Conditional Functional Graphical Models

Graphical modeling of multivariate functional data is becoming increasingly important in a wide variety of applications. The changes of graph structure can often be attributed to external variables, such as the diagnosis status or time, the latter of which gives rise to the problem of dynamic graphi...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 118; no. 541; pp. 257 - 271
Main Authors Lee, Kuang-Yao, Ji, Dingjue, Li, Lexin, Constable, Todd, Zhao, Hongyu
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 02.01.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0162-1459
1537-274X
1537-274X
DOI10.1080/01621459.2021.1924178

Cover

Abstract Graphical modeling of multivariate functional data is becoming increasingly important in a wide variety of applications. The changes of graph structure can often be attributed to external variables, such as the diagnosis status or time, the latter of which gives rise to the problem of dynamic graphical modeling. Most existing methods focus on estimating the graph by aggregating samples, but largely ignore the subject-level heterogeneity due to the external variables. In this article, we introduce a conditional graphical model for multivariate random functions, where we treat the external variables as conditioning set, and allow the graph structure to vary with the external variables. Our method is built on two new linear operators, the conditional precision operator and the conditional partial correlation operator, which extend the precision matrix and the partial correlation matrix to both the conditional and functional settings. We show that their nonzero elements can be used to characterize the conditional graphs, and develop the corresponding estimators. We establish the uniform convergence of the proposed estimators and the consistency of the estimated graph, while allowing the graph size to grow with the sample size, and accommodating both completely and partially observed data. We demonstrate the efficacy of the method through both simulations and a study of brain functional connectivity network.
AbstractList Graphical modeling of multivariate functional data is becoming increasingly important in a wide variety of applications. The changes of graph structure can often be attributed to external variables, such as the diagnosis status or time, the latter of which gives rise to the problem of dynamic graphical modeling. Most existing methods focus on estimating the graph by aggregating samples, but largely ignore the subject-level heterogeneity due to the external variables. In this article, we introduce a conditional graphical model for multivariate random functions, where we treat the external variables as conditioning set, and allow the graph structure to vary with the external variables. Our method is built on two new linear operators, the conditional precision operator and the conditional partial correlation operator, which extend the precision matrix and the partial correlation matrix to both the conditional and functional settings. We show that their nonzero elements can be used to characterize the conditional graphs, and develop the corresponding estimators. We establish the uniform convergence of the proposed estimators and the consistency of the estimated graph, while allowing the graph size to grow with the sample size, and accommodating both completely and partially observed data. We demonstrate the efficacy of the method through both simulations and a study of brain functional connectivity network.Graphical modeling of multivariate functional data is becoming increasingly important in a wide variety of applications. The changes of graph structure can often be attributed to external variables, such as the diagnosis status or time, the latter of which gives rise to the problem of dynamic graphical modeling. Most existing methods focus on estimating the graph by aggregating samples, but largely ignore the subject-level heterogeneity due to the external variables. In this article, we introduce a conditional graphical model for multivariate random functions, where we treat the external variables as conditioning set, and allow the graph structure to vary with the external variables. Our method is built on two new linear operators, the conditional precision operator and the conditional partial correlation operator, which extend the precision matrix and the partial correlation matrix to both the conditional and functional settings. We show that their nonzero elements can be used to characterize the conditional graphs, and develop the corresponding estimators. We establish the uniform convergence of the proposed estimators and the consistency of the estimated graph, while allowing the graph size to grow with the sample size, and accommodating both completely and partially observed data. We demonstrate the efficacy of the method through both simulations and a study of brain functional connectivity network.
Graphical modeling of multivariate functional data is becoming increasingly important in a wide variety of applications. The changes of graph structure can often be attributed to external variables, such as the diagnosis status or time, the latter of which gives rise to the problem of dynamic graphical modeling. Most existing methods focus on estimating the graph by aggregating samples, but largely ignore the subject-level heterogeneity due to the external variables. In this article, we introduce a conditional graphical model for multivariate random functions, where we treat the external variables as conditioning set, and allow the graph structure to vary with the external variables. Our method is built on two new linear operators, the conditional precision operator and the conditional partial correlation operator, which extend the precision matrix and the partial correlation matrix to both the conditional and functional settings. We show that their nonzero elements can be used to characterize the conditional graphs, and develop the corresponding estimators. We establish the uniform convergence of the proposed estimators and the consistency of the estimated graph, while allowing the graph size to grow with the sample size, and accommodating both completely and partially observed data. We demonstrate the efficacy of the method through both simulations and a study of brain functional connectivity network.
Author Zhao, Hongyu
Constable, Todd
Li, Lexin
Lee, Kuang-Yao
Ji, Dingjue
AuthorAffiliation d Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT
c Division of Biostatistics, University of California, Berkeley, CA
a Department of Statistical Science, Temple University, Philadelphia, PA
b Department of Biostatistics, Yale University, New Haven, CT
AuthorAffiliation_xml – name: b Department of Biostatistics, Yale University, New Haven, CT
– name: c Division of Biostatistics, University of California, Berkeley, CA
– name: a Department of Statistical Science, Temple University, Philadelphia, PA
– name: d Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT
Author_xml – sequence: 1
  givenname: Kuang-Yao
  surname: Lee
  fullname: Lee, Kuang-Yao
  organization: Department of Statistical Science, Temple University
– sequence: 2
  givenname: Dingjue
  surname: Ji
  fullname: Ji, Dingjue
  organization: Department of Biostatistics, Yale University
– sequence: 3
  givenname: Lexin
  surname: Li
  fullname: Li, Lexin
  organization: Division of Biostatistics, University of California
– sequence: 4
  givenname: Todd
  surname: Constable
  fullname: Constable, Todd
  organization: Department of Radiology and Biomedical Imaging, Yale University
– sequence: 5
  givenname: Hongyu
  surname: Zhao
  fullname: Zhao, Hongyu
  organization: Department of Biostatistics, Yale University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37193511$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi3Uim4LPwGExIFesnjsJLbFoaAV_ZCKuIDEzZp1HOrKay92QrX_vg675aOHUl88kp_39bwzh2QvxGAJeQF0DlTStxRaBnWj5owymINiNQj5hMyg4aJiov62R2YTU03QATnM-ZqWI6R8Sg64AMUbgBl5s4ihc4OLAf2r0zGYXXmWcH3lTKk-xc76_Izs9-izfb67j8jX049fFufV5eezi8WHy8o0LR-qureiNp1US2ZrqlgHTcvaViDjLeWmWwpYUou84RyR0l5JCVyZHq3lvaGcH5F26zuGNW5u0Hu9Tm6FaaOB6im5vkuup-R6l7wIT7bC9bhc2c7YMCT8I47o9L8vwV3p7_Fn8QQJQjXF4XjnkOKP0eZBr1w21nsMNo5ZM8lrBlLIx6BQS2hbqQr6-h56HcdURlyo8qtUQvyiXv7d_e-27xZVgHdbwKSYc7K9Nm7AaVkljPP_HU5zT_3Yob7f6lzoY1rhTUy-0wNufEx9wmBc1vxhi1v_3Mkr
CitedBy_id crossref_primary_10_1016_j_csda_2024_108122
crossref_primary_10_1080_01621459_2023_2200522
crossref_primary_10_1371_journal_pone_0316458
crossref_primary_10_1080_01621459_2021_2020126
crossref_primary_10_1093_jrsssb_qkae086
Cites_doi 10.1214/07--AOAS145
10.1016/j.neuroimage.2008.02.036
10.1038/nrn2575
10.1080/01621459.2014.988213
10.1214/08-AOS637
10.1214/08-EJS176
10.1093/biomet/asw028
10.1007/978-1-4612-1154-9
10.1038/srep32328
10.1080/01621459.2017.1356726
10.1146/annurev-statistics-041715-033624
10.1016/j.tics.2013.10.001
10.1214/12-AOS1037
10.1093/biostatistics/kxm045
10.1111/rssb.12123
10.1016/j.neuroimage.2013.04.087
10.1080/01621459.2016.1260465
10.1080/10618600.2014.956876
10.1214/08-AOS600
10.1214/09-AOAS308
10.1038/s41467-018-04920-3
10.1109/JSTSP.2014.2310294
10.1198/jasa.2011.tm10155
10.1111/rssb.12150
10.1080/01621459.2017.1390466
10.1093/biomet/asm018
10.1198/jasa.2009.0126
10.1038/nn.4135
10.1038/s41598-018-21896-8
10.3389/fnins.2016.00123
10.1111/rssb.12278
10.1090/S0002-9947-1973-0336795-3
10.1371/journal.pone.0118733
10.1080/01621459.2011.644498
ContentType Journal Article
Copyright 2021 American Statistical Association 2021
2021 American Statistical Association
Copyright_xml – notice: 2021 American Statistical Association 2021
– notice: 2021 American Statistical Association
DBID AAYXX
CITATION
NPM
8BJ
FQK
JBE
K9.
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1080/01621459.2021.1924178
DatabaseName CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA


International Bibliography of the Social Sciences (IBSS)
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 271
ExternalDocumentID oai:figshare.com:article/14531656
PMC10181795
37193511
10_1080_01621459_2021_1924178
1924178
Genre Research Article
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM134005
– fundername: NIA NIH HHS
  grantid: R01 AG061303
– fundername: NIA NIH HHS
  grantid: R01 AG062542
– fundername: NIA NIH HHS
  grantid: R01 AG034570
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABTAI
ABUFD
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADLSF
ADMHG
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
JAS
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
~S~
AAYXX
CITATION
.-4
.GJ
07G
1OL
2AX
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAFWJ
AAIKQ
AAKBW
AAWIL
ABAWQ
ABBHK
ABEFU
ABJCF
ABPQH
ABRLO
ABUWG
ABXSQ
ACAGQ
ACGEE
ACHJO
ACUBG
ADBBV
ADODI
ADULT
ADXHL
ADYSH
AEUMN
AEUPB
AFKRA
AFQQW
AFSUE
AGCQS
AGLEN
AGLNM
AGROQ
AHMOU
AI.
AIHAF
ALCKM
ALIPV
ALRMG
AMATQ
AMEWO
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CRFIH
DMQIW
DQDLB
DSRWC
DWIFK
DWQXO
E.L
ECEWR
EJD
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HQ6
HVGLF
IPSME
IVXBP
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
MVM
NHB
NPM
NUSFT
P-O
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SA0
SJN
TAQ
TFMCV
UB9
UKHRP
UQL
VH1
VOH
WHG
YXB
YYP
ZCG
ZGI
ZUP
ZXP
8BJ
FQK
JBE
K9.
7X8
7S9
L.6
5PM
ACTCW
ADTOC
UNPAY
ID FETCH-LOGICAL-c563t-4fe74cd89b2e4092d1562667a23603cdb71b0ea3533aa00f988139cfaee3fc033
IEDL.DBID UNPAY
ISSN 0162-1459
1537-274X
IngestDate Sun Oct 26 03:33:37 EDT 2025
Tue Sep 30 17:10:34 EDT 2025
Thu Oct 02 23:57:46 EDT 2025
Sat Sep 27 16:05:54 EDT 2025
Mon Oct 06 18:31:08 EDT 2025
Mon Jul 21 05:53:55 EDT 2025
Wed Oct 01 03:21:33 EDT 2025
Thu Apr 24 23:13:13 EDT 2025
Mon Oct 20 23:46:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 541
Keywords Functional magnetic resonance imaging
Graphical model
Reproducing kernel Hilbert space
Linear operator
Brain connectivity analysis
Karhunen–Loève expansion
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-4fe74cd89b2e4092d1562667a23603cdb71b0ea3533aa00f988139cfaee3fc033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://figshare.com/articles/journal_contribution/Conditional_Functional_Graphical_Models/14531656
PMID 37193511
PQID 2795897789
PQPubID 41715
PageCount 15
ParticipantIDs unpaywall_primary_10_1080_01621459_2021_1924178
pubmed_primary_37193511
proquest_miscellaneous_2814816689
informaworld_taylorfrancis_310_1080_01621459_2021_1924178
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10181795
proquest_journals_2795897789
crossref_citationtrail_10_1080_01621459_2021_1924178
proquest_miscellaneous_2834218785
crossref_primary_10_1080_01621459_2021_1924178
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-02
PublicationDateYYYYMMDD 2023-01-02
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0033
Hastie T. J. (CIT0015) 1990
Tsay R. S. (CIT0030) 2017; 104
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0038
CIT0037
CIT0018
CIT0017
CIT0039
CIT0019
Fox M. D. (CIT0011) 2010; 4
CIT0040
CIT0021
CIT0023
CIT0022
Bach F. (CIT0001) 2009
Danaher P. (CIT0008) 2011
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
Lee W. (CIT0020) 2015; 16
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
References_xml – ident: CIT0034
  doi: 10.1214/07--AOAS145
– ident: CIT0029
  doi: 10.1016/j.neuroimage.2008.02.036
– ident: CIT0005
  doi: 10.1038/nrn2575
– ident: CIT0039
  doi: 10.1080/01621459.2014.988213
– ident: CIT0013
  doi: 10.1214/08-AOS637
– ident: CIT0027
  doi: 10.1214/08-EJS176
– ident: CIT0018
  doi: 10.1093/biomet/asw028
– ident: CIT0004
  doi: 10.1007/978-1-4612-1154-9
– ident: CIT0016
  doi: 10.1038/srep32328
– ident: CIT0022
  doi: 10.1080/01621459.2017.1356726
– volume: 4
  year: 2010
  ident: CIT0011
  publication-title: Frontiers in Systems Neuroscience
– ident: CIT0031
  doi: 10.1146/annurev-statistics-041715-033624
– ident: CIT0037
  doi: 10.1016/j.tics.2013.10.001
– ident: CIT0023
  doi: 10.1214/12-AOS1037
– ident: CIT0012
  doi: 10.1093/biostatistics/kxm045
– volume: 16
  start-page: 1035
  year: 2015
  ident: CIT0020
  publication-title: The Journal of Machine Learning Research
– ident: CIT0026
  doi: 10.1111/rssb.12123
– volume: 104
  start-page: 237
  year: 2017
  ident: CIT0030
  publication-title: Biometrika
– ident: CIT0010
  doi: 10.1016/j.neuroimage.2013.04.087
– ident: CIT0038
  doi: 10.1080/01621459.2016.1260465
– ident: CIT0007
  doi: 10.1080/10618600.2014.956876
– ident: CIT0003
  doi: 10.1214/08-AOS600
– ident: CIT0017
  doi: 10.1214/09-AOAS308
– ident: CIT0014
  doi: 10.1038/s41467-018-04920-3
– ident: CIT0035
  doi: 10.1109/JSTSP.2014.2310294
– year: 2011
  ident: CIT0008
  publication-title: arXiv no. 1111.0324
– volume-title: Generalized Additive Models
  year: 1990
  ident: CIT0015
– ident: CIT0006
  doi: 10.1198/jasa.2011.tm10155
– ident: CIT0019
  doi: 10.1111/rssb.12150
– ident: CIT0025
  doi: 10.1080/01621459.2017.1390466
– ident: CIT0036
  doi: 10.1093/biomet/asm018
– ident: CIT0024
  doi: 10.1198/jasa.2009.0126
– ident: CIT0009
  doi: 10.1038/nn.4135
– ident: CIT0028
  doi: 10.1038/s41598-018-21896-8
– ident: CIT0032
  doi: 10.3389/fnins.2016.00123
– ident: CIT0040
  doi: 10.1111/rssb.12278
– ident: CIT0002
  doi: 10.1090/S0002-9947-1973-0336795-3
– year: 2009
  ident: CIT0001
  publication-title: arXiv no. 0909.0844
– ident: CIT0033
  doi: 10.1371/journal.pone.0118733
– ident: CIT0021
  doi: 10.1080/01621459.2011.644498
SSID ssj0000788
Score 2.4722238
Snippet Graphical modeling of multivariate functional data is becoming increasingly important in a wide variety of applications. The changes of graph structure can...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 257
SubjectTerms brain
Brain connectivity analysis
Conditioning
Convergence
Correlation analysis
Efficacy
Estimators
Functional connectivity
Functional magnetic resonance imaging
Graphical model
Graphical models
Graphs
Heterogeneity
Karhunen-Loève expansion
Linear operator
Linear operators
Medical diagnosis
Modelling
Multivariate analysis
Operators
Operators (mathematics)
Regression analysis
Reproducing kernel Hilbert space
sample size
Statistical methods
Statistics
Variables
Title Conditional Functional Graphical Models
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2021.1924178
https://www.ncbi.nlm.nih.gov/pubmed/37193511
https://www.proquest.com/docview/2795897789
https://www.proquest.com/docview/2814816689
https://www.proquest.com/docview/2834218785
https://pubmed.ncbi.nlm.nih.gov/PMC10181795
https://figshare.com/articles/journal_contribution/Conditional_Functional_Graphical_Models/14531656
UnpaywallVersion submittedVersion
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: AMVHM
  dateStart: 20121201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: AHDZW
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB612wO98H4EShUkJE7ZjR9JnGNVsVQcVhxYaTlZtuPQilW26mZVlTM_nHHshF1AFA7cNhp7tJkZx984k28AXiMEF5yqKmGCYoJSlzzBVcSSmhiVC8IQ8XYFsrP8bM7fL7LFHpj-W5j64vP6XF35g6S-NmwS7Cq78u3QB2pyunIvdbsDMznFTSD8fOeInt0NStdNbLmeEI5xhrBlHw7yDAH7CA7msw8nnzzrN01QXnpW1SLBHG3Rf-fjGLhR7sSYR1IydrkKcf3YtnawHX7T36HUX4st72yaS3VzrZbLrZ1seg--9TbwBSxfxptWj83Xn-gh_7OR7sPdgITjE6_4AezZ5iEcOvDruaMfwZsttfEPtfGgNvZqH8N8-vbj6VkSGjskJstZiyFhC24qUWpqMb-kFSaRCBQKRVmeMlPpgujUKoZQVKk0rUuBUVOaWlnLapMy9gRGzaqxzyDmmRWacZ7ig5JrKrQiqeFcK5VVqaZZBLx3ljSB9dw131hK0pOjBh9L52MZfBzBeJh26Wk_bptQbkeCbLvzlto3R5HslrlHfdjI4MS1pEWZCQTnoozg1SDGte9e6KjGrjY4RmAyS_L8z2NwvRFRCDTFUx-Jwx2xAuE7Iu4IxE6MDgMc9_iupLk47zjIO6I3_IsRTIZw_jtLPf_nGS_gEC9Zd_BFj2DUXm3sS4SCrT6GfZbOjsOC_g5L8lop
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BObQX3o9AgUVC4pStX0mcI6pYFih7aqXeLNtxVMQqW9GsEPx6ZpwHu7yK1Fske6JkPGN_Y4-_AXiJEFwrYatUaoEBSl2qFL1IpjX3NtdcIuKNCbKLfH6i3p9mpxt3YSitkmLouiOKiHM1OTdtRg8pcQcIU4hgm-6ZCD6lEIIX-jrcyBDsUxUDyRY_Z-Mi1p4kkZRkhls8f3vN1vq0xV76Jwz6eyrl7ro5t9--2uVyY52a3QI__GGXnvJ5um7d1H__hfzxaiq4DTd7GDt53dndHbgWmruwR8i1I36-B68OV3QaHncaJzNcPfvHt8SQTZYxoTJsy4v7cDJ7c3w4T_uqDKnPctnieIZC-UqXTgQMDkWFESCu8oUVMmfSV67gjgUrEUday1hdahzy0tc2BFl7JuUD2GlWTXgEE5UF7aRSDGc55YR2ljOvlLM2q5gTWQJqGAvje8pyqpyxNHxgNu3VYEgNpldDAtNR7Lzj7LhMoNwcaNPGzZK6q2xi5CWy-4NVmN79L4woykwjstZlAi_GZnRcOo2xTVitsY_GSJTn-b_7oLNwXWhUxcPO0MY_kgVib4TLCegtExw7EHH4dkvz6SwSiEeWNvzEBA5Ga_0_TT2-gqaew-78-OOROXq3-PAE9rBJxr0ssQ877Zd1eIrornXPovv-ADw6O5Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VVoJegPJqoLRbCYlTtvEjiXNEhW15aNUDlbhZtuOoiFV21c0Kwa9nxnnQ5VWk3iLZEyXjGfsbe_wNwAuE4EpyU8ZCcQxQqkLG6EUirpgzmWICEW9IkJ1mp-fy3ae0zyZcdmmVFENXLVFEmKvJuRdl1WfEHSFKIX5tumbC2ZgiCJarW7CV0akY3eJIpj8n4zyUniSRmGT6Szx_e83a8rRGXvonCPp7JuWdVb0w376a2ezKMjW5B7b_wTY75ct41dix-_4L9-ONNHAf7nYgdvSqtbod2PD1A9gm3NrSPj-El8dzOgsP-4yjCa6d3eMJ8WOTXYyoCNts-QjOJ28-Hp_GXU2G2KWZaHA0fS5dqQrLPYaGvMT4D9f43HCB6nelzZlNvBGIIo1JkqpQOOCFq4z3onKJEI9hs57XfhdGMvXKCikTnOOk5coaljgprTFpmVieRiD7odCuIyynuhkzzXpe004NmtSgOzVEMB7EFi1jx3UCxdVx1k3YKqnauiZaXCO71xuF7px_qXlepApxtSoiOBya0W3pLMbUfr7CPgrjUJZl_-6DrsJUrlAVT1o7G_5I5Ii8ESxHoNYscOhAtOHrLfXni0AfHjja8BMjOBqM9f809fQGmjqA22evJ_rD2-n7Z7CNLSJsZPE92GwuV_45QrvG7gfn_QEUlTo4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7YFeKG_SFhQkJE7ZjR9JnGNVsVQcKg6stJws23FoxSpbdbOqypkf3nHshF1AFA7cNhp7tJkZx984k28A3iAEF5yqKmGCYoJSlzzBVcSSmhiVC8IQ8XYFsmf56Yx_mGfzHTD9tzD1xZfVubryB0l9bdgk2FV25duhD9TkZOle6nYHZnKKm0D4-d4RPbsblK6b2GI1IRzjDGHLPdjNMwTsI9idnX08_uxZv2mC8tKzqhYJ5mjz_jsfx8CNcifGPJKSsctViOvHtrGDbfGb_g6l_lpseX_dXKqba7VYbOxk03343tvAF7B8Ha9bPTbffqKH_M9GeggPAhKOj73iR7Bjm8ew58Cv545-Am831MY_1MaD2tirfQqz6btPJ6dJaOyQmCxnLYaELbipRKmpxfySVphEIlAoFGV5ykylC6JTqxhCUaXStC4FRk1pamUtq03K2DMYNcvGvoCYZ1ZoxnmKD0quqdCKpIZzrVRWpZpmEfDeWdIE1nPXfGMhSU-OGnwsnY9l8HEE42Hapaf9uGtCuRkJsu3OW2rfHEWyO-Ye9WEjgxNXkhZlJhCcizKC14MY1757oaMau1zjGIHJLMnzP4_B9UZEIdAUz30kDnfECoTviLgjEFsxOgxw3OPbkubivOMg74je8C9GMBnC-e8sdfDPMw5hDy9Zd_BFj2DUXq3tS4SCrX4VlvItNVNZVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditional+Functional+Graphical+Models&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Lee%2C+Kuang-Yao&rft.au=Ji%2C+Dingjue&rft.au=Li%2C+Lexin&rft.au=Constable%2C+Todd&rft.date=2023-01-02&rft.issn=0162-1459&rft.volume=118&rft.issue=541&rft.spage=257&rft_id=info:doi/10.1080%2F01621459.2021.1924178&rft_id=info%3Apmid%2F37193511&rft.externalDocID=37193511
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon