Direct detection of neural activity in vitro using magnetic resonance electrical impedance tomography (MREIT)

We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast — Magnetic Resonance Electrical Impedance Tomography (MREIT) —sensitive to changes in active membrane conductivity. We compared standard deviations in MREIT phase data from s...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 161; pp. 104 - 119
Main Authors Sadleir, Rosalind J., Fu, Fanrui, Falgas, Corey, Holland, Stephen, Boggess, May, Grant, Samuel C., Woo, Eung Je
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2017
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2017.08.004

Cover

Abstract We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast — Magnetic Resonance Electrical Impedance Tomography (MREIT) —sensitive to changes in active membrane conductivity. We compared standard deviations in MREIT phase data from spontaneously active Aplysia abdominal ganglia in an artificial seawater background solution (ASW) with those found after treatment with an excitotoxic solution (KCl). We found significant increases in MREIT treatment cases, compared to control ganglia subject to extra ASW. This distinction was not found in phase images from the same ganglia using no imaging current. Further, significance and effect size depended on the amplitude of MREIT imaging current used. We conclude that our observations were linked to changes in cell conductivity caused by activity. Functional MREIT may have promise as a more direct method of functional neuroimaging than existing methods that image correlates of blood flow such as BOLD fMRI. [Display omitted] •A new, direct MRI technique for imaging neural activity was validated.•Significant changes in ganglion images were observed after excitotoxic treatment.•Method was demonstrated in-vitro, but scales to entire brains.
AbstractList We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast - Magnetic Resonance Electrical Impedance Tomography (MREIT) -sensitive to changes in active membrane conductivity. We compared standard deviations in MREIT phase data from spontaneously active Aplysia abdominal ganglia in an artificial seawater background solution (ASW) with those found after treatment with an excitotoxic solution (KCl). We found significant increases in MREIT treatment cases, compared to control ganglia subject to extra ASW. This distinction was not found in phase images from the same ganglia using no imaging current. Further, significance and effect size depended on the amplitude of MREIT imaging current used. We conclude that our observations were linked to changes in cell conductivity caused by activity. Functional MREIT may have promise as a more direct method of functional neuroimaging than existing methods that image correlates of blood flow such as BOLD fMRI.We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast - Magnetic Resonance Electrical Impedance Tomography (MREIT) -sensitive to changes in active membrane conductivity. We compared standard deviations in MREIT phase data from spontaneously active Aplysia abdominal ganglia in an artificial seawater background solution (ASW) with those found after treatment with an excitotoxic solution (KCl). We found significant increases in MREIT treatment cases, compared to control ganglia subject to extra ASW. This distinction was not found in phase images from the same ganglia using no imaging current. Further, significance and effect size depended on the amplitude of MREIT imaging current used. We conclude that our observations were linked to changes in cell conductivity caused by activity. Functional MREIT may have promise as a more direct method of functional neuroimaging than existing methods that image correlates of blood flow such as BOLD fMRI.
We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast — Magnetic Resonance Electrical Impedance Tomography (MREIT) —sensitive to changes in active membrane conductivity. We compared standard deviations in MREIT phase data from spontaneously active Aplysia abdominal ganglia in an artificial seawater background solution (ASW) with those found after treatment with an excitotoxic solution (KCl). We found significant increases in MREIT treatment cases, compared to control ganglia subject to extra ASW. This distinction was not found in phase images from the same ganglia using no imaging current. Further, significance and effect size depended on the amplitude of MREIT imaging current used. We conclude that our observations were linked to changes in cell conductivity caused by activity. Functional MREIT may have promise as a more direct method of functional neuroimaging than existing methods that image correlates of blood flow such as BOLD fMRI. [Display omitted] •A new, direct MRI technique for imaging neural activity was validated.•Significant changes in ganglion images were observed after excitotoxic treatment.•Method was demonstrated in-vitro, but scales to entire brains.
We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast - Magnetic Resonance Electrical Impedance Tomography (MREIT) -sensitive to changes in active membrane conductivity. We compared standard deviations in MREIT phase data from spontaneously active Aplysia abdominal ganglia in an artificial seawater background solution (ASW) with those found after treatment with an excitotoxic solution (KCl). We found significant increases in MREIT treatment cases, compared to control ganglia subject to extra ASW. This distinction was not found in phase images from the same ganglia using no imaging current. Further, significance and effect size depended on the amplitude of MREIT imaging current used. We conclude that our observations were linked to changes in cell conductivity caused by activity. Functional MREIT may have promise as a more direct method of functional neuroimaging than existing methods that image correlates of blood flow such as BOLD fMRI.
We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast — Magnetic Resonance Electrical Impedance Tomography (MREIT) —sensitive to changes in active membrane conductivity. We compared standard deviations in MREIT phase data from spontaneously active Aplysia abdominal ganglia in an artificial seawater background solution (ASW) with those found after treatment with an excitotoxic solution (KCl). We found significant increases in MREIT treatment cases, compared to control ganglia subject to extra ASW. This distinction was not found in phase images from the same ganglia using no imaging current. Further, significance and effect size depended on the amplitude of MREIT imaging current used. We conclude that our observations were linked to changes in cell conductivity caused by activity. Functional MREIT may have promise as a more direct method of functional neuroimaging than existing methods that image correlates of blood flow such as BOLD fMRI.
Author Fu, Fanrui
Grant, Samuel C.
Sadleir, Rosalind J.
Holland, Stephen
Falgas, Corey
Woo, Eung Je
Boggess, May
AuthorAffiliation School of Mathematical and Statistical Sciences, Arizona State University, 901 S. Palm Walk, Tempe, AZ 85287-1804, USA
School of Biological and Health Systems Engineering, Arizona State University, 500 E. Tyler Mall, Tempe AZ 85287-9709, USA
Dept. of Biomedical Engineering, College of Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State, University College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA
AuthorAffiliation_xml – name: School of Biological and Health Systems Engineering, Arizona State University, 500 E. Tyler Mall, Tempe AZ 85287-9709, USA
– name: Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State, University College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA
– name: School of Mathematical and Statistical Sciences, Arizona State University, 901 S. Palm Walk, Tempe, AZ 85287-1804, USA
– name: Dept. of Biomedical Engineering, College of Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
Author_xml – sequence: 1
  givenname: Rosalind J.
  surname: Sadleir
  fullname: Sadleir, Rosalind J.
  email: rsadleir@asu.edu
  organization: School of Biological and Health Systems Engineering, Arizona State University, 500 E. Tyler Mall, Tempe, AZ 85287-9709, USA
– sequence: 2
  givenname: Fanrui
  surname: Fu
  fullname: Fu, Fanrui
  organization: School of Biological and Health Systems Engineering, Arizona State University, 500 E. Tyler Mall, Tempe, AZ 85287-9709, USA
– sequence: 3
  givenname: Corey
  surname: Falgas
  fullname: Falgas, Corey
  organization: Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA
– sequence: 4
  givenname: Stephen
  surname: Holland
  fullname: Holland, Stephen
  organization: Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA
– sequence: 5
  givenname: May
  surname: Boggess
  fullname: Boggess, May
  organization: School of Mathematical and Statistical Sciences, Arizona State University, 901 S. Palm Walk, Tempe, AZ 85287-1804, USA
– sequence: 6
  givenname: Samuel C.
  surname: Grant
  fullname: Grant, Samuel C.
  organization: Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA
– sequence: 7
  givenname: Eung Je
  surname: Woo
  fullname: Woo, Eung Je
  organization: Dept. of Biomedical Engineering, College of Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28818695$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv3CAUhVGVqnm0f6FC6iZd2AUbGNhUbdO0jZSqUpSsEYOvJ0xtmIA90vz74kw6eaxmdRGc-3EPh2N04IMHhDAlJSVUfFqWHsYYXG8WUFaEzkoiS0LYK3REieKF4rPqYFrzupCUqkN0nNKSEKIok2_QYSUllULxI9R_dxHsgBsYcnHB49DiCW46bPLG2g0b7DzONQY8JucXON_qYXAWR0jBG28BQ5e7o7O5y_UraO43h9CHRTSr2w0-_X11fnH98S163ZouwbuHeoJufpxfn_0qLv_8vDj7ellYLthQMKZEzauK0baV1FRkpgin82pOObNGWmmFMkJVteDQcAEgZKtstlYbpSzn9Qn6vOWuxnkPjQU_ZEN6FfOLxY0OxunnJ97d6kVYay6UoBXJgNMHQAx3I6RB9y5Z6DrjIYxJU1UTJplUNEs_vJAuwxh9tpdVgjPGa1Zn1funE-1G-Z9EFsitwMaQUoR2J6FET6HrpX4MXU-hayJ1Dv3R7a7VusFMYWZvrtsH8G0LgJzJ2kHUyTrIETb3n0M3we0D-fICYjvnpy_xFzb7If4BJGbmZQ
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2961810
crossref_primary_10_1088_1741_2552_ac7907
crossref_primary_10_1063_1_5036659
crossref_primary_10_1016_j_heliyon_2022_e12458
crossref_primary_10_1088_2057_1976_aab72e
crossref_primary_10_1016_j_jneumeth_2024_110288
crossref_primary_10_1002_mrm_27534
crossref_primary_10_1063_5_0124414
crossref_primary_10_1016_j_irbm_2018_06_001
crossref_primary_10_1002_mrm_27351
crossref_primary_10_1021_acs_nanolett_4c02784
crossref_primary_10_1002_mrm_28273
Cites_doi 10.1152/jn.1967.30.6.1288
10.1109/TBME.2003.816080
10.1016/j.neuroimage.2015.08.071
10.1002/1522-2594(200007)44:1<19::AID-MRM4>3.0.CO;2-F
10.1109/TBME.2014.2298859
10.1016/j.jmr.2007.12.005
10.1109/TMI.2009.2018112
10.1109/TBME.1986.325891
10.1088/0967-3334/26/5/023
10.1093/clinchem/25.3.432
10.1073/pnas.0603219103
10.1016/j.neuroimage.2016.01.059
10.1214/aos/1176346394
10.1002/mrm.24720
10.1088/0957-0233/22/10/105803
10.1016/j.jmr.2013.08.011
10.1088/0031-9155/61/15/5706
10.1016/j.mri.2005.12.027
10.1088/0967-3334/29/10/R01
10.1088/0967-3334/27/2/008
10.1007/BF02474537
10.1016/j.neuroimage.2015.09.015
10.1002/ima.22134
10.1002/mrm.10494
10.1016/j.neuroimage.2007.08.048
10.1002/mrm.25051
10.1007/BF03166956
10.1016/S1053-8119(09)72050-6
10.1016/j.neuroimage.2009.06.017
10.1016/j.mri.2008.01.010
10.1073/pnas.1403739111
10.1007/s13534-011-0020-0
10.1109/42.97586
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Nov 1, 2017
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Nov 1, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1016/j.neuroimage.2017.08.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE

ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 119
ExternalDocumentID PMC5696120
28818695
10_1016_j_neuroimage_2017_08_004
S1053811917306511
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS077004
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ACLOT
~HD
5PM
ID FETCH-LOGICAL-c564t-4496352241ff81a2079051b2b154ca8c8c69a692365ed56ee68f9c1483a99c553
IEDL.DBID AIKHN
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 13:24:10 EDT 2025
Sun Sep 28 08:59:21 EDT 2025
Wed Aug 13 06:50:51 EDT 2025
Mon Jul 21 06:05:42 EDT 2025
Tue Jul 01 03:01:53 EDT 2025
Thu Apr 24 23:07:37 EDT 2025
Fri Feb 23 02:25:06 EST 2024
Tue Aug 26 20:08:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords MREIT
Aplysia
fMRI
Action potential
Microelectrode array
MRI
Language English
License Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-4496352241ff81a2079051b2b154ca8c8c69a692365ed56ee68f9c1483a99c553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5696120
PMID 28818695
PQID 1965445343
PQPubID 2031077
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5696120
proquest_miscellaneous_1930484891
proquest_journals_1965445343
pubmed_primary_28818695
crossref_primary_10_1016_j_neuroimage_2017_08_004
crossref_citationtrail_10_1016_j_neuroimage_2017_08_004
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2017_08_004
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2017_08_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2017
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Cassarà, Hagberg, Bianciardi, Migliore, Maraviglia (bib4) 2008; 39
Kelly (bib17) 1984; 12
Song, Jeong, Seo (bib35) 2016; 61
Elmariah, Dockendorf, Zhang, Sadleir (bib7) 2006
Kim, Kim, Minhas, Jeong (bib18) 2009; 28
Luo, Gao (bib21) 2009; 47
Seo, Woo (bib33) 2014; 61
Hagberg, Bianciardi, Brainovich, Cassara, Maraviglia (bib12) 2008; 26
Sadleir, Grant, Woo (bib31) 2010; 52
Truong, Avram, Song (bib38) 2008; 191
Minhas, Kim, Meng, Kim, Kim, Woo (bib23) 2011; 1
Hagberg, Bianciardi, Maraviglia (bib13) 2006; 24
Pourtaheri, Truong, Henriquez (bib27) 2013; 236
Sadleir, Fu, Chauhan (bib29) 2016
Frazier, Kandel, Kupfermann, Waziri, Coggeshall (bib9) 1967; 30
Huang, Zhu (bib15) 2015; 25
Petridou, Plenz, Silva, Loew, Bodurka, Bandettini (bib26) 2006; 103
Radecki, Nargeot, Jelescu, Le Bihan, Ciobanu (bib28) 2014; 111
Cornbleet, Gochman (bib6) 1979; 25
Vongerichten, dos Santos, Aristovich, Avery, McEvoy, Walker, Holder (bib39) 2016; 124
El-Sharkawy, Schär, Bottomley, Atalar (bib8) 2006; 19
Grant, Aiken, Plant, Gibbs, Mareci, Webb, Blackband (bib11) 2000; 44
Sadleir, Grant, Zhang, Lee, Pyo, Oh, Park, Woo, Lee, Kwon, Seo (bib30) 2005; 26
Seo, Yoon, Woo, Kwon (bib34) 2003; 50
Aristovich, Packham, Koo, dos Santos, McEvoy, Holder (bib1) 2016; 124
Chauhan, Vidya Shankar, Ashok Kumar, Kodibagkar, Sadleir (bib5) 2017
Geddes, Baker (bib10) 1967; 5
Huang (bib14) 2014; 71
Bernstein, King, Zhou (bib3) 2004
Jiang, Lu, Shigeno, Tan, Yang, Ragsdale, Gao (bib16) 2014; 72
Bandettini, Petridou, Bodurka (bib2) 2005; 29
Kim, Yoo, Oh (bib19) 2011; 22
Novak, Wheeler (bib24) 1986; 33
Sundaram, Nummenmaa, Wells, Orbach, Orringer, Mulkern, Okada (bib37) 2016; 132
Woo, Seo (bib40) 2008; 29
Luo, Lu, Lu, Senseman, Worsley, Yang, Gao (bib22) 2009; 47
Park, Lee, Park, Cho, Lee (bib25) 2006; 27
Song, Seo, Chauhan, Ashok Kumar, Sadleir (bib36) 2016
Konn, Gowland, Bowtell (bib20) 2003; 50
Scott, Joy, Armstrong, Henkelman (bib32) 1991; 10
Radecki (10.1016/j.neuroimage.2017.08.004_bib28) 2014; 111
Grant (10.1016/j.neuroimage.2017.08.004_bib11) 2000; 44
Cassarà (10.1016/j.neuroimage.2017.08.004_bib4) 2008; 39
Kim (10.1016/j.neuroimage.2017.08.004_bib18) 2009; 28
Sundaram (10.1016/j.neuroimage.2017.08.004_bib37) 2016; 132
Chauhan (10.1016/j.neuroimage.2017.08.004_bib5) 2017
Bandettini (10.1016/j.neuroimage.2017.08.004_bib2) 2005; 29
Bernstein (10.1016/j.neuroimage.2017.08.004_bib3) 2004
Luo (10.1016/j.neuroimage.2017.08.004_bib22) 2009; 47
Park (10.1016/j.neuroimage.2017.08.004_bib25) 2006; 27
Seo (10.1016/j.neuroimage.2017.08.004_bib33) 2014; 61
Sadleir (10.1016/j.neuroimage.2017.08.004_bib29) 2016
Truong (10.1016/j.neuroimage.2017.08.004_bib38) 2008; 191
Song (10.1016/j.neuroimage.2017.08.004_bib36) 2016
El-Sharkawy (10.1016/j.neuroimage.2017.08.004_bib8) 2006; 19
Pourtaheri (10.1016/j.neuroimage.2017.08.004_bib27) 2013; 236
Hagberg (10.1016/j.neuroimage.2017.08.004_bib13) 2006; 24
Konn (10.1016/j.neuroimage.2017.08.004_bib20) 2003; 50
Petridou (10.1016/j.neuroimage.2017.08.004_bib26) 2006; 103
Cornbleet (10.1016/j.neuroimage.2017.08.004_bib6) 1979; 25
Huang (10.1016/j.neuroimage.2017.08.004_bib15) 2015; 25
Hagberg (10.1016/j.neuroimage.2017.08.004_bib12) 2008; 26
Huang (10.1016/j.neuroimage.2017.08.004_bib14) 2014; 71
Vongerichten (10.1016/j.neuroimage.2017.08.004_bib39) 2016; 124
Luo (10.1016/j.neuroimage.2017.08.004_bib21) 2009; 47
Novak (10.1016/j.neuroimage.2017.08.004_bib24) 1986; 33
Seo (10.1016/j.neuroimage.2017.08.004_bib34) 2003; 50
Frazier (10.1016/j.neuroimage.2017.08.004_bib9) 1967; 30
Kim (10.1016/j.neuroimage.2017.08.004_bib19) 2011; 22
Scott (10.1016/j.neuroimage.2017.08.004_bib32) 1991; 10
Song (10.1016/j.neuroimage.2017.08.004_bib35) 2016; 61
Aristovich (10.1016/j.neuroimage.2017.08.004_bib1) 2016; 124
Sadleir (10.1016/j.neuroimage.2017.08.004_bib31) 2010; 52
Minhas (10.1016/j.neuroimage.2017.08.004_bib23) 2011; 1
Sadleir (10.1016/j.neuroimage.2017.08.004_bib30) 2005; 26
Elmariah (10.1016/j.neuroimage.2017.08.004_bib7) 2006
Jiang (10.1016/j.neuroimage.2017.08.004_bib16) 2014; 72
Geddes (10.1016/j.neuroimage.2017.08.004_bib10) 1967; 5
Kelly (10.1016/j.neuroimage.2017.08.004_bib17) 1984; 12
Woo (10.1016/j.neuroimage.2017.08.004_bib40) 2008; 29
References_xml – volume: 25
  start-page: 172
  year: 2015
  end-page: 178
  ident: bib15
  article-title: Exploring human brain neuronal currents with phase MRI
  publication-title: Int. J. Imaging Syst. Technol.
– volume: 50
  start-page: 1121
  year: 2003
  end-page: 1124
  ident: bib34
  article-title: Reconstruction of conductivity and current density images using only one component of magnetic field measurements
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 19
  start-page: 223
  year: 2006
  end-page: 236
  ident: bib8
  article-title: Monitoring and correcting spatio-temporal variations of the MR scanner's static magnetic field. Magnetic resonance materials in Physics
  publication-title: Biol. Med.
– volume: 1
  start-page: 129
  year: 2011
  end-page: 136
  ident: bib23
  article-title: Three-dimensional MREIT simulator of static bioelectromagnetism and MRI
  publication-title: Biomed. Eng. Lett.
– volume: 191
  start-page: 93
  year: 2008
  end-page: 99
  ident: bib38
  article-title: Lorentz effect imaging of ionic currents in solution
  publication-title: J. Magn. Reson.
– volume: 33
  start-page: 196
  year: 1986
  end-page: 202
  ident: bib24
  article-title: Recording from the
  publication-title: IEEE Trans. Biomed. Eng. BME
– volume: 61
  start-page: 1390
  year: 2014
  end-page: 1399
  ident: bib33
  article-title: Electrical tissue property imaging at low frequency using MREIT
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 26
  start-page: 1026
  year: 2008
  end-page: 1040
  ident: bib12
  article-title: The effect of physiological noise in phase functional magnetic resonance imaging: from blood oxygen level-dependent effects to direct detection of neuronal currents
  publication-title: Magn. Reson. Imaging
– volume: 25
  start-page: 432
  year: 1979
  end-page: 438
  ident: bib6
  article-title: Incorrect least-squares regression coefficients in method-comparison analysis
  publication-title: Clin. Chem.
– volume: 29
  start-page: R1
  year: 2008
  end-page: R26
  ident: bib40
  article-title: Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging
  publication-title: Physiol. Meas.
– volume: 111
  start-page: 8667
  year: 2014
  end-page: 8672
  ident: bib28
  article-title: Functional magnetic resonance microscopy at single-cell resolution in
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 27
  start-page: 181
  year: 2006
  end-page: 1990
  ident: bib25
  article-title: Observation of the fast response of a magnetic resonance signal to neuronal activity: a snail ganglia study
  publication-title: Physiol. Meas.
– volume: 52
  start-page: 205
  year: 2010
  end-page: 216
  ident: bib31
  article-title: Can high-field MREIT be used to directly detect neural activity?
  publication-title: Theor. Consid. Neuro Image
– year: 2017
  ident: bib5
  article-title: Multi-shot echo-planar MREIT for fast imaging of conductivity, current density and electric field distributions
  publication-title: Magn. Reson. Med.
– year: 2016
  ident: bib36
  article-title: Fast, Adaptive Acquisition Strategies for Low-frequency Conductivity Imaging Using MREIT
– volume: 124
  start-page: 204
  year: 2016
  end-page: 213
  ident: bib1
  article-title: Imaging fast electrical activity in the brain with electrical impedance tomography
  publication-title: NeuroImage
– volume: 26
  start-page: 875
  year: 2005
  end-page: 884
  ident: bib30
  article-title: Noise analysis in magnetic resonance electrical impedance tomography at 3 and 11T field strengths
  publication-title: Physiol. Meas.
– volume: 28
  start-page: 1681
  year: 2009
  end-page: 1687
  ident: bib18
  article-title: In vivo high-resolution conductivity imaging of the human leg using MREIT: the first human experiment
  publication-title: IEEE Trans. Med. Imaging
– year: 2016
  ident: bib29
  article-title: Functional Magnetic Resonance Electrical Impedance Tomography (FMREIT) Sensitivity Analysis Using an Active Bidomain Finite Element Model of Neural Tissue
– volume: 124
  start-page: 813
  year: 2016
  end-page: 823
  ident: bib39
  article-title: Characterisation and imaging of cortical impedance changes during interictal and ictal activity in the anaesthetised rat
  publication-title: NeuroImage
– year: 2006
  ident: bib7
  article-title: Impedance Tomography of
– volume: 47
  start-page: S39
  year: 2009
  end-page: S41
  ident: bib21
  article-title: Neuronal current MRI without BOLD contamination
  publication-title: NeuroImage
– volume: 29
  start-page: 65
  year: 2005
  end-page: 88
  ident: bib2
  article-title: Direct detection of neuronal activity with MRI: fantasy, possibility, or reality?
  publication-title: Appl. Magn. Reson.
– volume: 44
  start-page: 19
  year: 2000
  end-page: 22
  ident: bib11
  article-title: NMR spectroscopy of single neurons
  publication-title: Magn. Reson. Med.
– volume: 22
  start-page: 105803
  year: 2011
  ident: bib19
  article-title: Magnetic flux density measurement in magnetic resonance electrical impedance tomography using a low-noise current source
  publication-title: Meas. Sci. Technol.
– volume: 12
  start-page: 87
  year: 1984
  end-page: 100
  ident: bib17
  article-title: The influence function in the errors in variables problem
  publication-title: Ann. Stat.
– volume: 61
  start-page: 5706
  year: 2016
  end-page: 5723
  ident: bib35
  article-title: A method for MREIT-based source imaging: simulation studies
  publication-title: Phys. Med. Biol.
– volume: 103
  start-page: 16015
  year: 2006
  end-page: 16020
  ident: bib26
  article-title: Direct magnetic resonance detection of neuronal electrical activity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 30
  start-page: 1288
  year: 1967
  end-page: 1351
  ident: bib9
  article-title: Morphological and functional properties of identified neurons in the abdominal ganglion of
  publication-title: J. Neurophysiol.
– volume: 72
  start-page: 1311
  year: 2014
  end-page: 1319
  ident: bib16
  article-title: Octopus visual system: a functional MRI model for detecting neuronal electric currents without a blood-oxygen-level dependent confound
  publication-title: Magn. Reson. Med.
– volume: 24
  start-page: 483
  year: 2006
  end-page: 493
  ident: bib13
  article-title: Challenges for detection of neuronal currents by MRI
  publication-title: Magn. Reson. Imaging
– volume: 39
  start-page: 87
  year: 2008
  end-page: 106
  ident: bib4
  article-title: Realistic simulations of neuronal activity: a contribution to the debate on direct detection of neuronal currents by MRI
  publication-title: NeuroImage
– volume: 47
  start-page: 1268
  year: 2009
  end-page: 1276
  ident: bib22
  article-title: Physiologically evoked neuronal current MRI in a bloodless turtle brain: detectable or not?
  publication-title: NeuroImage
– volume: 236
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib27
  article-title: Electromagnetohydrodynamic modeling of Lorentz effect imaging
  publication-title: J. Magn. Reson.
– volume: 50
  start-page: 40
  year: 2003
  end-page: 49
  ident: bib20
  article-title: MRI detection of weak magnetic fields due to an extended current dipole in a conducting sphere, a model for direct detection of neuronal currents in the brain
  publication-title: Magn. Reson. Med.
– year: 2004
  ident: bib3
  article-title: Handbook of MRI Pulse Sequences
– volume: 5
  start-page: 271
  year: 1967
  end-page: 293
  ident: bib10
  article-title: The specific resistance of biological materials: a compendium of data for the biomedical engineer and physiologist
  publication-title: Med. Biol. Eng. Comput.
– volume: 71
  start-page: 756
  year: 2014
  end-page: 762
  ident: bib14
  article-title: Detecting neuronal currents with MRI: a human study
  publication-title: Magn. Reson. Med.
– volume: 10
  start-page: 362
  year: 1991
  end-page: 374
  ident: bib32
  article-title: Measurement of nonuniform current density by magnetic resonance
  publication-title: IEEE Trans. Med. Imaging
– volume: 132
  start-page: 477
  year: 2016
  end-page: 490
  ident: bib37
  article-title: Direct neural current imaging in an intact cerebellum with magnetic resonance imaging
  publication-title: NeuroImage
– year: 2017
  ident: 10.1016/j.neuroimage.2017.08.004_bib5
  article-title: Multi-shot echo-planar MREIT for fast imaging of conductivity, current density and electric field distributions
  publication-title: Magn. Reson. Med.
– volume: 30
  start-page: 1288
  year: 1967
  ident: 10.1016/j.neuroimage.2017.08.004_bib9
  article-title: Morphological and functional properties of identified neurons in the abdominal ganglion of Aplysia
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1967.30.6.1288
– year: 2016
  ident: 10.1016/j.neuroimage.2017.08.004_bib29
– volume: 50
  start-page: 1121
  year: 2003
  ident: 10.1016/j.neuroimage.2017.08.004_bib34
  article-title: Reconstruction of conductivity and current density images using only one component of magnetic field measurements
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2003.816080
– volume: 124
  start-page: 204
  year: 2016
  ident: 10.1016/j.neuroimage.2017.08.004_bib1
  article-title: Imaging fast electrical activity in the brain with electrical impedance tomography
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.08.071
– volume: 44
  start-page: 19
  year: 2000
  ident: 10.1016/j.neuroimage.2017.08.004_bib11
  article-title: NMR spectroscopy of single neurons
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200007)44:1<19::AID-MRM4>3.0.CO;2-F
– volume: 61
  start-page: 1390
  year: 2014
  ident: 10.1016/j.neuroimage.2017.08.004_bib33
  article-title: Electrical tissue property imaging at low frequency using MREIT
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2298859
– volume: 191
  start-page: 93
  year: 2008
  ident: 10.1016/j.neuroimage.2017.08.004_bib38
  article-title: Lorentz effect imaging of ionic currents in solution
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2007.12.005
– volume: 28
  start-page: 1681
  year: 2009
  ident: 10.1016/j.neuroimage.2017.08.004_bib18
  article-title: In vivo high-resolution conductivity imaging of the human leg using MREIT: the first human experiment
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2018112
– volume: 33
  start-page: 196
  year: 1986
  ident: 10.1016/j.neuroimage.2017.08.004_bib24
  article-title: Recording from the Aplysia abdominal ganglion with a planar microelectrode array
  publication-title: IEEE Trans. Biomed. Eng. BME
  doi: 10.1109/TBME.1986.325891
– year: 2006
  ident: 10.1016/j.neuroimage.2017.08.004_bib7
– volume: 26
  start-page: 875
  year: 2005
  ident: 10.1016/j.neuroimage.2017.08.004_bib30
  article-title: Noise analysis in magnetic resonance electrical impedance tomography at 3 and 11T field strengths
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/26/5/023
– volume: 52
  start-page: 205
  year: 2010
  ident: 10.1016/j.neuroimage.2017.08.004_bib31
  article-title: Can high-field MREIT be used to directly detect neural activity?
  publication-title: Theor. Consid. Neuro Image
– volume: 25
  start-page: 432
  year: 1979
  ident: 10.1016/j.neuroimage.2017.08.004_bib6
  article-title: Incorrect least-squares regression coefficients in method-comparison analysis
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/25.3.432
– volume: 103
  start-page: 16015
  year: 2006
  ident: 10.1016/j.neuroimage.2017.08.004_bib26
  article-title: Direct magnetic resonance detection of neuronal electrical activity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0603219103
– year: 2004
  ident: 10.1016/j.neuroimage.2017.08.004_bib3
– volume: 132
  start-page: 477
  year: 2016
  ident: 10.1016/j.neuroimage.2017.08.004_bib37
  article-title: Direct neural current imaging in an intact cerebellum with magnetic resonance imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.01.059
– volume: 12
  start-page: 87
  year: 1984
  ident: 10.1016/j.neuroimage.2017.08.004_bib17
  article-title: The influence function in the errors in variables problem
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176346394
– volume: 71
  start-page: 756
  year: 2014
  ident: 10.1016/j.neuroimage.2017.08.004_bib14
  article-title: Detecting neuronal currents with MRI: a human study
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24720
– volume: 22
  start-page: 105803
  year: 2011
  ident: 10.1016/j.neuroimage.2017.08.004_bib19
  article-title: Magnetic flux density measurement in magnetic resonance electrical impedance tomography using a low-noise current source
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/22/10/105803
– volume: 236
  start-page: 1
  year: 2013
  ident: 10.1016/j.neuroimage.2017.08.004_bib27
  article-title: Electromagnetohydrodynamic modeling of Lorentz effect imaging
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2013.08.011
– volume: 61
  start-page: 5706
  year: 2016
  ident: 10.1016/j.neuroimage.2017.08.004_bib35
  article-title: A method for MREIT-based source imaging: simulation studies
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/15/5706
– volume: 24
  start-page: 483
  year: 2006
  ident: 10.1016/j.neuroimage.2017.08.004_bib13
  article-title: Challenges for detection of neuronal currents by MRI
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2005.12.027
– volume: 29
  start-page: R1
  year: 2008
  ident: 10.1016/j.neuroimage.2017.08.004_bib40
  article-title: Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/29/10/R01
– year: 2016
  ident: 10.1016/j.neuroimage.2017.08.004_bib36
– volume: 27
  start-page: 181
  year: 2006
  ident: 10.1016/j.neuroimage.2017.08.004_bib25
  article-title: Observation of the fast response of a magnetic resonance signal to neuronal activity: a snail ganglia study
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/27/2/008
– volume: 5
  start-page: 271
  year: 1967
  ident: 10.1016/j.neuroimage.2017.08.004_bib10
  article-title: The specific resistance of biological materials: a compendium of data for the biomedical engineer and physiologist
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02474537
– volume: 124
  start-page: 813
  year: 2016
  ident: 10.1016/j.neuroimage.2017.08.004_bib39
  article-title: Characterisation and imaging of cortical impedance changes during interictal and ictal activity in the anaesthetised rat
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.09.015
– volume: 25
  start-page: 172
  year: 2015
  ident: 10.1016/j.neuroimage.2017.08.004_bib15
  article-title: Exploring human brain neuronal currents with phase MRI
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22134
– volume: 19
  start-page: 223
  year: 2006
  ident: 10.1016/j.neuroimage.2017.08.004_bib8
  article-title: Monitoring and correcting spatio-temporal variations of the MR scanner's static magnetic field. Magnetic resonance materials in Physics
  publication-title: Biol. Med.
– volume: 50
  start-page: 40
  year: 2003
  ident: 10.1016/j.neuroimage.2017.08.004_bib20
  article-title: MRI detection of weak magnetic fields due to an extended current dipole in a conducting sphere, a model for direct detection of neuronal currents in the brain
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10494
– volume: 39
  start-page: 87
  year: 2008
  ident: 10.1016/j.neuroimage.2017.08.004_bib4
  article-title: Realistic simulations of neuronal activity: a contribution to the debate on direct detection of neuronal currents by MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.08.048
– volume: 72
  start-page: 1311
  year: 2014
  ident: 10.1016/j.neuroimage.2017.08.004_bib16
  article-title: Octopus visual system: a functional MRI model for detecting neuronal electric currents without a blood-oxygen-level dependent confound
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25051
– volume: 29
  start-page: 65
  year: 2005
  ident: 10.1016/j.neuroimage.2017.08.004_bib2
  article-title: Direct detection of neuronal activity with MRI: fantasy, possibility, or reality?
  publication-title: Appl. Magn. Reson.
  doi: 10.1007/BF03166956
– volume: 47
  start-page: S39
  year: 2009
  ident: 10.1016/j.neuroimage.2017.08.004_bib21
  article-title: Neuronal current MRI without BOLD contamination
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(09)72050-6
– volume: 47
  start-page: 1268
  year: 2009
  ident: 10.1016/j.neuroimage.2017.08.004_bib22
  article-title: Physiologically evoked neuronal current MRI in a bloodless turtle brain: detectable or not?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.06.017
– volume: 26
  start-page: 1026
  year: 2008
  ident: 10.1016/j.neuroimage.2017.08.004_bib12
  article-title: The effect of physiological noise in phase functional magnetic resonance imaging: from blood oxygen level-dependent effects to direct detection of neuronal currents
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2008.01.010
– volume: 111
  start-page: 8667
  year: 2014
  ident: 10.1016/j.neuroimage.2017.08.004_bib28
  article-title: Functional magnetic resonance microscopy at single-cell resolution in Aplysia californica
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1403739111
– volume: 1
  start-page: 129
  year: 2011
  ident: 10.1016/j.neuroimage.2017.08.004_bib23
  article-title: Three-dimensional MREIT simulator of static bioelectromagnetism and MRI
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-011-0020-0
– volume: 10
  start-page: 362
  year: 1991
  ident: 10.1016/j.neuroimage.2017.08.004_bib32
  article-title: Measurement of nonuniform current density by magnetic resonance
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.97586
SSID ssj0009148
Score 2.3370514
Snippet We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast — Magnetic Resonance Electrical...
We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast - Magnetic Resonance Electrical...
We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast — Magnetic Resonance Electrical...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104
SubjectTerms Action potential
Action Potentials - drug effects
Action Potentials - physiology
Animals
Aplysia
Aplysia californica
Blood flow
Butyrates - pharmacology
Chlorides
Electric Impedance
Electrical impedance
Excitotoxicity
Experiments
fMRI
Functional magnetic resonance imaging
Ganglia
Ganglia, Invertebrate - diagnostic imaging
Ganglia, Invertebrate - drug effects
Hydrocarbons, Fluorinated - pharmacology
In Vitro Techniques
Magnetic fields
Magnetic Resonance Imaging - methods
Medical imaging
Methods
Microelectrode array
MREIT
MRI
Neuroimaging
Neurons - drug effects
Neurons - physiology
Neurotoxins - pharmacology
NMR
Noise
Nuclear magnetic resonance
Potassium chloride
Seawater
Tomography
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwELVKKyEuCGiBpaUyUg_0YJHEY8cRB4RQq4K0HFAr7c1KHAcWsUlp0__vTOxkKaBqT1ESj-R4xuMXe-YNY0el1qbJcykqV-cC8sSISutEgIamrk1WJSVt6M-_6rML-LJQi7jhdh3DKkefODjqunO0R_6OmO8AlAT54fK3oKpRdLoaS2g8YDspIhEq3ZAv8jXpbgohFU5JYbBBjOQJ8V0DX-RyhbOWArzygcgzlmv7z_L0L_z8O4ryj2Xp9Al7HPEk_xgM4Cnb8u0z9nAeT8x32Sr4NF77fgi6annXcOoUClFOA5WO4MuW4_Wq4xQF_51jb1vKbeT4K94RIYfnoVoOKZQvEWjXw8O-W0XCa_52_u3k8_nxHrs4PTn_dCZiiQXhlIZeAOAEVLSMN41JyywZ-LqqrEJk5UrjjNNFqREEauVrpb1HzRYOh1WWReGUks_Zdtu1_iXjxuPPrpOZ96YCmTiDtyA91I1JpAI5Y_k4stZF_nEqg_HLjoFmP-1aJ5Z0YqlCZgIzlk6Sl4GDYwOZYlSeHXNM0StaXCg2kH0_yUYcEvDFhtIHo63Y6A-u7dp6Z-zN9BpnMh3PlK3vbqiNRHcKpkhn7EUwrelzM0PMg4XCQbxjdFMDYgm_-6Zd_hjYwpUuEMUmr-7v1j57RN8QsiwP2HZ_deNfI9zqq8NhTt0CF4ErRQ
  priority: 102
  providerName: ProQuest
Title Direct detection of neural activity in vitro using magnetic resonance electrical impedance tomography (MREIT)
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811917306511
https://dx.doi.org/10.1016/j.neuroimage.2017.08.004
https://www.ncbi.nlm.nih.gov/pubmed/28818695
https://www.proquest.com/docview/1965445343
https://www.proquest.com/docview/1930484891
https://pubmed.ncbi.nlm.nih.gov/PMC5696120
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaWroS4IN4UlspIHOAQmsSPOOK0VF11gVarsiv1ZiWOA0E0WS3ZK7-dmdjJUuBQiUuiPEayZzwPJzPfEPIqk1KVScKC3BRJwJNQBbmUYcAlL4tCxXmY4Qf95UouLviHjdgckFlfC4Npld72O5veWWt_Z-q5Ob2squlniAzA3eB-A7ufY33vYQzeXo3I4fHpx8XqBns34q4iTrAACXxCj0vz6mAjqy0oL-Z5JR2ep-_a9g8v9XcU-mcy5W_e6eQeuevDSnrsRn6fHNj6Abm99D_OH5KtM220sG2Xe1XTpqQ4KCDC0gbsIEGrmsL5qqGYDP-FwmhrLHGksCNvEJfDUtc0B-VKK4i3i-5m22w97jV9vVzPT8_fPCIXJ_Pz2SLwnRYCIyRvA85BDwV687JUURaHHWxXHucQYJlMGWVkmkmIBaWwhZDWgoBTA2xlWZoaIdhjMqqb2j4lVFnY8xoWW6tyzkKj4JIzy4tShUxwNiZJz1ltPAw5dsP4rvt8s2_6RiYaZaKxUWbIxyQaKC8dFMceNGkvPN2XmoJx1OAv9qB9N9DuLMk9qY_6taK9WfihEb6Rc8GQDS-Hx6DQ-Jcmq21zje8wsKpcpdGYPHFLa5hurBCAMBXAxJ1FN7yAYOG7T-rqawcaLmQKwWz47L8m9ZzcwStXi3lERu3VtX0BQVmbT8ittz8jOCabZAIKOFt_Opt4RYTz-_nqbP0LvRY9EQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTgJeEN8UBhgJJHiISOKPOEIT4qNTy9YKTZ20N5PYDhTRZHSZEP8cfxt3iZMyQKgve6rS5CTbdz6f7bvfj5AnmZSqSBIW5MYmAU9CFeRShgGXvLBWxXmY4YH-dCbHR_z9sTjeIj-7WhhMq-x8YuOobWXwjPwFIt9xLhhnr06-BcgahberHYVG5qkV7G4DMeYLO_bdj--whTvdnbwDfT-N473R_O048CwDgRGS1wHnYIMCV7KiUFEWhw1kVR7nEFyYTBllZJpJiIOkcFZI56BzqYFdBMvS1AhkjYAlYJvjAcqAbL8ZzT4crmF_I94W4wkWqChKfS5Rm2HWIFYuluA3MMUsaaBEPWHcPxbIvwPgP_M4f1sY966Rqz6ipa9bE7xOtlx5g1ya-jv7m2TZelVqXd2kfZW0Kig2CoSwqgLJK-iipPC7qijm4X-i0NoSqyvpyuFWAQyTtnw9aFJ0AaG-bf6sq6WH3KbPpoejyfz5LXJ0IcN_mwzKqnR3CVUOttuGxc6pnLPQKHjkzHFbqBC0w4Yk6UZWG4-AjkQcX3WX6vZFr3WiUScaOTpDPiRRL3nSooBsIJN2ytNdlSv4ZQ1L1QayL3tZHwm1Ec6G0judrWjvkU71ev4MyeP-NfgSvCDKSled4TcMHDpXaTQkd1rT6rsbK8Q-TAUM4jmj6z9AnPLzb8rF5wavXMgU4ujw3v-b9YhcHs-nB_pgMtu_T65gf9qazx0yqFdn7gEEf3X-0M8wSj5e9KT-BSIBbH0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF9KC8UX8duzVVdQ0IfQJPuRDVJE7R096x2ltNC3Ndls9MRL2muK-C_6VzmT3eSsitxLn0I-BvZjdmY2O_P7EfI8k1KVScKC3BRJwJNQBbmUYcAlL4tCxXmY4Q_9yVTun_APp-J0jfzsamEwrbKzia2hLmqD_8h3EPmOc8E42yl9WsTh3ujN2XmADFJ40trRaWSeZqHYbeHGfJHHgf3xHbZzF7vjPZj7F3E8Gh6_3w8840BghORNwDnoo0CvVpYqyuKwha_K4xwCDZMpo4xMMwkxkRS2ENJa6GhqYEfBsjQ1AhkkwB1sJOD1YSO48W44PTxaQgBH3BXmCRaoKEp9XpHLNmvRK2dzsCGYbpa0sKKePO4fzvLvYPjPnM7fnOToFrnpo1v61qnjbbJmqztkc-LP7--SubOwtLBNmwJW0bqk2CgQwgoLJLKgs4rCdVFTzMn_TKG1FVZa0oXFbQMoKXXcPahedAZhf9E-bOq5h9-mLydHw_Hxq3vk5FqG_z5Zr-rKPiRUWdh6GxZbq3LOQqPgljPLi1KFTHA2IEk3stp4NHQk5fimu7S3r3o5JxrnRCNfZ8gHJOolzxwiyAoyaTd5uqt4BRutwW2tIPu6l_VRkYt2VpTe7nRFe-t0oZdraUCe9a_BruBhUVbZ-hK_YWDcuUqjAXngVKvvbqwQBzEVMIhXlK7_ADHLr76pZl9a7HIhU4ipw0f_b9ZTsgmLW38cTw-2yA3sjiv_3CbrzeLSPoY4sMmf-AVGyafrXtO_AGRTcME
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+detection+of+neural+activity+in+vitro+using+magnetic+resonance+electrical+impedance+tomography+%28MREIT%29&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Sadleir%2C+Rosalind+J.&rft.au=Fu%2C+Fanrui&rft.au=Falgas%2C+Corey&rft.au=Holland%2C+Stephen&rft.date=2017-11-01&rft.issn=1053-8119&rft.volume=161&rft.spage=104&rft.epage=119&rft_id=info:doi/10.1016%2Fj.neuroimage.2017.08.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2017_08_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon