Phylogeography of ninespine sticklebacks (Pungitius pungitius) in North America: glacial refugia and the origins of adaptive traits
The current geographical distribution of the ninespine stickleback (Pungitius pungitius) was shaped in large part by the glaciation events of the Pleistocene epoch (2.6 Mya–10 Kya). Previous efforts to elucidate the phylogeographical history of the ninespine stickleback in North America have focused...
Saved in:
Published in | Molecular ecology Vol. 19; no. 18; pp. 4061 - 4076 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.09.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0962-1083 1365-294X 1365-294X |
DOI | 10.1111/j.1365-294X.2010.04801.x |
Cover
Abstract | The current geographical distribution of the ninespine stickleback (Pungitius pungitius) was shaped in large part by the glaciation events of the Pleistocene epoch (2.6 Mya–10 Kya). Previous efforts to elucidate the phylogeographical history of the ninespine stickleback in North America have focused on a limited set of morphological traits, some of which are likely subject to widespread convergent evolution, thereby potentially obscuring relationships among populations. In this study, we used genetic information from both mitochondrial DNA (mtDNA) sequences and nuclear microsatellite markers to determine the phylogenetic relationships among ninespine stickleback populations. We found that ninespine sticklebacks in North America probably dispersed from at least three glacial refugia—the Mississippi, Bering, and Atlantic refugia—not two as previously thought. However, by applying a molecular clock to our mtDNA data, we found that these three groups diverged long before the most recent glacial period. Our new phylogeny serves as a critical framework for examining the evolution of derived traits in this species, including adaptive phenotypes that evolved multiple times in different lineages. In particular, we inferred that loss of the pelvic (hind fin) skeleton probably evolved independently in populations descended from each of the three putative North American refugia. |
---|---|
AbstractList | The current geographical distribution of the ninespine stickleback (Pungitius pungitius) was shaped in large part by the glaciation events of the Pleistocene epoch (2.6 Mya-1 Kya). Previous efforts to elucidate the phylogeographical history of the ninespine stickleback in North America have focused on a limited set of morphological traits, some of which are likely subject to widespread convergent evolution, thereby potentially obscuring relationships among populations. In this study, we used genetic information from both mitochondrial DNA (mtDNA) sequences and nuclear microsatellite markers to determine the phylogenetic relationships among ninespine stickleback populations. We found that ninespine sticklebacks in North America probably dispersed from at least three glacial refugia-the Mississippi, Bering, and Atlantic refugia-not two as previously thought. However, by applying a molecular clock to our mtDNA data, we found that these three groups diverged long before the most recent glacial period. Our new phylogeny serves as a critical framework for examining the evolution of derived traits in this species, including adaptive phenotypes that evolved multiple times in different lineages. In particular, we inferred that loss of the pelvic (hind fin) skeleton probably evolved independently in populations descended from each of the three putative North American refugia.The current geographical distribution of the ninespine stickleback (Pungitius pungitius) was shaped in large part by the glaciation events of the Pleistocene epoch (2.6 Mya-1 Kya). Previous efforts to elucidate the phylogeographical history of the ninespine stickleback in North America have focused on a limited set of morphological traits, some of which are likely subject to widespread convergent evolution, thereby potentially obscuring relationships among populations. In this study, we used genetic information from both mitochondrial DNA (mtDNA) sequences and nuclear microsatellite markers to determine the phylogenetic relationships among ninespine stickleback populations. We found that ninespine sticklebacks in North America probably dispersed from at least three glacial refugia-the Mississippi, Bering, and Atlantic refugia-not two as previously thought. However, by applying a molecular clock to our mtDNA data, we found that these three groups diverged long before the most recent glacial period. Our new phylogeny serves as a critical framework for examining the evolution of derived traits in this species, including adaptive phenotypes that evolved multiple times in different lineages. In particular, we inferred that loss of the pelvic (hind fin) skeleton probably evolved independently in populations descended from each of the three putative North American refugia. The current geographical distribution of the ninespine stickleback (Pungitius pungitius) was shaped in large part by the glaciation events of the Pleistocene epoch (2.6 Mya–10 Kya). Previous efforts to elucidate the phylogeographical history of the ninespine stickleback in North America have focused on a limited set of morphological traits, some of which are likely subject to widespread convergent evolution, thereby potentially obscuring relationships among populations. In this study, we used genetic information from both mitochondrial DNA (mtDNA) sequences and nuclear microsatellite markers to determine the phylogenetic relationships among ninespine stickleback populations. We found that ninespine sticklebacks in North America probably dispersed from at least three glacial refugia—the Mississippi, Bering, and Atlantic refugia—not two as previously thought. However, by applying a molecular clock to our mtDNA data, we found that these three groups diverged long before the most recent glacial period. Our new phylogeny serves as a critical framework for examining the evolution of derived traits in this species, including adaptive phenotypes that evolved multiple times in different lineages. In particular, we inferred that loss of the pelvic (hind fin) skeleton probably evolved independently in populations descended from each of the three putative North American refugia. The current geographical distribution of the ninespine stickleback ( Pungitius pungitius ) was shaped in large part by the glaciation events of the Pleistocene epoch (2.6 Mya–10 Kya). Previous efforts to elucidate the phylogeographical history of the ninespine stickleback in North America have focused on a limited set of morphological traits, some of which are likely subject to widespread convergent evolution, thereby potentially obscuring relationships among populations. In this study, we used genetic information from both mitochondrial DNA (mtDNA) sequences and nuclear microsatellite markers to determine the phylogenetic relationships among ninespine stickleback populations. We found that ninespine sticklebacks in North America probably dispersed from at least three glacial refugia—the Mississippi, Bering, and Atlantic refugia—not two as previously thought. However, by applying a molecular clock to our mtDNA data, we found that these three groups diverged long before the most recent glacial period. Our new phylogeny serves as a critical framework for examining the evolution of derived traits in this species, including adaptive phenotypes that evolved multiple times in different lineages. In particular, we inferred that loss of the pelvic (hind fin) skeleton probably evolved independently in populations descended from each of the three putative North American refugia. The current geographical distribution of the ninespine stickleback (Pungitius pungitius) was shaped in large part by the glaciation events of the Pleistocene epoch (2.6 Mya-1 Kya). Previous efforts to elucidate the phylogeographical history of the ninespine stickleback in North America have focused on a limited set of morphological traits, some of which are likely subject to widespread convergent evolution, thereby potentially obscuring relationships among populations. In this study, we used genetic information from both mitochondrial DNA (mtDNA) sequences and nuclear microsatellite markers to determine the phylogenetic relationships among ninespine stickleback populations. We found that ninespine sticklebacks in North America probably dispersed from at least three glacial refugia-the Mississippi, Bering, and Atlantic refugia-not two as previously thought. However, by applying a molecular clock to our mtDNA data, we found that these three groups diverged long before the most recent glacial period. Our new phylogeny serves as a critical framework for examining the evolution of derived traits in this species, including adaptive phenotypes that evolved multiple times in different lineages. In particular, we inferred that loss of the pelvic (hind fin) skeleton probably evolved independently in populations descended from each of the three putative North American refugia. The current geographical distribution of the ninespine stickleback (Pungitius pungitius) was shaped in large part by the glaciation events of the Pleistocene epoch (2.6 Mya-10 Kya). Previous efforts to elucidate the phylogeographical history of the ninespine stickleback in North America have focused on a limited set of morphological traits, some of which are likely subject to widespread convergent evolution, thereby potentially obscuring relationships among populations. In this study, we used genetic information from both mitochondrial DNA (mtDNA) sequences and nuclear microsatellite markers to determine the phylogenetic relationships among ninespine stickleback populations. We found that ninespine sticklebacks in North America probably dispersed from at least three glacial refugia--the Mississippi, Bering, and Atlantic refugia--not two as previously thought. However, by applying a molecular clock to our mtDNA data, we found that these three groups diverged long before the most recent glacial period. Our new phylogeny serves as a critical framework for examining the evolution of derived traits in this species, including adaptive phenotypes that evolved multiple times in different lineages. In particular, we inferred that loss of the pelvic (hind fin) skeleton probably evolved independently in populations descended from each of the three putative North American refugia. [PUBLICATION ABSTRACT] |
Author | ALDENHOVEN, JACLYN T. MILLER, MATTHEW A. CORNELI, PATRICE SHOWERS SHAPIRO, MICHAEL D. |
Author_xml | – sequence: 1 givenname: JACLYN T. surname: ALDENHOVEN fullname: ALDENHOVEN, JACLYN T. organization: Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA – sequence: 2 givenname: MATTHEW A. surname: MILLER fullname: MILLER, MATTHEW A. organization: Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA – sequence: 3 givenname: PATRICE SHOWERS surname: CORNELI fullname: CORNELI, PATRICE SHOWERS organization: Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA – sequence: 4 givenname: MICHAEL D. surname: SHAPIRO fullname: SHAPIRO, MICHAEL D. organization: Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20854276$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9v0zAUxy00xLrBv4AsLoxDin8kTooE0lSNgbSNCYa6m-UmL6nb1A62A-2ZfxyHbj3sAPPBfrI_3_fk975H6MBYAwhhSsY0rrfLMeUiS9gkvR0zEm9JWhA63jxBo_3DARqRiWAJJQU_REfeLwmhnGXZM3TISJGlLBcj9Pt6sW1tA7Zxqltssa2x0QZ8Fzfsgy5XLcxVufL45Lo3jQ6697i7j95gbfCVdWGBT9fgdKne4aZVpVYtdlD3jVZYmQqHBWDrdKONHyqoSnVB_wQcnNLBP0dPa9V6eHF3HqPvH89upp-Siy_nn6enF0mZiZQmeV0XeU54SVVR17QGxioCaV1xXsGciwKYYowSModKpXOV12WVRp4LUVGoKD9Gr3d5O2d_9OCDXGtfQtsqA7b3MheMFYzl_P9kllGRckIiefJPkqax67SYiKH8qwfo0vbOxB_HfCTlrBAsQi_voH6-hkp2Tq-V28r7iUWg2AGls97HJu8RSuRgDrmUgwfk4AE5mEP-NYfcROmHB9JSBxW0NcMc2sckeL9L8Eu3sH10YXl5Nh2iqE92eu0DbPZ65VZS5DzP5OzqXF7Ovn6b8dsbec3_AGvk46Y |
CitedBy_id | crossref_primary_10_7717_peerj_1910 crossref_primary_10_1111_mec_12485 crossref_primary_10_1111_mec_12044 crossref_primary_10_1139_cjfas_2012_0135 crossref_primary_10_1002_ece3_853 crossref_primary_10_1007_s10592_015_0706_4 crossref_primary_10_1016_j_cub_2011_12_045 crossref_primary_10_1007_s10592_015_0742_0 crossref_primary_10_1111_mec_12526 crossref_primary_10_1111_nyas_12089 crossref_primary_10_1007_s11160_023_09827_x crossref_primary_10_3354_meps10641 crossref_primary_10_1007_s10750_024_05617_z crossref_primary_10_1371_journal_pone_0170685 crossref_primary_10_1186_1471_2148_11_287 crossref_primary_10_1111_j_1472_4642_2012_00944_x crossref_primary_10_1007_s00227_011_1817_1 crossref_primary_10_1093_molbev_msae031 crossref_primary_10_1093_g3journal_jkae126 crossref_primary_10_1371_journal_pone_0019476 crossref_primary_10_1002_evl3_37 crossref_primary_10_1111_evo_12124 crossref_primary_10_1111_jbi_12591 crossref_primary_10_1080_23802359_2015_1137829 crossref_primary_10_3109_19401736_2012_674125 crossref_primary_10_1534_g3_113_007237 crossref_primary_10_1163_1568539X_00003396 crossref_primary_10_1007_s10531_021_02153_3 crossref_primary_10_1111_mec_16651 crossref_primary_10_3109_19401736_2012_683183 crossref_primary_10_1002_ece3_1594 crossref_primary_10_1038_s41467_018_08014_y crossref_primary_10_1111_jzs_12178 crossref_primary_10_1038_s41598_017_11198_w crossref_primary_10_1111_mec_15204 crossref_primary_10_1002_ece3_11363 crossref_primary_10_1007_s00227_012_1951_4 crossref_primary_10_1093_molbev_msv078 crossref_primary_10_1111_jeb_12146 crossref_primary_10_1038_s41559_022_01855_3 crossref_primary_10_1186_1471_2164_14_756 crossref_primary_10_1002_ece3_72 crossref_primary_10_1002_ece3_31 crossref_primary_10_1534_g3_118_200166 crossref_primary_10_1016_j_ympev_2011_09_008 crossref_primary_10_1111_j_1420_9101_2011_02362_x crossref_primary_10_3389_fevo_2022_866605 |
Cites_doi | 10.1126/science.1107239 10.1111/j.1420-9101.2009.01782.x 10.1006/mpev.2001.1001 10.1111/j.1365-294X.2006.03062.x 10.1093/genetics/139.1.457 10.2307/1443215 10.1007/978-1-4615-8513-8 10.1139/f63-004 10.1111/j.1558-5646.1993.tb01243.x 10.1093/oxfordjournals.molbev.a026201 10.1130/0091-7613(1993)021<0009:GLATNO>2.3.CO;2 10.1163/156853995X00478 10.1046/j.1365-294X.2001.01252.x 10.1016/j.cell.2007.10.055 10.1016/j.aquatox.2010.02.009 10.1371/journal.pgen.1000326 10.1111/j.1096-3642.1877.tb02373.x 10.1093/genetics/147.2.915 10.1093/genetics/105.3.767 10.2307/1442641 10.1016/j.ympev.2006.04.019 10.1111/j.1469-7998.1983.tb05104.x 10.1126/science.1182213 10.1139/f81-202 10.1139/z80-173 10.1016/j.cub.2009.05.029 10.1111/j.1365-294X.2010.04553.x 10.1016/j.ympev.2008.04.008 10.1016/j.ympev.2007.06.011 10.1186/1471-2148-7-214 10.1111/j.1558-5646.1994.tb01348.x 10.1038/nature02415 10.1093/oso/9780198577287.001.0001 10.1643/CG-08-059 10.1093/beheco/arp016 10.1111/j.1365-294X.2005.02553.x 10.1080/10635150390235520 10.1093/genetics/155.2.945 10.2307/1446553 10.1093/bioinformatics/btm404 10.1007/s00122-008-0801-8 10.1111/j.1365-294X.2005.02590.x 10.1046/j.1365-294X.1999.00557.x 10.1111/j.1558-5646.2009.00781.x 10.2307/2413122 10.1038/35016000 10.1111/j.0014-3820.2001.tb00790.x 10.1111/j.1558-5646.2007.00310.x 10.1111/j.0908-8857.2007.04168.x 10.1111/j.1365-2656.2006.01186.x 10.1111/j.1420-9101.2008.01674.x 10.2307/1446981 10.1038/hdy.1992.4 10.1038/ng1700 10.1046/j.1365-294X.1997.00156.x 10.1016/j.yqres.2006.11.002 10.1111/j.1095-8312.2008.01180.x 10.1073/pnas.0604706103 10.1371/journal.pbio.0050219 10.1046/j.1365-294x.1998.00319.x 10.1093/molbev/msi103 10.1038/414901a 10.1111/j.1558-5646.2008.00529.x 10.1139/f97-257 10.1111/j.1095-8312.2004.00368.x 10.1093/bib/bbn017 10.1038/72708 10.1139/e03-043 10.1016/j.tig.2005.11.006 10.1038/382060a0 10.1093/genetics/144.1.389 |
ContentType | Journal Article |
Copyright | 2010 Blackwell Publishing Ltd 2010 Blackwell Publishing Ltd. |
Copyright_xml | – notice: 2010 Blackwell Publishing Ltd – notice: 2010 Blackwell Publishing Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7S9 L.6 7X8 F1W H95 L.G |
DOI | 10.1111/j.1365-294X.2010.04801.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE Entomology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1365-294X |
EndPage | 4076 |
ExternalDocumentID | 2137460041 20854276 10_1111_j_1365_294X_2010_04801_x MEC4801 ark_67375_WNG_MWRSW3XT_P |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | Far East North America Europe East Asia Mississippi ASW, USA, Mississippi |
GeographicLocations_xml | – name: Europe – name: Far East – name: North America – name: East Asia – name: Mississippi – name: ASW, USA, Mississippi |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7S9 L.6 7X8 F1W H95 L.G |
ID | FETCH-LOGICAL-c5641-7ff87703c1a8ff1fe22d0e4fd33deb368e2a22100beda4ba7fcd4703366d1ed13 |
IEDL.DBID | DR2 |
ISSN | 0962-1083 1365-294X |
IngestDate | Fri Sep 05 09:46:16 EDT 2025 Tue Aug 05 09:58:13 EDT 2025 Thu Sep 04 18:21:53 EDT 2025 Wed Aug 13 07:53:14 EDT 2025 Thu Apr 03 07:06:54 EDT 2025 Thu Apr 24 23:06:22 EDT 2025 Tue Jul 01 01:21:51 EDT 2025 Sun Sep 21 06:22:50 EDT 2025 Sun Sep 21 06:20:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2010 Blackwell Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5641-7ff87703c1a8ff1fe22d0e4fd33deb368e2a22100beda4ba7fcd4703366d1ed13 |
Notes | ArticleID:MEC4801 istex:7A0E991E8C286EF28A3301DDD732A3E0491C89B0 ark:/67375/WNG-MWRSW3XT-P SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 20854276 |
PQID | 750432862 |
PQPubID | 31465 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_762282273 proquest_miscellaneous_755164300 proquest_miscellaneous_1400118961 proquest_journals_750432862 pubmed_primary_20854276 crossref_primary_10_1111_j_1365_294X_2010_04801_x crossref_citationtrail_10_1111_j_1365_294X_2010_04801_x wiley_primary_10_1111_j_1365_294X_2010_04801_x_MEC4801 istex_primary_ark_67375_WNG_MWRSW3XT_P |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2010 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: September 2010 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | Molecular ecology |
PublicationTitleAlternate | Mol Ecol |
PublicationYear | 2010 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Nelson JS (1971) Absence of the pelvic complex in ninespine sticklebacks, Pungitius pungitius, collected in Ireland and Wood Buffalo National Park Region, Canada, with notes on meristic variation. Copeia, 1971, 707-717. Mäkinen HS, Merilä J (2008) Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe-Evidence for multiple glacial refugia. Molecular Phylogenetics and Evolution, 46, 167-182. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18, 233-234. Blouw DM, Boyd GJ (1992) Inheritance of reduction, loss, and asymmetry of the pelvis in Pungitius pungitius (ninespine stickleback). Heredity, 68, 33-42. Bell MA, Orti G (1994) Pelvic reduction in threespine sticklebacks from Cook Inlet lakes: geographical distribution and intrapopulation variation. Copeia, 1994, 314-325. Elias SA, Short SK, Nelson CH, Birks HH (1996) Life and times of the Bering land bridge. Nature, 382, 60-63. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics, 9, 299-306. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696-704. Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics, 144, 389-399. Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN Version 2.0: A Software for Population Genetics Data Analysis. University of Geneva, Geneva. Cavalli-Sforza LL, Edwards AW (1967) Phylogenetic analysis: models and estimation procedures. American Journal of Human Genetics, 19, 233-257. Takahashi H, Goto A (2001) Evolution of East Asian ninespine sticklebacks as shown by mitochondrial DNA control region sequences. Molecular Phylogenetics and Evolution, 21, 135-155. Bernatchez L, Wilson CC (1998) Comparative phylogeography of Nearctic and Palearctic fishes. Molecular Ecology, 7, 431-452. Marchinko KB (2009) Predation's role in repeated phenotypic and genetic divergence of armor in threespine stickleback. Evolution, 63, 127-138. Reynolds M, Weir BS, Cockerham CC (1983) Estimation for the coancestry coefficient: basis for a short term genetic distance. Genetics, 105, 767-779. Reimchen TE (1980) Spine deficiency and polymorphism in a population of Gasterosteus aculeatus: an adaptation to predators? Canadian Journal of Zoology, 58, 1232-1244. Lu G, Basley DJ, Bernatchez L (2001) Contrasting patterns of mitochondrial DNA and microsatellite introgressive hybridization between lineages of lake whitefish (Coregonus clupeaformis); relevance for speciation. Molecular Ecology, 10, 965-985. Shapiro MD, Bell MA, Kingsley DM (2006) Parallel genetic origins of pelvic reduction in vertebrates. Proceedings of the National Academy of Science, 103, 13753-13758. Protas ME, Hersey C, Kochanek D et al. (2006) Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nature Genetics, 38, 107-111. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457-462. Lindsey CC (1981) Stocks are chameleons: plasticity in gill-rakers of coregonid fishes. Canadian Journal of Fisheries and Aquatic Sciences, 38, 1497-1506. Chan YF, Marks ME, Jones FC et al. (2010) Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx 1 enhancer. Science, 327, 302-305. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics, 14, 817-818. Miller CT, Beleza S, Pollen AA et al. (2007) cis-Regulatory changes in Kit ligand expression and parallel evolution of pigmentation in sticklebacks and humans. Cell, 131, 1179-1189. Hansen MM, Mesberg K-L, Berg S (1999) Postglacial recolonization patterns and genetic relationships among whitefish (Coregonus sp.) populations in Denmark, inferred from mitochondrial DNA and microsatellite markers. Molecular Ecology, 8, 239-252. Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature, 405, 907-913. Gross JB, Borowsky R, Tabin CJ (2009) A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genetics, 5, e1000326. Gonda A, Herczeg G, Merila J (2009) Adaptive brain size divergence in nine-spined sticklebacks (Pungitius pungitius)? Journal of Evolutionary Biology, 22, 1721-1726. Giles N (1983) The possible role of environmental calcium levels during the evolution of phenotypic diversity on Outer Hebridean populations of the three-spined stickleback, Gasterosteus aculeatus. Journal of Zoology, 4, 535-544. Waser W, Sahoo TP, Herczeg G, Merilä J, Nikinmaa M (2010) Physiological differentiation among nine-spined stickleback populations: effects of copper exposure. Aquatic Toxicology, 98, 188-195. Rempel LL, Smith DG (1998) Postglacial fish dispersal from the Mississippi refuge to the Mackenzie River basin. Canadian Journal of Fisheries and Aquatic Sciences, 55, 893-899. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214. Leverington DW, Teller JT (2003) Paleotopographic recon-structions of eastern outlets of Lake Agassiz. Canadian Journal of Earth Sciences, 40, 1259-1278. Karlstrom TNV (1964) Quaternary geology of the Kenai lowland and glacial history of the Cook Inlet region, Alaska. USGS Professional Paper, 443, 1-69. Smith DG, Fisher TG (1993) Glacial Lake Agassiz: the northwestern outlet and paleoflood. Geology, 21, 9-12. Ward JL, McLennan DA (2009) Historical and ecological correlates of body shape in the brook stickleback, Culaea inconstans. Biological Journal of the Linnean Society, 96, 769-783. Bell MA, Orti G, Walker JA, Koenings JP (1993) Evolution of pelvic reduction in threespine stickleback fish: a test of competing hypotheses. Evolution, 47, 906-914. Ho SYW, Larson G (2006) Molecular clocks: when times are a changin'. TRENDS in Genetics, 22, 79-83. Craig BG (1965) Glacial Lake McConnell, and the superficial geology of parts of Slave River and Redstone River map areas, District of Mackenzie. Bulletin Geological Survey of Canada, 122, 33. Walters V (1955) Fishes of western arctic America and eastern arctic Siberia. Bulletin of the American Museum of Natural History, 106, 255-368. Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22, 1185-1192. Gross HP (1979) Geographic variation in European ninespine sticklebacks, Pungitius pungitius. Copeia, 1979, 405-412. Hunt G, Bell MA, Travis MP (2008) Evolution toward a new adaptive optimum: phenotypic evolution in a fossil stickleback lineage. Evolution, 62, 700-710. van Houdt JKJ, de Cleyn L, Perretti A, Volckaert FAM (2005) A mitogenic view on the evolutionary history of the Holarctic freshwater gadoid, burbot (Lota lota). Molecular Ecology, 14, 2445-2457. Ostbye K, Amundsen PA, Bernatchez L et al. (2006) Parallel evolution of ecomorphological traits in the European whitefish Coregonus lavaretus (L.) species complex during postglacial times. Molecular Ecology, 15, 3983-4001. Swofford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods), Version 4.0b10. Sinauer, Sunderland, MA, USA. Colosimo PF, Hosemann KE, Balabhadra S et al. (2005) Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science, 307, 1928-1933. Orti G, Bell MA, Reimchen TE, Meyer A (1994) Global survey of mitochondrial DNA sequences in the threespine stickleback: evidence for recent migrations. Evolution, 48, 608-622. Morris D (1958) The reproductive behaviour of the ten-spined stickleback (Pygosteus pungitius L.). Behaviour, Supplement, 1-154. Herczeg G, Gonda A, Merila J (2009a) Evolution of gigantism in nine-spined sticklebacks. Evolution, 63, 3190-3200. Bernatchez L (1997) Mitochondrial DNA analysis confirms the existence of two glacial races of rainbow smelt Osmerus mordax and their reproductive isolation in the St Lawrence River estuary (Quebec, Canada). Molecular Ecology, 6, 73-83. McPhail JD (1963a) Geographic variation in North American ninespine sticklebacks, Pungitius pungitius. Journal of the Fisheries Research Board of Canada, 20, 27-44. Shikano T, Shimada Y, Herczeg G, Merilä J (2010) History vs. habitat type: explaining the genetic structure of European nine-spined stickleback (Pungitius pungitius) populations. Molecular Ecology, 19, 1147-1161. Wootton RJ (1984) Functional Biology of Sticklebacks. University of California Press, Berkeley. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915-925. Larkin MA, Blackshields G, Brown NP et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-2948. Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479-491. Ayvazian SG, Krueger WH (1992) Lateral plate ontogeny in the North American ninespine stickleback, Pungitius occidentalis. Copeia, 1992, 209-214. Steiner CC, Weber JN, Hoekstra HE (2007) Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biology, 5, e219. Curry RA (2007) Late glacial impacts on dispersal and colonization of Atlantic Canada and Maine by freshwater fishes. Quaternary Research, 67, 225-233. Peichel CL, Nereng KS, Ohgi KA et al. (2001) The genetic architecture of divergence between threespine stickleback species. Nature, 414, 901-905. Shapiro MD, Marks ME, Peichel CL et al. (2004) Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature, 428, 717-723. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a 1982; 56 2010; 98 2010; 19 1986; 33 1971; 1971 2006; 38 1993; 21 1983; 4 1996; 382 2008; 9 1995; 139 1976 1996; 144 1997; 6 1963a; 20 1995; 132 2003; 52 2005; 22 2007; 38 1997; 147 1983; 105 2009; 2009 2000; 18 2009; 96 2001 2000 2006; 22 1999; 16 1979; 1979 2000; 405 2007; 131 1994; 1994 1986 1967; 19 2005; 307 1981; 38 2007; 7 1984 2007; 5 2001; 55 2008; 62 2009; 19 2003; 40 2007; 67 2007; 23 1998; 55 2001; 414 1998; 14 2001; 10 1993; 47 2009; 22 2009; 63 2009b; 22 2009; 20 2010; 327 1965; 122 2009a; 63 2006; 15 1963b 2009 2008 2007 2006 1994 1994; 48 2000; 155 2002 1999; 8 2004; 428 2001; 21 1980; 58 2006; 40 1992; 131 1992; 1992 1958; Supplement 1955; 106 1878; 13 2008; 48 2008; 46 1992; 68 2009; 5 1998; 7 2006; 103 2005; 14 1964; 443 e_1_2_6_74_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 Walters V (e_1_2_6_83_1) 1955; 106 McPhail JD (e_1_2_6_51_1) 1963 Schneider S (e_1_2_6_68_1) 2000 Rawlinson SE (e_1_2_6_64_1) 1982; 56 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 Wootton RJ (e_1_2_6_86_1) 1976 e_1_2_6_15_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_85_1 Pritchard JK (e_1_2_6_59_1) 2000; 155 e_1_2_6_87_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Underhill JC (e_1_2_6_82_1) 1986 e_1_2_6_9_1 Bell MA (e_1_2_6_3_1) 1994 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_49_1 Swofford DL (e_1_2_6_79_1) 2002 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 Craig BG (e_1_2_6_14_1) 1965; 122 e_1_2_6_26_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 Maddison DR (e_1_2_6_47_1) 2001 Giles N (e_1_2_6_24_1) 1983; 4 e_1_2_6_50_1 e_1_2_6_71_1 Reynolds M (e_1_2_6_67_1) 1983; 105 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 Morris D (e_1_2_6_53_1) 1958 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 Karlstrom TNV (e_1_2_6_38_1) 1964; 443 Felsenstein J (e_1_2_6_22_1) 2008 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 Lindsey CC (e_1_2_6_44_1) 1986 |
References_xml | – reference: Ho SYW, Larson G (2006) Molecular clocks: when times are a changin'. TRENDS in Genetics, 22, 79-83. – reference: Blouw DM, Boyd GJ (1992) Inheritance of reduction, loss, and asymmetry of the pelvis in Pungitius pungitius (ninespine stickleback). Heredity, 68, 33-42. – reference: Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN Version 2.0: A Software for Population Genetics Data Analysis. University of Geneva, Geneva. – reference: Wootton RJ (1984) Functional Biology of Sticklebacks. University of California Press, Berkeley. – reference: Steiner CC, Weber JN, Hoekstra HE (2007) Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biology, 5, e219. – reference: Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution, 16, 1114-1116. – reference: Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics, 14, 817-818. – reference: Rawlinson SE, Bell MA (1982) A stickleback fish (Pungitius) from the Neogene Sterling Formation, Kenai Penisula, Alaska. Journal of Paleontology, 56, 583-588. – reference: Gonda A, Herczeg G, Merila J (2009) Adaptive brain size divergence in nine-spined sticklebacks (Pungitius pungitius)? Journal of Evolutionary Biology, 22, 1721-1726. – reference: Ayvazian SG, Krueger WH (1992) Lateral plate ontogeny in the North American ninespine stickleback, Pungitius occidentalis. Copeia, 1992, 209-214. – reference: Bernatchez L, Wilson CC (1998) Comparative phylogeography of Nearctic and Palearctic fishes. Molecular Ecology, 7, 431-452. – reference: Ward JL, McLennan DA (2009) Historical and ecological correlates of body shape in the brook stickleback, Culaea inconstans. Biological Journal of the Linnean Society, 96, 769-783. – reference: Gross HP (1979) Geographic variation in European ninespine sticklebacks, Pungitius pungitius. Copeia, 1979, 405-412. – reference: Bernatchez L (1997) Mitochondrial DNA analysis confirms the existence of two glacial races of rainbow smelt Osmerus mordax and their reproductive isolation in the St Lawrence River estuary (Quebec, Canada). Molecular Ecology, 6, 73-83. – reference: Brunner PC, Douglas MR, Osinov A, Wilson CC, Bernatchez L (2001) Holarctic phylogeography of Arctic Charr (Salvelinus alpinus L.) inferred from mitochondrial DNA sequences. Evolution, 55, 573-586. – reference: Curry RA (2007) Late glacial impacts on dispersal and colonization of Atlantic Canada and Maine by freshwater fishes. Quaternary Research, 67, 225-233. – reference: Hunt G, Bell MA, Travis MP (2008) Evolution toward a new adaptive optimum: phenotypic evolution in a fossil stickleback lineage. Evolution, 62, 700-710. – reference: Morris D (1958) The reproductive behaviour of the ten-spined stickleback (Pygosteus pungitius L.). Behaviour, Supplement, 1-154. – reference: Cavalli-Sforza LL, Edwards AW (1967) Phylogenetic analysis: models and estimation procedures. American Journal of Human Genetics, 19, 233-257. – reference: Shapiro MD, Marks ME, Peichel CL et al. (2004) Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature, 428, 717-723. – reference: Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics, 9, 299-306. – reference: Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214. – reference: Giles N (1983) The possible role of environmental calcium levels during the evolution of phenotypic diversity on Outer Hebridean populations of the three-spined stickleback, Gasterosteus aculeatus. Journal of Zoology, 4, 535-544. – reference: Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature, 405, 907-913. – reference: Lu G, Basley DJ, Bernatchez L (2001) Contrasting patterns of mitochondrial DNA and microsatellite introgressive hybridization between lineages of lake whitefish (Coregonus clupeaformis); relevance for speciation. Molecular Ecology, 10, 965-985. – reference: Miller CT, Beleza S, Pollen AA et al. (2007) cis-Regulatory changes in Kit ligand expression and parallel evolution of pigmentation in sticklebacks and humans. Cell, 131, 1179-1189. – reference: Bell MA, Foster SA (1994) The Evolutionary Biology of the Threespine Stickleback. Oxford University Press, Oxford. – reference: Reynolds M, Weir BS, Cockerham CC (1983) Estimation for the coancestry coefficient: basis for a short term genetic distance. Genetics, 105, 767-779. – reference: van Houdt JKJ, de Cleyn L, Perretti A, Volckaert FAM (2005) A mitogenic view on the evolutionary history of the Holarctic freshwater gadoid, burbot (Lota lota). Molecular Ecology, 14, 2445-2457. – reference: Bell MA, Orti G, Walker JA, Koenings JP (1993) Evolution of pelvic reduction in threespine stickleback fish: a test of competing hypotheses. Evolution, 47, 906-914. – reference: Elias SA, Short SK, Nelson CH, Birks HH (1996) Life and times of the Bering land bridge. Nature, 382, 60-63. – reference: Shapiro MD, Bell MA, Kingsley DM (2006) Parallel genetic origins of pelvic reduction in vertebrates. Proceedings of the National Academy of Science, 103, 13753-13758. – reference: Walters V (1955) Fishes of western arctic America and eastern arctic Siberia. Bulletin of the American Museum of Natural History, 106, 255-368. – reference: Lindsey CC (1981) Stocks are chameleons: plasticity in gill-rakers of coregonid fishes. Canadian Journal of Fisheries and Aquatic Sciences, 38, 1497-1506. – reference: Colosimo PF, Hosemann KE, Balabhadra S et al. (2005) Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science, 307, 1928-1933. – reference: Ho SYW (2007) Calibrating molecular estimates of substitution rates and divergence times in birds. Journal of Avian Biology, 38, 409-414. – reference: Day F (1878) On some Irish Gasterostei. Journal of the Linnean Society of London (Zoology), 13, 110-114. – reference: Bell MA, Orti G (1994) Pelvic reduction in threespine sticklebacks from Cook Inlet lakes: geographical distribution and intrapopulation variation. Copeia, 1994, 314-325. – reference: Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696-704. – reference: Herczeg G, Gonda A, Merila J (2009b) Predation mediated population divergence in complex behaviour of nine-spined stickleback (Pungitius pungitius). Journal of Evolutionary Biology, 22, 544-552. – reference: Orti G, Bell MA, Reimchen TE, Meyer A (1994) Global survey of mitochondrial DNA sequences in the threespine stickleback: evidence for recent migrations. Evolution, 48, 608-622. – reference: Smouse P, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the Mantel Test of matrix correspondence. Systematic Zoology, 33, 627-632. – reference: Swofford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods), Version 4.0b10. Sinauer, Sunderland, MA, USA. – reference: Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479-491. – reference: Waser W, Sahoo TP, Herczeg G, Merilä J, Nikinmaa M (2010) Physiological differentiation among nine-spined stickleback populations: effects of copper exposure. Aquatic Toxicology, 98, 188-195. – reference: Smith DG, Fisher TG (1993) Glacial Lake Agassiz: the northwestern outlet and paleoflood. Geology, 21, 9-12. – reference: Herczeg G, Gonda A, Merila J (2009a) Evolution of gigantism in nine-spined sticklebacks. Evolution, 63, 3190-3200. – reference: Shapiro MD, Summers BR, Balabhadra S et al. (2009) The genetic architecture of skeletal convergence and sex determination in ninespine sticklebacks. Current Biology, 19, 1140-1145. – reference: Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18, 233-234. – reference: Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22, 1185-1192. – reference: Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915-925. – reference: Guiher TJ, Burbrink FT (2008) Demographic and phylogeographic histories of two venomous North American snakes of the genus Agkistrodon. Molecular Phylogenetics and Evolution, 48, 543-553. – reference: Felsenstein J (2008) PHYLIP (Phylogeny Inference Package) Version 3.68. Department of Genome Sciences, University of Washington, Seattle, WA, USA. – reference: Kendal JR, Rendell L, Pike TW, Laland KN (2009) Nine-spined sticklebacks deploy a hill climbing social learning strategy. Behavioral Ecology, 20, 238-244. – reference: McPhail JD (1963a) Geographic variation in North American ninespine sticklebacks, Pungitius pungitius. Journal of the Fisheries Research Board of Canada, 20, 27-44. – reference: Karlstrom TNV (1964) Quaternary geology of the Kenai lowland and glacial history of the Cook Inlet region, Alaska. USGS Professional Paper, 443, 1-69. – reference: Reimchen TE (1980) Spine deficiency and polymorphism in a population of Gasterosteus aculeatus: an adaptation to predators? Canadian Journal of Zoology, 58, 1232-1244. – reference: Marchinko KB (2009) Predation's role in repeated phenotypic and genetic divergence of armor in threespine stickleback. Evolution, 63, 127-138. – reference: Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457-462. – reference: Mäkinen HS, Merilä J (2008) Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe-Evidence for multiple glacial refugia. Molecular Phylogenetics and Evolution, 46, 167-182. – reference: Rempel LL, Smith DG (1998) Postglacial fish dispersal from the Mississippi refuge to the Mackenzie River basin. Canadian Journal of Fisheries and Aquatic Sciences, 55, 893-899. – reference: Bell MA, Stewart JD, Park PJ (2009) The world's oldest fossil threespine stickleback fish. Copeia, 2009, 256-265. – reference: Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using mulitlocus genotype data. Genetics, 155, 945-959. – reference: Shikano T, Shimada Y, Herczeg G, Merilä J (2010) History vs. habitat type: explaining the genetic structure of European nine-spined stickleback (Pungitius pungitius) populations. Molecular Ecology, 19, 1147-1161. – reference: Wootton RJ (1976) The Biology of the Sticklebacks. Academic Press, London. – reference: Ziuganov VV, Zotin AA (1995) Pelvic girdle polymorphism and reproductive barriers in the ninespine stickleback Pungitius pungitius (L.) from northwest Russia. Behaviour, 132, 1095-1105. – reference: Hansen MM, Mesberg K-L, Berg S (1999) Postglacial recolonization patterns and genetic relationships among whitefish (Coregonus sp.) populations in Denmark, inferred from mitochondrial DNA and microsatellite markers. Molecular Ecology, 8, 239-252. – reference: Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics, 144, 389-399. – reference: Peichel CL, Nereng KS, Ohgi KA et al. (2001) The genetic architecture of divergence between threespine stickleback species. Nature, 414, 901-905. – reference: Takahashi H, Goto A (2001) Evolution of East Asian ninespine sticklebacks as shown by mitochondrial DNA control region sequences. Molecular Phylogenetics and Evolution, 21, 135-155. – reference: Gross JB, Borowsky R, Tabin CJ (2009) A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genetics, 5, e1000326. – reference: Craig BG (1965) Glacial Lake McConnell, and the superficial geology of parts of Slave River and Redstone River map areas, District of Mackenzie. Bulletin Geological Survey of Canada, 122, 33. – reference: Nelson JS (1971) Absence of the pelvic complex in ninespine sticklebacks, Pungitius pungitius, collected in Ireland and Wood Buffalo National Park Region, Canada, with notes on meristic variation. Copeia, 1971, 707-717. – reference: Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611-2620. – reference: Protas ME, Hersey C, Kochanek D et al. (2006) Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nature Genetics, 38, 107-111. – reference: Maddison DR, Maddison WP (2001) MacClade 4: Analysis of Phylogeny and Character Evolution, Version 4.06. Sinauer, Sunderland, MA, USA. – reference: Larkin MA, Blackshields G, Brown NP et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-2948. – reference: Chan YF, Marks ME, Jones FC et al. (2010) Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx 1 enhancer. Science, 327, 302-305. – reference: Liu J-X, Gao T-X, Zhuang Z-M, Jin X-S, Yokogawa K, Zhang Y-P (2006) Late Pleistoncene divergence and subsequent population expansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) and Australian anchovy (Engraulis australis). Molecular Phylogenetics and Evolution, 40, 712-723. – reference: Leverington DW, Teller JT (2003) Paleotopographic recon-structions of eastern outlets of Lake Agassiz. Canadian Journal of Earth Sciences, 40, 1259-1278. – reference: Ostbye K, Amundsen PA, Bernatchez L et al. (2006) Parallel evolution of ecomorphological traits in the European whitefish Coregonus lavaretus (L.) species complex during postglacial times. Molecular Ecology, 15, 3983-4001. – volume: 147 start-page: 915 year: 1997 end-page: 925 article-title: Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection publication-title: Genetics – volume: 52 start-page: 696 year: 2003 end-page: 704 article-title: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood publication-title: Systematic Biology – volume: 9 start-page: 299 year: 2008 end-page: 306 article-title: MEGA: a biologist‐centric software for evolutionary analysis of DNA and protein sequences publication-title: Briefings in Bioinformatics – volume: 1992 start-page: 209 year: 1992 end-page: 214 article-title: Lateral plate ontogeny in the North American ninespine stickleback, publication-title: Copeia – year: 2009 – volume: 48 start-page: 543 year: 2008 end-page: 553 article-title: Demographic and phylogeographic histories of two venomous North American snakes of the genus publication-title: Molecular Phylogenetics and Evolution – volume: 7 start-page: 431 year: 1998 end-page: 452 article-title: Comparative phylogeography of Nearctic and Palearctic fishes publication-title: Molecular Ecology – volume: 6 start-page: 73 year: 1997 end-page: 83 article-title: Mitochondrial DNA analysis confirms the existence of two glacial races of rainbow smelt and their reproductive isolation in the St Lawrence River estuary (Quebec, Canada) publication-title: Molecular Ecology – volume: 7 start-page: 214 year: 2007 article-title: BEAST: Bayesian evolutionary analysis by sampling trees publication-title: BMC Evolutionary Biology – volume: 21 start-page: 135 year: 2001 end-page: 155 article-title: Evolution of East Asian ninespine sticklebacks as shown by mitochondrial DNA control region sequences publication-title: Molecular Phylogenetics and Evolution – volume: 33 start-page: 627 year: 1986 end-page: 632 article-title: Multiple regression and correlation extensions of the Mantel Test of matrix correspondence publication-title: Systematic Zoology – volume: 327 start-page: 302 year: 2010 end-page: 305 article-title: Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a enhancer publication-title: Science – year: 2001 – volume: 1971 start-page: 707 year: 1971 end-page: 717 article-title: Absence of the pelvic complex in ninespine sticklebacks, , collected in Ireland and Wood Buffalo National Park Region, Canada, with notes on meristic variation publication-title: Copeia – start-page: 639 year: 1986 end-page: 674 – volume: 14 start-page: 817 year: 1998 end-page: 818 article-title: MODELTEST: testing the model of DNA substitution publication-title: Bioinformatics – volume: 105 start-page: 767 year: 1983 end-page: 779 article-title: Estimation for the coancestry coefficient: basis for a short term genetic distance publication-title: Genetics – volume: 132 start-page: 1095 year: 1995 end-page: 1105 article-title: Pelvic girdle polymorphism and reproductive barriers in the ninespine stickleback (L.) from northwest Russia publication-title: Behaviour – volume: 405 start-page: 907 year: 2000 end-page: 913 article-title: The genetic legacy of the quaternary ice ages publication-title: Nature – volume: 443 start-page: 1 year: 1964 end-page: 69 article-title: Quaternary geology of the Kenai lowland and glacial history of the Cook Inlet region, Alaska publication-title: USGS Professional Paper – year: 1963b – year: 1994 – volume: 46 start-page: 167 year: 2008 end-page: 182 article-title: Mitochondrial DNA phylogeography of the three‐spined stickleback ( ) in Europe—Evidence for multiple glacial refugia publication-title: Molecular Phylogenetics and Evolution – volume: 22 start-page: 79 year: 2006 end-page: 83 article-title: Molecular clocks: when times are a changin’ publication-title: TRENDS in Genetics – volume: 40 start-page: 1259 year: 2003 end-page: 1278 article-title: Paleotopographic recon‐structions of eastern outlets of Lake Agassiz publication-title: Canadian Journal of Earth Sciences – volume: 19 start-page: 1147 year: 2010 end-page: 1161 article-title: History vs. habitat type: explaining the genetic structure of European nine‐spined stickleback ( ) populations publication-title: Molecular Ecology – volume: 19 start-page: 1140 year: 2009 end-page: 1145 article-title: The genetic architecture of skeletal convergence and sex determination in ninespine sticklebacks publication-title: Current Biology – volume: 38 start-page: 409 year: 2007 end-page: 414 article-title: Calibrating molecular estimates of substitution rates and divergence times in birds publication-title: Journal of Avian Biology – volume: 131 start-page: 479 year: 1992 end-page: 491 article-title: Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data publication-title: Genetics – year: 2008 – volume: 63 start-page: 127 year: 2009 end-page: 138 article-title: Predation’s role in repeated phenotypic and genetic divergence of armor in threespine stickleback publication-title: Evolution – volume: 47 start-page: 906 year: 1993 end-page: 914 article-title: Evolution of pelvic reduction in threespine stickleback fish: a test of competing hypotheses publication-title: Evolution – volume: 22 start-page: 1185 year: 2005 end-page: 1192 article-title: Bayesian coalescent inference of past population dynamics from molecular sequences publication-title: Molecular Biology and Evolution – volume: 18 start-page: 233 year: 2000 end-page: 234 article-title: An economic method for the fluorescent labeling of PCR fragments publication-title: Nature Biotechnology – volume: 21 start-page: 9 year: 1993 end-page: 12 article-title: Glacial Lake Agassiz: the northwestern outlet and paleoflood publication-title: Geology – volume: 13 start-page: 110 year: 1878 end-page: 114 article-title: On some Irish Gasterostei publication-title: Journal of the Linnean Society of London (Zoology) – volume: 382 start-page: 60 year: 1996 end-page: 63 article-title: Life and times of the Bering land bridge publication-title: Nature – volume: 5 start-page: e219 year: 2007 article-title: Adaptive variation in beach mice produced by two interacting pigmentation genes publication-title: PLoS Biology – volume: 38 start-page: 107 year: 2006 end-page: 111 article-title: Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism publication-title: Nature Genetics – volume: 8 start-page: 239 year: 1999 end-page: 252 article-title: Postglacial recolonization patterns and genetic relationships among whitefish ( sp.) populations in Denmark, inferred from mitochondrial DNA and microsatellite markers publication-title: Molecular Ecology – volume: 106 start-page: 255 year: 1955 end-page: 368 article-title: Fishes of western arctic America and eastern arctic Siberia publication-title: Bulletin of the American Museum of Natural History – volume: 68 start-page: 33 year: 1992 end-page: 42 article-title: Inheritance of reduction, loss, and asymmetry of the pelvis in (ninespine stickleback) publication-title: Heredity – year: 1976 – volume: 48 start-page: 608 year: 1994 end-page: 622 article-title: Global survey of mitochondrial DNA sequences in the threespine stickleback: evidence for recent migrations publication-title: Evolution – volume: 15 start-page: 3983 year: 2006 end-page: 4001 article-title: Parallel evolution of ecomorphological traits in the European whitefish (L.) species complex during postglacial times publication-title: Molecular Ecology – volume: 40 start-page: 712 year: 2006 end-page: 723 article-title: Late Pleistoncene divergence and subsequent population expansion of two closely related fish species, Japanese anchovy ( ) and Australian anchovy ( ) publication-title: Molecular Phylogenetics and Evolution – volume: 139 start-page: 457 year: 1995 end-page: 462 article-title: A measure of population subdivision based on microsatellite allele frequencies publication-title: Genetics – volume: 428 start-page: 717 year: 2004 end-page: 723 article-title: Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks publication-title: Nature – volume: 98 start-page: 188 year: 2010 end-page: 195 article-title: Physiological differentiation among nine‐spined stickleback populations: effects of copper exposure publication-title: Aquatic Toxicology – year: 2007 – volume: 55 start-page: 573 year: 2001 end-page: 586 article-title: Holarctic phylogeography of Arctic Charr ( L.) inferred from mitochondrial DNA sequences publication-title: Evolution – volume: 62 start-page: 700 year: 2008 end-page: 710 article-title: Evolution toward a new adaptive optimum: phenotypic evolution in a fossil stickleback lineage publication-title: Evolution – start-page: 105 year: 1986 end-page: 136 – volume: 14 start-page: 2445 year: 2005 end-page: 2457 article-title: A mitogenic view on the evolutionary history of the Holarctic freshwater gadoid, burbot ( ) publication-title: Molecular Ecology – year: 2000 – volume: 19 start-page: 233 year: 1967 end-page: 257 article-title: Phylogenetic analysis: models and estimation procedures publication-title: American Journal of Human Genetics – volume: 20 start-page: 27 year: 1963a end-page: 44 article-title: Geographic variation in North American ninespine sticklebacks, publication-title: Journal of the Fisheries Research Board of Canada – volume: 10 start-page: 965 year: 2001 end-page: 985 article-title: Contrasting patterns of mitochondrial DNA and microsatellite introgressive hybridization between lineages of lake whitefish ( ); relevance for speciation publication-title: Molecular Ecology – volume: 16 start-page: 1114 year: 1999 end-page: 1116 article-title: Multiple comparisons of log‐likelihoods with applications to phylogenetic inference publication-title: Molecular Biology and Evolution – volume: 1979 start-page: 405 year: 1979 end-page: 412 article-title: Geographic variation in European ninespine sticklebacks, publication-title: Copeia – volume: 20 start-page: 238 year: 2009 end-page: 244 article-title: Nine‐spined sticklebacks deploy a hill climbing social learning strategy publication-title: Behavioral Ecology – volume: 144 start-page: 389 year: 1996 end-page: 399 article-title: Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA publication-title: Genetics – volume: 307 start-page: 1928 year: 2005 end-page: 1933 article-title: Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles publication-title: Science – volume: 414 start-page: 901 year: 2001 end-page: 905 article-title: The genetic architecture of divergence between threespine stickleback species publication-title: Nature – year: 1984 – volume: 96 start-page: 769 year: 2009 end-page: 783 article-title: Historical and ecological correlates of body shape in the brook stickleback, publication-title: Biological Journal of the Linnean Society – volume: 67 start-page: 225 year: 2007 end-page: 233 article-title: Late glacial impacts on dispersal and colonization of Atlantic Canada and Maine by freshwater fishes publication-title: Quaternary Research – volume: 22 start-page: 544 year: 2009b end-page: 552 article-title: Predation mediated population divergence in complex behaviour of nine‐spined stickleback ) publication-title: Journal of Evolutionary Biology – volume: 23 start-page: 2947 year: 2007 end-page: 2948 article-title: Clustal W and Clustal X version 2.0 publication-title: Bioinformatics – volume: 63 start-page: 3190 year: 2009a end-page: 3200 article-title: Evolution of gigantism in nine‐spined sticklebacks publication-title: Evolution – volume: 56 start-page: 583 year: 1982 end-page: 588 article-title: A stickleback fish ( ) from the Neogene Sterling Formation, Kenai Penisula, Alaska publication-title: Journal of Paleontology – volume: 14 start-page: 2611 year: 2005 end-page: 2620 article-title: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study publication-title: Molecular Ecology – volume: 103 start-page: 13753 year: 2006 end-page: 13758 article-title: Parallel genetic origins of pelvic reduction in vertebrates publication-title: Proceedings of the National Academy of Science – year: 2002 – year: 2006 – volume: 58 start-page: 1232 year: 1980 end-page: 1244 article-title: Spine deficiency and polymorphism in a population of : an adaptation to predators? publication-title: Canadian Journal of Zoology – volume: 122 start-page: 33 year: 1965 article-title: Glacial Lake McConnell, and the superficial geology of parts of Slave River and Redstone River map areas, District of Mackenzie publication-title: Bulletin Geological Survey of Canada – volume: 55 start-page: 893 year: 1998 end-page: 899 article-title: Postglacial fish dispersal from the Mississippi refuge to the Mackenzie River basin publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 4 start-page: 535 year: 1983 end-page: 544 article-title: The possible role of environmental calcium levels during the evolution of phenotypic diversity on Outer Hebridean populations of the three‐spined stickleback, publication-title: Journal of Zoology – volume: 22 start-page: 1721 year: 2009 end-page: 1726 article-title: Adaptive brain size divergence in nine‐spined sticklebacks ( )? publication-title: Journal of Evolutionary Biology – volume: Supplement start-page: 1 year: 1958 end-page: 154 article-title: The reproductive behaviour of the ten‐spined stickleback ( L.) publication-title: Behaviour – volume: 5 start-page: e1000326 year: 2009 article-title: A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish publication-title: PLoS Genetics – volume: 155 start-page: 945 year: 2000 end-page: 959 article-title: Inference of population structure using mulitlocus genotype data publication-title: Genetics – volume: 131 start-page: 1179 year: 2007 end-page: 1189 article-title: cis‐Regulatory changes in Kit ligand expression and parallel evolution of pigmentation in sticklebacks and humans publication-title: Cell – volume: 2009 start-page: 256 year: 2009 end-page: 265 article-title: The world’s oldest fossil threespine stickleback fish publication-title: Copeia – volume: 1994 start-page: 314 year: 1994 end-page: 325 article-title: Pelvic reduction in threespine sticklebacks from Cook Inlet lakes: geographical distribution and intrapopulation variation publication-title: Copeia – volume: 38 start-page: 1497 year: 1981 end-page: 1506 article-title: Stocks are chameleons: plasticity in gill‐rakers of coregonid fishes publication-title: Canadian Journal of Fisheries and Aquatic Sciences – ident: e_1_2_6_13_1 doi: 10.1126/science.1107239 – volume-title: MacClade 4: Analysis of Phylogeny and Character Evolution, Version 4.06 year: 2001 ident: e_1_2_6_47_1 – ident: e_1_2_6_62_1 – ident: e_1_2_6_25_1 doi: 10.1111/j.1420-9101.2009.01782.x – ident: e_1_2_6_80_1 doi: 10.1006/mpev.2001.1001 – ident: e_1_2_6_56_1 doi: 10.1111/j.1365-294X.2006.03062.x – ident: e_1_2_6_75_1 doi: 10.1093/genetics/139.1.457 – ident: e_1_2_6_26_1 doi: 10.2307/1443215 – ident: e_1_2_6_87_1 doi: 10.1007/978-1-4615-8513-8 – ident: e_1_2_6_50_1 doi: 10.1139/f63-004 – ident: e_1_2_6_5_1 doi: 10.1111/j.1558-5646.1993.tb01243.x – volume-title: The Biology of the Sticklebacks year: 1976 ident: e_1_2_6_86_1 – ident: e_1_2_6_74_1 doi: 10.1093/oxfordjournals.molbev.a026201 – ident: e_1_2_6_76_1 doi: 10.1130/0091-7613(1993)021<0009:GLATNO>2.3.CO;2 – ident: e_1_2_6_88_1 doi: 10.1163/156853995X00478 – start-page: 105 volume-title: The Zoogeography of North American Freshwater Fishes year: 1986 ident: e_1_2_6_82_1 – start-page: 639 volume-title: The Zoogeography of North American Freshwater Fishes year: 1986 ident: e_1_2_6_44_1 – ident: e_1_2_6_63_1 – ident: e_1_2_6_46_1 doi: 10.1046/j.1365-294X.2001.01252.x – ident: e_1_2_6_52_1 doi: 10.1016/j.cell.2007.10.055 – ident: e_1_2_6_85_1 doi: 10.1016/j.aquatox.2010.02.009 – ident: e_1_2_6_27_1 doi: 10.1371/journal.pgen.1000326 – volume: 122 start-page: 33 year: 1965 ident: e_1_2_6_14_1 article-title: Glacial Lake McConnell, and the superficial geology of parts of Slave River and Redstone River map areas, District of Mackenzie publication-title: Bulletin Geological Survey of Canada – ident: e_1_2_6_16_1 doi: 10.1111/j.1096-3642.1877.tb02373.x – ident: e_1_2_6_23_1 doi: 10.1093/genetics/147.2.915 – volume: 105 start-page: 767 year: 1983 ident: e_1_2_6_67_1 article-title: Estimation for the coancestry coefficient: basis for a short term genetic distance publication-title: Genetics doi: 10.1093/genetics/105.3.767 – volume-title: The Postglacial Dispersal of Freshwater Fishes in Northern North America year: 1963 ident: e_1_2_6_51_1 – ident: e_1_2_6_54_1 doi: 10.2307/1442641 – ident: e_1_2_6_45_1 doi: 10.1016/j.ympev.2006.04.019 – volume: 4 start-page: 535 year: 1983 ident: e_1_2_6_24_1 article-title: The possible role of environmental calcium levels during the evolution of phenotypic diversity on Outer Hebridean populations of the three‐spined stickleback, Gasterosteus aculeatus publication-title: Journal of Zoology doi: 10.1111/j.1469-7998.1983.tb05104.x – ident: e_1_2_6_12_1 doi: 10.1126/science.1182213 – ident: e_1_2_6_43_1 doi: 10.1139/f81-202 – ident: e_1_2_6_65_1 doi: 10.1139/z80-173 – ident: e_1_2_6_72_1 doi: 10.1016/j.cub.2009.05.029 – ident: e_1_2_6_73_1 doi: 10.1111/j.1365-294X.2010.04553.x – ident: e_1_2_6_28_1 doi: 10.1016/j.ympev.2008.04.008 – ident: e_1_2_6_48_1 doi: 10.1016/j.ympev.2007.06.011 – ident: e_1_2_6_17_1 doi: 10.1186/1471-2148-7-214 – ident: e_1_2_6_55_1 doi: 10.1111/j.1558-5646.1994.tb01348.x – ident: e_1_2_6_70_1 doi: 10.1038/nature02415 – volume-title: The Evolutionary Biology of the Threespine Stickleback year: 1994 ident: e_1_2_6_3_1 doi: 10.1093/oso/9780198577287.001.0001 – ident: e_1_2_6_6_1 doi: 10.1643/CG-08-059 – ident: e_1_2_6_39_1 doi: 10.1093/beheco/arp016 – volume: 106 start-page: 255 year: 1955 ident: e_1_2_6_83_1 article-title: Fishes of western arctic America and eastern arctic Siberia publication-title: Bulletin of the American Museum of Natural History – ident: e_1_2_6_20_1 doi: 10.1111/j.1365-294X.2005.02553.x – ident: e_1_2_6_29_1 doi: 10.1080/10635150390235520 – volume: 155 start-page: 945 year: 2000 ident: e_1_2_6_59_1 article-title: Inference of population structure using mulitlocus genotype data publication-title: Genetics doi: 10.1093/genetics/155.2.945 – ident: e_1_2_6_2_1 doi: 10.2307/1446553 – ident: e_1_2_6_41_1 doi: 10.1093/bioinformatics/btm404 – ident: e_1_2_6_11_1 doi: 10.1007/s00122-008-0801-8 – ident: e_1_2_6_36_1 doi: 10.1111/j.1365-294X.2005.02590.x – volume: 443 start-page: 1 year: 1964 ident: e_1_2_6_38_1 article-title: Quaternary geology of the Kenai lowland and glacial history of the Cook Inlet region, Alaska publication-title: USGS Professional Paper – ident: e_1_2_6_30_1 doi: 10.1046/j.1365-294X.1999.00557.x – ident: e_1_2_6_31_1 doi: 10.1111/j.1558-5646.2009.00781.x – ident: e_1_2_6_77_1 doi: 10.2307/2413122 – ident: e_1_2_6_33_1 doi: 10.1038/35016000 – volume-title: ARLEQUIN Version 2.0: A Software for Population Genetics Data Analysis year: 2000 ident: e_1_2_6_68_1 – ident: e_1_2_6_10_1 doi: 10.1111/j.0014-3820.2001.tb00790.x – ident: e_1_2_6_37_1 doi: 10.1111/j.1558-5646.2007.00310.x – ident: e_1_2_6_34_1 doi: 10.1111/j.0908-8857.2007.04168.x – ident: e_1_2_6_60_1 – ident: e_1_2_6_21_1 doi: 10.1111/j.1365-2656.2006.01186.x – ident: e_1_2_6_32_1 doi: 10.1111/j.1420-9101.2008.01674.x – ident: e_1_2_6_4_1 doi: 10.2307/1446981 – ident: e_1_2_6_9_1 doi: 10.1038/hdy.1992.4 – ident: e_1_2_6_61_1 doi: 10.1038/ng1700 – ident: e_1_2_6_7_1 doi: 10.1046/j.1365-294X.1997.00156.x – volume-title: PHYLIP (Phylogeny Inference Package) Version 3.68 year: 2008 ident: e_1_2_6_22_1 – ident: e_1_2_6_15_1 doi: 10.1016/j.yqres.2006.11.002 – volume-title: PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods), Version 4.0b10 year: 2002 ident: e_1_2_6_79_1 – ident: e_1_2_6_84_1 doi: 10.1111/j.1095-8312.2008.01180.x – ident: e_1_2_6_71_1 doi: 10.1073/pnas.0604706103 – ident: e_1_2_6_78_1 doi: 10.1371/journal.pbio.0050219 – ident: e_1_2_6_8_1 doi: 10.1046/j.1365-294x.1998.00319.x – ident: e_1_2_6_18_1 doi: 10.1093/molbev/msi103 – ident: e_1_2_6_57_1 doi: 10.1038/414901a – ident: e_1_2_6_49_1 doi: 10.1111/j.1558-5646.2008.00529.x – volume: 56 start-page: 583 year: 1982 ident: e_1_2_6_64_1 article-title: A stickleback fish (Pungitius) from the Neogene Sterling Formation, Kenai Penisula, Alaska publication-title: Journal of Paleontology – ident: e_1_2_6_66_1 doi: 10.1139/f97-257 – ident: e_1_2_6_58_1 doi: 10.1111/j.1095-8312.2004.00368.x – ident: e_1_2_6_40_1 doi: 10.1093/bib/bbn017 – ident: e_1_2_6_69_1 doi: 10.1038/72708 – ident: e_1_2_6_42_1 doi: 10.1139/e03-043 – start-page: 1 year: 1958 ident: e_1_2_6_53_1 article-title: The reproductive behaviour of the ten‐spined stickleback (Pygosteus pungitius L.) publication-title: Behaviour – ident: e_1_2_6_35_1 doi: 10.1016/j.tig.2005.11.006 – ident: e_1_2_6_19_1 doi: 10.1038/382060a0 – ident: e_1_2_6_81_1 doi: 10.1093/genetics/144.1.389 |
SSID | ssj0013255 |
Score | 2.2432964 |
Snippet | The current geographical distribution of the ninespine stickleback (Pungitius pungitius) was shaped in large part by the glaciation events of the Pleistocene... The current geographical distribution of the ninespine stickleback ( Pungitius pungitius ) was shaped in large part by the glaciation events of the Pleistocene... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4061 |
SubjectTerms | anatomy & histology Animals Bayes Theorem Biogeography Cell Nucleus Cell Nucleus - genetics convergent evolution DNA, Mitochondrial DNA, Mitochondrial - genetics East Asia Ecology Europe Evolution, Molecular Far East fins Fish Genetic Variation genetics Genetics, Population Geographical distribution glacial refugia Glaciation Glaciers Microsatellite Repeats Mississippi Mitochondrial DNA Molecular biology North America phenotype Phylogeny Phylogeography Pleistocene population genetics-empirical Pungitius Pungitius pungitius refuge habitats Refugia Sequence Analysis, DNA skeleton Smegmamorpha Smegmamorpha - anatomy & histology Smegmamorpha - genetics stickleback |
Title | Phylogeography of ninespine sticklebacks (Pungitius pungitius) in North America: glacial refugia and the origins of adaptive traits |
URI | https://api.istex.fr/ark:/67375/WNG-MWRSW3XT-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-294X.2010.04801.x https://www.ncbi.nlm.nih.gov/pubmed/20854276 https://www.proquest.com/docview/750432862 https://www.proquest.com/docview/1400118961 https://www.proquest.com/docview/755164300 https://www.proquest.com/docview/762282273 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBajZbCXrfvtdRsajLE9ONiSIjt7G126MkgJXUvyJiRL6kKKE-oYmr3uH9-d7JhmdKOMvQSBpdg6n07f6c7fEfIWILCWsPPHjvVNLKTwsUmZj7XnVpuBT4XBc8jRsTw6E1-n_Wmb_4TfwjT8EN2BG66MYK9xgWtTbS_ykKE1ENM2QwuZUHqIJ-EC0uh_PmHXAgqhACoAdgaWJ-fbST03_tHWTrWLQr-6CYZuo9qwLR0-IPPNhJpslHmvXple8eM3rsf_M-M9cr9Fr_RTo24PyR1XPiJ3m3qWa2gNAwf2-jH5Of6-hpZrCbHpwtMSE-yX8EORGnp-4Qx-3k_fj2ssmTSrK7rctD7QWUlDRIm2EaWPFGA-nu5TkFN9PtNUl5YCeKVNZa8K76CtXqL1plj3YlU9IWeHw9ODo7it9xAXfSnSOPM-z8ACFanOvU-9Y8wmTnjLuQWfX-aOaQYuamKc1cLozBdWQH8upU2dTflTslMuSvecUA13zPvMeIB3AFlywJE-YUXmM42RxyQi2ebdqqIlQ8dnu1DXnCIQtkJhKxS2CsJWVxFJu5HLhhDkFmPeBfXpBujLOSbUZX01Of6iRpOTbxM-PVXjiOxv9Eu1tqRSSMDPGXieEXnTXQUjgJEdXbpFXYH_Frj8BjKNCP1DnwxDooInyV-6SIZZxRmPyLNGubsnxlKugmUyIjKo6K3nrkbDA2y9-NeB--Rek7GBeX0vyc7qsnavAAiuzOuwxH8B_gZOvQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQJgQvfDPC-DASQvCQKnEcJ-UNTR0F1qoando3y05sqFql1dJIK6_849w5abSigSbES2QpdhNfz-ff-S6_I-Q1QGAlYOf3DYu1zwW3vg6Z9ZWNcqW7NuQazyEHQ9E_45-n8bQpB4TfwtT8EO2BG64MZ69xgeOB9O4qdylaXT5tUrSQCqUDgHLfhesQIZ2ySyEFVwIVIDsD25NGu2k9V_7Szl61j2K_uAqI7uJatzEd3yWL7ZTqfJR5p1rrTvbjN7bH_zTne-ROA2Dph1rj7pMbpnhAbtYlLTfQ6jka7M1D8nP0fQMt03Bi06WlBebYr-BCkR16vjAav_Cnb0cVVk2aVSVdbVvv6KygLqhEm6DSewpIHw_4KQiq-jZTVBU5BfxK6-JeJT5B5WqFBpxi6Yt1-YicHffGR32_KfngZ7HgoZ9YmyZghLJQpdaG1jCWB4bbPIpycPtFaphi4KUG2uSKa5XYLOfQPxIiD00eRo_JXrEszBNCFTwxjZm2gPAAtaQAJW3AssQmCoOPgUeS7Z8rs4YPHd9tIS_5RSBsicKWKGzphC0vPBK2I1c1J8g1xrxx-tMOUOdzzKlLYjkZfpSDyenXSTQdy5FHDrcKJhtzUkrk4I8YOJ8eedXeBTuAwR1VmGVVggvn6Py6IvQI_UOfBKOiPAqCv3QRDBOLk8gjB7V2t2-M1Vw5S4RHhNPRa89dDnpH2Hr6rwNfklv98eBEnnwafjkkt-sEDkzze0b21ueVeQ64cK1fuPX-C-RUUts |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQJhAvfDPC-DASQvCQKnEcJ-UNjZbx0aoam9o3y4ltqDql0dJIK6_849w5abSigSbES2QpdhNfz-ff-S6_I-QlQGAlYOf3DYsznwtu_Sxk1lc20irr25BneA45GovDE_5pFs_a_Cf8Fqbhh-gO3HBlOHuNC7zUdnuRuwytPp-1GVrIhNIDPLnLBeyaCJCO2IWIgquACoidgelJo-2snkt_aWur2kWpn1-GQ7dhrduXhrfJYjOjJh1l0atXWS__8RvZ4_-Z8h1yq4Wv9F2jb3fJNVPcI9ebgpZraA0cCfb6Pvk5-b6GlmkZsenS0gIz7Eu4UOSGXpyaDL_vp68nNdZMmtcVLTetN3ReUBdSom1I6S0FnI_H-xTkVH-bK6oKTQG90qa0V4VPUFqVaL4pFr5YVQ_IyXBwfHDotwUf_DwWPPQTa9METFAeqtTa0BrGdGC41VGkwekXqWGKgY8aZEYrnqnE5ppD_0gIHRodRg_JTrEszCNCFTwxjVlmAd8BZkkBSNqA5YlNFIYeA48km_9W5i0bOr7bqbzgFYGwJQpborClE7Y890jYjSwbRpArjHnl1KcboM4WmFGXxHI6_iBH06Ov02h2LCce2d_ol2yNSSWRgT9i4Hp65EV3F6wAhnZUYZZ1BQ6cI_Pri9Aj9A99EoyJ8igI_tJFMEwrTiKP7DXK3b0x1nLlLBEeEU5Frzx3ORocYOvxvw58Tm5M3g_ll4_jz_vkZpO9gTl-T8jO6qw2TwEUrrJnbrX_ApUHUYo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phylogeography+of+ninespine+sticklebacks+%28Pungitius+pungitius%29+in+North+America%3A+glacial+refugia+and+the+origins+of+adaptive+traits&rft.jtitle=Molecular+ecology&rft.au=ALDENHOVEN%2C+JACLYN+T.&rft.au=MILLER%2C+MATTHEW+A.&rft.au=CORNELI%2C+PATRICE+SHOWERS&rft.au=SHAPIRO%2C+MICHAEL+D.&rft.date=2010-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=19&rft.issue=18&rft.spage=4061&rft.epage=4076&rft_id=info:doi/10.1111%2Fj.1365-294X.2010.04801.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_MWRSW3XT_P |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |