Robust Segmentation of Overlapping Cells in Histopathology Specimens Using Parallel Seed Detection and Repulsive Level Set

Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer. Automated segmentation of the cells comprising imaged tissue microarrays (TMAs) is a prerequisite for any subsequent quantitative analysis. Unfor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 59; no. 3; pp. 754 - 765
Main Authors Qi, Xin, Xing, Fuyong , Foran, David J., Yang, Lin
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2011.2179298

Cover

Abstract Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer. Automated segmentation of the cells comprising imaged tissue microarrays (TMAs) is a prerequisite for any subsequent quantitative analysis. Unfortunately, crowding and overlapping of cells present significant challenges for most traditional segmentation algorithms. In this paper, we propose a novel algorithm that can reliably separate touching cells in hematoxylin-stained breast TMA specimens that have been acquired using a standard RGB camera. The algorithm is composed of two steps. It begins with a fast, reliable object center localization approach that utilizes single-path voting followed by mean-shift clustering. Next, the contour of each cell is obtained using a level set algorithm based on an interactive model. We compared the experimental results with those reported in the most current literature. Finally, performance was evaluated by comparing the pixel-wise accuracy provided by human experts with that produced by the new automated segmentation algorithm. The method was systematically tested on 234 image patches exhibiting dense overlap and containing more than 2200 cells. It was also tested on whole slide images including blood smears and TMAs containing thousands of cells. Since the voting step of the seed detection algorithm is well suited for parallelization, a parallel version of the algorithm was implemented using graphic processing units (GPU) that resulted in significant speedup over the C/C++ implementation.
AbstractList Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer. Automated segmentation of the cells comprising imaged tissue microarrays (TMAs) is a prerequisite for any subsequent quantitative analysis. Unfortunately, crowding and overlapping of cells present significant challenges for most traditional segmentation algorithms. In this paper, we propose a novel algorithm that can reliably separate touching cells in hematoxylin-stained breast TMA specimens that have been acquired using a standard RGB camera. The algorithm is composed of two steps. It begins with a fast, reliable object center localization approach that utilizes single-path voting followed by mean-shift clustering. Next, the contour of each cell is obtained using a level set algorithm based on an interactive model. We compared the experimental results with those reported in the most current literature. Finally, performance was evaluated by comparing the pixel-wise accuracy provided by human experts with that produced by the new automated segmentation algorithm. The method was systematically tested on 234 image patches exhibiting dense overlap and containing more than 2200 cells. It was also tested on whole slide images including blood smears and TMAs containing thousands of cells. Since the voting step of the seed detection algorithm is well suited for parallelization, a parallel version of the algorithm was implemented using graphic processing units (GPU) that resulted in significant speedup over the C/C++ implementation.Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer. Automated segmentation of the cells comprising imaged tissue microarrays (TMAs) is a prerequisite for any subsequent quantitative analysis. Unfortunately, crowding and overlapping of cells present significant challenges for most traditional segmentation algorithms. In this paper, we propose a novel algorithm that can reliably separate touching cells in hematoxylin-stained breast TMA specimens that have been acquired using a standard RGB camera. The algorithm is composed of two steps. It begins with a fast, reliable object center localization approach that utilizes single-path voting followed by mean-shift clustering. Next, the contour of each cell is obtained using a level set algorithm based on an interactive model. We compared the experimental results with those reported in the most current literature. Finally, performance was evaluated by comparing the pixel-wise accuracy provided by human experts with that produced by the new automated segmentation algorithm. The method was systematically tested on 234 image patches exhibiting dense overlap and containing more than 2200 cells. It was also tested on whole slide images including blood smears and TMAs containing thousands of cells. Since the voting step of the seed detection algorithm is well suited for parallelization, a parallel version of the algorithm was implemented using graphic processing units (GPU) that resulted in significant speedup over the C/C++ implementation.
Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer. Automated segmentation of the cells comprising imaged tissue microarrays (TMAs) is a prerequisite for any subsequent quantitative analysis. Unfortunately, crowding and overlapping of cells present significant challenges for most traditional segmentation algorithms. In this paper, we propose a novel algorithm that can reliably separate touching cells in hematoxylin-stained breast TMA specimens that have been acquired using a standard RGB camera. The algorithm is composed of two steps. It begins with a fast, reliable object center localization approach that utilizes single-path voting followed by mean-shift clustering. Next, the contour of each cell is obtained using a level set algorithm based on an interactive model. We compared the experimental results with those reported in the most current literature. Finally, performance was evaluated by comparing the pixel-wise accuracy provided by human experts with that produced by the new automated segmentation algorithm. The method was systematically tested on 234 image patches exhibiting dense overlap and containing more than 2200 cells. It was also tested on whole slide images including blood smears and TMAs containing thousands of cells. Since the voting step of the seed detection algorithm is well suited for parallelization, a parallel version of the algorithm was implemented using graphic processing units (GPU) that resulted in significant speedup over the C/C++ implementation.
Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer. Automated segmentation of the cells comprising imaged tissue microarrays (TMAs) is a prerequisite for any subsequent quantitative analysis. Unfortunately, crowding and overlapping of cells present significant challenges for most traditional segmentation algorithms. In this paper, we propose a novel algorithm that can reliably separate touching cells in hematoxylin-stained breast TMA specimens that have been acquired using a standard RGB camera. The algorithm is composed of two steps. It begins with a fast, reliable object center localization approach that utilizes single-path voting followed by mean-shift clustering. Next, the contour of each cell is obtained using a level set algorithm based on an interactive model. We compared the experimental results with those reported in the most current literature. Finally, performance was evaluated by comparing the pixel-wise accuracy provided by human experts with that produced by the new automated segmentation algorithm. The method was systematically tested on [Formula Omitted] image patches exhibiting dense overlap and containing more than [Formula Omitted] cells. It was also tested on whole slide images including blood smears and TMAs containing thousands of cells. Since the voting step of the seed detection algorithm is well suited for parallelization, a parallel version of the algorithm was implemented using graphic processing units (GPU) that resulted in significant speedup over the C/C++ implementation.
Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer. Automated segmentation of the cells comprising imaged tissue microarrays (TMA) is a prerequisite for any subsequent quantitative analysis. Unfortunately, crowding and overlapping of cells present significant challenges for most traditional segmentation algorithms. In this paper, we propose a novel algorithm which can reliably separate touching cells in hematoxylin stained breast TMA specimens which have been acquired using a standard RGB camera. The algorithm is composed of two steps. It begins with a fast, reliable object center localization approach which utilizes single-path voting followed by mean-shift clustering. Next, the contour of each cell is obtained using a level set algorithm based on an interactive model. We compared the experimental results with those reported in the most current literature. Finally, performance was evaluated by comparing the pixel-wise accuracy provided by human experts with that produced by the new automated segmentation algorithm. The method was systematically tested on 234 image patches exhibiting dense overlap and containing more than 2200 cells. It was also tested on whole slide images including blood smears and tissue microarrays containing thousands of cells. Since the voting step of the seed detection algorithm is well suited for parallelization, a parallel version of the algorithm was implemented using graphic processing units (GPU) which resulted in significant speed-up over the C/C++ implementation.
Author Qi, Xin
Xing, Fuyong
Foran, David J.
Yang, Lin
Author_xml – sequence: 1
  givenname: Xin
  surname: Qi
  fullname: Qi, Xin
  email: xinqi2000@gmail.com
  organization: Department of Pathology and Laboratory Medicine, the Center for Biomedical Imaging and Informatics, and The Cancer Institute of New Jersey, University of Medicine and Dentistry New Jersey (UMDNJ)-Robert Wood Johnson Medical School, Piscataway, USA
– sequence: 2
  givenname: Fuyong 
  surname: Xing
  fullname: Xing, Fuyong 
  email: edmundxing@gmail.com
  organization: Department of Electrical and Computer Engineering, Rutgers University, Piscataway, USA
– sequence: 3
  givenname: David J.
  surname: Foran
  fullname: Foran, David J.
  email: djf.foran@gmail.com
  organization: Department of Pathology and Laboratory Medicine, the Center for Biomedical Imaging and Informatics, and The Cancer Institute of New Jersey, University of Medicine and Dentistry New Jersey (UMDNJ)-Robert Wood Johnson Medical School, Piscataway, USA
– sequence: 4
  givenname: Lin
  surname: Yang
  fullname: Yang, Lin
  email: linyang711@gmail.com
  organization: Department of Radiology and the Center for Biomedical Imaging and Informatics, University of Medicine and Dentistry New Jersey (UMDNJ)-Robert Wood Johnson Medical School, Piscataway, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25565165$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22167559$$D View this record in MEDLINE/PubMed
BookMark eNqNkktvEzEUhS1URB_wAxASspAQbBL8GNvjDRKEQpGCitqwthznTurKsafjmUjl1-M0IUAXFSvL9neOfe89x-ggpggIPadkTCnR72Yfv52OGaF0zKjSTNeP0BEVoh4xwekBOiKE1qNyXh2i45yvy7aqK_kEHTJGpRJCH6GfF2k-5B5fwnIFsbe9TxGnBp-voQu2bX1c4gmEkLGP-MznPrW2v0ohLW_xZQvOF1XGP_KG-247GwKEYgYL_Al6cHd2Ni7wBbRDyH4NeArrO6R_ih43NmR4tltP0Ozz6WxyNpqef_k6-TAdOSF5P2okh5o1nDstFGu05lY0DZVsTh0RQsyVkk5wJipHnSBzQjQHAdYSUile8RP0fmvbDvMVLFypsnzTtJ1f2e7WJOvNvzfRX5llWhsuhVCqLgZvdgZduhkg92blsys9sRHSkI1mUhPFmfwPklVaS04L-fZBsoyH8lqVORX01T30Og1dLB3b-BFKFOEFevl3kfvqfg-6AK93gM3Ohqaz0fn8hxNCCipF4eiWc13KuYNmj1BiNqEzm9CZTejMLnRFo-5pnN8mqfTThweVL7ZKDwD7lyQpTSKU_wLMv-OE
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_patrec_2016_03_010
crossref_primary_10_1109_JBHI_2017_2694344
crossref_primary_10_1038_srep33985
crossref_primary_10_7599_hmr_2017_37_2_77
crossref_primary_10_1007_s11042_019_7468_9
crossref_primary_10_1038_srep12089
crossref_primary_10_3389_fnana_2014_00027
crossref_primary_10_1109_JBHI_2013_2297030
crossref_primary_10_1016_j_media_2017_07_003
crossref_primary_10_1016_j_neucom_2018_05_013
crossref_primary_10_1109_TIM_2023_3277975
crossref_primary_10_1109_RBME_2019_2917780
crossref_primary_10_1016_j_compmedimag_2015_04_002
crossref_primary_10_1016_j_media_2013_07_007
crossref_primary_10_1038_s41598_017_14699_w
crossref_primary_10_1186_s12859_020_3431_z
crossref_primary_10_1038_srep04970
crossref_primary_10_1038_s41598_023_49275_y
crossref_primary_10_1109_TMI_2015_2458702
crossref_primary_10_1007_s11517_021_02388_w
crossref_primary_10_1038_s41598_018_22091_5
crossref_primary_10_1007_s40139_020_00217_7
crossref_primary_10_1371_journal_pone_0104437
crossref_primary_10_1109_TBME_2013_2291703
crossref_primary_10_1007_s11432_016_9018_7
crossref_primary_10_1007_s11760_016_0953_y
crossref_primary_10_1109_TIP_2015_2389619
crossref_primary_10_1186_s12859_016_1252_x
crossref_primary_10_1186_1471_2105_15_287
crossref_primary_10_1016_j_knosys_2019_03_031
crossref_primary_10_3390_cancers13010011
crossref_primary_10_1002_cyto_a_23049
crossref_primary_10_1109_TMI_2016_2527740
crossref_primary_10_4103_jpi_jpi_82_18
crossref_primary_10_1007_s11831_020_09463_9
crossref_primary_10_1186_s12859_019_2880_8
crossref_primary_10_1109_TMI_2019_2891305
crossref_primary_10_1016_j_neucom_2019_07_080
crossref_primary_10_1109_ACCESS_2021_3080429
crossref_primary_10_1016_j_procs_2016_06_029
crossref_primary_10_1109_JBHI_2016_2544245
crossref_primary_10_1016_j_bbe_2016_06_006
crossref_primary_10_1038_s42256_022_00595_0
crossref_primary_10_1016_j_media_2023_102969
crossref_primary_10_1109_TBME_2014_2303852
crossref_primary_10_1016_j_neucom_2019_09_083
crossref_primary_10_1007_s11042_018_6431_5
crossref_primary_10_1039_c3lc50535a
crossref_primary_10_1109_TCBB_2018_2875684
crossref_primary_10_1111_jmi_12043
crossref_primary_10_3389_fbioe_2019_00226
crossref_primary_10_1515_dx_2018_0064
crossref_primary_10_3390_bioengineering12010085
crossref_primary_10_4103_2153_3539_192810
crossref_primary_10_1109_JBHI_2014_2356402
crossref_primary_10_1080_00207160_2020_1817411
crossref_primary_10_1523_ENEURO_0195_17_2017
crossref_primary_10_3390_s140815244
crossref_primary_10_1016_j_cmpb_2017_08_010
crossref_primary_10_15701_kcgs_2016_22_3_21
crossref_primary_10_1109_TMI_2013_2255309
crossref_primary_10_1016_j_neucom_2016_09_070
crossref_primary_10_3390_cancers14051199
crossref_primary_10_1016_j_bbe_2015_11_002
crossref_primary_10_1371_journal_pone_0062579
crossref_primary_10_1016_j_compmedimag_2016_01_002
crossref_primary_10_1117_1_OE_55_5_053105
crossref_primary_10_1177_1010428317694550
crossref_primary_10_1016_j_irbm_2019_06_001
crossref_primary_10_1016_j_sigpro_2015_11_011
crossref_primary_10_1186_s12859_017_1817_3
crossref_primary_10_1002_cpcb_88
crossref_primary_10_1109_ACCESS_2019_2924744
crossref_primary_10_1038_labinvest_2014_153
crossref_primary_10_1016_j_cagx_2019_100004
crossref_primary_10_1007_s11554_015_0517_3
crossref_primary_10_1007_s13755_020_00131_7
crossref_primary_10_1109_RBME_2013_2295804
crossref_primary_10_3390_ijgi5060079
crossref_primary_10_1109_TCBB_2019_2935718
crossref_primary_10_3389_fmed_2025_1546452
crossref_primary_10_1186_s40425_018_0326_x
crossref_primary_10_1117_1_JMI_6_1_017501
crossref_primary_10_1117_1_JMI_6_1_017502
crossref_primary_10_1016_j_micron_2015_07_013
crossref_primary_10_1109_TCBB_2013_151
crossref_primary_10_1109_TMI_2015_2481436
crossref_primary_10_1109_TMI_2017_2698525
crossref_primary_10_1109_TMI_2016_2520502
crossref_primary_10_1016_j_bbe_2014_08_002
crossref_primary_10_1038_srep01414
crossref_primary_10_3389_fonc_2021_763527
crossref_primary_10_1051_mmnp_20149512
crossref_primary_10_4018_IJSIR_302611
crossref_primary_10_1186_1471_2105_15_272
crossref_primary_10_1109_TBME_2017_2649485
crossref_primary_10_1016_j_measurement_2020_108476
crossref_primary_10_1186_s13640_015_0076_3
crossref_primary_10_1587_transinf_2017EDP7326
crossref_primary_10_1371_journal_pone_0162053
crossref_primary_10_1109_TMI_2018_2874104
crossref_primary_10_1186_1471_2105_15_310
crossref_primary_10_1016_j_cmpb_2018_08_005
crossref_primary_10_1109_MSMC_2018_2794559
crossref_primary_10_1002_ima_23111
crossref_primary_10_1007_s11831_023_10015_0
crossref_primary_10_4015_S1016237214400031
crossref_primary_10_1016_j_cpc_2017_10_008
crossref_primary_10_1111_exsy_13366
crossref_primary_10_1109_RBME_2016_2515127
crossref_primary_10_1002_cyto_a_22824
crossref_primary_10_1002_ima_22309
crossref_primary_10_3390_app10227982
crossref_primary_10_1016_j_media_2015_10_005
crossref_primary_10_1016_j_compbiomed_2017_07_018
crossref_primary_10_1088_1361_6560_ab0a90
crossref_primary_10_1016_j_neucom_2014_01_061
Cites_doi 10.1016/j.compbiomed.2004.06.003
10.1038/nm0798-844
10.1309/PEF8-GL6F-YWMC-AG56
10.1002/ijc.21004
10.3322/caac.20073
10.1007/978-3-540-76725-1_79
10.1023/A:1020874308076
10.1002/cyto.a.20664
10.1109/ISBI.2004.1398578
10.1111/j.1365-2818.2008.01974.x
10.1186/1471-2121-8-40
10.1109/TIP.2005.852790
10.1109/ISBI.2009.5193304
10.1109/ISBI.2008.4541167
10.1155/2002/821782
10.1109/TITB.2007.898006
10.1109/ISBI.2008.4540990
10.1109/TBME.2009.2035102
10.1093/hmg/10.7.657
10.1016/0021-9991(88)90002-2
10.1136/jcp.56.6.433
10.1109/TIP.2007.891154
10.1002/cyto.a.20099
10.1109/BMEI.2008.262
10.1109/ISBI.2009.5192968
10.1109/TITB.2004.828891
10.1109/ISBI.2009.5193170
10.1109/ISBI.2009.5193169
10.1109/83.902291
10.1109/TPAMI.2006.57
10.1136/jcp.2004.018739
10.1006/jcph.1996.0167
10.1007/11569541_54
10.1158/0008-5472.CAN-05-1783
10.1109/34.368173
10.1038/labinvest.3780204
10.1002/cyto.a.20876
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2011.2179298
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database
Materials Research Database
Engineering Research Database


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Applied Sciences
EISSN 1558-2531
EndPage 765
ExternalDocumentID PMC3655778
2589001551
22167559
25565165
10_1109_TBME_2011_2179298
6099601
Genre orig-research
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA156386
– fundername: NLM NIH HHS
  grantid: R01 LM009239
– fundername: NCI NIH HHS
  grantid: 9R01CA156386-05A1
– fundername: NLM NIH HHS
  grantid: 3R01LM009239-03S2
– fundername: NLM NIH HHS
  grantid: R01 LM011119
– fundername: NCI NIH HHS
  grantid: P30 CA072720
– fundername: NLM NIH HHS
  grantid: 5R01LM009239-04
– fundername: National Cancer Institute : NCI
  grantid: R01 CA156386 || CA
– fundername: National Library of Medicine : NLM
  grantid: R01 LM009239 || LM
– fundername: National Library of Medicine : NLM
  grantid: R01 LM011119 || LM
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c563t-f63e82f33c9572f993a5ff162b1c0555b776c53254c1c50b0093e5eaa0047343
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Tue Sep 30 16:44:12 EDT 2025
Tue Oct 07 09:52:46 EDT 2025
Wed Oct 01 14:34:33 EDT 2025
Sat Sep 27 18:40:07 EDT 2025
Mon Jun 30 08:32:36 EDT 2025
Mon Jul 21 06:03:40 EDT 2025
Mon Jul 21 09:14:48 EDT 2025
Thu Apr 24 22:58:23 EDT 2025
Wed Oct 01 02:57:14 EDT 2025
Wed Aug 27 02:53:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Anatomic pathology
Histopathology
mean shift
seed detection
Segmentation
Image processing
Level set
Parallel processing
Parallel computation
Diagnosis
parallel computing
Biomedical engineering
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-f63e82f33c9572f993a5ff162b1c0555b776c53254c1c50b0093e5eaa0047343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ObjectType-Feature-1
PMID 22167559
PQID 922010703
PQPubID 85474
PageCount 12
ParticipantIDs proquest_miscellaneous_926907326
ieee_primary_6099601
pascalfrancis_primary_25565165
proquest_miscellaneous_1671387221
crossref_primary_10_1109_TBME_2011_2179298
proquest_miscellaneous_922499631
pubmed_primary_22167559
proquest_journals_922010703
crossref_citationtrail_10_1109_TBME_2011_2179298
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3655778
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
afework (ref9) 1998
ref34
ref12
ref37
ref36
ref14
ref31
ref33
ref11
ref32
ref10
wen (ref23) 2009
ref2
ref1
(ref39) 0
ref17
ref38
ref16
ref19
ref18
yang (ref26) 2008; 5241
elter (ref30) 2006
rimm (ref3) 2001; 7
ref24
ref45
ref25
ref20
ref42
ref41
ref22
ref21
ref43
(ref15) 0
ref28
ref27
ref29
ref8
ref7
parker (ref6) 2002; 117
ref4
ref5
ref40
(ref44) 0
References_xml – ident: ref16
  doi: 10.1016/j.compbiomed.2004.06.003
– ident: ref2
  doi: 10.1038/nm0798-844
– volume: 117
  start-page: 723
  year: 2002
  ident: ref6
  article-title: Assessment of interlaboratory variation in the immunohistochemical determination of estrogen receptor status using a breast cancer tissue microarray
  publication-title: Amer J Clin Pathol
  doi: 10.1309/PEF8-GL6F-YWMC-AG56
– ident: ref7
  doi: 10.1002/ijc.21004
– ident: ref1
  doi: 10.3322/caac.20073
– ident: ref25
  doi: 10.1007/978-3-540-76725-1_79
– ident: ref35
  doi: 10.1023/A:1020874308076
– ident: ref19
  doi: 10.1002/cyto.a.20664
– ident: ref36
  doi: 10.1109/ISBI.2004.1398578
– ident: ref28
  doi: 10.1111/j.1365-2818.2008.01974.x
– ident: ref22
  doi: 10.1186/1471-2121-8-40
– start-page: 9
  year: 2009
  ident: ref23
  article-title: A delaunay triangulation approach for segmenting clumps on nuclei
  publication-title: Proc IEEE Int Symp Biomed Imag
– ident: ref37
  doi: 10.1109/TIP.2005.852790
– year: 0
  ident: ref44
– ident: ref41
  doi: 10.1109/ISBI.2009.5193304
– ident: ref13
  doi: 10.1109/ISBI.2008.4541167
– ident: ref17
  doi: 10.1155/2002/821782
– ident: ref38
  doi: 10.1109/TITB.2007.898006
– ident: ref12
  doi: 10.1109/ISBI.2008.4540990
– ident: ref31
  doi: 10.1109/TBME.2009.2035102
– ident: ref5
  doi: 10.1093/hmg/10.7.657
– ident: ref34
  doi: 10.1016/0021-9991(88)90002-2
– ident: ref10
  doi: 10.1136/jcp.56.6.433
– ident: ref42
  doi: 10.1109/TIP.2007.891154
– ident: ref18
  doi: 10.1002/cyto.a.20099
– volume: 5241
  start-page: 833
  year: 2008
  ident: ref26
  article-title: Automatic image analysis of histopathology specimens using concave vertex graph
  publication-title: Proc Int Conf Med Image Comput Comput Assist Intervent
– ident: ref29
  doi: 10.1109/BMEI.2008.262
– start-page: 912
  year: 1998
  ident: ref9
  article-title: Digital dynamic telepathology-The virtual microscope
  publication-title: Proc Amer Med Informat Assoc
– ident: ref14
  doi: 10.1109/ISBI.2009.5192968
– ident: ref40
  doi: 10.1109/TITB.2004.828891
– ident: ref27
  doi: 10.1109/ISBI.2009.5193170
– ident: ref24
  doi: 10.1109/ISBI.2009.5193169
– ident: ref43
  doi: 10.1109/83.902291
– ident: ref45
  doi: 10.1109/TPAMI.2006.57
– start-page: 46
  year: 2006
  ident: ref30
  article-title: Maximum-intensity-linking for segmentation of fluorescence-stained cells
  publication-title: Proc Microsc Image Anal Appl Biol
– ident: ref11
  doi: 10.1136/jcp.2004.018739
– ident: ref33
  doi: 10.1006/jcph.1996.0167
– year: 0
  ident: ref15
– ident: ref21
  doi: 10.1007/11569541_54
– ident: ref8
  doi: 10.1158/0008-5472.CAN-05-1783
– volume: 7
  start-page: 24
  year: 2001
  ident: ref3
  article-title: Tissue microarray: A new technology for amplification of tissue resources
  publication-title: Cancer J
– year: 0
  ident: ref39
– ident: ref32
  doi: 10.1109/34.368173
– ident: ref4
  doi: 10.1038/labinvest.3780204
– ident: ref20
  doi: 10.1002/cyto.a.20876
SSID ssj0014846
Score 2.4794052
Snippet Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer....
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 754
SubjectTerms Algorithm design and analysis
Algorithms
Applied sciences
Automated
Automation
Biological tissues
Breast
Breast Neoplasms - pathology
Early Diagnosis
Exact sciences and technology
Female
Graphics processing unit
Histological Techniques
Histopathology
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image segmentation
Information, signal and communications theory
Kernel
Level set
mean shift
Microarray Analysis - methods
parallel computing
Pattern Recognition, Automated - methods
Quantitative analysis
Reproducibility of Results
seed detection
Seeds
Segmentation
Sensitivity and Specificity
Signal processing
Staining and Labeling
Studies
Telecommunications and information theory
Voting
Title Robust Segmentation of Overlapping Cells in Histopathology Specimens Using Parallel Seed Detection and Repulsive Level Set
URI https://ieeexplore.ieee.org/document/6099601
https://www.ncbi.nlm.nih.gov/pubmed/22167559
https://www.proquest.com/docview/922010703
https://www.proquest.com/docview/1671387221
https://www.proquest.com/docview/922499631
https://www.proquest.com/docview/926907326
https://pubmed.ncbi.nlm.nih.gov/PMC3655778
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VHhAc-GihhEJlJE6ItEkcO8kRSqsKsYBgkXqLHO-4VCxZ1CQc-uuZcbJhtyoVt0ieRHH8HM94nt8AvKRFKsPKIIE3N2HqYhWaFG0oC6ycUYqCOa_2-VGffEvfn6rTDXg9noVBRE8-w32-9Ln82cJ2vFV2oCPWEqFY51aW6_6s1pgxSPP-UE4U0wROinTIYMZRcTB9OznqxTrJ_6Y2rtGXJDG5yqxQurIc-foqzI40DX0g11e2uM71vMqgXFmSju_DZNmZnonyY79rq317eUXn8X97-wDuDb6peNOD6SFsYL0Fd1cUC7fg9mTIxW_D5ZdF1TWt-IpnP4cDTLVYOPHpN28RsuzDmTjE-bwR57XwaiRc_djv4gtf9Z7uaoSnLIjP5oJruszpYTgT77D1BLFamHomKETo5kyyFx-Y4EQm7SOYHh9ND0_CoZJDaJWWbei0xDxxUtpCZYkjn8go52KdVLFlxbEqy7RVkoJVG1sVVbzPggqNYTFLmcrHsFkvanwCojAzLDS9S565NLJRjjPFboopXOV0EQcQLceztIPKORfbmJc-2omKktFQMhrKAQ0BvBpv-dVLfNxkvM0jNRoOgxTA3hpoxnZWeFOxVgHsLlFUDn-JpiwS5iLQPzeAF2MrTW_O2ZgaF11TEkpjmWcE1wDEP2zoMRS3anmjCe-CkKsewE6P3L9vOMyEALI1TI8GLEC-3lKff_dC5FIrlWX50-u_yS7coe4lPWHvGWy2Fx0-Jw-urfb81P0DluhCiA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1VReLjwEdLIRSKkTghsk3i2EmOUFotsFsQLFJvkePYpWLJoibh0F_PjJMNu1WpuEXyJIrj53jG8_wG4CUuUokplEHwpsqPbSh8FRvt88wUVgmBwZxT-zyW42_xhxNxsgGvh7MwxhhHPjMjunS5_HKhW9oq25cBaYlgrHNDxHEsutNaQ84gTrtjOUGIUzjK4j6HGQbZ_uzt9LCT60QPHNuoSl8Uhegsk0bpyoLkKqwQP1LV-IlsV9viKufzModyZVE6ugfTZXc6LsqPUdsUI31xSenxf_t7H-723il708HpAWyYagvurGgWbsHNaZ-N34aLL4uirRv21Zz-7I8wVWxh2afftElIwg-n7MDM5zU7q5jTI6H6x24fn7m693hXzRxpgX1W51TVZY4PMyV7ZxpHEauYqkqGQUI7J5o9mxDFCU2ahzA7OpwdjP2-loOvheSNbyU3aWQ515lIIotekRLWhjIqQk2aY0WSSC04hqs61CIoaKfFCKMUyVnymO_AZrWozGNgmSpNJvFd0sTGgQ5SUwpyVFRmCyuz0INgOZ657nXOqdzGPHfxTpDlhIac0JD3aPDg1XDLr07k4zrjbRqpwbAfJA_21kAztJPGmwil8GB3iaK8_0_UeRYRGwH_uh68GFpxglPWRlVm0dY5ojTkaYJw9YD9wwYfg5Gr5Nea0D4IOusePOqQ-_cN-5ngQbKG6cGAJMjXW6qz706KnEshkiR9cvU3eQ63xrPpJJ-8P_64C7exq1FH33sKm815a56hP9cUe24a_wGJ5UXV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Segmentation+of+Overlapping+Cells+in+Histopathology+Specimens+Using+Parallel+Seed+Detection+and+Repulsive+Level+Set&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Qi%2C+Xin&rft.au=Xing%2C+Fuyong&rft.au=an%2C+David+J&rft.au=Yang%2C+Lin&rft.date=2012-03-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=59&rft.issue=3&rft.spage=754&rft.epage=765&rft_id=info:doi/10.1109%2FTBME.2011.2179298&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon