Robust Segmentation of Overlapping Cells in Histopathology Specimens Using Parallel Seed Detection and Repulsive Level Set
Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer. Automated segmentation of the cells comprising imaged tissue microarrays (TMAs) is a prerequisite for any subsequent quantitative analysis. Unfor...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 59; no. 3; pp. 754 - 765 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.03.2012
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 1558-2531 |
| DOI | 10.1109/TBME.2011.2179298 |
Cover
| Abstract | Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer. Automated segmentation of the cells comprising imaged tissue microarrays (TMAs) is a prerequisite for any subsequent quantitative analysis. Unfortunately, crowding and overlapping of cells present significant challenges for most traditional segmentation algorithms. In this paper, we propose a novel algorithm that can reliably separate touching cells in hematoxylin-stained breast TMA specimens that have been acquired using a standard RGB camera. The algorithm is composed of two steps. It begins with a fast, reliable object center localization approach that utilizes single-path voting followed by mean-shift clustering. Next, the contour of each cell is obtained using a level set algorithm based on an interactive model. We compared the experimental results with those reported in the most current literature. Finally, performance was evaluated by comparing the pixel-wise accuracy provided by human experts with that produced by the new automated segmentation algorithm. The method was systematically tested on 234 image patches exhibiting dense overlap and containing more than 2200 cells. It was also tested on whole slide images including blood smears and TMAs containing thousands of cells. Since the voting step of the seed detection algorithm is well suited for parallelization, a parallel version of the algorithm was implemented using graphic processing units (GPU) that resulted in significant speedup over the C/C++ implementation. |
|---|---|
| AbstractList | Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer. Automated segmentation of the cells comprising imaged tissue microarrays (TMAs) is a prerequisite for any subsequent quantitative analysis. Unfortunately, crowding and overlapping of cells present significant challenges for most traditional segmentation algorithms. In this paper, we propose a novel algorithm that can reliably separate touching cells in hematoxylin-stained breast TMA specimens that have been acquired using a standard RGB camera. The algorithm is composed of two steps. It begins with a fast, reliable object center localization approach that utilizes single-path voting followed by mean-shift clustering. Next, the contour of each cell is obtained using a level set algorithm based on an interactive model. We compared the experimental results with those reported in the most current literature. Finally, performance was evaluated by comparing the pixel-wise accuracy provided by human experts with that produced by the new automated segmentation algorithm. The method was systematically tested on 234 image patches exhibiting dense overlap and containing more than 2200 cells. It was also tested on whole slide images including blood smears and TMAs containing thousands of cells. Since the voting step of the seed detection algorithm is well suited for parallelization, a parallel version of the algorithm was implemented using graphic processing units (GPU) that resulted in significant speedup over the C/C++ implementation.Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer. Automated segmentation of the cells comprising imaged tissue microarrays (TMAs) is a prerequisite for any subsequent quantitative analysis. Unfortunately, crowding and overlapping of cells present significant challenges for most traditional segmentation algorithms. In this paper, we propose a novel algorithm that can reliably separate touching cells in hematoxylin-stained breast TMA specimens that have been acquired using a standard RGB camera. The algorithm is composed of two steps. It begins with a fast, reliable object center localization approach that utilizes single-path voting followed by mean-shift clustering. Next, the contour of each cell is obtained using a level set algorithm based on an interactive model. We compared the experimental results with those reported in the most current literature. Finally, performance was evaluated by comparing the pixel-wise accuracy provided by human experts with that produced by the new automated segmentation algorithm. The method was systematically tested on 234 image patches exhibiting dense overlap and containing more than 2200 cells. It was also tested on whole slide images including blood smears and TMAs containing thousands of cells. Since the voting step of the seed detection algorithm is well suited for parallelization, a parallel version of the algorithm was implemented using graphic processing units (GPU) that resulted in significant speedup over the C/C++ implementation. Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer. Automated segmentation of the cells comprising imaged tissue microarrays (TMAs) is a prerequisite for any subsequent quantitative analysis. Unfortunately, crowding and overlapping of cells present significant challenges for most traditional segmentation algorithms. In this paper, we propose a novel algorithm that can reliably separate touching cells in hematoxylin-stained breast TMA specimens that have been acquired using a standard RGB camera. The algorithm is composed of two steps. It begins with a fast, reliable object center localization approach that utilizes single-path voting followed by mean-shift clustering. Next, the contour of each cell is obtained using a level set algorithm based on an interactive model. We compared the experimental results with those reported in the most current literature. Finally, performance was evaluated by comparing the pixel-wise accuracy provided by human experts with that produced by the new automated segmentation algorithm. The method was systematically tested on 234 image patches exhibiting dense overlap and containing more than 2200 cells. It was also tested on whole slide images including blood smears and TMAs containing thousands of cells. Since the voting step of the seed detection algorithm is well suited for parallelization, a parallel version of the algorithm was implemented using graphic processing units (GPU) that resulted in significant speedup over the C/C++ implementation. Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer. Automated segmentation of the cells comprising imaged tissue microarrays (TMAs) is a prerequisite for any subsequent quantitative analysis. Unfortunately, crowding and overlapping of cells present significant challenges for most traditional segmentation algorithms. In this paper, we propose a novel algorithm that can reliably separate touching cells in hematoxylin-stained breast TMA specimens that have been acquired using a standard RGB camera. The algorithm is composed of two steps. It begins with a fast, reliable object center localization approach that utilizes single-path voting followed by mean-shift clustering. Next, the contour of each cell is obtained using a level set algorithm based on an interactive model. We compared the experimental results with those reported in the most current literature. Finally, performance was evaluated by comparing the pixel-wise accuracy provided by human experts with that produced by the new automated segmentation algorithm. The method was systematically tested on [Formula Omitted] image patches exhibiting dense overlap and containing more than [Formula Omitted] cells. It was also tested on whole slide images including blood smears and TMAs containing thousands of cells. Since the voting step of the seed detection algorithm is well suited for parallelization, a parallel version of the algorithm was implemented using graphic processing units (GPU) that resulted in significant speedup over the C/C++ implementation. Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer. Automated segmentation of the cells comprising imaged tissue microarrays (TMA) is a prerequisite for any subsequent quantitative analysis. Unfortunately, crowding and overlapping of cells present significant challenges for most traditional segmentation algorithms. In this paper, we propose a novel algorithm which can reliably separate touching cells in hematoxylin stained breast TMA specimens which have been acquired using a standard RGB camera. The algorithm is composed of two steps. It begins with a fast, reliable object center localization approach which utilizes single-path voting followed by mean-shift clustering. Next, the contour of each cell is obtained using a level set algorithm based on an interactive model. We compared the experimental results with those reported in the most current literature. Finally, performance was evaluated by comparing the pixel-wise accuracy provided by human experts with that produced by the new automated segmentation algorithm. The method was systematically tested on 234 image patches exhibiting dense overlap and containing more than 2200 cells. It was also tested on whole slide images including blood smears and tissue microarrays containing thousands of cells. Since the voting step of the seed detection algorithm is well suited for parallelization, a parallel version of the algorithm was implemented using graphic processing units (GPU) which resulted in significant speed-up over the C/C++ implementation. |
| Author | Qi, Xin Xing, Fuyong Foran, David J. Yang, Lin |
| Author_xml | – sequence: 1 givenname: Xin surname: Qi fullname: Qi, Xin email: xinqi2000@gmail.com organization: Department of Pathology and Laboratory Medicine, the Center for Biomedical Imaging and Informatics, and The Cancer Institute of New Jersey, University of Medicine and Dentistry New Jersey (UMDNJ)-Robert Wood Johnson Medical School, Piscataway, USA – sequence: 2 givenname: Fuyong surname: Xing fullname: Xing, Fuyong email: edmundxing@gmail.com organization: Department of Electrical and Computer Engineering, Rutgers University, Piscataway, USA – sequence: 3 givenname: David J. surname: Foran fullname: Foran, David J. email: djf.foran@gmail.com organization: Department of Pathology and Laboratory Medicine, the Center for Biomedical Imaging and Informatics, and The Cancer Institute of New Jersey, University of Medicine and Dentistry New Jersey (UMDNJ)-Robert Wood Johnson Medical School, Piscataway, USA – sequence: 4 givenname: Lin surname: Yang fullname: Yang, Lin email: linyang711@gmail.com organization: Department of Radiology and the Center for Biomedical Imaging and Informatics, University of Medicine and Dentistry New Jersey (UMDNJ)-Robert Wood Johnson Medical School, Piscataway, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25565165$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22167559$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktvEzEUhS1URB_wAxASspAQbBL8GNvjDRKEQpGCitqwthznTurKsafjmUjl1-M0IUAXFSvL9neOfe89x-ggpggIPadkTCnR72Yfv52OGaF0zKjSTNeP0BEVoh4xwekBOiKE1qNyXh2i45yvy7aqK_kEHTJGpRJCH6GfF2k-5B5fwnIFsbe9TxGnBp-voQu2bX1c4gmEkLGP-MznPrW2v0ohLW_xZQvOF1XGP_KG-247GwKEYgYL_Al6cHd2Ni7wBbRDyH4NeArrO6R_ih43NmR4tltP0Ozz6WxyNpqef_k6-TAdOSF5P2okh5o1nDstFGu05lY0DZVsTh0RQsyVkk5wJipHnSBzQjQHAdYSUile8RP0fmvbDvMVLFypsnzTtJ1f2e7WJOvNvzfRX5llWhsuhVCqLgZvdgZduhkg92blsys9sRHSkI1mUhPFmfwPklVaS04L-fZBsoyH8lqVORX01T30Og1dLB3b-BFKFOEFevl3kfvqfg-6AK93gM3Ohqaz0fn8hxNCCipF4eiWc13KuYNmj1BiNqEzm9CZTejMLnRFo-5pnN8mqfTThweVL7ZKDwD7lyQpTSKU_wLMv-OE |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1016_j_patrec_2016_03_010 crossref_primary_10_1109_JBHI_2017_2694344 crossref_primary_10_1038_srep33985 crossref_primary_10_7599_hmr_2017_37_2_77 crossref_primary_10_1007_s11042_019_7468_9 crossref_primary_10_1038_srep12089 crossref_primary_10_3389_fnana_2014_00027 crossref_primary_10_1109_JBHI_2013_2297030 crossref_primary_10_1016_j_media_2017_07_003 crossref_primary_10_1016_j_neucom_2018_05_013 crossref_primary_10_1109_TIM_2023_3277975 crossref_primary_10_1109_RBME_2019_2917780 crossref_primary_10_1016_j_compmedimag_2015_04_002 crossref_primary_10_1016_j_media_2013_07_007 crossref_primary_10_1038_s41598_017_14699_w crossref_primary_10_1186_s12859_020_3431_z crossref_primary_10_1038_srep04970 crossref_primary_10_1038_s41598_023_49275_y crossref_primary_10_1109_TMI_2015_2458702 crossref_primary_10_1007_s11517_021_02388_w crossref_primary_10_1038_s41598_018_22091_5 crossref_primary_10_1007_s40139_020_00217_7 crossref_primary_10_1371_journal_pone_0104437 crossref_primary_10_1109_TBME_2013_2291703 crossref_primary_10_1007_s11432_016_9018_7 crossref_primary_10_1007_s11760_016_0953_y crossref_primary_10_1109_TIP_2015_2389619 crossref_primary_10_1186_s12859_016_1252_x crossref_primary_10_1186_1471_2105_15_287 crossref_primary_10_1016_j_knosys_2019_03_031 crossref_primary_10_3390_cancers13010011 crossref_primary_10_1002_cyto_a_23049 crossref_primary_10_1109_TMI_2016_2527740 crossref_primary_10_4103_jpi_jpi_82_18 crossref_primary_10_1007_s11831_020_09463_9 crossref_primary_10_1186_s12859_019_2880_8 crossref_primary_10_1109_TMI_2019_2891305 crossref_primary_10_1016_j_neucom_2019_07_080 crossref_primary_10_1109_ACCESS_2021_3080429 crossref_primary_10_1016_j_procs_2016_06_029 crossref_primary_10_1109_JBHI_2016_2544245 crossref_primary_10_1016_j_bbe_2016_06_006 crossref_primary_10_1038_s42256_022_00595_0 crossref_primary_10_1016_j_media_2023_102969 crossref_primary_10_1109_TBME_2014_2303852 crossref_primary_10_1016_j_neucom_2019_09_083 crossref_primary_10_1007_s11042_018_6431_5 crossref_primary_10_1039_c3lc50535a crossref_primary_10_1109_TCBB_2018_2875684 crossref_primary_10_1111_jmi_12043 crossref_primary_10_3389_fbioe_2019_00226 crossref_primary_10_1515_dx_2018_0064 crossref_primary_10_3390_bioengineering12010085 crossref_primary_10_4103_2153_3539_192810 crossref_primary_10_1109_JBHI_2014_2356402 crossref_primary_10_1080_00207160_2020_1817411 crossref_primary_10_1523_ENEURO_0195_17_2017 crossref_primary_10_3390_s140815244 crossref_primary_10_1016_j_cmpb_2017_08_010 crossref_primary_10_15701_kcgs_2016_22_3_21 crossref_primary_10_1109_TMI_2013_2255309 crossref_primary_10_1016_j_neucom_2016_09_070 crossref_primary_10_3390_cancers14051199 crossref_primary_10_1016_j_bbe_2015_11_002 crossref_primary_10_1371_journal_pone_0062579 crossref_primary_10_1016_j_compmedimag_2016_01_002 crossref_primary_10_1117_1_OE_55_5_053105 crossref_primary_10_1177_1010428317694550 crossref_primary_10_1016_j_irbm_2019_06_001 crossref_primary_10_1016_j_sigpro_2015_11_011 crossref_primary_10_1186_s12859_017_1817_3 crossref_primary_10_1002_cpcb_88 crossref_primary_10_1109_ACCESS_2019_2924744 crossref_primary_10_1038_labinvest_2014_153 crossref_primary_10_1016_j_cagx_2019_100004 crossref_primary_10_1007_s11554_015_0517_3 crossref_primary_10_1007_s13755_020_00131_7 crossref_primary_10_1109_RBME_2013_2295804 crossref_primary_10_3390_ijgi5060079 crossref_primary_10_1109_TCBB_2019_2935718 crossref_primary_10_3389_fmed_2025_1546452 crossref_primary_10_1186_s40425_018_0326_x crossref_primary_10_1117_1_JMI_6_1_017501 crossref_primary_10_1117_1_JMI_6_1_017502 crossref_primary_10_1016_j_micron_2015_07_013 crossref_primary_10_1109_TCBB_2013_151 crossref_primary_10_1109_TMI_2015_2481436 crossref_primary_10_1109_TMI_2017_2698525 crossref_primary_10_1109_TMI_2016_2520502 crossref_primary_10_1016_j_bbe_2014_08_002 crossref_primary_10_1038_srep01414 crossref_primary_10_3389_fonc_2021_763527 crossref_primary_10_1051_mmnp_20149512 crossref_primary_10_4018_IJSIR_302611 crossref_primary_10_1186_1471_2105_15_272 crossref_primary_10_1109_TBME_2017_2649485 crossref_primary_10_1016_j_measurement_2020_108476 crossref_primary_10_1186_s13640_015_0076_3 crossref_primary_10_1587_transinf_2017EDP7326 crossref_primary_10_1371_journal_pone_0162053 crossref_primary_10_1109_TMI_2018_2874104 crossref_primary_10_1186_1471_2105_15_310 crossref_primary_10_1016_j_cmpb_2018_08_005 crossref_primary_10_1109_MSMC_2018_2794559 crossref_primary_10_1002_ima_23111 crossref_primary_10_1007_s11831_023_10015_0 crossref_primary_10_4015_S1016237214400031 crossref_primary_10_1016_j_cpc_2017_10_008 crossref_primary_10_1111_exsy_13366 crossref_primary_10_1109_RBME_2016_2515127 crossref_primary_10_1002_cyto_a_22824 crossref_primary_10_1002_ima_22309 crossref_primary_10_3390_app10227982 crossref_primary_10_1016_j_media_2015_10_005 crossref_primary_10_1016_j_compbiomed_2017_07_018 crossref_primary_10_1088_1361_6560_ab0a90 crossref_primary_10_1016_j_neucom_2014_01_061 |
| Cites_doi | 10.1016/j.compbiomed.2004.06.003 10.1038/nm0798-844 10.1309/PEF8-GL6F-YWMC-AG56 10.1002/ijc.21004 10.3322/caac.20073 10.1007/978-3-540-76725-1_79 10.1023/A:1020874308076 10.1002/cyto.a.20664 10.1109/ISBI.2004.1398578 10.1111/j.1365-2818.2008.01974.x 10.1186/1471-2121-8-40 10.1109/TIP.2005.852790 10.1109/ISBI.2009.5193304 10.1109/ISBI.2008.4541167 10.1155/2002/821782 10.1109/TITB.2007.898006 10.1109/ISBI.2008.4540990 10.1109/TBME.2009.2035102 10.1093/hmg/10.7.657 10.1016/0021-9991(88)90002-2 10.1136/jcp.56.6.433 10.1109/TIP.2007.891154 10.1002/cyto.a.20099 10.1109/BMEI.2008.262 10.1109/ISBI.2009.5192968 10.1109/TITB.2004.828891 10.1109/ISBI.2009.5193170 10.1109/ISBI.2009.5193169 10.1109/83.902291 10.1109/TPAMI.2006.57 10.1136/jcp.2004.018739 10.1006/jcph.1996.0167 10.1007/11569541_54 10.1158/0008-5472.CAN-05-1783 10.1109/34.368173 10.1038/labinvest.3780204 10.1002/cyto.a.20876 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
| DOI | 10.1109/TBME.2011.2179298 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database Materials Research Database Engineering Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Applied Sciences |
| EISSN | 1558-2531 |
| EndPage | 765 |
| ExternalDocumentID | PMC3655778 2589001551 22167559 25565165 10_1109_TBME_2011_2179298 6099601 |
| Genre | orig-research Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA156386 – fundername: NLM NIH HHS grantid: R01 LM009239 – fundername: NCI NIH HHS grantid: 9R01CA156386-05A1 – fundername: NLM NIH HHS grantid: 3R01LM009239-03S2 – fundername: NLM NIH HHS grantid: R01 LM011119 – fundername: NCI NIH HHS grantid: P30 CA072720 – fundername: NLM NIH HHS grantid: 5R01LM009239-04 – fundername: National Cancer Institute : NCI grantid: R01 CA156386 || CA – fundername: National Library of Medicine : NLM grantid: R01 LM009239 || LM – fundername: National Library of Medicine : NLM grantid: R01 LM011119 || LM |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION IQODW RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
| ID | FETCH-LOGICAL-c563t-f63e82f33c9572f993a5ff162b1c0555b776c53254c1c50b0093e5eaa0047343 |
| IEDL.DBID | RIE |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Tue Sep 30 16:44:12 EDT 2025 Tue Oct 07 09:52:46 EDT 2025 Wed Oct 01 14:34:33 EDT 2025 Sat Sep 27 18:40:07 EDT 2025 Mon Jun 30 08:32:36 EDT 2025 Mon Jul 21 06:03:40 EDT 2025 Mon Jul 21 09:14:48 EDT 2025 Thu Apr 24 22:58:23 EDT 2025 Wed Oct 01 02:57:14 EDT 2025 Wed Aug 27 02:53:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Anatomic pathology Histopathology mean shift seed detection Segmentation Image processing Level set Parallel processing Parallel computation Diagnosis parallel computing Biomedical engineering |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c563t-f63e82f33c9572f993a5ff162b1c0555b776c53254c1c50b0093e5eaa0047343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 ObjectType-Feature-1 |
| PMID | 22167559 |
| PQID | 922010703 |
| PQPubID | 85474 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_926907326 ieee_primary_6099601 pascalfrancis_primary_25565165 proquest_miscellaneous_1671387221 crossref_primary_10_1109_TBME_2011_2179298 proquest_miscellaneous_922499631 pubmed_primary_22167559 proquest_journals_922010703 crossref_citationtrail_10_1109_TBME_2011_2179298 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3655778 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2012-03-01 |
| PublicationDateYYYYMMDD | 2012-03-01 |
| PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2012 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 afework (ref9) 1998 ref34 ref12 ref37 ref36 ref14 ref31 ref33 ref11 ref32 ref10 wen (ref23) 2009 ref2 ref1 (ref39) 0 ref17 ref38 ref16 ref19 ref18 yang (ref26) 2008; 5241 elter (ref30) 2006 rimm (ref3) 2001; 7 ref24 ref45 ref25 ref20 ref42 ref41 ref22 ref21 ref43 (ref15) 0 ref28 ref27 ref29 ref8 ref7 parker (ref6) 2002; 117 ref4 ref5 ref40 (ref44) 0 |
| References_xml | – ident: ref16 doi: 10.1016/j.compbiomed.2004.06.003 – ident: ref2 doi: 10.1038/nm0798-844 – volume: 117 start-page: 723 year: 2002 ident: ref6 article-title: Assessment of interlaboratory variation in the immunohistochemical determination of estrogen receptor status using a breast cancer tissue microarray publication-title: Amer J Clin Pathol doi: 10.1309/PEF8-GL6F-YWMC-AG56 – ident: ref7 doi: 10.1002/ijc.21004 – ident: ref1 doi: 10.3322/caac.20073 – ident: ref25 doi: 10.1007/978-3-540-76725-1_79 – ident: ref35 doi: 10.1023/A:1020874308076 – ident: ref19 doi: 10.1002/cyto.a.20664 – ident: ref36 doi: 10.1109/ISBI.2004.1398578 – ident: ref28 doi: 10.1111/j.1365-2818.2008.01974.x – ident: ref22 doi: 10.1186/1471-2121-8-40 – start-page: 9 year: 2009 ident: ref23 article-title: A delaunay triangulation approach for segmenting clumps on nuclei publication-title: Proc IEEE Int Symp Biomed Imag – ident: ref37 doi: 10.1109/TIP.2005.852790 – year: 0 ident: ref44 – ident: ref41 doi: 10.1109/ISBI.2009.5193304 – ident: ref13 doi: 10.1109/ISBI.2008.4541167 – ident: ref17 doi: 10.1155/2002/821782 – ident: ref38 doi: 10.1109/TITB.2007.898006 – ident: ref12 doi: 10.1109/ISBI.2008.4540990 – ident: ref31 doi: 10.1109/TBME.2009.2035102 – ident: ref5 doi: 10.1093/hmg/10.7.657 – ident: ref34 doi: 10.1016/0021-9991(88)90002-2 – ident: ref10 doi: 10.1136/jcp.56.6.433 – ident: ref42 doi: 10.1109/TIP.2007.891154 – ident: ref18 doi: 10.1002/cyto.a.20099 – volume: 5241 start-page: 833 year: 2008 ident: ref26 article-title: Automatic image analysis of histopathology specimens using concave vertex graph publication-title: Proc Int Conf Med Image Comput Comput Assist Intervent – ident: ref29 doi: 10.1109/BMEI.2008.262 – start-page: 912 year: 1998 ident: ref9 article-title: Digital dynamic telepathology-The virtual microscope publication-title: Proc Amer Med Informat Assoc – ident: ref14 doi: 10.1109/ISBI.2009.5192968 – ident: ref40 doi: 10.1109/TITB.2004.828891 – ident: ref27 doi: 10.1109/ISBI.2009.5193170 – ident: ref24 doi: 10.1109/ISBI.2009.5193169 – ident: ref43 doi: 10.1109/83.902291 – ident: ref45 doi: 10.1109/TPAMI.2006.57 – start-page: 46 year: 2006 ident: ref30 article-title: Maximum-intensity-linking for segmentation of fluorescence-stained cells publication-title: Proc Microsc Image Anal Appl Biol – ident: ref11 doi: 10.1136/jcp.2004.018739 – ident: ref33 doi: 10.1006/jcph.1996.0167 – year: 0 ident: ref15 – ident: ref21 doi: 10.1007/11569541_54 – ident: ref8 doi: 10.1158/0008-5472.CAN-05-1783 – volume: 7 start-page: 24 year: 2001 ident: ref3 article-title: Tissue microarray: A new technology for amplification of tissue resources publication-title: Cancer J – year: 0 ident: ref39 – ident: ref32 doi: 10.1109/34.368173 – ident: ref4 doi: 10.1038/labinvest.3780204 – ident: ref20 doi: 10.1002/cyto.a.20876 |
| SSID | ssj0014846 |
| Score | 2.4794052 |
| Snippet | Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer.... |
| SourceID | pubmedcentral proquest pubmed pascalfrancis crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 754 |
| SubjectTerms | Algorithm design and analysis Algorithms Applied sciences Automated Automation Biological tissues Breast Breast Neoplasms - pathology Early Diagnosis Exact sciences and technology Female Graphics processing unit Histological Techniques Histopathology Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Image segmentation Information, signal and communications theory Kernel Level set mean shift Microarray Analysis - methods parallel computing Pattern Recognition, Automated - methods Quantitative analysis Reproducibility of Results seed detection Seeds Segmentation Sensitivity and Specificity Signal processing Staining and Labeling Studies Telecommunications and information theory Voting |
| Title | Robust Segmentation of Overlapping Cells in Histopathology Specimens Using Parallel Seed Detection and Repulsive Level Set |
| URI | https://ieeexplore.ieee.org/document/6099601 https://www.ncbi.nlm.nih.gov/pubmed/22167559 https://www.proquest.com/docview/922010703 https://www.proquest.com/docview/1671387221 https://www.proquest.com/docview/922499631 https://www.proquest.com/docview/926907326 https://pubmed.ncbi.nlm.nih.gov/PMC3655778 |
| Volume | 59 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VHhAc-GihhEJlJE6ItEkcO8kRSqsKsYBgkXqLHO-4VCxZ1CQc-uuZcbJhtyoVt0ieRHH8HM94nt8AvKRFKsPKIIE3N2HqYhWaFG0oC6ycUYqCOa_2-VGffEvfn6rTDXg9noVBRE8-w32-9Ln82cJ2vFV2oCPWEqFY51aW6_6s1pgxSPP-UE4U0wROinTIYMZRcTB9OznqxTrJ_6Y2rtGXJDG5yqxQurIc-foqzI40DX0g11e2uM71vMqgXFmSju_DZNmZnonyY79rq317eUXn8X97-wDuDb6peNOD6SFsYL0Fd1cUC7fg9mTIxW_D5ZdF1TWt-IpnP4cDTLVYOPHpN28RsuzDmTjE-bwR57XwaiRc_djv4gtf9Z7uaoSnLIjP5oJruszpYTgT77D1BLFamHomKETo5kyyFx-Y4EQm7SOYHh9ND0_CoZJDaJWWbei0xDxxUtpCZYkjn8go52KdVLFlxbEqy7RVkoJVG1sVVbzPggqNYTFLmcrHsFkvanwCojAzLDS9S565NLJRjjPFboopXOV0EQcQLceztIPKORfbmJc-2omKktFQMhrKAQ0BvBpv-dVLfNxkvM0jNRoOgxTA3hpoxnZWeFOxVgHsLlFUDn-JpiwS5iLQPzeAF2MrTW_O2ZgaF11TEkpjmWcE1wDEP2zoMRS3anmjCe-CkKsewE6P3L9vOMyEALI1TI8GLEC-3lKff_dC5FIrlWX50-u_yS7coe4lPWHvGWy2Fx0-Jw-urfb81P0DluhCiA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1VReLjwEdLIRSKkTghsk3i2EmOUFotsFsQLFJvkePYpWLJoibh0F_PjJMNu1WpuEXyJIrj53jG8_wG4CUuUokplEHwpsqPbSh8FRvt88wUVgmBwZxT-zyW42_xhxNxsgGvh7MwxhhHPjMjunS5_HKhW9oq25cBaYlgrHNDxHEsutNaQ84gTrtjOUGIUzjK4j6HGQbZ_uzt9LCT60QPHNuoSl8Uhegsk0bpyoLkKqwQP1LV-IlsV9viKufzModyZVE6ugfTZXc6LsqPUdsUI31xSenxf_t7H-723il708HpAWyYagvurGgWbsHNaZ-N34aLL4uirRv21Zz-7I8wVWxh2afftElIwg-n7MDM5zU7q5jTI6H6x24fn7m693hXzRxpgX1W51TVZY4PMyV7ZxpHEauYqkqGQUI7J5o9mxDFCU2ahzA7OpwdjP2-loOvheSNbyU3aWQ515lIIotekRLWhjIqQk2aY0WSSC04hqs61CIoaKfFCKMUyVnymO_AZrWozGNgmSpNJvFd0sTGgQ5SUwpyVFRmCyuz0INgOZ657nXOqdzGPHfxTpDlhIac0JD3aPDg1XDLr07k4zrjbRqpwbAfJA_21kAztJPGmwil8GB3iaK8_0_UeRYRGwH_uh68GFpxglPWRlVm0dY5ojTkaYJw9YD9wwYfg5Gr5Nea0D4IOusePOqQ-_cN-5ngQbKG6cGAJMjXW6qz706KnEshkiR9cvU3eQ63xrPpJJ-8P_64C7exq1FH33sKm815a56hP9cUe24a_wGJ5UXV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Segmentation+of+Overlapping+Cells+in+Histopathology+Specimens+Using+Parallel+Seed+Detection+and+Repulsive+Level+Set&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Qi%2C+Xin&rft.au=Xing%2C+Fuyong&rft.au=an%2C+David+J&rft.au=Yang%2C+Lin&rft.date=2012-03-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=59&rft.issue=3&rft.spage=754&rft.epage=765&rft_id=info:doi/10.1109%2FTBME.2011.2179298&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |