Influence of Internal Fixator Stiffness on Murine Fracture Healing: Two Types of Fracture Healing Lead to Two Distinct Cellular Events and FGF-2 Expressions

This study aimed to clarify the relationship between the mechanical environment at the fracture site and endogenous fibroblast growth factor-2 (FGF-2). We compared two types of fracture healing with different callus formations and cellular events using MouseFixTM plate fixation systems for murine fr...

Full description

Saved in:
Bibliographic Details
Published inExperimental Animals Vol. 60; no. 1; pp. 79 - 87
Main Authors UCHIDA, Kentaroo, UENO, Masaki, URABE, Ken, WULLSCHLEGER, Martin E., YAMAMOTO, Takeaki, SCHUETZ, Michael A., NARUSE, Kouji, GREGORY, Laura, STECK, Roland, MINEHARA, Hiroaki, ITOMAN, Moritoshi
Format Journal Article
LanguageEnglish
Published Japan Japanese Association for Laboratory Animal Science 2011
Subjects
Online AccessGet full text
ISSN1341-1357
1881-7122
DOI10.1538/expanim.60.79

Cover

Abstract This study aimed to clarify the relationship between the mechanical environment at the fracture site and endogenous fibroblast growth factor-2 (FGF-2). We compared two types of fracture healing with different callus formations and cellular events using MouseFixTM plate fixation systems for murine fracture models. Left femoral fractures were induced in 72 ten-week-old mice and then fixed with a flexible (Group F) or rigid (Group R) Mouse FixTM plate. Mice were sacrificed on days 3, 5, 7, 10, 14, and 21. The callus volumes were measured by 3D micro-CT and tissues were histologically stained with hematoxylin & eosin or safranin-O. Sections from days 3, 5, and 7 were immunostained for FGF-2 and Proliferating Cell Nuclear Antigen (PCNA). The callus in Group F was significantly larger than that in Group R. The rigid plate allowed bone union without a marked external callus or chondrogenesis. The flexible plate formed a large external callus as a result of endochondral ossification. Fibroblastic cells in the granulation tissue on days 5 and 7 in Group F showed marked FGF-2 expression compared with Group R. Fibroblastic cells showed ongoing proliferation in granulation tissue in group F, as indicated by PCNA expression, which explained the relative granulation tissue increase in group F. There were major differences in early phase endogenous FGF-2 expression between these two fracture healing processes, due to different mechanical environments.
AbstractList This study aimed to clarify the relationship between the mechanical environment at the fracture site and endogenous fibroblast growth factor-2 (FGF-2). We compared two types of fracture healing with different callus formations and cellular events using MouseFix(TM) plate fixation systems for murine fracture models. Left femoral fractures were induced in 72 ten-week-old mice and then fixed with a flexible (Group F) or rigid (Group R) Mouse Fix(TM) plate. Mice were sacrificed on days 3, 5, 7, 10, 14, and 21. The callus volumes were measured by 3D micro-CT and tissues were histologically stained with hematoxylin & eosin or safranin-O. Sections from days 3, 5, and 7 were immunostained for FGF-2 and Proliferating Cell Nuclear Antigen (PCNA). The callus in Group F was significantly larger than that in Group R. The rigid plate allowed bone union without a marked external callus or chondrogenesis. The flexible plate formed a large external callus as a result of endochondral ossification. Fibroblastic cells in the granulation tissue on days 5 and 7 in Group F showed marked FGF-2 expression compared with Group R. Fibroblastic cells showed ongoing proliferation in granulation tissue in group F, as indicated by PCNA expression, which explained the relative granulation tissue increase in group F. There were major differences in early phase endogenous FGF-2 expression between these two fracture healing processes, due to different mechanical environments.
This study aimed to clarify the relationship between the mechanical environment at the fracture site and endogenous fibroblast growth factor-2 (FGF-2). We compared two types of fracture healing with different callus formations and cellular events using MouseFixTM plate fixation systems for murine fracture models. Left femoral fractures were induced in 72 ten-week-old mice and then fixed with a flexible (Group F) or rigid (Group R) Mouse FixTM plate. Mice were sacrificed on days 3, 5, 7, 10, 14, and 21. The callus volumes were measured by 3D micro-CT and tissues were histologically stained with hematoxylin & eosin or safranin-O. Sections from days 3, 5, and 7 were immunostained for FGF-2 and Proliferating Cell Nuclear Antigen (PCNA). The callus in Group F was significantly larger than that in Group R. The rigid plate allowed bone union without a marked external callus or chondrogenesis. The flexible plate formed a large external callus as a result of endochondral ossification. Fibroblastic cells in the granulation tissue on days 5 and 7 in Group F showed marked FGF-2 expression compared with Group R. Fibroblastic cells showed ongoing proliferation in granulation tissue in group F, as indicated by PCNA expression, which explained the relative granulation tissue increase in group F. There were major differences in early phase endogenous FGF-2 expression between these two fracture healing processes, due to different mechanical environments.
Author GREGORY, Laura
WULLSCHLEGER, Martin E.
URABE, Ken
YAMAMOTO, Takeaki
NARUSE, Kouji
ITOMAN, Moritoshi
UCHIDA, Kentaroo
MINEHARA, Hiroaki
STECK, Roland
SCHUETZ, Michael A.
UENO, Masaki
Author_xml – sequence: 1
  fullname: UCHIDA, Kentaroo
  organization: Department of Orthopaedic Surgery, Kitasato University School of Medicine
– sequence: 1
  fullname: UENO, Masaki
  organization: Department of Orthopaedic Surgery, Kitasato University School of Medicine
– sequence: 1
  fullname: URABE, Ken
  organization: Department of Orthopaedic Surgery, Kitasato University School of Medicine
– sequence: 1
  fullname: WULLSCHLEGER, Martin E.
  organization: Trauma Services, The Princess Alexandra Hospital
– sequence: 1
  fullname: YAMAMOTO, Takeaki
  organization: Department of Orthopaedic Surgery, Kitasato University School of Medicine
– sequence: 1
  fullname: SCHUETZ, Michael A.
  organization: Trauma Services, The Princess Alexandra Hospital
– sequence: 1
  fullname: NARUSE, Kouji
  organization: Department of Orthopaedic Surgery, Kitasato University School of Medicine
– sequence: 1
  fullname: GREGORY, Laura
  organization: Institute of Health and Biomedical Innovation, Queensland University of Technology
– sequence: 1
  fullname: STECK, Roland
  organization: Institute of Health and Biomedical Innovation, Queensland University of Technology
– sequence: 1
  fullname: MINEHARA, Hiroaki
  organization: Department of Orthopaedic Surgery, Kitasato University School of Medicine
– sequence: 1
  fullname: ITOMAN, Moritoshi
  organization: Department of Orthopaedic Surgery, Kyushu Rosai Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21325755$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u2zAMx4Whw_qxHXcd9AJOJcuyrN3aLG4DZNhh2VlQZKpTociGJLfpu-xh6zRtURTYhR_gj38S5Ck6Cn0AhL5SMqOcNeewG3Rw21lNZkJ-QCe0aWghaFkeTTGraEEZF8foNKVbQkohSvkJHZeUlVxwfoL-LYP1IwQDuLd4GTLEoD1u3U7nPuLf2VkbICXcB_xzjC4AbqM2eYyAr0F7F26-4_V9j9cPA6S9xvsyXoHucO6fqB8uZRdMxnPwfvQ64sUdhJywDh1ur9qixIvdEKeBrg_pM_potU_w5dmfoT_tYj2_Lla_rpbzi1VheM1yUVNZQyMsr4Aw1oGlvOMcGmJsbUwlugqaivGJIBsJDTVTLqVkG6aFLY1kZ-jbQXcYN1vo1BDdVscH9XKmCWAHwMQ-pQhWGZd1nnbMUTuvKFH7Z6jnZ6iaKLGXLd51vQj_j7888Lcp6xt4pXXMznh4S9ODEfK1aP7qqCCwRyVzqBo
CitedBy_id crossref_primary_10_1302_2046_3758_111_2000087
crossref_primary_10_12677_ACM_2022_123284
crossref_primary_10_1002_jbm_a_35670
crossref_primary_10_1538_expanim_61_427
crossref_primary_10_1016_j_matdes_2022_110469
crossref_primary_10_1155_2018_8393194
crossref_primary_10_7759_cureus_10085
crossref_primary_10_1088_1748_6041_9_3_035014
crossref_primary_10_1186_s13018_023_04054_3
crossref_primary_10_1538_expanim_60_455
crossref_primary_10_1302_2046_3758_22_2000066
crossref_primary_10_1538_expanim_62_255
crossref_primary_10_1097_BRS_0000000000002074
crossref_primary_10_1002_jbm_a_34974
crossref_primary_10_1016_j_ajpath_2014_08_017
crossref_primary_10_1002_term_2019
crossref_primary_10_1002_jbm_a_34841
crossref_primary_10_1007_s00264_013_2059_2
crossref_primary_10_1016_j_addr_2021_01_008
Cites_doi 10.1210/en.135.2.774
10.1210/endo-125-4-2118
10.1002/jor.1100170422
10.1002/jor.1100150222
10.1210/jc.86.2.875
10.1146/annurev.me.42.020191.000313
10.1016/S0021-9290(98)00153-5
10.1359/jbmr.1998.13.6.942
10.1002/jor.1100160605
10.1097/00003086-200104000-00033
10.1097/00003086-199810001-00003
10.1002/jbmr.146
10.1359/jbmr.1999.14.11.1805
10.55095/achot2008/044
10.1359/jbmr.060309
10.1002/jor.1100080308
10.1302/0301-620X.50B4.844
10.1210/en.130.5.2675
10.1172/JCI113318
10.1159/000129410
10.1016/j.jbiomech.2009.06.004
10.1172/JCI113490
10.3109/08977199308991583
10.3171/jns.1999.91.5.0851
10.1097/00003086-198904000-00005
10.1067/moe.2000.107531
10.1016/j.injury.2009.10.044
ContentType Journal Article
Copyright 2011 Japanese Association for Laboratory Animal Science
Copyright_xml – notice: 2011 Japanese Association for Laboratory Animal Science
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1538/expanim.60.79
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1881-7122
EndPage 87
ExternalDocumentID 21325755
10_1538_expanim_60_79
article_expanim_60_1_60_1_79_article_char_en
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.55
29G
2WC
3O-
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
EMOBN
GX1
HYE
JSF
JSH
KQ8
M48
OK1
OVT
P2P
PGMZT
RJT
RNS
RPM
RZJ
TKC
TR2
X7M
XSB
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c563t-6196e87f54e033def15d55e80cf6cc47d4e843587f0b9e81c4e89993b3a7f2c93
ISSN 1341-1357
IngestDate Sat Sep 18 02:38:38 EDT 2021
Thu Apr 24 22:50:15 EDT 2025
Tue Jul 01 01:20:59 EDT 2025
Wed Sep 03 06:11:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c563t-6196e87f54e033def15d55e80cf6cc47d4e843587f0b9e81c4e89993b3a7f2c93
OpenAccessLink https://www.jstage.jst.go.jp/article/expanim/60/1/60_1_79/_article/-char/en
PMID 21325755
PageCount 9
ParticipantIDs pubmed_primary_21325755
crossref_citationtrail_10_1538_expanim_60_79
crossref_primary_10_1538_expanim_60_79
jstage_primary_article_expanim_60_1_60_1_79_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011
2011-00-00
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Experimental Animals
PublicationTitleAlternate Exp Anim
PublicationYear 2011
Publisher Japanese Association for Laboratory Animal Science
Publisher_xml – name: Japanese Association for Laboratory Animal Science
References 9. Einhorn, T.A. 1998. The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res. 355: S7-21.
30. Yeung, H.Y., Lee, S.K., Fung, K.P., and Leung, K.S. 2001. Expression of basic fibroblast growth factor during distraction osteogenesis. Clin. Orthop. Relat. Res. 219-229.
11. Hurley, M.M., Kessler, M., Gronowicz, G., and Raisz, L.G. 1992. The interaction of heparin and basic fibroblast growth factor on collagen synthesis in 21-day fetal rat calvariae. Endocrinology 130: 2675-2682.
1. Barnes, G.L., Kostenuik, P.J., Gerstenfeld, L.C., and Einhorn, T.A. 1999. Growth factor regulation of fracture repair. J. Bone Miner. Res. 14: 1805-1815.
5. Canalis, E., McCarthy, T.L., and Centrella, M. 1991. Growth factors and cytokines in bone cell metabolism. Annu. Rev. Med. 42: 17-24.
17. Li, C.F. and Hughes-Fulford, M. 2006. Fibroblast growth factor-2 is an immediate-early gene induced by mechanical stress in osteogenic cells. J. Bone Miner. Res. 21: 946-955.
10. Grongroft, I., Heil, P., Matthys, R., Lezuo, P., Tami, A., Perren, S., Montavon, P., and Ito, K. 2009. Fixation compliance in a mouse osteotomy model induces two different processes of bone healing but does not lead to delayed union. J. Biomech. 42: 2089-2096.
16. Kawaguchi, H., Oka, H., Jingushi, S., Izumi, T., Fukunaga, M., Sato, K., Matsushita, T., and Nakamura, K. 2010. A local application of recombinant human fibroblast growth factor-2 for tibial shaft fractures: a randomized, placebo-controlled trial. J. Bone Miner. Res. (in press).
3. Canalis, E., Centrella, M., and McCarthy, T. 1988. Effects of basic fibroblast growth factor on bone formation in vitro. J. Clin. Invest. 81: 1572-1577.
15. Kawaguchi, H., Nakamura, K., Tabata, Y., Ikada, Y., Aoyama, I., Anzai, J., Nakamura, T., Hiyama, Y., and Tamura, M. 2001. Acceleration of fracture healing in nonhuman primates by fibroblast growth factor-2. J. Clin. Endocrinol. Metab. 86: 875-880.
28. Rodan, S.B., Wesolowski, G., Yoon, K., and Rodan, G.A. 1989. Opposing effects of fibroblast growth factor and pertussis toxin on alkaline phosphatase, osteopontin, osteocalcin, and type I collagen mRNA levels in ROS 17/2.8 cells. J. Biol. Chem. 264: 19934-19941.
6. Chao, E.Y., Aro, H.T., Lewallen, D.G., and Kelly, P.J. 1989. The effect of rigidity on fracture healing in external fixation. Clin. Orthop. Relat. Res. 241: 24-35.
19. Mayahara, H., Ito, T., Nagai, H., Miyajima, H., Tsukuda, R., Taketomi, S., Mizoguchi, J., and Kato, K. 1993. In vivo stimulation of endosteal bone formation by basic fibroblast growth factor in rats. Growth Factors 9: 73-80.
2. Bolander, M.E. 1992. Regulation of fracture repair by growth factors. Proc. Soc. Exp. Biol. Med. 200: 165-170.
8. Claes, L.E. and Heigele, C.A. 1999. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomech. 32: 255-266.
23. Olerud, S. and Danckwardt-Lilliestrom, G. 1968. Fracture healing in compression osteosynthesis in the dog. J. Bone Joint Surg. Br. 50: 844-851.
22. Nakamura, T., Hara, Y., Tagawa, M., Tamura, M., Yuge, T., Fukuda, H., and Nigi, H. 1998. Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodeling in experimental dog tibial fracture. J. Bone Miner. Res. 13: 942-949.
21. Nakamura, K., Kawaguchi, H., Aoyama, I., Hanada, K., Hiyama, Y., Awa, T., Tamura, M., and Kurokawa, T. 1997. Stimulation of bone formation by intraosseous application of recombinant basic fibroblast growth factor in normal and ovariectomized rabbits. J. Orthop. Res. 15: 307-313.
25. Perren, S.M. 2008. Fracture healing. The evolution of our understanding. Acta Chir. Orthop. Traumatol. Cech. 75: 241-246.
27. Radomsky, M.L., Aufdemorte, T.B., Swain, L.D., Fox, W.C., Spiro, R.C., and Poser, J.W. 1999. Novel formulation of fibroblast growth factor-2 in a hyaluronan gel accelerates fracture healing in nonhuman primates. J. Orthop. Res. 17: 607-614.
14. Kawaguchi, H., Kurokawa, T., Hanada, K., Hiyama, Y., Tamura, M., Ogata, E., and Matsumoto, T. 1994. Stimulation of fracture repair by recombinant human basic fibroblast growth factor in normal and streptozotocin-diabetic rats. Endocrinology 135: 774-781.
4. Canalis, E., McCarthy, T., and Centrella, M. 1988. Growth factors and the regulation of bone remodeling. J. Clin. Invest. 81: 277-281.
18. Matthys, R. and Perren, S.M. 2009. Internal fixator for use in the mouse. Injury 40: S103-109.
20. McCarthy, T.L., Centrella, M., and Canalis, E. 1989. Effects of fibroblast growth factors on deoxyribonucleic acid and collagen synthesis in rat parietal bone cells. Endocrinology 125: 2118-2126.
24. Otto, T.E., Patka, P., and Haarman, H.J. 1995. Closed fracture healing: a rat model. Eur. Surg. Res. 27: 277-284.
13. Kato, T., Kawaguchi, H., Hanada, K., Aoyama, I., Hiyama, Y., Nakamura, T., Kuzutani, K., Tamura, M., Kurokawa, T., and Nakamura, K. 1998. Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J. Orthop. Res. 16: 654-659.
29. Tabata, Y., Yamada, K., Hong, L., Miyamoto, S., Hashimoto, N., and Ikada, Y. 1999. Skull bone regeneration in primates in response to basic fibroblast growth factor. J. Neurosurg. 91: 851-856.
7. Cillo, J.E. Jr., Gassner, R., Koepsel, R.R., and Buckley, M.J. 2000. Growth factor and cytokine gene expression in mechanically strained human osteoblast-like cells: implications for distraction osteogenesis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 90: 147-154.
12. Jingushi, S., Heydemann, A., Kana, S.K., Macey, L.R., and Bolander, M.E. 1990. Acidic fibroblast growth factor (aFGF) injection stimulates cartilage enlargement and inhibits cartilage gene expression in rat fracture healing. J. Orthop. Res. 8: 364-371.
26. Perren, S.M., Huggler, A., Russenberger, M., Allgower, M., Mathys, R., Schenk, R., Willenegger, H., and Muller, M.E. 1969. The reaction of cortical bone to compression. Acta Orthop. Scand. Suppl. 125: 19-29.
22
23
24
25
26
27
28
29
30
10
11
12
13
14
15
16
17
18
19
1
(2) 1992; 200
3
4
5
6
7
8
9
20
21
References_xml – reference: 25. Perren, S.M. 2008. Fracture healing. The evolution of our understanding. Acta Chir. Orthop. Traumatol. Cech. 75: 241-246.
– reference: 28. Rodan, S.B., Wesolowski, G., Yoon, K., and Rodan, G.A. 1989. Opposing effects of fibroblast growth factor and pertussis toxin on alkaline phosphatase, osteopontin, osteocalcin, and type I collagen mRNA levels in ROS 17/2.8 cells. J. Biol. Chem. 264: 19934-19941.
– reference: 10. Grongroft, I., Heil, P., Matthys, R., Lezuo, P., Tami, A., Perren, S., Montavon, P., and Ito, K. 2009. Fixation compliance in a mouse osteotomy model induces two different processes of bone healing but does not lead to delayed union. J. Biomech. 42: 2089-2096.
– reference: 1. Barnes, G.L., Kostenuik, P.J., Gerstenfeld, L.C., and Einhorn, T.A. 1999. Growth factor regulation of fracture repair. J. Bone Miner. Res. 14: 1805-1815.
– reference: 4. Canalis, E., McCarthy, T., and Centrella, M. 1988. Growth factors and the regulation of bone remodeling. J. Clin. Invest. 81: 277-281.
– reference: 18. Matthys, R. and Perren, S.M. 2009. Internal fixator for use in the mouse. Injury 40: S103-109.
– reference: 19. Mayahara, H., Ito, T., Nagai, H., Miyajima, H., Tsukuda, R., Taketomi, S., Mizoguchi, J., and Kato, K. 1993. In vivo stimulation of endosteal bone formation by basic fibroblast growth factor in rats. Growth Factors 9: 73-80.
– reference: 27. Radomsky, M.L., Aufdemorte, T.B., Swain, L.D., Fox, W.C., Spiro, R.C., and Poser, J.W. 1999. Novel formulation of fibroblast growth factor-2 in a hyaluronan gel accelerates fracture healing in nonhuman primates. J. Orthop. Res. 17: 607-614.
– reference: 12. Jingushi, S., Heydemann, A., Kana, S.K., Macey, L.R., and Bolander, M.E. 1990. Acidic fibroblast growth factor (aFGF) injection stimulates cartilage enlargement and inhibits cartilage gene expression in rat fracture healing. J. Orthop. Res. 8: 364-371.
– reference: 9. Einhorn, T.A. 1998. The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res. 355: S7-21.
– reference: 16. Kawaguchi, H., Oka, H., Jingushi, S., Izumi, T., Fukunaga, M., Sato, K., Matsushita, T., and Nakamura, K. 2010. A local application of recombinant human fibroblast growth factor-2 for tibial shaft fractures: a randomized, placebo-controlled trial. J. Bone Miner. Res. (in press).
– reference: 3. Canalis, E., Centrella, M., and McCarthy, T. 1988. Effects of basic fibroblast growth factor on bone formation in vitro. J. Clin. Invest. 81: 1572-1577.
– reference: 8. Claes, L.E. and Heigele, C.A. 1999. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomech. 32: 255-266.
– reference: 5. Canalis, E., McCarthy, T.L., and Centrella, M. 1991. Growth factors and cytokines in bone cell metabolism. Annu. Rev. Med. 42: 17-24.
– reference: 7. Cillo, J.E. Jr., Gassner, R., Koepsel, R.R., and Buckley, M.J. 2000. Growth factor and cytokine gene expression in mechanically strained human osteoblast-like cells: implications for distraction osteogenesis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 90: 147-154.
– reference: 14. Kawaguchi, H., Kurokawa, T., Hanada, K., Hiyama, Y., Tamura, M., Ogata, E., and Matsumoto, T. 1994. Stimulation of fracture repair by recombinant human basic fibroblast growth factor in normal and streptozotocin-diabetic rats. Endocrinology 135: 774-781.
– reference: 29. Tabata, Y., Yamada, K., Hong, L., Miyamoto, S., Hashimoto, N., and Ikada, Y. 1999. Skull bone regeneration in primates in response to basic fibroblast growth factor. J. Neurosurg. 91: 851-856.
– reference: 11. Hurley, M.M., Kessler, M., Gronowicz, G., and Raisz, L.G. 1992. The interaction of heparin and basic fibroblast growth factor on collagen synthesis in 21-day fetal rat calvariae. Endocrinology 130: 2675-2682.
– reference: 22. Nakamura, T., Hara, Y., Tagawa, M., Tamura, M., Yuge, T., Fukuda, H., and Nigi, H. 1998. Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodeling in experimental dog tibial fracture. J. Bone Miner. Res. 13: 942-949.
– reference: 2. Bolander, M.E. 1992. Regulation of fracture repair by growth factors. Proc. Soc. Exp. Biol. Med. 200: 165-170.
– reference: 21. Nakamura, K., Kawaguchi, H., Aoyama, I., Hanada, K., Hiyama, Y., Awa, T., Tamura, M., and Kurokawa, T. 1997. Stimulation of bone formation by intraosseous application of recombinant basic fibroblast growth factor in normal and ovariectomized rabbits. J. Orthop. Res. 15: 307-313.
– reference: 24. Otto, T.E., Patka, P., and Haarman, H.J. 1995. Closed fracture healing: a rat model. Eur. Surg. Res. 27: 277-284.
– reference: 30. Yeung, H.Y., Lee, S.K., Fung, K.P., and Leung, K.S. 2001. Expression of basic fibroblast growth factor during distraction osteogenesis. Clin. Orthop. Relat. Res. 219-229.
– reference: 20. McCarthy, T.L., Centrella, M., and Canalis, E. 1989. Effects of fibroblast growth factors on deoxyribonucleic acid and collagen synthesis in rat parietal bone cells. Endocrinology 125: 2118-2126.
– reference: 6. Chao, E.Y., Aro, H.T., Lewallen, D.G., and Kelly, P.J. 1989. The effect of rigidity on fracture healing in external fixation. Clin. Orthop. Relat. Res. 241: 24-35.
– reference: 23. Olerud, S. and Danckwardt-Lilliestrom, G. 1968. Fracture healing in compression osteosynthesis in the dog. J. Bone Joint Surg. Br. 50: 844-851.
– reference: 15. Kawaguchi, H., Nakamura, K., Tabata, Y., Ikada, Y., Aoyama, I., Anzai, J., Nakamura, T., Hiyama, Y., and Tamura, M. 2001. Acceleration of fracture healing in nonhuman primates by fibroblast growth factor-2. J. Clin. Endocrinol. Metab. 86: 875-880.
– reference: 26. Perren, S.M., Huggler, A., Russenberger, M., Allgower, M., Mathys, R., Schenk, R., Willenegger, H., and Muller, M.E. 1969. The reaction of cortical bone to compression. Acta Orthop. Scand. Suppl. 125: 19-29.
– reference: 13. Kato, T., Kawaguchi, H., Hanada, K., Aoyama, I., Hiyama, Y., Nakamura, T., Kuzutani, K., Tamura, M., Kurokawa, T., and Nakamura, K. 1998. Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J. Orthop. Res. 16: 654-659.
– reference: 17. Li, C.F. and Hughes-Fulford, M. 2006. Fibroblast growth factor-2 is an immediate-early gene induced by mechanical stress in osteogenic cells. J. Bone Miner. Res. 21: 946-955.
– ident: 14
  doi: 10.1210/en.135.2.774
– ident: 20
  doi: 10.1210/endo-125-4-2118
– ident: 27
  doi: 10.1002/jor.1100170422
– ident: 21
  doi: 10.1002/jor.1100150222
– ident: 15
  doi: 10.1210/jc.86.2.875
– ident: 5
  doi: 10.1146/annurev.me.42.020191.000313
– ident: 8
  doi: 10.1016/S0021-9290(98)00153-5
– ident: 22
  doi: 10.1359/jbmr.1998.13.6.942
– volume: 200
  start-page: 165
  issn: 0037-9727
  issue: 2
  year: 1992
  ident: 2
– ident: 28
– ident: 13
  doi: 10.1002/jor.1100160605
– ident: 30
  doi: 10.1097/00003086-200104000-00033
– ident: 9
  doi: 10.1097/00003086-199810001-00003
– ident: 16
  doi: 10.1002/jbmr.146
– ident: 1
  doi: 10.1359/jbmr.1999.14.11.1805
– ident: 25
  doi: 10.55095/achot2008/044
– ident: 17
  doi: 10.1359/jbmr.060309
– ident: 26
– ident: 12
  doi: 10.1002/jor.1100080308
– ident: 23
  doi: 10.1302/0301-620X.50B4.844
– ident: 11
  doi: 10.1210/en.130.5.2675
– ident: 4
  doi: 10.1172/JCI113318
– ident: 24
  doi: 10.1159/000129410
– ident: 10
  doi: 10.1016/j.jbiomech.2009.06.004
– ident: 3
  doi: 10.1172/JCI113490
– ident: 19
  doi: 10.3109/08977199308991583
– ident: 29
  doi: 10.3171/jns.1999.91.5.0851
– ident: 6
  doi: 10.1097/00003086-198904000-00005
– ident: 7
  doi: 10.1067/moe.2000.107531
– ident: 18
  doi: 10.1016/j.injury.2009.10.044
SSID ssj0027729
Score 1.9683343
Snippet This study aimed to clarify the relationship between the mechanical environment at the fracture site and endogenous fibroblast growth factor-2 (FGF-2). We...
SourceID pubmed
crossref
jstage
SourceType Index Database
Enrichment Source
Publisher
StartPage 79
SubjectTerms Animals
Bony Callus - metabolism
Bony Callus - physiology
callus formation
Cell Proliferation
Disease Models, Animal
Femoral Fractures - metabolism
Femoral Fractures - pathology
Femoral Fractures - physiopathology
Fibroblast Growth Factor 2 - metabolism
Fibroblasts - cytology
fracture
Fracture Healing - physiology
growth factor
internal fixator
Internal Fixators
Mice
mouse
Proliferating Cell Nuclear Antigen - metabolism
Stress, Mechanical
Title Influence of Internal Fixator Stiffness on Murine Fracture Healing: Two Types of Fracture Healing Lead to Two Distinct Cellular Events and FGF-2 Expressions
URI https://www.jstage.jst.go.jp/article/expanim/60/1/60_1_79/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/21325755
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Experimental Animals, 2011, Vol.60(1), pp.79-87
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1881-7122
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027729
  issn: 1341-1357
  databaseCode: KQ8
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1881-7122
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027729
  issn: 1341-1357
  databaseCode: DIK
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1881-7122
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027729
  issn: 1341-1357
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwELbKAhIviJtyyQ-Il5KS2wk8lW5Kd9UWBK1U7UuUw5G66iYIsrDit_BXkZixHTdZQGJBqqzWmThp56v9jTMHIU_9hIW5nXCDm4VruAwMlNDFXIRmzhm3EtdJ0VCcL_zpyj1ce-te70fLa-m0TofZt9_GlfyLVqEP9IpRshfQrB4UOuA96Bda0DC0f6Xjg6bCSBMQIrjlZHOGljTwyE1RiJkMNDzHXXWOPFU-M8DwIxXrvPxaDdAcFU4d5wUwAWuOBBWl9nFCKLN6MObbrfBfjb6ICDncfZ-8mRg2pk6WnrVqF_BYu_rtCgmMys1JstVkfjWeHuyPVJBQnQCV10eixVsZUPQZiK7ufT96HSlxvaasZrMP4-ksUp4dMjvCIBq2dzWs3X7GIXAErL3ZhqfwuJzJPwV6HsjbbGa_1uwNS7JhOTLj9ZDLviCwDGbZnSlfljDoQFvO37KwTYcJ_LLGeCKjPD-D-9ycDH1z2JzUSdutQBErudgHY0s2LIybgxhZB0C-RC7bDIgSxqqvrd1-ARNF9vS3Uili4fovOlfvUKorx2BVYLqIjpUk2NLyBrmuzBw6kndwk_R4eYtcParEQ5zb5LtGLq0K2iCXKuRSjVxalVQilzbApAqYLykgkgrc4hjnD1PELa0rIdXglja4pRK3FHBLBW5pC7d3yGoSLcdTQ9UJMTLPd2rDh1WEB6zwXG46Ts4Ly8s9jwdmVvhZ5rLc5QFYBSBhpiEPrAw-g13kpE7CCjsLnbtkr6xKfp_QxPZg1U1Y7gS5GzhFwrMwcX07DZntJ67ZJ8-bnzrOVBJ9rOWyjdGYBs209c3CPnmmxT_K7DF_Enwl9abFLoKfPrknla3Pti0H1mLPe_Bf4z4k1-QjFHw9Inv1p1P-GDh4nT4RSIV28W7-ExAf6wQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Internal+Fixator+Stiffness+on+Murine+Fracture+Healing%3A+Two+Types+of+Fracture+Healing+Lead+to+Two+Distinct+Cellular+Events+and+FGF-2+Expressions&rft.jtitle=Experimental+Animals&rft.au=UCHIDA%2C+Kentaroo&rft.au=UENO%2C+Masaki&rft.au=URABE%2C+Ken&rft.au=WULLSCHLEGER%2C+Martin+E.&rft.date=2011&rft.pub=Japanese+Association+for+Laboratory+Animal+Science&rft.issn=1341-1357&rft.eissn=1881-7122&rft.volume=60&rft.issue=1&rft.spage=79&rft.epage=87&rft_id=info:doi/10.1538%2Fexpanim.60.79&rft.externalDocID=article_expanim_60_1_60_1_79_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-1357&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-1357&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-1357&client=summon