Direct detection of neural activity in vitro using magnetic resonance electrical impedance tomography (MREIT)
We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast — Magnetic Resonance Electrical Impedance Tomography (MREIT) —sensitive to changes in active membrane conductivity. We compared standard deviations in MREIT phase data from s...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 161; pp. 104 - 119 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2017
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2017.08.004 |
Cover
Abstract | We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast — Magnetic Resonance Electrical Impedance Tomography (MREIT) —sensitive to changes in active membrane conductivity. We compared standard deviations in MREIT phase data from spontaneously active Aplysia abdominal ganglia in an artificial seawater background solution (ASW) with those found after treatment with an excitotoxic solution (KCl). We found significant increases in MREIT treatment cases, compared to control ganglia subject to extra ASW. This distinction was not found in phase images from the same ganglia using no imaging current. Further, significance and effect size depended on the amplitude of MREIT imaging current used. We conclude that our observations were linked to changes in cell conductivity caused by activity. Functional MREIT may have promise as a more direct method of functional neuroimaging than existing methods that image correlates of blood flow such as BOLD fMRI.
[Display omitted]
•A new, direct MRI technique for imaging neural activity was validated.•Significant changes in ganglion images were observed after excitotoxic treatment.•Method was demonstrated in-vitro, but scales to entire brains. |
---|---|
AbstractList | We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast - Magnetic Resonance Electrical Impedance Tomography (MREIT) -sensitive to changes in active membrane conductivity. We compared standard deviations in MREIT phase data from spontaneously active Aplysia abdominal ganglia in an artificial seawater background solution (ASW) with those found after treatment with an excitotoxic solution (KCl). We found significant increases in MREIT treatment cases, compared to control ganglia subject to extra ASW. This distinction was not found in phase images from the same ganglia using no imaging current. Further, significance and effect size depended on the amplitude of MREIT imaging current used. We conclude that our observations were linked to changes in cell conductivity caused by activity. Functional MREIT may have promise as a more direct method of functional neuroimaging than existing methods that image correlates of blood flow such as BOLD fMRI.We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast - Magnetic Resonance Electrical Impedance Tomography (MREIT) -sensitive to changes in active membrane conductivity. We compared standard deviations in MREIT phase data from spontaneously active Aplysia abdominal ganglia in an artificial seawater background solution (ASW) with those found after treatment with an excitotoxic solution (KCl). We found significant increases in MREIT treatment cases, compared to control ganglia subject to extra ASW. This distinction was not found in phase images from the same ganglia using no imaging current. Further, significance and effect size depended on the amplitude of MREIT imaging current used. We conclude that our observations were linked to changes in cell conductivity caused by activity. Functional MREIT may have promise as a more direct method of functional neuroimaging than existing methods that image correlates of blood flow such as BOLD fMRI. We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast — Magnetic Resonance Electrical Impedance Tomography (MREIT) —sensitive to changes in active membrane conductivity. We compared standard deviations in MREIT phase data from spontaneously active Aplysia abdominal ganglia in an artificial seawater background solution (ASW) with those found after treatment with an excitotoxic solution (KCl). We found significant increases in MREIT treatment cases, compared to control ganglia subject to extra ASW. This distinction was not found in phase images from the same ganglia using no imaging current. Further, significance and effect size depended on the amplitude of MREIT imaging current used. We conclude that our observations were linked to changes in cell conductivity caused by activity. Functional MREIT may have promise as a more direct method of functional neuroimaging than existing methods that image correlates of blood flow such as BOLD fMRI. [Display omitted] •A new, direct MRI technique for imaging neural activity was validated.•Significant changes in ganglion images were observed after excitotoxic treatment.•Method was demonstrated in-vitro, but scales to entire brains. We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast - Magnetic Resonance Electrical Impedance Tomography (MREIT) -sensitive to changes in active membrane conductivity. We compared standard deviations in MREIT phase data from spontaneously active Aplysia abdominal ganglia in an artificial seawater background solution (ASW) with those found after treatment with an excitotoxic solution (KCl). We found significant increases in MREIT treatment cases, compared to control ganglia subject to extra ASW. This distinction was not found in phase images from the same ganglia using no imaging current. Further, significance and effect size depended on the amplitude of MREIT imaging current used. We conclude that our observations were linked to changes in cell conductivity caused by activity. Functional MREIT may have promise as a more direct method of functional neuroimaging than existing methods that image correlates of blood flow such as BOLD fMRI. We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast — Magnetic Resonance Electrical Impedance Tomography (MREIT) —sensitive to changes in active membrane conductivity. We compared standard deviations in MREIT phase data from spontaneously active Aplysia abdominal ganglia in an artificial seawater background solution (ASW) with those found after treatment with an excitotoxic solution (KCl). We found significant increases in MREIT treatment cases, compared to control ganglia subject to extra ASW. This distinction was not found in phase images from the same ganglia using no imaging current. Further, significance and effect size depended on the amplitude of MREIT imaging current used. We conclude that our observations were linked to changes in cell conductivity caused by activity. Functional MREIT may have promise as a more direct method of functional neuroimaging than existing methods that image correlates of blood flow such as BOLD fMRI. |
Author | Fu, Fanrui Grant, Samuel C. Sadleir, Rosalind J. Holland, Stephen Falgas, Corey Woo, Eung Je Boggess, May |
AuthorAffiliation | School of Mathematical and Statistical Sciences, Arizona State University, 901 S. Palm Walk, Tempe, AZ 85287-1804, USA School of Biological and Health Systems Engineering, Arizona State University, 500 E. Tyler Mall, Tempe AZ 85287-9709, USA Dept. of Biomedical Engineering, College of Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State, University College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA |
AuthorAffiliation_xml | – name: School of Biological and Health Systems Engineering, Arizona State University, 500 E. Tyler Mall, Tempe AZ 85287-9709, USA – name: Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State, University College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA – name: School of Mathematical and Statistical Sciences, Arizona State University, 901 S. Palm Walk, Tempe, AZ 85287-1804, USA – name: Dept. of Biomedical Engineering, College of Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea |
Author_xml | – sequence: 1 givenname: Rosalind J. surname: Sadleir fullname: Sadleir, Rosalind J. email: rsadleir@asu.edu organization: School of Biological and Health Systems Engineering, Arizona State University, 500 E. Tyler Mall, Tempe, AZ 85287-9709, USA – sequence: 2 givenname: Fanrui surname: Fu fullname: Fu, Fanrui organization: School of Biological and Health Systems Engineering, Arizona State University, 500 E. Tyler Mall, Tempe, AZ 85287-9709, USA – sequence: 3 givenname: Corey surname: Falgas fullname: Falgas, Corey organization: Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA – sequence: 4 givenname: Stephen surname: Holland fullname: Holland, Stephen organization: Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA – sequence: 5 givenname: May surname: Boggess fullname: Boggess, May organization: School of Mathematical and Statistical Sciences, Arizona State University, 901 S. Palm Walk, Tempe, AZ 85287-1804, USA – sequence: 6 givenname: Samuel C. surname: Grant fullname: Grant, Samuel C. organization: Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA – sequence: 7 givenname: Eung Je surname: Woo fullname: Woo, Eung Je organization: Dept. of Biomedical Engineering, College of Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28818695$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv3CAUhVGVqnm0f6FC6iZd2AUbGNhUbdO0jZSqUpSsEYOvJ0xtmIA90vz74kw6eaxmdRGc-3EPh2N04IMHhDAlJSVUfFqWHsYYXG8WUFaEzkoiS0LYK3REieKF4rPqYFrzupCUqkN0nNKSEKIok2_QYSUllULxI9R_dxHsgBsYcnHB49DiCW46bPLG2g0b7DzONQY8JucXON_qYXAWR0jBG28BQ5e7o7O5y_UraO43h9CHRTSr2w0-_X11fnH98S163ZouwbuHeoJufpxfn_0qLv_8vDj7ellYLthQMKZEzauK0baV1FRkpgin82pOObNGWmmFMkJVteDQcAEgZKtstlYbpSzn9Qn6vOWuxnkPjQU_ZEN6FfOLxY0OxunnJ97d6kVYay6UoBXJgNMHQAx3I6RB9y5Z6DrjIYxJU1UTJplUNEs_vJAuwxh9tpdVgjPGa1Zn1funE-1G-Z9EFsitwMaQUoR2J6FET6HrpX4MXU-hayJ1Dv3R7a7VusFMYWZvrtsH8G0LgJzJ2kHUyTrIETb3n0M3we0D-fICYjvnpy_xFzb7If4BJGbmZQ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2961810 crossref_primary_10_1088_1741_2552_ac7907 crossref_primary_10_1063_1_5036659 crossref_primary_10_1016_j_heliyon_2022_e12458 crossref_primary_10_1088_2057_1976_aab72e crossref_primary_10_1016_j_jneumeth_2024_110288 crossref_primary_10_1002_mrm_27534 crossref_primary_10_1063_5_0124414 crossref_primary_10_1016_j_irbm_2018_06_001 crossref_primary_10_1002_mrm_27351 crossref_primary_10_1021_acs_nanolett_4c02784 crossref_primary_10_1002_mrm_28273 |
Cites_doi | 10.1152/jn.1967.30.6.1288 10.1109/TBME.2003.816080 10.1016/j.neuroimage.2015.08.071 10.1002/1522-2594(200007)44:1<19::AID-MRM4>3.0.CO;2-F 10.1109/TBME.2014.2298859 10.1016/j.jmr.2007.12.005 10.1109/TMI.2009.2018112 10.1109/TBME.1986.325891 10.1088/0967-3334/26/5/023 10.1093/clinchem/25.3.432 10.1073/pnas.0603219103 10.1016/j.neuroimage.2016.01.059 10.1214/aos/1176346394 10.1002/mrm.24720 10.1088/0957-0233/22/10/105803 10.1016/j.jmr.2013.08.011 10.1088/0031-9155/61/15/5706 10.1016/j.mri.2005.12.027 10.1088/0967-3334/29/10/R01 10.1088/0967-3334/27/2/008 10.1007/BF02474537 10.1016/j.neuroimage.2015.09.015 10.1002/ima.22134 10.1002/mrm.10494 10.1016/j.neuroimage.2007.08.048 10.1002/mrm.25051 10.1007/BF03166956 10.1016/S1053-8119(09)72050-6 10.1016/j.neuroimage.2009.06.017 10.1016/j.mri.2008.01.010 10.1073/pnas.1403739111 10.1007/s13534-011-0020-0 10.1109/42.97586 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Nov 1, 2017 |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Nov 1, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1016/j.neuroimage.2017.08.004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 119 |
ExternalDocumentID | PMC5696120 28818695 10_1016_j_neuroimage_2017_08_004 S1053811917306511 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS077004 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 ACLOT ~HD 5PM |
ID | FETCH-LOGICAL-c564t-4496352241ff81a2079051b2b154ca8c8c69a692365ed56ee68f9c1483a99c553 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 13:24:10 EDT 2025 Sun Sep 28 08:59:21 EDT 2025 Wed Aug 13 06:50:51 EDT 2025 Mon Jul 21 06:05:42 EDT 2025 Tue Jul 01 03:01:53 EDT 2025 Thu Apr 24 23:07:37 EDT 2025 Fri Feb 23 02:25:06 EST 2024 Tue Aug 26 20:08:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MREIT Aplysia fMRI Action potential Microelectrode array MRI |
Language | English |
License | Copyright © 2017 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-4496352241ff81a2079051b2b154ca8c8c69a692365ed56ee68f9c1483a99c553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5696120 |
PMID | 28818695 |
PQID | 1965445343 |
PQPubID | 2031077 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5696120 proquest_miscellaneous_1930484891 proquest_journals_1965445343 pubmed_primary_28818695 crossref_primary_10_1016_j_neuroimage_2017_08_004 crossref_citationtrail_10_1016_j_neuroimage_2017_08_004 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2017_08_004 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2017_08_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Cassarà, Hagberg, Bianciardi, Migliore, Maraviglia (bib4) 2008; 39 Kelly (bib17) 1984; 12 Song, Jeong, Seo (bib35) 2016; 61 Elmariah, Dockendorf, Zhang, Sadleir (bib7) 2006 Kim, Kim, Minhas, Jeong (bib18) 2009; 28 Luo, Gao (bib21) 2009; 47 Seo, Woo (bib33) 2014; 61 Hagberg, Bianciardi, Brainovich, Cassara, Maraviglia (bib12) 2008; 26 Sadleir, Grant, Woo (bib31) 2010; 52 Truong, Avram, Song (bib38) 2008; 191 Minhas, Kim, Meng, Kim, Kim, Woo (bib23) 2011; 1 Hagberg, Bianciardi, Maraviglia (bib13) 2006; 24 Pourtaheri, Truong, Henriquez (bib27) 2013; 236 Sadleir, Fu, Chauhan (bib29) 2016 Frazier, Kandel, Kupfermann, Waziri, Coggeshall (bib9) 1967; 30 Huang, Zhu (bib15) 2015; 25 Petridou, Plenz, Silva, Loew, Bodurka, Bandettini (bib26) 2006; 103 Radecki, Nargeot, Jelescu, Le Bihan, Ciobanu (bib28) 2014; 111 Cornbleet, Gochman (bib6) 1979; 25 Vongerichten, dos Santos, Aristovich, Avery, McEvoy, Walker, Holder (bib39) 2016; 124 El-Sharkawy, Schär, Bottomley, Atalar (bib8) 2006; 19 Grant, Aiken, Plant, Gibbs, Mareci, Webb, Blackband (bib11) 2000; 44 Sadleir, Grant, Zhang, Lee, Pyo, Oh, Park, Woo, Lee, Kwon, Seo (bib30) 2005; 26 Seo, Yoon, Woo, Kwon (bib34) 2003; 50 Aristovich, Packham, Koo, dos Santos, McEvoy, Holder (bib1) 2016; 124 Chauhan, Vidya Shankar, Ashok Kumar, Kodibagkar, Sadleir (bib5) 2017 Geddes, Baker (bib10) 1967; 5 Huang (bib14) 2014; 71 Bernstein, King, Zhou (bib3) 2004 Jiang, Lu, Shigeno, Tan, Yang, Ragsdale, Gao (bib16) 2014; 72 Bandettini, Petridou, Bodurka (bib2) 2005; 29 Kim, Yoo, Oh (bib19) 2011; 22 Novak, Wheeler (bib24) 1986; 33 Sundaram, Nummenmaa, Wells, Orbach, Orringer, Mulkern, Okada (bib37) 2016; 132 Woo, Seo (bib40) 2008; 29 Luo, Lu, Lu, Senseman, Worsley, Yang, Gao (bib22) 2009; 47 Park, Lee, Park, Cho, Lee (bib25) 2006; 27 Song, Seo, Chauhan, Ashok Kumar, Sadleir (bib36) 2016 Konn, Gowland, Bowtell (bib20) 2003; 50 Scott, Joy, Armstrong, Henkelman (bib32) 1991; 10 Radecki (10.1016/j.neuroimage.2017.08.004_bib28) 2014; 111 Grant (10.1016/j.neuroimage.2017.08.004_bib11) 2000; 44 Cassarà (10.1016/j.neuroimage.2017.08.004_bib4) 2008; 39 Kim (10.1016/j.neuroimage.2017.08.004_bib18) 2009; 28 Sundaram (10.1016/j.neuroimage.2017.08.004_bib37) 2016; 132 Chauhan (10.1016/j.neuroimage.2017.08.004_bib5) 2017 Bandettini (10.1016/j.neuroimage.2017.08.004_bib2) 2005; 29 Bernstein (10.1016/j.neuroimage.2017.08.004_bib3) 2004 Luo (10.1016/j.neuroimage.2017.08.004_bib22) 2009; 47 Park (10.1016/j.neuroimage.2017.08.004_bib25) 2006; 27 Seo (10.1016/j.neuroimage.2017.08.004_bib33) 2014; 61 Sadleir (10.1016/j.neuroimage.2017.08.004_bib29) 2016 Truong (10.1016/j.neuroimage.2017.08.004_bib38) 2008; 191 Song (10.1016/j.neuroimage.2017.08.004_bib36) 2016 El-Sharkawy (10.1016/j.neuroimage.2017.08.004_bib8) 2006; 19 Pourtaheri (10.1016/j.neuroimage.2017.08.004_bib27) 2013; 236 Hagberg (10.1016/j.neuroimage.2017.08.004_bib13) 2006; 24 Konn (10.1016/j.neuroimage.2017.08.004_bib20) 2003; 50 Petridou (10.1016/j.neuroimage.2017.08.004_bib26) 2006; 103 Cornbleet (10.1016/j.neuroimage.2017.08.004_bib6) 1979; 25 Huang (10.1016/j.neuroimage.2017.08.004_bib15) 2015; 25 Hagberg (10.1016/j.neuroimage.2017.08.004_bib12) 2008; 26 Huang (10.1016/j.neuroimage.2017.08.004_bib14) 2014; 71 Vongerichten (10.1016/j.neuroimage.2017.08.004_bib39) 2016; 124 Luo (10.1016/j.neuroimage.2017.08.004_bib21) 2009; 47 Novak (10.1016/j.neuroimage.2017.08.004_bib24) 1986; 33 Seo (10.1016/j.neuroimage.2017.08.004_bib34) 2003; 50 Frazier (10.1016/j.neuroimage.2017.08.004_bib9) 1967; 30 Kim (10.1016/j.neuroimage.2017.08.004_bib19) 2011; 22 Scott (10.1016/j.neuroimage.2017.08.004_bib32) 1991; 10 Song (10.1016/j.neuroimage.2017.08.004_bib35) 2016; 61 Aristovich (10.1016/j.neuroimage.2017.08.004_bib1) 2016; 124 Sadleir (10.1016/j.neuroimage.2017.08.004_bib31) 2010; 52 Minhas (10.1016/j.neuroimage.2017.08.004_bib23) 2011; 1 Sadleir (10.1016/j.neuroimage.2017.08.004_bib30) 2005; 26 Elmariah (10.1016/j.neuroimage.2017.08.004_bib7) 2006 Jiang (10.1016/j.neuroimage.2017.08.004_bib16) 2014; 72 Geddes (10.1016/j.neuroimage.2017.08.004_bib10) 1967; 5 Kelly (10.1016/j.neuroimage.2017.08.004_bib17) 1984; 12 Woo (10.1016/j.neuroimage.2017.08.004_bib40) 2008; 29 |
References_xml | – volume: 25 start-page: 172 year: 2015 end-page: 178 ident: bib15 article-title: Exploring human brain neuronal currents with phase MRI publication-title: Int. J. Imaging Syst. Technol. – volume: 50 start-page: 1121 year: 2003 end-page: 1124 ident: bib34 article-title: Reconstruction of conductivity and current density images using only one component of magnetic field measurements publication-title: IEEE Trans. Biomed. Eng. – volume: 19 start-page: 223 year: 2006 end-page: 236 ident: bib8 article-title: Monitoring and correcting spatio-temporal variations of the MR scanner's static magnetic field. Magnetic resonance materials in Physics publication-title: Biol. Med. – volume: 1 start-page: 129 year: 2011 end-page: 136 ident: bib23 article-title: Three-dimensional MREIT simulator of static bioelectromagnetism and MRI publication-title: Biomed. Eng. Lett. – volume: 191 start-page: 93 year: 2008 end-page: 99 ident: bib38 article-title: Lorentz effect imaging of ionic currents in solution publication-title: J. Magn. Reson. – volume: 33 start-page: 196 year: 1986 end-page: 202 ident: bib24 article-title: Recording from the publication-title: IEEE Trans. Biomed. Eng. BME – volume: 61 start-page: 1390 year: 2014 end-page: 1399 ident: bib33 article-title: Electrical tissue property imaging at low frequency using MREIT publication-title: IEEE Trans. Biomed. Eng. – volume: 26 start-page: 1026 year: 2008 end-page: 1040 ident: bib12 article-title: The effect of physiological noise in phase functional magnetic resonance imaging: from blood oxygen level-dependent effects to direct detection of neuronal currents publication-title: Magn. Reson. Imaging – volume: 25 start-page: 432 year: 1979 end-page: 438 ident: bib6 article-title: Incorrect least-squares regression coefficients in method-comparison analysis publication-title: Clin. Chem. – volume: 29 start-page: R1 year: 2008 end-page: R26 ident: bib40 article-title: Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging publication-title: Physiol. Meas. – volume: 111 start-page: 8667 year: 2014 end-page: 8672 ident: bib28 article-title: Functional magnetic resonance microscopy at single-cell resolution in publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 27 start-page: 181 year: 2006 end-page: 1990 ident: bib25 article-title: Observation of the fast response of a magnetic resonance signal to neuronal activity: a snail ganglia study publication-title: Physiol. Meas. – volume: 52 start-page: 205 year: 2010 end-page: 216 ident: bib31 article-title: Can high-field MREIT be used to directly detect neural activity? publication-title: Theor. Consid. Neuro Image – year: 2017 ident: bib5 article-title: Multi-shot echo-planar MREIT for fast imaging of conductivity, current density and electric field distributions publication-title: Magn. Reson. Med. – year: 2016 ident: bib36 article-title: Fast, Adaptive Acquisition Strategies for Low-frequency Conductivity Imaging Using MREIT – volume: 124 start-page: 204 year: 2016 end-page: 213 ident: bib1 article-title: Imaging fast electrical activity in the brain with electrical impedance tomography publication-title: NeuroImage – volume: 26 start-page: 875 year: 2005 end-page: 884 ident: bib30 article-title: Noise analysis in magnetic resonance electrical impedance tomography at 3 and 11T field strengths publication-title: Physiol. Meas. – volume: 28 start-page: 1681 year: 2009 end-page: 1687 ident: bib18 article-title: In vivo high-resolution conductivity imaging of the human leg using MREIT: the first human experiment publication-title: IEEE Trans. Med. Imaging – year: 2016 ident: bib29 article-title: Functional Magnetic Resonance Electrical Impedance Tomography (FMREIT) Sensitivity Analysis Using an Active Bidomain Finite Element Model of Neural Tissue – volume: 124 start-page: 813 year: 2016 end-page: 823 ident: bib39 article-title: Characterisation and imaging of cortical impedance changes during interictal and ictal activity in the anaesthetised rat publication-title: NeuroImage – year: 2006 ident: bib7 article-title: Impedance Tomography of – volume: 47 start-page: S39 year: 2009 end-page: S41 ident: bib21 article-title: Neuronal current MRI without BOLD contamination publication-title: NeuroImage – volume: 29 start-page: 65 year: 2005 end-page: 88 ident: bib2 article-title: Direct detection of neuronal activity with MRI: fantasy, possibility, or reality? publication-title: Appl. Magn. Reson. – volume: 44 start-page: 19 year: 2000 end-page: 22 ident: bib11 article-title: NMR spectroscopy of single neurons publication-title: Magn. Reson. Med. – volume: 22 start-page: 105803 year: 2011 ident: bib19 article-title: Magnetic flux density measurement in magnetic resonance electrical impedance tomography using a low-noise current source publication-title: Meas. Sci. Technol. – volume: 12 start-page: 87 year: 1984 end-page: 100 ident: bib17 article-title: The influence function in the errors in variables problem publication-title: Ann. Stat. – volume: 61 start-page: 5706 year: 2016 end-page: 5723 ident: bib35 article-title: A method for MREIT-based source imaging: simulation studies publication-title: Phys. Med. Biol. – volume: 103 start-page: 16015 year: 2006 end-page: 16020 ident: bib26 article-title: Direct magnetic resonance detection of neuronal electrical activity publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 30 start-page: 1288 year: 1967 end-page: 1351 ident: bib9 article-title: Morphological and functional properties of identified neurons in the abdominal ganglion of publication-title: J. Neurophysiol. – volume: 72 start-page: 1311 year: 2014 end-page: 1319 ident: bib16 article-title: Octopus visual system: a functional MRI model for detecting neuronal electric currents without a blood-oxygen-level dependent confound publication-title: Magn. Reson. Med. – volume: 24 start-page: 483 year: 2006 end-page: 493 ident: bib13 article-title: Challenges for detection of neuronal currents by MRI publication-title: Magn. Reson. Imaging – volume: 39 start-page: 87 year: 2008 end-page: 106 ident: bib4 article-title: Realistic simulations of neuronal activity: a contribution to the debate on direct detection of neuronal currents by MRI publication-title: NeuroImage – volume: 47 start-page: 1268 year: 2009 end-page: 1276 ident: bib22 article-title: Physiologically evoked neuronal current MRI in a bloodless turtle brain: detectable or not? publication-title: NeuroImage – volume: 236 start-page: 1 year: 2013 end-page: 9 ident: bib27 article-title: Electromagnetohydrodynamic modeling of Lorentz effect imaging publication-title: J. Magn. Reson. – volume: 50 start-page: 40 year: 2003 end-page: 49 ident: bib20 article-title: MRI detection of weak magnetic fields due to an extended current dipole in a conducting sphere, a model for direct detection of neuronal currents in the brain publication-title: Magn. Reson. Med. – year: 2004 ident: bib3 article-title: Handbook of MRI Pulse Sequences – volume: 5 start-page: 271 year: 1967 end-page: 293 ident: bib10 article-title: The specific resistance of biological materials: a compendium of data for the biomedical engineer and physiologist publication-title: Med. Biol. Eng. Comput. – volume: 71 start-page: 756 year: 2014 end-page: 762 ident: bib14 article-title: Detecting neuronal currents with MRI: a human study publication-title: Magn. Reson. Med. – volume: 10 start-page: 362 year: 1991 end-page: 374 ident: bib32 article-title: Measurement of nonuniform current density by magnetic resonance publication-title: IEEE Trans. Med. Imaging – volume: 132 start-page: 477 year: 2016 end-page: 490 ident: bib37 article-title: Direct neural current imaging in an intact cerebellum with magnetic resonance imaging publication-title: NeuroImage – year: 2017 ident: 10.1016/j.neuroimage.2017.08.004_bib5 article-title: Multi-shot echo-planar MREIT for fast imaging of conductivity, current density and electric field distributions publication-title: Magn. Reson. Med. – volume: 30 start-page: 1288 year: 1967 ident: 10.1016/j.neuroimage.2017.08.004_bib9 article-title: Morphological and functional properties of identified neurons in the abdominal ganglion of Aplysia publication-title: J. Neurophysiol. doi: 10.1152/jn.1967.30.6.1288 – year: 2016 ident: 10.1016/j.neuroimage.2017.08.004_bib29 – volume: 50 start-page: 1121 year: 2003 ident: 10.1016/j.neuroimage.2017.08.004_bib34 article-title: Reconstruction of conductivity and current density images using only one component of magnetic field measurements publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2003.816080 – volume: 124 start-page: 204 year: 2016 ident: 10.1016/j.neuroimage.2017.08.004_bib1 article-title: Imaging fast electrical activity in the brain with electrical impedance tomography publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.08.071 – volume: 44 start-page: 19 year: 2000 ident: 10.1016/j.neuroimage.2017.08.004_bib11 article-title: NMR spectroscopy of single neurons publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200007)44:1<19::AID-MRM4>3.0.CO;2-F – volume: 61 start-page: 1390 year: 2014 ident: 10.1016/j.neuroimage.2017.08.004_bib33 article-title: Electrical tissue property imaging at low frequency using MREIT publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2298859 – volume: 191 start-page: 93 year: 2008 ident: 10.1016/j.neuroimage.2017.08.004_bib38 article-title: Lorentz effect imaging of ionic currents in solution publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2007.12.005 – volume: 28 start-page: 1681 year: 2009 ident: 10.1016/j.neuroimage.2017.08.004_bib18 article-title: In vivo high-resolution conductivity imaging of the human leg using MREIT: the first human experiment publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2018112 – volume: 33 start-page: 196 year: 1986 ident: 10.1016/j.neuroimage.2017.08.004_bib24 article-title: Recording from the Aplysia abdominal ganglion with a planar microelectrode array publication-title: IEEE Trans. Biomed. Eng. BME doi: 10.1109/TBME.1986.325891 – year: 2006 ident: 10.1016/j.neuroimage.2017.08.004_bib7 – volume: 26 start-page: 875 year: 2005 ident: 10.1016/j.neuroimage.2017.08.004_bib30 article-title: Noise analysis in magnetic resonance electrical impedance tomography at 3 and 11T field strengths publication-title: Physiol. Meas. doi: 10.1088/0967-3334/26/5/023 – volume: 52 start-page: 205 year: 2010 ident: 10.1016/j.neuroimage.2017.08.004_bib31 article-title: Can high-field MREIT be used to directly detect neural activity? publication-title: Theor. Consid. Neuro Image – volume: 25 start-page: 432 year: 1979 ident: 10.1016/j.neuroimage.2017.08.004_bib6 article-title: Incorrect least-squares regression coefficients in method-comparison analysis publication-title: Clin. Chem. doi: 10.1093/clinchem/25.3.432 – volume: 103 start-page: 16015 year: 2006 ident: 10.1016/j.neuroimage.2017.08.004_bib26 article-title: Direct magnetic resonance detection of neuronal electrical activity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0603219103 – year: 2004 ident: 10.1016/j.neuroimage.2017.08.004_bib3 – volume: 132 start-page: 477 year: 2016 ident: 10.1016/j.neuroimage.2017.08.004_bib37 article-title: Direct neural current imaging in an intact cerebellum with magnetic resonance imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.01.059 – volume: 12 start-page: 87 year: 1984 ident: 10.1016/j.neuroimage.2017.08.004_bib17 article-title: The influence function in the errors in variables problem publication-title: Ann. Stat. doi: 10.1214/aos/1176346394 – volume: 71 start-page: 756 year: 2014 ident: 10.1016/j.neuroimage.2017.08.004_bib14 article-title: Detecting neuronal currents with MRI: a human study publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24720 – volume: 22 start-page: 105803 year: 2011 ident: 10.1016/j.neuroimage.2017.08.004_bib19 article-title: Magnetic flux density measurement in magnetic resonance electrical impedance tomography using a low-noise current source publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/22/10/105803 – volume: 236 start-page: 1 year: 2013 ident: 10.1016/j.neuroimage.2017.08.004_bib27 article-title: Electromagnetohydrodynamic modeling of Lorentz effect imaging publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2013.08.011 – volume: 61 start-page: 5706 year: 2016 ident: 10.1016/j.neuroimage.2017.08.004_bib35 article-title: A method for MREIT-based source imaging: simulation studies publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/15/5706 – volume: 24 start-page: 483 year: 2006 ident: 10.1016/j.neuroimage.2017.08.004_bib13 article-title: Challenges for detection of neuronal currents by MRI publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2005.12.027 – volume: 29 start-page: R1 year: 2008 ident: 10.1016/j.neuroimage.2017.08.004_bib40 article-title: Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging publication-title: Physiol. Meas. doi: 10.1088/0967-3334/29/10/R01 – year: 2016 ident: 10.1016/j.neuroimage.2017.08.004_bib36 – volume: 27 start-page: 181 year: 2006 ident: 10.1016/j.neuroimage.2017.08.004_bib25 article-title: Observation of the fast response of a magnetic resonance signal to neuronal activity: a snail ganglia study publication-title: Physiol. Meas. doi: 10.1088/0967-3334/27/2/008 – volume: 5 start-page: 271 year: 1967 ident: 10.1016/j.neuroimage.2017.08.004_bib10 article-title: The specific resistance of biological materials: a compendium of data for the biomedical engineer and physiologist publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02474537 – volume: 124 start-page: 813 year: 2016 ident: 10.1016/j.neuroimage.2017.08.004_bib39 article-title: Characterisation and imaging of cortical impedance changes during interictal and ictal activity in the anaesthetised rat publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.09.015 – volume: 25 start-page: 172 year: 2015 ident: 10.1016/j.neuroimage.2017.08.004_bib15 article-title: Exploring human brain neuronal currents with phase MRI publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22134 – volume: 19 start-page: 223 year: 2006 ident: 10.1016/j.neuroimage.2017.08.004_bib8 article-title: Monitoring and correcting spatio-temporal variations of the MR scanner's static magnetic field. Magnetic resonance materials in Physics publication-title: Biol. Med. – volume: 50 start-page: 40 year: 2003 ident: 10.1016/j.neuroimage.2017.08.004_bib20 article-title: MRI detection of weak magnetic fields due to an extended current dipole in a conducting sphere, a model for direct detection of neuronal currents in the brain publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10494 – volume: 39 start-page: 87 year: 2008 ident: 10.1016/j.neuroimage.2017.08.004_bib4 article-title: Realistic simulations of neuronal activity: a contribution to the debate on direct detection of neuronal currents by MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.08.048 – volume: 72 start-page: 1311 year: 2014 ident: 10.1016/j.neuroimage.2017.08.004_bib16 article-title: Octopus visual system: a functional MRI model for detecting neuronal electric currents without a blood-oxygen-level dependent confound publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25051 – volume: 29 start-page: 65 year: 2005 ident: 10.1016/j.neuroimage.2017.08.004_bib2 article-title: Direct detection of neuronal activity with MRI: fantasy, possibility, or reality? publication-title: Appl. Magn. Reson. doi: 10.1007/BF03166956 – volume: 47 start-page: S39 year: 2009 ident: 10.1016/j.neuroimage.2017.08.004_bib21 article-title: Neuronal current MRI without BOLD contamination publication-title: NeuroImage doi: 10.1016/S1053-8119(09)72050-6 – volume: 47 start-page: 1268 year: 2009 ident: 10.1016/j.neuroimage.2017.08.004_bib22 article-title: Physiologically evoked neuronal current MRI in a bloodless turtle brain: detectable or not? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.06.017 – volume: 26 start-page: 1026 year: 2008 ident: 10.1016/j.neuroimage.2017.08.004_bib12 article-title: The effect of physiological noise in phase functional magnetic resonance imaging: from blood oxygen level-dependent effects to direct detection of neuronal currents publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2008.01.010 – volume: 111 start-page: 8667 year: 2014 ident: 10.1016/j.neuroimage.2017.08.004_bib28 article-title: Functional magnetic resonance microscopy at single-cell resolution in Aplysia californica publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1403739111 – volume: 1 start-page: 129 year: 2011 ident: 10.1016/j.neuroimage.2017.08.004_bib23 article-title: Three-dimensional MREIT simulator of static bioelectromagnetism and MRI publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-011-0020-0 – volume: 10 start-page: 362 year: 1991 ident: 10.1016/j.neuroimage.2017.08.004_bib32 article-title: Measurement of nonuniform current density by magnetic resonance publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.97586 |
SSID | ssj0009148 |
Score | 2.3370514 |
Snippet | We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast — Magnetic Resonance Electrical... We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast - Magnetic Resonance Electrical... We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast — Magnetic Resonance Electrical... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 104 |
SubjectTerms | Action potential Action Potentials - drug effects Action Potentials - physiology Animals Aplysia Aplysia californica Blood flow Butyrates - pharmacology Chlorides Electric Impedance Electrical impedance Excitotoxicity Experiments fMRI Functional magnetic resonance imaging Ganglia Ganglia, Invertebrate - diagnostic imaging Ganglia, Invertebrate - drug effects Hydrocarbons, Fluorinated - pharmacology In Vitro Techniques Magnetic fields Magnetic Resonance Imaging - methods Medical imaging Methods Microelectrode array MREIT MRI Neuroimaging Neurons - drug effects Neurons - physiology Neurotoxins - pharmacology NMR Noise Nuclear magnetic resonance Potassium chloride Seawater Tomography |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwELVKKyEuCGiBpaUyUg_0YJHEY8cRB4RQq4K0HFAr7c1KHAcWsUlp0__vTOxkKaBqT1ESj-R4xuMXe-YNY0el1qbJcykqV-cC8sSISutEgIamrk1WJSVt6M-_6rML-LJQi7jhdh3DKkefODjqunO0R_6OmO8AlAT54fK3oKpRdLoaS2g8YDspIhEq3ZAv8jXpbgohFU5JYbBBjOQJ8V0DX-RyhbOWArzygcgzlmv7z_L0L_z8O4ryj2Xp9Al7HPEk_xgM4Cnb8u0z9nAeT8x32Sr4NF77fgi6annXcOoUClFOA5WO4MuW4_Wq4xQF_51jb1vKbeT4K94RIYfnoVoOKZQvEWjXw8O-W0XCa_52_u3k8_nxHrs4PTn_dCZiiQXhlIZeAOAEVLSMN41JyywZ-LqqrEJk5UrjjNNFqREEauVrpb1HzRYOh1WWReGUks_Zdtu1_iXjxuPPrpOZ96YCmTiDtyA91I1JpAI5Y_k4stZF_nEqg_HLjoFmP-1aJ5Z0YqlCZgIzlk6Sl4GDYwOZYlSeHXNM0StaXCg2kH0_yUYcEvDFhtIHo63Y6A-u7dp6Z-zN9BpnMh3PlK3vbqiNRHcKpkhn7EUwrelzM0PMg4XCQbxjdFMDYgm_-6Zd_hjYwpUuEMUmr-7v1j57RN8QsiwP2HZ_deNfI9zqq8NhTt0CF4ErRQ priority: 102 providerName: ProQuest |
Title | Direct detection of neural activity in vitro using magnetic resonance electrical impedance tomography (MREIT) |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811917306511 https://dx.doi.org/10.1016/j.neuroimage.2017.08.004 https://www.ncbi.nlm.nih.gov/pubmed/28818695 https://www.proquest.com/docview/1965445343 https://www.proquest.com/docview/1930484891 https://pubmed.ncbi.nlm.nih.gov/PMC5696120 |
Volume | 161 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaWroS4IN4UlspIHOAQmsSPOOK0VF11gVarsiv1ZiWOA0E0WS3ZK7-dmdjJUuBQiUuiPEayZzwPJzPfEPIqk1KVScKC3BRJwJNQBbmUYcAlL4tCxXmY4Qf95UouLviHjdgckFlfC4Npld72O5veWWt_Z-q5Ob2squlniAzA3eB-A7ufY33vYQzeXo3I4fHpx8XqBns34q4iTrAACXxCj0vz6mAjqy0oL-Z5JR2ep-_a9g8v9XcU-mcy5W_e6eQeuevDSnrsRn6fHNj6Abm99D_OH5KtM220sG2Xe1XTpqQ4KCDC0gbsIEGrmsL5qqGYDP-FwmhrLHGksCNvEJfDUtc0B-VKK4i3i-5m22w97jV9vVzPT8_fPCIXJ_Pz2SLwnRYCIyRvA85BDwV687JUURaHHWxXHucQYJlMGWVkmkmIBaWwhZDWgoBTA2xlWZoaIdhjMqqb2j4lVFnY8xoWW6tyzkKj4JIzy4tShUxwNiZJz1ltPAw5dsP4rvt8s2_6RiYaZaKxUWbIxyQaKC8dFMceNGkvPN2XmoJx1OAv9qB9N9DuLMk9qY_6taK9WfihEb6Rc8GQDS-Hx6DQ-Jcmq21zje8wsKpcpdGYPHFLa5hurBCAMBXAxJ1FN7yAYOG7T-rqawcaLmQKwWz47L8m9ZzcwStXi3lERu3VtX0BQVmbT8ittz8jOCabZAIKOFt_Opt4RYTz-_nqbP0LvRY9EQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTgJeEN8UBhgJJHiISOKPOEIT4qNTy9YKTZ20N5PYDhTRZHSZEP8cfxt3iZMyQKgve6rS5CTbdz6f7bvfj5AnmZSqSBIW5MYmAU9CFeRShgGXvLBWxXmY4YH-dCbHR_z9sTjeIj-7WhhMq-x8YuOobWXwjPwFIt9xLhhnr06-BcgahberHYVG5qkV7G4DMeYLO_bdj--whTvdnbwDfT-N473R_O048CwDgRGS1wHnYIMCV7KiUFEWhw1kVR7nEFyYTBllZJpJiIOkcFZI56BzqYFdBMvS1AhkjYAlYJvjAcqAbL8ZzT4crmF_I94W4wkWqChKfS5Rm2HWIFYuluA3MMUsaaBEPWHcPxbIvwPgP_M4f1sY966Rqz6ipa9bE7xOtlx5g1ya-jv7m2TZelVqXd2kfZW0Kig2CoSwqgLJK-iipPC7qijm4X-i0NoSqyvpyuFWAQyTtnw9aFJ0AaG-bf6sq6WH3KbPpoejyfz5LXJ0IcN_mwzKqnR3CVUOttuGxc6pnLPQKHjkzHFbqBC0w4Yk6UZWG4-AjkQcX3WX6vZFr3WiUScaOTpDPiRRL3nSooBsIJN2ytNdlSv4ZQ1L1QayL3tZHwm1Ec6G0judrWjvkU71ev4MyeP-NfgSvCDKSled4TcMHDpXaTQkd1rT6rsbK8Q-TAUM4jmj6z9AnPLzb8rF5wavXMgU4ujw3v-b9YhcHs-nB_pgMtu_T65gf9qazx0yqFdn7gEEf3X-0M8wSj5e9KT-BSIBbH0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF9KC8UX8duzVVdQ0IfQJPuRDVJE7R096x2ltNC3Ndls9MRL2muK-C_6VzmT3eSsitxLn0I-BvZjdmY2O_P7EfI8k1KVScKC3BRJwJNQBbmUYcAlL4tCxXmY4Q_9yVTun_APp-J0jfzsamEwrbKzia2hLmqD_8h3EPmOc8E42yl9WsTh3ujN2XmADFJ40trRaWSeZqHYbeHGfJHHgf3xHbZzF7vjPZj7F3E8Gh6_3w8840BghORNwDnoo0CvVpYqyuKwha_K4xwCDZMpo4xMMwkxkRS2ENJa6GhqYEfBsjQ1AhkkwB1sJOD1YSO48W44PTxaQgBH3BXmCRaoKEp9XpHLNmvRK2dzsCGYbpa0sKKePO4fzvLvYPjPnM7fnOToFrnpo1v61qnjbbJmqztkc-LP7--SubOwtLBNmwJW0bqk2CgQwgoLJLKgs4rCdVFTzMn_TKG1FVZa0oXFbQMoKXXcPahedAZhf9E-bOq5h9-mLydHw_Hxq3vk5FqG_z5Zr-rKPiRUWdh6GxZbq3LOQqPgljPLi1KFTHA2IEk3stp4NHQk5fimu7S3r3o5JxrnRCNfZ8gHJOolzxwiyAoyaTd5uqt4BRutwW2tIPu6l_VRkYt2VpTe7nRFe-t0oZdraUCe9a_BruBhUVbZ-hK_YWDcuUqjAXngVKvvbqwQBzEVMIhXlK7_ADHLr76pZl9a7HIhU4ipw0f_b9ZTsgmLW38cTw-2yA3sjiv_3CbrzeLSPoY4sMmf-AVGyafrXtO_AGRTcME |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+detection+of+neural+activity+in+vitro+using+magnetic+resonance+electrical+impedance+tomography+%28MREIT%29&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Sadleir%2C+Rosalind+J.&rft.au=Fu%2C+Fanrui&rft.au=Falgas%2C+Corey&rft.au=Holland%2C+Stephen&rft.date=2017-11-01&rft.issn=1053-8119&rft.volume=161&rft.spage=104&rft.epage=119&rft_id=info:doi/10.1016%2Fj.neuroimage.2017.08.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2017_08_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |