基于GA-BP和POS-BP神经网络的光伏电站出力短期预测

当前在光伏电站出力短期预测方面较多的采用BP或者优化的BP神经网络算法,存在采用的优化算法单一、缺乏多种优化算法比较选优、预测误差大的问题。基于本地5 k W小型分布式光伏电站,综合考虑影响光伏出力的太阳光辐射强度、环境温度、风速气象相关因素和光伏电站历史发电数据,分别采用BP以及遗传算法和粒子群算法优化的BP神经网络算法—GA-BP和POS-BP构建了晴天、多云、阴雨三种天气条件下光伏出力短期预测模型。实测结果表明,三种神经网络算法预测模型在三种不同天气条件下均达到了一定的预测精度。其中GA-BP、POS-BP相比传统的BP预测模型降低了预测误差,且POS算法相比GA算法对于BP神经网络预测...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 43; no. 20; pp. 83 - 89
Main Author 姚仲敏 潘飞 沈玉会 吴金秋 于晓红
Format Journal Article
LanguageChinese
Published 齐齐哈尔大学通信与电子工程学院,黑龙江 齐齐哈尔,161006%哈尔滨师范大学计算机与信息工程学院,黑龙江 哈尔滨,150080 2015
Subjects
Online AccessGet full text
ISSN1674-3415

Cover

Abstract 当前在光伏电站出力短期预测方面较多的采用BP或者优化的BP神经网络算法,存在采用的优化算法单一、缺乏多种优化算法比较选优、预测误差大的问题。基于本地5 k W小型分布式光伏电站,综合考虑影响光伏出力的太阳光辐射强度、环境温度、风速气象相关因素和光伏电站历史发电数据,分别采用BP以及遗传算法和粒子群算法优化的BP神经网络算法—GA-BP和POS-BP构建了晴天、多云、阴雨三种天气条件下光伏出力短期预测模型。实测结果表明,三种神经网络算法预测模型在三种不同天气条件下均达到了一定的预测精度。其中GA-BP、POS-BP相比传统的BP预测模型降低了预测误差,且POS算法相比GA算法对于BP神经网络预测模型的优化效果更好,进一步降低了预测误差,适用性更强。
AbstractList 当前在光伏电站出力短期预测方面较多的采用BP或者优化的BP神经网络算法,存在采用的优化算法单一、缺乏多种优化算法比较选优、预测误差大的问题。基于本地5 k W小型分布式光伏电站,综合考虑影响光伏出力的太阳光辐射强度、环境温度、风速气象相关因素和光伏电站历史发电数据,分别采用BP以及遗传算法和粒子群算法优化的BP神经网络算法—GA-BP和POS-BP构建了晴天、多云、阴雨三种天气条件下光伏出力短期预测模型。实测结果表明,三种神经网络算法预测模型在三种不同天气条件下均达到了一定的预测精度。其中GA-BP、POS-BP相比传统的BP预测模型降低了预测误差,且POS算法相比GA算法对于BP神经网络预测模型的优化效果更好,进一步降低了预测误差,适用性更强。
TM715; 当前在光伏电站出力短期预测方面较多的采用BP或者优化的BP神经网络算法,存在采用的优化算法单一、缺乏多种优化算法比较选优、预测误差大的问题.基于本地5 kW小型分布式光伏电站,综合考虑影响光伏出力的太阳光辐射强度、环境温度、风速气象相关因素和光伏电站历史发电数据,分别采用 BP 以及遗传算法和粒子群算法优化的BP神经网络算法—GA-BP和POS-BP构建了晴天、多云、阴雨三种天气条件下光伏出力短期预测模型.实测结果表明,三种神经网络算法预测模型在三种不同天气条件下均达到了一定的预测精度.其中GA-BP、POS-BP相比传统的BP预测模型降低了预测误差,且POS算法相比GA算法对于BP神经网络预测模型的优化效果更好,进一步降低了预测误差,适用性更强.
Abstract_FL In the current PV output short-term forecast, BP or optimization BP neural network algorithm is used commonly, which has problems of single optimization algorithm, the lack of a variety of optimization algorithms for comparison and selection, and big forecast error. Therefore, based on local 5 kW small-scale distributed PV power station, considering the related factors that influence PV output such as solar radiation intensity, environmental temperature, wind speed and historical generation data of photovoltaic power station, this paper uses BP, GA-BP and POS-BP neural network algorithm respectively to construct short-term prediction model of PV output in sunny, cloudy and rainy weather conditions. Test results show that three kinds of neural network prediction models all reach certain prediction accuracy under three different weather conditions, among which GA-BP and POS-BP prediction models reduce the prediction errors compared to the traditional BP model, and POS algorithm has a better optimization effect on BP neural network prediction model and a stronger applicability compared to GA algorithm, and further reduces the prediction errors.
Author 姚仲敏 潘飞 沈玉会 吴金秋 于晓红
AuthorAffiliation 齐齐哈尔大学通信与电子工程学院,黑龙江齐齐哈尔161006 哈尔滨师范大学计算机与信息工程学院,黑龙江哈尔滨150080
AuthorAffiliation_xml – name: 齐齐哈尔大学通信与电子工程学院,黑龙江 齐齐哈尔,161006%哈尔滨师范大学计算机与信息工程学院,黑龙江 哈尔滨,150080
Author_FL SHEN Yuhui
YU Xiaohong
WU Jinqiu
YAO Zhongmin
PAN Fei
Author_FL_xml – sequence: 1
  fullname: YAO Zhongmin
– sequence: 2
  fullname: PAN Fei
– sequence: 3
  fullname: SHEN Yuhui
– sequence: 4
  fullname: WU Jinqiu
– sequence: 5
  fullname: YU Xiaohong
Author_xml – sequence: 1
  fullname: 姚仲敏 潘飞 沈玉会 吴金秋 于晓红
BookMark eNotzc1Kw0AUBeBZVLDWvoS4DczkZibJMhatQqEFuw-TmUlN0cQmiLiviD9YFDdqMSC4EpfdpPo2TQffwkBd3QPn49wNVIuTWNVQnTDbMsAidB01sywKMAZCKXPcOvLKvFgU923P2OmVj3e97mEV9Mebnk_0z4OeT_XLuLy8XnxP9NNMfz6XV0V586rzr-U0_30fL2e3m2gt5MeZav7fBurv7fZb-0an2z5oeR1DUAZGoGgIARYWlZIFwEloMwGOI4UAZUpQlBEQrlSVsZUKJATEZVWLVUg4UdBA26vZcx6HPB74w-QsjauH_lCOTEyoiTGBim2tmDhK4sEoquBpGp3w9MJnjJnMpo4Ff3ZoZVM
ClassificationCodes TM715
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Short-term prediction of photovoltaic power generation output based on GA-BP and POS-BP neural network
DocumentTitle_FL Short-term prediction of photovoltaic power generation output based on GA-BP and POS-BP neural network
EndPage 89
ExternalDocumentID jdq201520013
666267584
GrantInformation_xml – fundername: 智能教育与信息工程黑龙江省高校重点实验室开放课题; 齐齐哈尔市科技局工业攻关项目
  funderid: (SEIE2014-05); (GYGG-201106)
GroupedDBID -03
2RA
5XA
5XD
92L
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CQIGP
GROUPED_DOAJ
U1G
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c563-be5f3b0c45dd6b3a1f76c388dcc3e2d3e5613c9deb0c7eebd3b196dcc0ef1a1e3
ISSN 1674-3415
IngestDate Thu May 29 04:03:01 EDT 2025
Wed Feb 14 10:28:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords POS-BP算法
GA-BP算法
光伏发电短期预测
BP神经网络算法
GA-BP algorithm
POS-BP algorithm
BP neural network algorithm
photovoltaic power short-term prediction
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c563-be5f3b0c45dd6b3a1f76c388dcc3e2d3e5613c9deb0c7eebd3b196dcc0ef1a1e3
Notes In the current PV output short-term forecast, BP or optimization BP neural network algorithm is used commonly, which has problems of single optimization algorithm, the lack of a variety of optimization algorithms for comparison and selection, and big forecast error. Therefore, based on local 5 kW small-scale distributed PV power station, considering the related factors that influence PV output such as solar radiation intensity, environmental temperature, wind speed and historical generation data of photovoltaic power station, this paper uses BP, GA-BP and POS-BP neural network algorithm respectively to construct short-term prediction model of PV output in sunny, cloudy and rainy weather conditions. Test results show that three kinds of neural network prediction models all reach certain prediction accuracy under three different weather conditions, among which GA-BP and POS-BP prediction models reduce the prediction errors compared to the traditional BP model, and POS algorithm has a better optimization effect
PageCount 7
ParticipantIDs wanfang_journals_jdq201520013
chongqing_primary_666267584
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 电力系统保护与控制
PublicationTitleAlternate Relay
PublicationTitle_FL Power System Protection and Control
PublicationYear 2015
Publisher 齐齐哈尔大学通信与电子工程学院,黑龙江 齐齐哈尔,161006%哈尔滨师范大学计算机与信息工程学院,黑龙江 哈尔滨,150080
Publisher_xml – name: 齐齐哈尔大学通信与电子工程学院,黑龙江 齐齐哈尔,161006%哈尔滨师范大学计算机与信息工程学院,黑龙江 哈尔滨,150080
SSID ssib003155689
ssib017479473
ssib023166999
ssj0002912115
ssib051374514
ssib002424069
ssib036435463
Score 2.090253
Snippet 当前在光伏电站出力短期预测方面较多的采用BP或者优化的BP神经网络算法,存在采用的优化算法单一、缺乏多种优化算法比较选优、预测误差大的问题。基于本地5 k W小型分布式光伏...
TM715; 当前在光伏电站出力短期预测方面较多的采用BP或者优化的BP神经网络算法,存在采用的优化算法单一、缺乏多种优化算法比较选优、预测误差大的问题.基于本地5 kW小型分布...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 83
SubjectTerms BP神经网络算法
GA-BP算法
POS-BP算法
光伏发电短期预测
Title 基于GA-BP和POS-BP神经网络的光伏电站出力短期预测
URI http://lib.cqvip.com/qk/90494A/201520/666267584.html
https://d.wanfangdata.com.cn/periodical/jdq201520013
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1674-3415
  databaseCode: DOA
  dateStart: 20080101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002912115
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0Fr1xAWBAFFKUQ_4tArKxo4TH5NtQsUBKrFIva3ycFpx2FLYXnouQjxEBeICVKyExAlx7GULn8EfdBvxF8xMQjYHhABpZU1mx5MZj-OZcWyHsevg87VKbGmldpJaMtGFlSiTWLZtlHJFAl6GFsjeVmv35K0Nd6PT-d5atbQ7Tm9ke7_dV_I_VgUc2BV3yf6DZRumgAAY7AslWBjKv7Ixj1yuYx4GPJJY-tHNwArXCe1wv79-5y5dejwATIRAGHI_JmCV616N0X0ENDCQWNeHnyaW_ZpYA-wSHyDWROPRbQEIuA6JJubBKo8UcgM40jxwiKHCun7YDoNbPFscQoHC1CLFJEDMNfEEmkASxgctCRPxwKPqPg-b6UVEBKQK0oY8dEgioIq7JAlo7ZNsAhqkQjnIAu4KHBu1ddClVrR5KJEc1K1aC5j7Ybdpb-KuuRYkNgjptKdRqi2k9ZivPGmBM3fbTqE6O6ru_I7dGuKr7-78Chb03I82qxshI3QwD8NTaiH-s1uJfh0U4Xbj1qiKp8A115Aiwhg5DyohAFdKz5NGATFk-xsGbk940q3fhWP84Wg8tg_X7jaa4cEhW9ujzR0Ih2h32qhIRputQGpwjp2tM6CVoOrO51lnb-sCC2aT6cn0JXXf2esXVcctP30ojw_Kb6_K48Py3f7s8dOTrwflm6Py89vZk-ns2fty8uX0cPLj4_7p0fOLbBBHg_6aVX_dw8pcJazUuIVI7Uy6ea5SkfQKT2XC9_MsE8bJhcHMNtO5ARrPmDQXKTgL-Nc2RS_pGXGJLYy2R-YyWwGno_B1dVa4hew5qU4LXPvj6iQxqW_kIltqtB8-qA5xGTZGWmTLdXsM60f70fB-voN9BNcbiit_rL3EziBlNSl3lS2MH-6aZQhTx-k1svpPN9hs4Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EGA-BP%E5%92%8CPOS-BP%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E5%85%89%E4%BC%8F%E7%94%B5%E7%AB%99%E5%87%BA%E5%8A%9B%E7%9F%AD%E6%9C%9F%E9%A2%84%E6%B5%8B&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E5%A7%9A%E4%BB%B2%E6%95%8F+%E6%BD%98%E9%A3%9E+%E6%B2%88%E7%8E%89%E4%BC%9A+%E5%90%B4%E9%87%91%E7%A7%8B+%E4%BA%8E%E6%99%93%E7%BA%A2&rft.date=2015&rft.issn=1674-3415&rft.volume=43&rft.issue=20&rft.spage=83&rft.epage=89&rft.externalDocID=666267584
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90494A%2F90494A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg