Conditional Functional Graphical Models
Graphical modeling of multivariate functional data is becoming increasingly important in a wide variety of applications. The changes of graph structure can often be attributed to external variables, such as the diagnosis status or time, the latter of which gives rise to the problem of dynamic graphi...
        Saved in:
      
    
          | Published in | Journal of the American Statistical Association Vol. 118; no. 541; pp. 257 - 271 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Taylor & Francis
    
        02.01.2023
     Taylor & Francis Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0162-1459 1537-274X 1537-274X  | 
| DOI | 10.1080/01621459.2021.1924178 | 
Cover
| Abstract | Graphical modeling of multivariate functional data is becoming increasingly important in a wide variety of applications. The changes of graph structure can often be attributed to external variables, such as the diagnosis status or time, the latter of which gives rise to the problem of dynamic graphical modeling. Most existing methods focus on estimating the graph by aggregating samples, but largely ignore the subject-level heterogeneity due to the external variables. In this article, we introduce a conditional graphical model for multivariate random functions, where we treat the external variables as conditioning set, and allow the graph structure to vary with the external variables. Our method is built on two new linear operators, the conditional precision operator and the conditional partial correlation operator, which extend the precision matrix and the partial correlation matrix to both the conditional and functional settings. We show that their nonzero elements can be used to characterize the conditional graphs, and develop the corresponding estimators. We establish the uniform convergence of the proposed estimators and the consistency of the estimated graph, while allowing the graph size to grow with the sample size, and accommodating both completely and partially observed data. We demonstrate the efficacy of the method through both simulations and a study of brain functional connectivity network. | 
    
|---|---|
| AbstractList | Graphical modeling of multivariate functional data is becoming increasingly important in a wide variety of applications. The changes of graph structure can often be attributed to external variables, such as the diagnosis status or time, the latter of which gives rise to the problem of dynamic graphical modeling. Most existing methods focus on estimating the graph by aggregating samples, but largely ignore the subject-level heterogeneity due to the external variables. In this article, we introduce a conditional graphical model for multivariate random functions, where we treat the external variables as conditioning set, and allow the graph structure to vary with the external variables. Our method is built on two new linear operators, the conditional precision operator and the conditional partial correlation operator, which extend the precision matrix and the partial correlation matrix to both the conditional and functional settings. We show that their nonzero elements can be used to characterize the conditional graphs, and develop the corresponding estimators. We establish the uniform convergence of the proposed estimators and the consistency of the estimated graph, while allowing the graph size to grow with the sample size, and accommodating both completely and partially observed data. We demonstrate the efficacy of the method through both simulations and a study of brain functional connectivity network.Graphical modeling of multivariate functional data is becoming increasingly important in a wide variety of applications. The changes of graph structure can often be attributed to external variables, such as the diagnosis status or time, the latter of which gives rise to the problem of dynamic graphical modeling. Most existing methods focus on estimating the graph by aggregating samples, but largely ignore the subject-level heterogeneity due to the external variables. In this article, we introduce a conditional graphical model for multivariate random functions, where we treat the external variables as conditioning set, and allow the graph structure to vary with the external variables. Our method is built on two new linear operators, the conditional precision operator and the conditional partial correlation operator, which extend the precision matrix and the partial correlation matrix to both the conditional and functional settings. We show that their nonzero elements can be used to characterize the conditional graphs, and develop the corresponding estimators. We establish the uniform convergence of the proposed estimators and the consistency of the estimated graph, while allowing the graph size to grow with the sample size, and accommodating both completely and partially observed data. We demonstrate the efficacy of the method through both simulations and a study of brain functional connectivity network. Graphical modeling of multivariate functional data is becoming increasingly important in a wide variety of applications. The changes of graph structure can often be attributed to external variables, such as the diagnosis status or time, the latter of which gives rise to the problem of dynamic graphical modeling. Most existing methods focus on estimating the graph by aggregating samples, but largely ignore the subject-level heterogeneity due to the external variables. In this article, we introduce a conditional graphical model for multivariate random functions, where we treat the external variables as conditioning set, and allow the graph structure to vary with the external variables. Our method is built on two new linear operators, the conditional precision operator and the conditional partial correlation operator, which extend the precision matrix and the partial correlation matrix to both the conditional and functional settings. We show that their nonzero elements can be used to characterize the conditional graphs, and develop the corresponding estimators. We establish the uniform convergence of the proposed estimators and the consistency of the estimated graph, while allowing the graph size to grow with the sample size, and accommodating both completely and partially observed data. We demonstrate the efficacy of the method through both simulations and a study of brain functional connectivity network.  | 
    
| Author | Zhao, Hongyu Constable, Todd Li, Lexin Lee, Kuang-Yao Ji, Dingjue  | 
    
| AuthorAffiliation | d Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT c Division of Biostatistics, University of California, Berkeley, CA a Department of Statistical Science, Temple University, Philadelphia, PA b Department of Biostatistics, Yale University, New Haven, CT  | 
    
| AuthorAffiliation_xml | – name: b Department of Biostatistics, Yale University, New Haven, CT – name: c Division of Biostatistics, University of California, Berkeley, CA – name: a Department of Statistical Science, Temple University, Philadelphia, PA – name: d Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT  | 
    
| Author_xml | – sequence: 1 givenname: Kuang-Yao surname: Lee fullname: Lee, Kuang-Yao organization: Department of Statistical Science, Temple University – sequence: 2 givenname: Dingjue surname: Ji fullname: Ji, Dingjue organization: Department of Biostatistics, Yale University – sequence: 3 givenname: Lexin surname: Li fullname: Li, Lexin organization: Division of Biostatistics, University of California – sequence: 4 givenname: Todd surname: Constable fullname: Constable, Todd organization: Department of Radiology and Biomedical Imaging, Yale University – sequence: 5 givenname: Hongyu surname: Zhao fullname: Zhao, Hongyu organization: Department of Biostatistics, Yale University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37193511$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkU1v1DAQhi3Uim4LPwGExIFesnjsJLbFoaAV_ZCKuIDEzZp1HOrKay92QrX_vg675aOHUl88kp_39bwzh2QvxGAJeQF0DlTStxRaBnWj5owymINiNQj5hMyg4aJiov62R2YTU03QATnM-ZqWI6R8Sg64AMUbgBl5s4ihc4OLAf2r0zGYXXmWcH3lTKk-xc76_Izs9-izfb67j8jX049fFufV5eezi8WHy8o0LR-qureiNp1US2ZrqlgHTcvaViDjLeWmWwpYUou84RyR0l5JCVyZHq3lvaGcH5F26zuGNW5u0Hu9Tm6FaaOB6im5vkuup-R6l7wIT7bC9bhc2c7YMCT8I47o9L8vwV3p7_Fn8QQJQjXF4XjnkOKP0eZBr1w21nsMNo5ZM8lrBlLIx6BQS2hbqQr6-h56HcdURlyo8qtUQvyiXv7d_e-27xZVgHdbwKSYc7K9Nm7AaVkljPP_HU5zT_3Yob7f6lzoY1rhTUy-0wNufEx9wmBc1vxhi1v_3Mkr | 
    
| CitedBy_id | crossref_primary_10_1016_j_csda_2024_108122 crossref_primary_10_1080_01621459_2023_2200522 crossref_primary_10_1371_journal_pone_0316458 crossref_primary_10_1080_01621459_2021_2020126 crossref_primary_10_1093_jrsssb_qkae086  | 
    
| Cites_doi | 10.1214/07--AOAS145 10.1016/j.neuroimage.2008.02.036 10.1038/nrn2575 10.1080/01621459.2014.988213 10.1214/08-AOS637 10.1214/08-EJS176 10.1093/biomet/asw028 10.1007/978-1-4612-1154-9 10.1038/srep32328 10.1080/01621459.2017.1356726 10.1146/annurev-statistics-041715-033624 10.1016/j.tics.2013.10.001 10.1214/12-AOS1037 10.1093/biostatistics/kxm045 10.1111/rssb.12123 10.1016/j.neuroimage.2013.04.087 10.1080/01621459.2016.1260465 10.1080/10618600.2014.956876 10.1214/08-AOS600 10.1214/09-AOAS308 10.1038/s41467-018-04920-3 10.1109/JSTSP.2014.2310294 10.1198/jasa.2011.tm10155 10.1111/rssb.12150 10.1080/01621459.2017.1390466 10.1093/biomet/asm018 10.1198/jasa.2009.0126 10.1038/nn.4135 10.1038/s41598-018-21896-8 10.3389/fnins.2016.00123 10.1111/rssb.12278 10.1090/S0002-9947-1973-0336795-3 10.1371/journal.pone.0118733 10.1080/01621459.2011.644498  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 American Statistical Association 2021 2021 American Statistical Association  | 
    
| Copyright_xml | – notice: 2021 American Statistical Association 2021 – notice: 2021 American Statistical Association  | 
    
| DBID | AAYXX CITATION NPM 8BJ FQK JBE K9. 7X8 7S9 L.6 5PM ADTOC UNPAY  | 
    
| DOI | 10.1080/01621459.2021.1924178 | 
    
| DatabaseName | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic AGRICOLA International Bibliography of the Social Sciences (IBSS) PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Statistics | 
    
| EISSN | 1537-274X | 
    
| EndPage | 271 | 
    
| ExternalDocumentID | oai:figshare.com:article/14531656 PMC10181795 37193511 10_1080_01621459_2021_1924178 1924178  | 
    
| Genre | Research Article Journal Article  | 
    
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM134005 – fundername: NIA NIH HHS grantid: R01 AG061303 – fundername: NIA NIH HHS grantid: R01 AG062542 – fundername: NIA NIH HHS grantid: R01 AG034570  | 
    
| GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABTAI ABUFD ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ADCVX ADGTB ADLSF ADMHG AEISY AENEX AEOZL AEPSL AEYOC AFFNX AFRVT AFVYC AFXHP AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P FJW GTTXZ H13 HF~ HZ~ H~9 H~P IPNFZ J.P JAS K60 K6~ KYCEM LU7 M4Z MS~ MW2 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ~S~ AAYXX CITATION .-4 .GJ 07G 1OL 2AX 3R3 7X7 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 AAFWJ AAIKQ AAKBW AAWIL ABAWQ ABBHK ABEFU ABJCF ABPQH ABRLO ABUWG ABXSQ ACAGQ ACGEE ACHJO ACUBG ADBBV ADODI ADULT ADXHL ADYSH AEUMN AEUPB AFKRA AFQQW AFSUE AGCQS AGLEN AGLNM AGROQ AHMOU AI. AIHAF ALCKM ALIPV ALRMG AMATQ AMEWO AMXXU AQUVI AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BPHCQ BPLKW BVXVI C06 CCPQU CRFIH DMQIW DQDLB DSRWC DWIFK DWQXO E.L ECEWR EJD FEDTE FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HGD HMCUK HQ6 HVGLF IPSME IVXBP JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K9- KQ8 L6V LJTGL M0C M0R M0T M1P M2O M2P M7S MVM NHB NPM NUSFT P-O PADUT PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RNS S0X SA0 SJN TAQ TFMCV UB9 UKHRP UQL VH1 VOH WHG YXB YYP ZCG ZGI ZUP ZXP 8BJ FQK JBE K9. 7X8 7S9 L.6 5PM ACTCW ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c563t-4fe74cd89b2e4092d1562667a23603cdb71b0ea3533aa00f988139cfaee3fc033 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0162-1459 1537-274X  | 
    
| IngestDate | Sun Oct 26 03:33:37 EDT 2025 Tue Sep 30 17:10:34 EDT 2025 Thu Oct 02 23:57:46 EDT 2025 Sat Sep 27 16:05:54 EDT 2025 Mon Oct 06 18:31:08 EDT 2025 Mon Jul 21 05:53:55 EDT 2025 Wed Oct 01 03:21:33 EDT 2025 Thu Apr 24 23:13:13 EDT 2025 Mon Oct 20 23:46:24 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 541 | 
    
| Keywords | Functional magnetic resonance imaging Graphical model Reproducing kernel Hilbert space Linear operator Brain connectivity analysis Karhunen–Loève expansion  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c563t-4fe74cd89b2e4092d1562667a23603cdb71b0ea3533aa00f988139cfaee3fc033 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://figshare.com/articles/journal_contribution/Conditional_Functional_Graphical_Models/14531656 | 
    
| PMID | 37193511 | 
    
| PQID | 2795897789 | 
    
| PQPubID | 41715 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | unpaywall_primary_10_1080_01621459_2021_1924178 pubmed_primary_37193511 proquest_miscellaneous_2814816689 informaworld_taylorfrancis_310_1080_01621459_2021_1924178 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10181795 proquest_journals_2795897789 crossref_citationtrail_10_1080_01621459_2021_1924178 proquest_miscellaneous_2834218785 crossref_primary_10_1080_01621459_2021_1924178  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-01-02 | 
    
| PublicationDateYYYYMMDD | 2023-01-02 | 
    
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-02 day: 02  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Alexandria  | 
    
| PublicationTitle | Journal of the American Statistical Association | 
    
| PublicationTitleAlternate | J Am Stat Assoc | 
    
| PublicationYear | 2023 | 
    
| Publisher | Taylor & Francis Taylor & Francis Ltd  | 
    
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd  | 
    
| References | CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0033 Hastie T. J. (CIT0015) 1990 Tsay R. S. (CIT0030) 2017; 104 CIT0014 CIT0036 CIT0013 CIT0035 CIT0016 CIT0038 CIT0037 CIT0018 CIT0017 CIT0039 CIT0019 Fox M. D. (CIT0011) 2010; 4 CIT0040 CIT0021 CIT0023 CIT0022 Bach F. (CIT0001) 2009 Danaher P. (CIT0008) 2011 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 Lee W. (CIT0020) 2015; 16 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009  | 
    
| References_xml | – ident: CIT0034 doi: 10.1214/07--AOAS145 – ident: CIT0029 doi: 10.1016/j.neuroimage.2008.02.036 – ident: CIT0005 doi: 10.1038/nrn2575 – ident: CIT0039 doi: 10.1080/01621459.2014.988213 – ident: CIT0013 doi: 10.1214/08-AOS637 – ident: CIT0027 doi: 10.1214/08-EJS176 – ident: CIT0018 doi: 10.1093/biomet/asw028 – ident: CIT0004 doi: 10.1007/978-1-4612-1154-9 – ident: CIT0016 doi: 10.1038/srep32328 – ident: CIT0022 doi: 10.1080/01621459.2017.1356726 – volume: 4 year: 2010 ident: CIT0011 publication-title: Frontiers in Systems Neuroscience – ident: CIT0031 doi: 10.1146/annurev-statistics-041715-033624 – ident: CIT0037 doi: 10.1016/j.tics.2013.10.001 – ident: CIT0023 doi: 10.1214/12-AOS1037 – ident: CIT0012 doi: 10.1093/biostatistics/kxm045 – volume: 16 start-page: 1035 year: 2015 ident: CIT0020 publication-title: The Journal of Machine Learning Research – ident: CIT0026 doi: 10.1111/rssb.12123 – volume: 104 start-page: 237 year: 2017 ident: CIT0030 publication-title: Biometrika – ident: CIT0010 doi: 10.1016/j.neuroimage.2013.04.087 – ident: CIT0038 doi: 10.1080/01621459.2016.1260465 – ident: CIT0007 doi: 10.1080/10618600.2014.956876 – ident: CIT0003 doi: 10.1214/08-AOS600 – ident: CIT0017 doi: 10.1214/09-AOAS308 – ident: CIT0014 doi: 10.1038/s41467-018-04920-3 – ident: CIT0035 doi: 10.1109/JSTSP.2014.2310294 – year: 2011 ident: CIT0008 publication-title: arXiv no. 1111.0324 – volume-title: Generalized Additive Models year: 1990 ident: CIT0015 – ident: CIT0006 doi: 10.1198/jasa.2011.tm10155 – ident: CIT0019 doi: 10.1111/rssb.12150 – ident: CIT0025 doi: 10.1080/01621459.2017.1390466 – ident: CIT0036 doi: 10.1093/biomet/asm018 – ident: CIT0024 doi: 10.1198/jasa.2009.0126 – ident: CIT0009 doi: 10.1038/nn.4135 – ident: CIT0028 doi: 10.1038/s41598-018-21896-8 – ident: CIT0032 doi: 10.3389/fnins.2016.00123 – ident: CIT0040 doi: 10.1111/rssb.12278 – ident: CIT0002 doi: 10.1090/S0002-9947-1973-0336795-3 – year: 2009 ident: CIT0001 publication-title: arXiv no. 0909.0844 – ident: CIT0033 doi: 10.1371/journal.pone.0118733 – ident: CIT0021 doi: 10.1080/01621459.2011.644498  | 
    
| SSID | ssj0000788 | 
    
| Score | 2.4722238 | 
    
| Snippet | Graphical modeling of multivariate functional data is becoming increasingly important in a wide variety of applications. The changes of graph structure can... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref informaworld  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 257 | 
    
| SubjectTerms | brain Brain connectivity analysis Conditioning Convergence Correlation analysis Efficacy Estimators Functional connectivity Functional magnetic resonance imaging Graphical model Graphical models Graphs Heterogeneity Karhunen-Loève expansion Linear operator Linear operators Medical diagnosis Modelling Multivariate analysis Operators Operators (mathematics) Regression analysis Reproducing kernel Hilbert space sample size Statistical methods Statistics Variables  | 
    
| Title | Conditional Functional Graphical Models | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2021.1924178 https://www.ncbi.nlm.nih.gov/pubmed/37193511 https://www.proquest.com/docview/2795897789 https://www.proquest.com/docview/2814816689 https://www.proquest.com/docview/2834218785 https://pubmed.ncbi.nlm.nih.gov/PMC10181795 https://figshare.com/articles/journal_contribution/Conditional_Functional_Graphical_Models/14531656  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 118 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1537-274X dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: AMVHM dateStart: 20121201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: AHDZW dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB612wO98H4EShUkJE7ZjR9JnGNVsVQcVhxYaTlZtuPQilW26mZVlTM_nHHshF1AFA7cNhp7tJkZx984k28AXiMEF5yqKmGCYoJSlzzBVcSSmhiVC8IQ8XYFsrP8bM7fL7LFHpj-W5j64vP6XF35g6S-NmwS7Cq78u3QB2pyunIvdbsDMznFTSD8fOeInt0NStdNbLmeEI5xhrBlHw7yDAH7CA7msw8nnzzrN01QXnpW1SLBHG3Rf-fjGLhR7sSYR1IydrkKcf3YtnawHX7T36HUX4st72yaS3VzrZbLrZ1seg--9TbwBSxfxptWj83Xn-gh_7OR7sPdgITjE6_4AezZ5iEcOvDruaMfwZsttfEPtfGgNvZqH8N8-vbj6VkSGjskJstZiyFhC24qUWpqMb-kFSaRCBQKRVmeMlPpgujUKoZQVKk0rUuBUVOaWlnLapMy9gRGzaqxzyDmmRWacZ7ig5JrKrQiqeFcK5VVqaZZBLx3ljSB9dw131hK0pOjBh9L52MZfBzBeJh26Wk_bptQbkeCbLvzlto3R5HslrlHfdjI4MS1pEWZCQTnoozg1SDGte9e6KjGrjY4RmAyS_L8z2NwvRFRCDTFUx-Jwx2xAuE7Iu4IxE6MDgMc9_iupLk47zjIO6I3_IsRTIZw_jtLPf_nGS_gEC9Zd_BFj2DUXm3sS4SCrT6GfZbOjsOC_g5L8lop | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BObQX3o9AgUVC4pStX0mcI6pYFih7aqXeLNtxVMQqW9GsEPx6ZpwHu7yK1Fske6JkPGN_Y4-_AXiJEFwrYatUaoEBSl2qFL1IpjX3NtdcIuKNCbKLfH6i3p9mpxt3YSitkmLouiOKiHM1OTdtRg8pcQcIU4hgm-6ZCD6lEIIX-jrcyBDsUxUDyRY_Z-Mi1p4kkZRkhls8f3vN1vq0xV76Jwz6eyrl7ro5t9--2uVyY52a3QI__GGXnvJ5um7d1H__hfzxaiq4DTd7GDt53dndHbgWmruwR8i1I36-B68OV3QaHncaJzNcPfvHt8SQTZYxoTJsy4v7cDJ7c3w4T_uqDKnPctnieIZC-UqXTgQMDkWFESCu8oUVMmfSV67gjgUrEUday1hdahzy0tc2BFl7JuUD2GlWTXgEE5UF7aRSDGc55YR2ljOvlLM2q5gTWQJqGAvje8pyqpyxNHxgNu3VYEgNpldDAtNR7Lzj7LhMoNwcaNPGzZK6q2xi5CWy-4NVmN79L4woykwjstZlAi_GZnRcOo2xTVitsY_GSJTn-b_7oLNwXWhUxcPO0MY_kgVib4TLCegtExw7EHH4dkvz6SwSiEeWNvzEBA5Ga_0_TT2-gqaew-78-OOROXq3-PAE9rBJxr0ssQ877Zd1eIrornXPovv-ADw6O5Q | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VVoJegPJqoLRbCYlTtvEjiXNEhW15aNUDlbhZtuOoiFV21c0Kwa9nxnnQ5VWk3iLZEyXjGfsbe_wNwAuE4EpyU8ZCcQxQqkLG6EUirpgzmWICEW9IkJ1mp-fy3ae0zyZcdmmVFENXLVFEmKvJuRdl1WfEHSFKIX5tumbC2ZgiCJarW7CV0akY3eJIpj8n4zyUniSRmGT6Szx_e83a8rRGXvonCPp7JuWdVb0w376a2ezKMjW5B7b_wTY75ct41dix-_4L9-ONNHAf7nYgdvSqtbod2PD1A9gm3NrSPj-El8dzOgsP-4yjCa6d3eMJ8WOTXYyoCNts-QjOJ28-Hp_GXU2G2KWZaHA0fS5dqQrLPYaGvMT4D9f43HCB6nelzZlNvBGIIo1JkqpQOOCFq4z3onKJEI9hs57XfhdGMvXKCikTnOOk5coaljgprTFpmVieRiD7odCuIyynuhkzzXpe004NmtSgOzVEMB7EFi1jx3UCxdVx1k3YKqnauiZaXCO71xuF7px_qXlepApxtSoiOBya0W3pLMbUfr7CPgrjUJZl_-6DrsJUrlAVT1o7G_5I5Ii8ESxHoNYscOhAtOHrLfXni0AfHjja8BMjOBqM9f809fQGmjqA22evJ_rD2-n7Z7CNLSJsZPE92GwuV_45QrvG7gfn_QEUlTo4 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7YFeKG_SFhQkJE7ZjR9JnGNVsVQcKg6stJws23FoxSpbdbOqypkf3nHshF1AFA7cNhp7tJkZx984k28A3iAEF5yqKmGCYoJSlzzBVcSSmhiVC8IQ8XYFsmf56Yx_mGfzHTD9tzD1xZfVubryB0l9bdgk2FV25duhD9TkZOle6nYHZnKKm0D4-d4RPbsblK6b2GI1IRzjDGHLPdjNMwTsI9idnX08_uxZv2mC8tKzqhYJ5mjz_jsfx8CNcifGPJKSsctViOvHtrGDbfGb_g6l_lpseX_dXKqba7VYbOxk03343tvAF7B8Ha9bPTbffqKH_M9GeggPAhKOj73iR7Bjm8ew58Cv545-Am831MY_1MaD2tirfQqz6btPJ6dJaOyQmCxnLYaELbipRKmpxfySVphEIlAoFGV5ykylC6JTqxhCUaXStC4FRk1pamUtq03K2DMYNcvGvoCYZ1ZoxnmKD0quqdCKpIZzrVRWpZpmEfDeWdIE1nPXfGMhSU-OGnwsnY9l8HEE42Hapaf9uGtCuRkJsu3OW2rfHEWyO-Ye9WEjgxNXkhZlJhCcizKC14MY1757oaMau1zjGIHJLMnzP4_B9UZEIdAUz30kDnfECoTviLgjEFsxOgxw3OPbkubivOMg74je8C9GMBnC-e8sdfDPMw5hDy9Zd_BFj2DUXq3tS4SCrX4VlvItNVNZVw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditional+Functional+Graphical+Models&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Lee%2C+Kuang-Yao&rft.au=Ji%2C+Dingjue&rft.au=Li%2C+Lexin&rft.au=Constable%2C+Todd&rft.date=2023-01-02&rft.issn=0162-1459&rft.volume=118&rft.issue=541&rft.spage=257&rft_id=info:doi/10.1080%2F01621459.2021.1924178&rft_id=info%3Apmid%2F37193511&rft.externalDocID=37193511 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |