFmGBiOgMElSHSIGCur1MnAWuVMDQfZjdnSafDhLz3bYwZQLQ7TKEfs9pg9oPe7ZH2dzvylLyvHFUGLIvIwpkKGy20kiqIvB6x8bmkcSxT4NBfGGzh7ZPJ7jRbRtn-ZOJK_c1_DM_mWirrugt9nNvmrU-ptarX4zS4d32Z3Rn4S3_pHvsR1X3Wc3jsc_5g_Yz0-bzADYlPaGuoB3X0-AjJiFtjy_rEsL9KW3btZQVkA950FVFoorT7Zeg60vVVm1gJcD1Xe4hd4qWNcNbK7hkq5BkEEQMtC68nuPoTwQsf4cPn85BkOOelngIB-y08P3JwdH4diJITRplnRhKoRShV6mNsc15wVXVMVGWx7nkbEuzoSzidMq11pHIkuNzhc8EgUaPxTJTfyI7VZ15Z4wWOostZpaHtuCisUrxBizzM1SJwgFCxUwMU2-NGOZcuqWsZITH-1CbpZN0rLJKJV4IGCLWbLxpTq2kMmn9ZVTKiqCp0R7soWs-Jusa0cUaOVCtlxG8pqmBuzNLPmHsm95371JEeV8K4RlAtckywP2cj6MUEH_f1Tl6p7OiTEYj7ngAXvsFXieKCq6RPAdMD5r9Naz-PS_xvOM3aItz4HeY7vdVe-eo6fX6RfDq_wLSfFUPA
  priority: 102
  providerName: Elsevier
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb5RQED7RbeLlwfsFreaY-MoWWOBAfGrUpjFp06RdrU8n58aGdhc2C0S3v8Mf7AwHWGM12RgfCQyEs3O-mVm--YaQtwHLNFMqcRVUQG4YRtIFDGQ466XlLAZGtATZ4_hwGn46j847_hP2wkA1N4ag4Cpd2I4G1Ggq6r18Adtrz3erYOy5p62qTNt0OcEaJnaz7z6fr2bji-XsJtmJI8jLR2Rnenyy_9VCsefi9Vh9JSx1wfPCjtZjyV7I37b97sj2Sq2YZ_y3WHU9F71LbjfFUqy_ifn8l_h0cJ9c9m9maSmX46aWY3X1m-jj_3n1B-Rel8bSfet3D8kNUzwit466D_WPyY-TTUMC3SiK0zKjH76cUYydmlb5bFHmmuIfzOVyTfOC4qh7KgpNs5XleK-pLhciLyoKt6OiqeEIkmSqTd2SyNpbmiVgG2CfopXJr5qVqSjy-Wf09PMRVVgf5Bks6RMyPfh49v7Q7QZAuCqKw9qNGBMik0mkU3C1IAsEiudIHUxST2kziZnRoZEilVJ6LI6UTP3AYxnEXDBJ1eQpGRVlYZ4Tmsg40hInLesMNeoFQJtKUpXIEBDIFw5h_U_NVaeOjkM65rynwV3wjZNwdBLuRRxOOMQfLJdWIWQLm7T3Jt53wAJmcwhjW9iyP9maqgOfivu8CrjHr7mKQ94Nll1-ZfOmLZ-727s9Hx4F0QAxPYxTh7wZTgNC4WcnUZiywWsmYQiBgwUOeWa3y7BQqPWEUcMhwbB_tl7FF_9i9JLcwSPLuN4lo3rVmFeQV9bydQcYPwHHI3Zt
  priority: 102
  providerName: Unpaywall
Title Performance evaluation of DWT based sigmoid entropy in time and frequency domains for automated detection of epileptic seizures using SVM classifier
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519301726
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482519301726
https://dx.doi.org/10.1016/j.compbiomed.2019.05.016
https://www.ncbi.nlm.nih.gov/pubmed/31154257
https://www.proquest.com/docview/2251017469
https://www.proquest.com/docview/2234483272
https://ars.els-cdn.com/content/image/1-s2.0-S0010482519301726-fx1_lrg.jpg
UnpaywallVersion publishedVersion
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEF61icTxgLgbKNEi8Wpw1sfaQggFaAigRhFtIDyt9nLlKrVDnQiFB34FP5gZX0HiUF5sWfbYye74mxnvNzOEPGE8MVzryNEQATm-HygHMJBjr5eSs8isLAmyk3A889_Pg_kemTS5MEirbDCxBGqTa_xG_gz0DrUHormXy68Odo3C1dWmhYasWyuYF2WJsX3SZVgZq0O6r44m04_bTEnXq5JSAH18CI5qbk_F-EISd5X0jpSvuKroGf7LYP3pkF4nV9fZUm6-ycXiNyM1uklu1N4lHVbqcIvs2ew2uXJcr5_fIT-n2zwBui30TfOEvvl8StGkGVqkZxd5aih-982XG5pmFDvQU5kZmlxW1OsNNfmFTLOCwu2oXK_gCHxXauyq5HaVt7RLgByAJE0Lm35fQ2BPkWZ_Rk8-HVONbnuawJ-8S2ajo9PXY6fuy-DoIPRXTsC5lImKAhODBrCESaxpowzzYlcb64XcGt8qGSulXB4GWsUD5vIETCGIxNq7RzpZntkDQiMVBkZhA2STYOl4CYijo1hHygdgGMge4c3gC10XLcfeGQvRsNPOxXbaBE6bcAMBJ3pk0Eouq8IdO8jEzfyKJjEVoFSAddlBlv9N1hY1JhRiIAomXHFSlkQqM4Y9DMBB8nkrWbs9lTuz43MPG0UU7aO2L0uPPG5PA3DgapDMbL7GazwIzT3GWY_crxS4HSgswYRg3iOs1eidR_HB_3_RQ3INL64oz4eks7pc20fg2K1Un-w__TGALZ9z2Eajt33SHb77MJ706_cY9rPJdPjlF-QZVXQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VVqLwgLgTKLBI8GiRrNdxLFQhoK1S2kQVTWnflr25MkrtECeqwnfwPXwbM74FiYvy0kfLnrW9Oz4z4z0zA_CSh7ENjel5BiMgT4hAe4iBIfV6KTiL3KmCIDvs9k_Ex7PgbA1-1rkwRKusMbEAapsZ-kf-GvWOtAejubeTbx51jaLd1bqFhqpaK9jtosRYldhx4BaXGMLl2_s7uN6vON_bHX3oe1WXAc8EXTHzgjBUKta9wEb4Pjzmiiq0aMv9qG2s87uhs8JpFWmtMegPjI46vB3GCOwoEhkfx70GG8IXEQZ_G-93h0eflpmZbb9MgkG0ExiMVVyikmFGpPEyyZ4oZlFZQbT7LwP5pwN8Ezbn6UQtLtV4_JtR3LsNtypvlr0r1e8OrLn0LlwfVPv19-DH0TIvgS0Li7MsZjunI0Ym1LI8Ob_IEsvoP3M2WbAkZdTxnqnUsnhaUr0XzGYXKklzhsMxNZ_hEfrKzLpZwSUrhnQThDiEQMNyl3yfT13OiNZ_zo4_D5ihMCGJ8SXvw8mVrNADWE-z1D0C1tPdwGpquGxjKlWvEOFMLzI9LRCIOqoFYT350lRF0qlXx1jWbLivcrlskpZNtgOJJ1rQaSQnZaGQFWSien1lnQiL0C3Rmq0gG_5N1uUVBuWyI3Mu2_K4KMFUZCj7FPCj5JtGsnKzSvdpxftu1Yoom1stP84WvGhOI1DR7pNKXTana3wh0H6EvAUPSwVuJopKPpHxaAFvNHrlWXz8_yd6Dpv90eBQHu4PD57ADRIs6dZbsD6bzt1TdCpn-ln15TL4ctVg8QvlYY25
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VIhV4QNwJFFgkeLSarO1sLIQQIkQtpVWltpC3ZW-ujFI7xImq8B18DV_HjNd2kLgoL3207Fnbu-MzM94zMwAvuEitMGYQGIyAgiiKdYAYKKjXS8VZ5E5VBNnD_u5p9GEcjzfgZ5MLQ7TKBhMroLaFoX_kO6h3pD0Yze2kNS3iaDh6M_0WUAcp2mlt2ml4Fdl3ywsM38rXe0Nc65ecj96fvNsN6g4DgYn70TyIhVAq1YPYJvguPOWKqrNoy8Oka6wL-8LZyGmVaK0x4I-NTnq8K1IEdRRJTIjjXoGrIgwTohOKsVjlZHZDn_6COBdhGFaziDy3jOjiPr2eyGWJrx3a_5dp_NP1vQHXFvlULS_UZPKbORzdgpu1H8veesW7DRsuvwNbB_VO_V34cbTKSGCrkuKsSNnw8wkj42lZmZ2dF5ll9Ie5mC5ZljPqdc9Ublk68yTvJbPFucrykuFwTC3meIReMrNuXrHIqiHdFMENwc-w0mXfFzNXMiL0n7HjTwfMUICQpfiS9-D0UtbnPmzmRe4eAhvofmw1tVq2KRWpV4htZpCYgY4QgnqqA6KZfGnq8ujUpWMiGx7cV7laNknLJruxxBMd6LWSU18iZA2ZpFlf2aTAImhLtGNryIq_ybqyRp9S9mTJZVceV8WXqtzkkEJ9lHzVStYOlnec1rzvdqOIsr3V6rPswPP2NEIU7Tup3BULuiaMIrQcgnfggVfgdqKo2BOZjQ7wVqPXnsVH_3-iZ7CFECE_7h3uP4brJOd51tuwOZ8t3BP0Juf6afXZMvhy2TjxCxWoi1M
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb5RQED7RbeLlwfsFreaY-MoWWOBAfGrUpjFp06RdrU8n58aGdhc2C0S3v8Mf7AwHWGM12RgfCQyEs3O-mVm--YaQtwHLNFMqcRVUQG4YRtIFDGQ466XlLAZGtATZ4_hwGn46j847_hP2wkA1N4ag4Cpd2I4G1Ggq6r18Adtrz3erYOy5p62qTNt0OcEaJnaz7z6fr2bji-XsJtmJI8jLR2Rnenyy_9VCsefi9Vh9JSx1wfPCjtZjyV7I37b97sj2Sq2YZ_y3WHU9F71LbjfFUqy_ifn8l_h0cJ9c9m9maSmX46aWY3X1m-jj_3n1B-Rel8bSfet3D8kNUzwit466D_WPyY-TTUMC3SiK0zKjH76cUYydmlb5bFHmmuIfzOVyTfOC4qh7KgpNs5XleK-pLhciLyoKt6OiqeEIkmSqTd2SyNpbmiVgG2CfopXJr5qVqSjy-Wf09PMRVVgf5Bks6RMyPfh49v7Q7QZAuCqKw9qNGBMik0mkU3C1IAsEiudIHUxST2kziZnRoZEilVJ6LI6UTP3AYxnEXDBJ1eQpGRVlYZ4Tmsg40hInLesMNeoFQJtKUpXIEBDIFw5h_U_NVaeOjkM65rynwV3wjZNwdBLuRRxOOMQfLJdWIWQLm7T3Jt53wAJmcwhjW9iyP9maqgOfivu8CrjHr7mKQ94Nll1-ZfOmLZ-727s9Hx4F0QAxPYxTh7wZTgNC4WcnUZiywWsmYQiBgwUOeWa3y7BQqPWEUcMhwbB_tl7FF_9i9JLcwSPLuN4lo3rVmFeQV9bydQcYPwHHI3Zt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+DWT+based+sigmoid+entropy+in+time+and+frequency+domains+for+automated+detection+of+epileptic+seizures+using+SVM+classifier&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Raghu%2C+S&rft.au=Sriraam%2C+Natarajan&rft.au=Temel%2C+Yasin&rft.au=Rao%2C+Shyam+Vasudeva&rft.date=2019-07-01&rft.issn=0010-4825&rft.volume=110&rft.spage=127&rft.epage=143&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.05.016&rft.externalDBID=ECK1-s2.0-S0010482519301726&rft.externalDocID=1_s2_0_S0010482519301726
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482519X00062%2Fcov150h.gif