Influence of Internal Fixator Stiffness on Murine Fracture Healing: Two Types of Fracture Healing Lead to Two Distinct Cellular Events and FGF-2 Expressions
This study aimed to clarify the relationship between the mechanical environment at the fracture site and endogenous fibroblast growth factor-2 (FGF-2). We compared two types of fracture healing with different callus formations and cellular events using MouseFixTM plate fixation systems for murine fr...
Saved in:
Published in | Experimental Animals Vol. 60; no. 1; pp. 79 - 87 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Japanese Association for Laboratory Animal Science
2011
|
Subjects | |
Online Access | Get full text |
ISSN | 1341-1357 1881-7122 |
DOI | 10.1538/expanim.60.79 |
Cover
Abstract | This study aimed to clarify the relationship between the mechanical environment at the fracture site and endogenous fibroblast growth factor-2 (FGF-2). We compared two types of fracture healing with different callus formations and cellular events using MouseFixTM plate fixation systems for murine fracture models. Left femoral fractures were induced in 72 ten-week-old mice and then fixed with a flexible (Group F) or rigid (Group R) Mouse FixTM plate. Mice were sacrificed on days 3, 5, 7, 10, 14, and 21. The callus volumes were measured by 3D micro-CT and tissues were histologically stained with hematoxylin & eosin or safranin-O. Sections from days 3, 5, and 7 were immunostained for FGF-2 and Proliferating Cell Nuclear Antigen (PCNA). The callus in Group F was significantly larger than that in Group R. The rigid plate allowed bone union without a marked external callus or chondrogenesis. The flexible plate formed a large external callus as a result of endochondral ossification. Fibroblastic cells in the granulation tissue on days 5 and 7 in Group F showed marked FGF-2 expression compared with Group R. Fibroblastic cells showed ongoing proliferation in granulation tissue in group F, as indicated by PCNA expression, which explained the relative granulation tissue increase in group F. There were major differences in early phase endogenous FGF-2 expression between these two fracture healing processes, due to different mechanical environments. |
---|---|
AbstractList | This study aimed to clarify the relationship between the mechanical environment at the fracture site and endogenous fibroblast growth factor-2 (FGF-2). We compared two types of fracture healing with different callus formations and cellular events using MouseFix(TM) plate fixation systems for murine fracture models. Left femoral fractures were induced in 72 ten-week-old mice and then fixed with a flexible (Group F) or rigid (Group R) Mouse Fix(TM) plate. Mice were sacrificed on days 3, 5, 7, 10, 14, and 21. The callus volumes were measured by 3D micro-CT and tissues were histologically stained with hematoxylin & eosin or safranin-O. Sections from days 3, 5, and 7 were immunostained for FGF-2 and Proliferating Cell Nuclear Antigen (PCNA). The callus in Group F was significantly larger than that in Group R. The rigid plate allowed bone union without a marked external callus or chondrogenesis. The flexible plate formed a large external callus as a result of endochondral ossification. Fibroblastic cells in the granulation tissue on days 5 and 7 in Group F showed marked FGF-2 expression compared with Group R. Fibroblastic cells showed ongoing proliferation in granulation tissue in group F, as indicated by PCNA expression, which explained the relative granulation tissue increase in group F. There were major differences in early phase endogenous FGF-2 expression between these two fracture healing processes, due to different mechanical environments. This study aimed to clarify the relationship between the mechanical environment at the fracture site and endogenous fibroblast growth factor-2 (FGF-2). We compared two types of fracture healing with different callus formations and cellular events using MouseFixTM plate fixation systems for murine fracture models. Left femoral fractures were induced in 72 ten-week-old mice and then fixed with a flexible (Group F) or rigid (Group R) Mouse FixTM plate. Mice were sacrificed on days 3, 5, 7, 10, 14, and 21. The callus volumes were measured by 3D micro-CT and tissues were histologically stained with hematoxylin & eosin or safranin-O. Sections from days 3, 5, and 7 were immunostained for FGF-2 and Proliferating Cell Nuclear Antigen (PCNA). The callus in Group F was significantly larger than that in Group R. The rigid plate allowed bone union without a marked external callus or chondrogenesis. The flexible plate formed a large external callus as a result of endochondral ossification. Fibroblastic cells in the granulation tissue on days 5 and 7 in Group F showed marked FGF-2 expression compared with Group R. Fibroblastic cells showed ongoing proliferation in granulation tissue in group F, as indicated by PCNA expression, which explained the relative granulation tissue increase in group F. There were major differences in early phase endogenous FGF-2 expression between these two fracture healing processes, due to different mechanical environments. |
Author | GREGORY, Laura WULLSCHLEGER, Martin E. URABE, Ken YAMAMOTO, Takeaki NARUSE, Kouji ITOMAN, Moritoshi UCHIDA, Kentaroo MINEHARA, Hiroaki STECK, Roland SCHUETZ, Michael A. UENO, Masaki |
Author_xml | – sequence: 1 fullname: UCHIDA, Kentaroo organization: Department of Orthopaedic Surgery, Kitasato University School of Medicine – sequence: 1 fullname: UENO, Masaki organization: Department of Orthopaedic Surgery, Kitasato University School of Medicine – sequence: 1 fullname: URABE, Ken organization: Department of Orthopaedic Surgery, Kitasato University School of Medicine – sequence: 1 fullname: WULLSCHLEGER, Martin E. organization: Trauma Services, The Princess Alexandra Hospital – sequence: 1 fullname: YAMAMOTO, Takeaki organization: Department of Orthopaedic Surgery, Kitasato University School of Medicine – sequence: 1 fullname: SCHUETZ, Michael A. organization: Trauma Services, The Princess Alexandra Hospital – sequence: 1 fullname: NARUSE, Kouji organization: Department of Orthopaedic Surgery, Kitasato University School of Medicine – sequence: 1 fullname: GREGORY, Laura organization: Institute of Health and Biomedical Innovation, Queensland University of Technology – sequence: 1 fullname: STECK, Roland organization: Institute of Health and Biomedical Innovation, Queensland University of Technology – sequence: 1 fullname: MINEHARA, Hiroaki organization: Department of Orthopaedic Surgery, Kitasato University School of Medicine – sequence: 1 fullname: ITOMAN, Moritoshi organization: Department of Orthopaedic Surgery, Kyushu Rosai Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21325755$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1u2zAMx4Whw_qxHXcd9AJOJcuyrN3aLG4DZNhh2VlQZKpTociGJLfpu-xh6zRtURTYhR_gj38S5Ck6Cn0AhL5SMqOcNeewG3Rw21lNZkJ-QCe0aWghaFkeTTGraEEZF8foNKVbQkohSvkJHZeUlVxwfoL-LYP1IwQDuLd4GTLEoD1u3U7nPuLf2VkbICXcB_xzjC4AbqM2eYyAr0F7F26-4_V9j9cPA6S9xvsyXoHucO6fqB8uZRdMxnPwfvQ64sUdhJywDh1ur9qixIvdEKeBrg_pM_potU_w5dmfoT_tYj2_Lla_rpbzi1VheM1yUVNZQyMsr4Aw1oGlvOMcGmJsbUwlugqaivGJIBsJDTVTLqVkG6aFLY1kZ-jbQXcYN1vo1BDdVscH9XKmCWAHwMQ-pQhWGZd1nnbMUTuvKFH7Z6jnZ6iaKLGXLd51vQj_j7888Lcp6xt4pXXMznh4S9ODEfK1aP7qqCCwRyVzqBo |
CitedBy_id | crossref_primary_10_1302_2046_3758_111_2000087 crossref_primary_10_12677_ACM_2022_123284 crossref_primary_10_1002_jbm_a_35670 crossref_primary_10_1538_expanim_61_427 crossref_primary_10_1016_j_matdes_2022_110469 crossref_primary_10_1155_2018_8393194 crossref_primary_10_7759_cureus_10085 crossref_primary_10_1088_1748_6041_9_3_035014 crossref_primary_10_1186_s13018_023_04054_3 crossref_primary_10_1538_expanim_60_455 crossref_primary_10_1302_2046_3758_22_2000066 crossref_primary_10_1538_expanim_62_255 crossref_primary_10_1097_BRS_0000000000002074 crossref_primary_10_1002_jbm_a_34974 crossref_primary_10_1016_j_ajpath_2014_08_017 crossref_primary_10_1002_term_2019 crossref_primary_10_1002_jbm_a_34841 crossref_primary_10_1007_s00264_013_2059_2 crossref_primary_10_1016_j_addr_2021_01_008 |
Cites_doi | 10.1210/en.135.2.774 10.1210/endo-125-4-2118 10.1002/jor.1100170422 10.1002/jor.1100150222 10.1210/jc.86.2.875 10.1146/annurev.me.42.020191.000313 10.1016/S0021-9290(98)00153-5 10.1359/jbmr.1998.13.6.942 10.1002/jor.1100160605 10.1097/00003086-200104000-00033 10.1097/00003086-199810001-00003 10.1002/jbmr.146 10.1359/jbmr.1999.14.11.1805 10.55095/achot2008/044 10.1359/jbmr.060309 10.1002/jor.1100080308 10.1302/0301-620X.50B4.844 10.1210/en.130.5.2675 10.1172/JCI113318 10.1159/000129410 10.1016/j.jbiomech.2009.06.004 10.1172/JCI113490 10.3109/08977199308991583 10.3171/jns.1999.91.5.0851 10.1097/00003086-198904000-00005 10.1067/moe.2000.107531 10.1016/j.injury.2009.10.044 |
ContentType | Journal Article |
Copyright | 2011 Japanese Association for Laboratory Animal Science |
Copyright_xml | – notice: 2011 Japanese Association for Laboratory Animal Science |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.1538/expanim.60.79 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1881-7122 |
EndPage | 87 |
ExternalDocumentID | 21325755 10_1538_expanim_60_79 article_expanim_60_1_60_1_79_article_char_en |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .55 29G 2WC 3O- 53G 5GY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z EMOBN GX1 HYE JSF JSH KQ8 M48 OK1 OVT P2P PGMZT RJT RNS RPM RZJ TKC TR2 X7M XSB AAYXX CITATION CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c563t-6196e87f54e033def15d55e80cf6cc47d4e843587f0b9e81c4e89993b3a7f2c93 |
ISSN | 1341-1357 |
IngestDate | Sat Sep 18 02:38:38 EDT 2021 Thu Apr 24 22:50:15 EDT 2025 Tue Jul 01 01:20:59 EDT 2025 Wed Sep 03 06:11:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c563t-6196e87f54e033def15d55e80cf6cc47d4e843587f0b9e81c4e89993b3a7f2c93 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/expanim/60/1/60_1_79/_article/-char/en |
PMID | 21325755 |
PageCount | 9 |
ParticipantIDs | pubmed_primary_21325755 crossref_citationtrail_10_1538_expanim_60_79 crossref_primary_10_1538_expanim_60_79 jstage_primary_article_expanim_60_1_60_1_79_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011 2011-00-00 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – year: 2011 text: 2011 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Experimental Animals |
PublicationTitleAlternate | Exp Anim |
PublicationYear | 2011 |
Publisher | Japanese Association for Laboratory Animal Science |
Publisher_xml | – name: Japanese Association for Laboratory Animal Science |
References | 9. Einhorn, T.A. 1998. The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res. 355: S7-21. 30. Yeung, H.Y., Lee, S.K., Fung, K.P., and Leung, K.S. 2001. Expression of basic fibroblast growth factor during distraction osteogenesis. Clin. Orthop. Relat. Res. 219-229. 11. Hurley, M.M., Kessler, M., Gronowicz, G., and Raisz, L.G. 1992. The interaction of heparin and basic fibroblast growth factor on collagen synthesis in 21-day fetal rat calvariae. Endocrinology 130: 2675-2682. 1. Barnes, G.L., Kostenuik, P.J., Gerstenfeld, L.C., and Einhorn, T.A. 1999. Growth factor regulation of fracture repair. J. Bone Miner. Res. 14: 1805-1815. 5. Canalis, E., McCarthy, T.L., and Centrella, M. 1991. Growth factors and cytokines in bone cell metabolism. Annu. Rev. Med. 42: 17-24. 17. Li, C.F. and Hughes-Fulford, M. 2006. Fibroblast growth factor-2 is an immediate-early gene induced by mechanical stress in osteogenic cells. J. Bone Miner. Res. 21: 946-955. 10. Grongroft, I., Heil, P., Matthys, R., Lezuo, P., Tami, A., Perren, S., Montavon, P., and Ito, K. 2009. Fixation compliance in a mouse osteotomy model induces two different processes of bone healing but does not lead to delayed union. J. Biomech. 42: 2089-2096. 16. Kawaguchi, H., Oka, H., Jingushi, S., Izumi, T., Fukunaga, M., Sato, K., Matsushita, T., and Nakamura, K. 2010. A local application of recombinant human fibroblast growth factor-2 for tibial shaft fractures: a randomized, placebo-controlled trial. J. Bone Miner. Res. (in press). 3. Canalis, E., Centrella, M., and McCarthy, T. 1988. Effects of basic fibroblast growth factor on bone formation in vitro. J. Clin. Invest. 81: 1572-1577. 15. Kawaguchi, H., Nakamura, K., Tabata, Y., Ikada, Y., Aoyama, I., Anzai, J., Nakamura, T., Hiyama, Y., and Tamura, M. 2001. Acceleration of fracture healing in nonhuman primates by fibroblast growth factor-2. J. Clin. Endocrinol. Metab. 86: 875-880. 28. Rodan, S.B., Wesolowski, G., Yoon, K., and Rodan, G.A. 1989. Opposing effects of fibroblast growth factor and pertussis toxin on alkaline phosphatase, osteopontin, osteocalcin, and type I collagen mRNA levels in ROS 17/2.8 cells. J. Biol. Chem. 264: 19934-19941. 6. Chao, E.Y., Aro, H.T., Lewallen, D.G., and Kelly, P.J. 1989. The effect of rigidity on fracture healing in external fixation. Clin. Orthop. Relat. Res. 241: 24-35. 19. Mayahara, H., Ito, T., Nagai, H., Miyajima, H., Tsukuda, R., Taketomi, S., Mizoguchi, J., and Kato, K. 1993. In vivo stimulation of endosteal bone formation by basic fibroblast growth factor in rats. Growth Factors 9: 73-80. 2. Bolander, M.E. 1992. Regulation of fracture repair by growth factors. Proc. Soc. Exp. Biol. Med. 200: 165-170. 8. Claes, L.E. and Heigele, C.A. 1999. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomech. 32: 255-266. 23. Olerud, S. and Danckwardt-Lilliestrom, G. 1968. Fracture healing in compression osteosynthesis in the dog. J. Bone Joint Surg. Br. 50: 844-851. 22. Nakamura, T., Hara, Y., Tagawa, M., Tamura, M., Yuge, T., Fukuda, H., and Nigi, H. 1998. Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodeling in experimental dog tibial fracture. J. Bone Miner. Res. 13: 942-949. 21. Nakamura, K., Kawaguchi, H., Aoyama, I., Hanada, K., Hiyama, Y., Awa, T., Tamura, M., and Kurokawa, T. 1997. Stimulation of bone formation by intraosseous application of recombinant basic fibroblast growth factor in normal and ovariectomized rabbits. J. Orthop. Res. 15: 307-313. 25. Perren, S.M. 2008. Fracture healing. The evolution of our understanding. Acta Chir. Orthop. Traumatol. Cech. 75: 241-246. 27. Radomsky, M.L., Aufdemorte, T.B., Swain, L.D., Fox, W.C., Spiro, R.C., and Poser, J.W. 1999. Novel formulation of fibroblast growth factor-2 in a hyaluronan gel accelerates fracture healing in nonhuman primates. J. Orthop. Res. 17: 607-614. 14. Kawaguchi, H., Kurokawa, T., Hanada, K., Hiyama, Y., Tamura, M., Ogata, E., and Matsumoto, T. 1994. Stimulation of fracture repair by recombinant human basic fibroblast growth factor in normal and streptozotocin-diabetic rats. Endocrinology 135: 774-781. 4. Canalis, E., McCarthy, T., and Centrella, M. 1988. Growth factors and the regulation of bone remodeling. J. Clin. Invest. 81: 277-281. 18. Matthys, R. and Perren, S.M. 2009. Internal fixator for use in the mouse. Injury 40: S103-109. 20. McCarthy, T.L., Centrella, M., and Canalis, E. 1989. Effects of fibroblast growth factors on deoxyribonucleic acid and collagen synthesis in rat parietal bone cells. Endocrinology 125: 2118-2126. 24. Otto, T.E., Patka, P., and Haarman, H.J. 1995. Closed fracture healing: a rat model. Eur. Surg. Res. 27: 277-284. 13. Kato, T., Kawaguchi, H., Hanada, K., Aoyama, I., Hiyama, Y., Nakamura, T., Kuzutani, K., Tamura, M., Kurokawa, T., and Nakamura, K. 1998. Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J. Orthop. Res. 16: 654-659. 29. Tabata, Y., Yamada, K., Hong, L., Miyamoto, S., Hashimoto, N., and Ikada, Y. 1999. Skull bone regeneration in primates in response to basic fibroblast growth factor. J. Neurosurg. 91: 851-856. 7. Cillo, J.E. Jr., Gassner, R., Koepsel, R.R., and Buckley, M.J. 2000. Growth factor and cytokine gene expression in mechanically strained human osteoblast-like cells: implications for distraction osteogenesis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 90: 147-154. 12. Jingushi, S., Heydemann, A., Kana, S.K., Macey, L.R., and Bolander, M.E. 1990. Acidic fibroblast growth factor (aFGF) injection stimulates cartilage enlargement and inhibits cartilage gene expression in rat fracture healing. J. Orthop. Res. 8: 364-371. 26. Perren, S.M., Huggler, A., Russenberger, M., Allgower, M., Mathys, R., Schenk, R., Willenegger, H., and Muller, M.E. 1969. The reaction of cortical bone to compression. Acta Orthop. Scand. Suppl. 125: 19-29. 22 23 24 25 26 27 28 29 30 10 11 12 13 14 15 16 17 18 19 1 (2) 1992; 200 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 25. Perren, S.M. 2008. Fracture healing. The evolution of our understanding. Acta Chir. Orthop. Traumatol. Cech. 75: 241-246. – reference: 28. Rodan, S.B., Wesolowski, G., Yoon, K., and Rodan, G.A. 1989. Opposing effects of fibroblast growth factor and pertussis toxin on alkaline phosphatase, osteopontin, osteocalcin, and type I collagen mRNA levels in ROS 17/2.8 cells. J. Biol. Chem. 264: 19934-19941. – reference: 10. Grongroft, I., Heil, P., Matthys, R., Lezuo, P., Tami, A., Perren, S., Montavon, P., and Ito, K. 2009. Fixation compliance in a mouse osteotomy model induces two different processes of bone healing but does not lead to delayed union. J. Biomech. 42: 2089-2096. – reference: 1. Barnes, G.L., Kostenuik, P.J., Gerstenfeld, L.C., and Einhorn, T.A. 1999. Growth factor regulation of fracture repair. J. Bone Miner. Res. 14: 1805-1815. – reference: 4. Canalis, E., McCarthy, T., and Centrella, M. 1988. Growth factors and the regulation of bone remodeling. J. Clin. Invest. 81: 277-281. – reference: 18. Matthys, R. and Perren, S.M. 2009. Internal fixator for use in the mouse. Injury 40: S103-109. – reference: 19. Mayahara, H., Ito, T., Nagai, H., Miyajima, H., Tsukuda, R., Taketomi, S., Mizoguchi, J., and Kato, K. 1993. In vivo stimulation of endosteal bone formation by basic fibroblast growth factor in rats. Growth Factors 9: 73-80. – reference: 27. Radomsky, M.L., Aufdemorte, T.B., Swain, L.D., Fox, W.C., Spiro, R.C., and Poser, J.W. 1999. Novel formulation of fibroblast growth factor-2 in a hyaluronan gel accelerates fracture healing in nonhuman primates. J. Orthop. Res. 17: 607-614. – reference: 12. Jingushi, S., Heydemann, A., Kana, S.K., Macey, L.R., and Bolander, M.E. 1990. Acidic fibroblast growth factor (aFGF) injection stimulates cartilage enlargement and inhibits cartilage gene expression in rat fracture healing. J. Orthop. Res. 8: 364-371. – reference: 9. Einhorn, T.A. 1998. The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res. 355: S7-21. – reference: 16. Kawaguchi, H., Oka, H., Jingushi, S., Izumi, T., Fukunaga, M., Sato, K., Matsushita, T., and Nakamura, K. 2010. A local application of recombinant human fibroblast growth factor-2 for tibial shaft fractures: a randomized, placebo-controlled trial. J. Bone Miner. Res. (in press). – reference: 3. Canalis, E., Centrella, M., and McCarthy, T. 1988. Effects of basic fibroblast growth factor on bone formation in vitro. J. Clin. Invest. 81: 1572-1577. – reference: 8. Claes, L.E. and Heigele, C.A. 1999. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomech. 32: 255-266. – reference: 5. Canalis, E., McCarthy, T.L., and Centrella, M. 1991. Growth factors and cytokines in bone cell metabolism. Annu. Rev. Med. 42: 17-24. – reference: 7. Cillo, J.E. Jr., Gassner, R., Koepsel, R.R., and Buckley, M.J. 2000. Growth factor and cytokine gene expression in mechanically strained human osteoblast-like cells: implications for distraction osteogenesis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 90: 147-154. – reference: 14. Kawaguchi, H., Kurokawa, T., Hanada, K., Hiyama, Y., Tamura, M., Ogata, E., and Matsumoto, T. 1994. Stimulation of fracture repair by recombinant human basic fibroblast growth factor in normal and streptozotocin-diabetic rats. Endocrinology 135: 774-781. – reference: 29. Tabata, Y., Yamada, K., Hong, L., Miyamoto, S., Hashimoto, N., and Ikada, Y. 1999. Skull bone regeneration in primates in response to basic fibroblast growth factor. J. Neurosurg. 91: 851-856. – reference: 11. Hurley, M.M., Kessler, M., Gronowicz, G., and Raisz, L.G. 1992. The interaction of heparin and basic fibroblast growth factor on collagen synthesis in 21-day fetal rat calvariae. Endocrinology 130: 2675-2682. – reference: 22. Nakamura, T., Hara, Y., Tagawa, M., Tamura, M., Yuge, T., Fukuda, H., and Nigi, H. 1998. Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodeling in experimental dog tibial fracture. J. Bone Miner. Res. 13: 942-949. – reference: 2. Bolander, M.E. 1992. Regulation of fracture repair by growth factors. Proc. Soc. Exp. Biol. Med. 200: 165-170. – reference: 21. Nakamura, K., Kawaguchi, H., Aoyama, I., Hanada, K., Hiyama, Y., Awa, T., Tamura, M., and Kurokawa, T. 1997. Stimulation of bone formation by intraosseous application of recombinant basic fibroblast growth factor in normal and ovariectomized rabbits. J. Orthop. Res. 15: 307-313. – reference: 24. Otto, T.E., Patka, P., and Haarman, H.J. 1995. Closed fracture healing: a rat model. Eur. Surg. Res. 27: 277-284. – reference: 30. Yeung, H.Y., Lee, S.K., Fung, K.P., and Leung, K.S. 2001. Expression of basic fibroblast growth factor during distraction osteogenesis. Clin. Orthop. Relat. Res. 219-229. – reference: 20. McCarthy, T.L., Centrella, M., and Canalis, E. 1989. Effects of fibroblast growth factors on deoxyribonucleic acid and collagen synthesis in rat parietal bone cells. Endocrinology 125: 2118-2126. – reference: 6. Chao, E.Y., Aro, H.T., Lewallen, D.G., and Kelly, P.J. 1989. The effect of rigidity on fracture healing in external fixation. Clin. Orthop. Relat. Res. 241: 24-35. – reference: 23. Olerud, S. and Danckwardt-Lilliestrom, G. 1968. Fracture healing in compression osteosynthesis in the dog. J. Bone Joint Surg. Br. 50: 844-851. – reference: 15. Kawaguchi, H., Nakamura, K., Tabata, Y., Ikada, Y., Aoyama, I., Anzai, J., Nakamura, T., Hiyama, Y., and Tamura, M. 2001. Acceleration of fracture healing in nonhuman primates by fibroblast growth factor-2. J. Clin. Endocrinol. Metab. 86: 875-880. – reference: 26. Perren, S.M., Huggler, A., Russenberger, M., Allgower, M., Mathys, R., Schenk, R., Willenegger, H., and Muller, M.E. 1969. The reaction of cortical bone to compression. Acta Orthop. Scand. Suppl. 125: 19-29. – reference: 13. Kato, T., Kawaguchi, H., Hanada, K., Aoyama, I., Hiyama, Y., Nakamura, T., Kuzutani, K., Tamura, M., Kurokawa, T., and Nakamura, K. 1998. Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J. Orthop. Res. 16: 654-659. – reference: 17. Li, C.F. and Hughes-Fulford, M. 2006. Fibroblast growth factor-2 is an immediate-early gene induced by mechanical stress in osteogenic cells. J. Bone Miner. Res. 21: 946-955. – ident: 14 doi: 10.1210/en.135.2.774 – ident: 20 doi: 10.1210/endo-125-4-2118 – ident: 27 doi: 10.1002/jor.1100170422 – ident: 21 doi: 10.1002/jor.1100150222 – ident: 15 doi: 10.1210/jc.86.2.875 – ident: 5 doi: 10.1146/annurev.me.42.020191.000313 – ident: 8 doi: 10.1016/S0021-9290(98)00153-5 – ident: 22 doi: 10.1359/jbmr.1998.13.6.942 – volume: 200 start-page: 165 issn: 0037-9727 issue: 2 year: 1992 ident: 2 – ident: 28 – ident: 13 doi: 10.1002/jor.1100160605 – ident: 30 doi: 10.1097/00003086-200104000-00033 – ident: 9 doi: 10.1097/00003086-199810001-00003 – ident: 16 doi: 10.1002/jbmr.146 – ident: 1 doi: 10.1359/jbmr.1999.14.11.1805 – ident: 25 doi: 10.55095/achot2008/044 – ident: 17 doi: 10.1359/jbmr.060309 – ident: 26 – ident: 12 doi: 10.1002/jor.1100080308 – ident: 23 doi: 10.1302/0301-620X.50B4.844 – ident: 11 doi: 10.1210/en.130.5.2675 – ident: 4 doi: 10.1172/JCI113318 – ident: 24 doi: 10.1159/000129410 – ident: 10 doi: 10.1016/j.jbiomech.2009.06.004 – ident: 3 doi: 10.1172/JCI113490 – ident: 19 doi: 10.3109/08977199308991583 – ident: 29 doi: 10.3171/jns.1999.91.5.0851 – ident: 6 doi: 10.1097/00003086-198904000-00005 – ident: 7 doi: 10.1067/moe.2000.107531 – ident: 18 doi: 10.1016/j.injury.2009.10.044 |
SSID | ssj0027729 |
Score | 1.9683343 |
Snippet | This study aimed to clarify the relationship between the mechanical environment at the fracture site and endogenous fibroblast growth factor-2 (FGF-2). We... |
SourceID | pubmed crossref jstage |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 79 |
SubjectTerms | Animals Bony Callus - metabolism Bony Callus - physiology callus formation Cell Proliferation Disease Models, Animal Femoral Fractures - metabolism Femoral Fractures - pathology Femoral Fractures - physiopathology Fibroblast Growth Factor 2 - metabolism Fibroblasts - cytology fracture Fracture Healing - physiology growth factor internal fixator Internal Fixators Mice mouse Proliferating Cell Nuclear Antigen - metabolism Stress, Mechanical |
Title | Influence of Internal Fixator Stiffness on Murine Fracture Healing: Two Types of Fracture Healing Lead to Two Distinct Cellular Events and FGF-2 Expressions |
URI | https://www.jstage.jst.go.jp/article/expanim/60/1/60_1_79/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/21325755 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Experimental Animals, 2011, Vol.60(1), pp.79-87 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1881-7122 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027729 issn: 1341-1357 databaseCode: KQ8 dateStart: 19950101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1881-7122 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027729 issn: 1341-1357 databaseCode: DIK dateStart: 19950101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1881-7122 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027729 issn: 1341-1357 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwELbKAhIviJtyyQ-Il5KS2wk8lW5Kd9UWBK1U7UuUw5G66iYIsrDit_BXkZixHTdZQGJBqqzWmThp56v9jTMHIU_9hIW5nXCDm4VruAwMlNDFXIRmzhm3EtdJ0VCcL_zpyj1ce-te70fLa-m0TofZt9_GlfyLVqEP9IpRshfQrB4UOuA96Bda0DC0f6Xjg6bCSBMQIrjlZHOGljTwyE1RiJkMNDzHXXWOPFU-M8DwIxXrvPxaDdAcFU4d5wUwAWuOBBWl9nFCKLN6MObbrfBfjb6ICDncfZ-8mRg2pk6WnrVqF_BYu_rtCgmMys1JstVkfjWeHuyPVJBQnQCV10eixVsZUPQZiK7ufT96HSlxvaasZrMP4-ksUp4dMjvCIBq2dzWs3X7GIXAErL3ZhqfwuJzJPwV6HsjbbGa_1uwNS7JhOTLj9ZDLviCwDGbZnSlfljDoQFvO37KwTYcJ_LLGeCKjPD-D-9ycDH1z2JzUSdutQBErudgHY0s2LIybgxhZB0C-RC7bDIgSxqqvrd1-ARNF9vS3Uili4fovOlfvUKorx2BVYLqIjpUk2NLyBrmuzBw6kndwk_R4eYtcParEQ5zb5LtGLq0K2iCXKuRSjVxalVQilzbApAqYLykgkgrc4hjnD1PELa0rIdXglja4pRK3FHBLBW5pC7d3yGoSLcdTQ9UJMTLPd2rDh1WEB6zwXG46Ts4Ly8s9jwdmVvhZ5rLc5QFYBSBhpiEPrAw-g13kpE7CCjsLnbtkr6xKfp_QxPZg1U1Y7gS5GzhFwrMwcX07DZntJ67ZJ8-bnzrOVBJ9rOWyjdGYBs209c3CPnmmxT_K7DF_Enwl9abFLoKfPrknla3Pti0H1mLPe_Bf4z4k1-QjFHw9Inv1p1P-GDh4nT4RSIV28W7-ExAf6wQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Internal+Fixator+Stiffness+on+Murine+Fracture+Healing%3A+Two+Types+of+Fracture+Healing+Lead+to+Two+Distinct+Cellular+Events+and+FGF-2+Expressions&rft.jtitle=Experimental+Animals&rft.au=UCHIDA%2C+Kentaroo&rft.au=UENO%2C+Masaki&rft.au=URABE%2C+Ken&rft.au=WULLSCHLEGER%2C+Martin+E.&rft.date=2011&rft.pub=Japanese+Association+for+Laboratory+Animal+Science&rft.issn=1341-1357&rft.eissn=1881-7122&rft.volume=60&rft.issue=1&rft.spage=79&rft.epage=87&rft_id=info:doi/10.1538%2Fexpanim.60.79&rft.externalDocID=article_expanim_60_1_60_1_79_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-1357&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-1357&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-1357&client=summon |