基于GA-BP和POS-BP神经网络的光伏电站出力短期预测
当前在光伏电站出力短期预测方面较多的采用BP或者优化的BP神经网络算法,存在采用的优化算法单一、缺乏多种优化算法比较选优、预测误差大的问题。基于本地5 k W小型分布式光伏电站,综合考虑影响光伏出力的太阳光辐射强度、环境温度、风速气象相关因素和光伏电站历史发电数据,分别采用BP以及遗传算法和粒子群算法优化的BP神经网络算法—GA-BP和POS-BP构建了晴天、多云、阴雨三种天气条件下光伏出力短期预测模型。实测结果表明,三种神经网络算法预测模型在三种不同天气条件下均达到了一定的预测精度。其中GA-BP、POS-BP相比传统的BP预测模型降低了预测误差,且POS算法相比GA算法对于BP神经网络预测...
Saved in:
Published in | 电力系统保护与控制 Vol. 43; no. 20; pp. 83 - 89 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
齐齐哈尔大学通信与电子工程学院,黑龙江 齐齐哈尔,161006%哈尔滨师范大学计算机与信息工程学院,黑龙江 哈尔滨,150080
2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-3415 |
Cover
Abstract | 当前在光伏电站出力短期预测方面较多的采用BP或者优化的BP神经网络算法,存在采用的优化算法单一、缺乏多种优化算法比较选优、预测误差大的问题。基于本地5 k W小型分布式光伏电站,综合考虑影响光伏出力的太阳光辐射强度、环境温度、风速气象相关因素和光伏电站历史发电数据,分别采用BP以及遗传算法和粒子群算法优化的BP神经网络算法—GA-BP和POS-BP构建了晴天、多云、阴雨三种天气条件下光伏出力短期预测模型。实测结果表明,三种神经网络算法预测模型在三种不同天气条件下均达到了一定的预测精度。其中GA-BP、POS-BP相比传统的BP预测模型降低了预测误差,且POS算法相比GA算法对于BP神经网络预测模型的优化效果更好,进一步降低了预测误差,适用性更强。 |
---|---|
AbstractList | 当前在光伏电站出力短期预测方面较多的采用BP或者优化的BP神经网络算法,存在采用的优化算法单一、缺乏多种优化算法比较选优、预测误差大的问题。基于本地5 k W小型分布式光伏电站,综合考虑影响光伏出力的太阳光辐射强度、环境温度、风速气象相关因素和光伏电站历史发电数据,分别采用BP以及遗传算法和粒子群算法优化的BP神经网络算法—GA-BP和POS-BP构建了晴天、多云、阴雨三种天气条件下光伏出力短期预测模型。实测结果表明,三种神经网络算法预测模型在三种不同天气条件下均达到了一定的预测精度。其中GA-BP、POS-BP相比传统的BP预测模型降低了预测误差,且POS算法相比GA算法对于BP神经网络预测模型的优化效果更好,进一步降低了预测误差,适用性更强。 TM715; 当前在光伏电站出力短期预测方面较多的采用BP或者优化的BP神经网络算法,存在采用的优化算法单一、缺乏多种优化算法比较选优、预测误差大的问题.基于本地5 kW小型分布式光伏电站,综合考虑影响光伏出力的太阳光辐射强度、环境温度、风速气象相关因素和光伏电站历史发电数据,分别采用 BP 以及遗传算法和粒子群算法优化的BP神经网络算法—GA-BP和POS-BP构建了晴天、多云、阴雨三种天气条件下光伏出力短期预测模型.实测结果表明,三种神经网络算法预测模型在三种不同天气条件下均达到了一定的预测精度.其中GA-BP、POS-BP相比传统的BP预测模型降低了预测误差,且POS算法相比GA算法对于BP神经网络预测模型的优化效果更好,进一步降低了预测误差,适用性更强. |
Abstract_FL | In the current PV output short-term forecast, BP or optimization BP neural network algorithm is used commonly, which has problems of single optimization algorithm, the lack of a variety of optimization algorithms for comparison and selection, and big forecast error. Therefore, based on local 5 kW small-scale distributed PV power station, considering the related factors that influence PV output such as solar radiation intensity, environmental temperature, wind speed and historical generation data of photovoltaic power station, this paper uses BP, GA-BP and POS-BP neural network algorithm respectively to construct short-term prediction model of PV output in sunny, cloudy and rainy weather conditions. Test results show that three kinds of neural network prediction models all reach certain prediction accuracy under three different weather conditions, among which GA-BP and POS-BP prediction models reduce the prediction errors compared to the traditional BP model, and POS algorithm has a better optimization effect on BP neural network prediction model and a stronger applicability compared to GA algorithm, and further reduces the prediction errors. |
Author | 姚仲敏 潘飞 沈玉会 吴金秋 于晓红 |
AuthorAffiliation | 齐齐哈尔大学通信与电子工程学院,黑龙江齐齐哈尔161006 哈尔滨师范大学计算机与信息工程学院,黑龙江哈尔滨150080 |
AuthorAffiliation_xml | – name: 齐齐哈尔大学通信与电子工程学院,黑龙江 齐齐哈尔,161006%哈尔滨师范大学计算机与信息工程学院,黑龙江 哈尔滨,150080 |
Author_FL | SHEN Yuhui YU Xiaohong WU Jinqiu YAO Zhongmin PAN Fei |
Author_FL_xml | – sequence: 1 fullname: YAO Zhongmin – sequence: 2 fullname: PAN Fei – sequence: 3 fullname: SHEN Yuhui – sequence: 4 fullname: WU Jinqiu – sequence: 5 fullname: YU Xiaohong |
Author_xml | – sequence: 1 fullname: 姚仲敏 潘飞 沈玉会 吴金秋 于晓红 |
BookMark | eNotzc1Kw0AUBeBZVLDWvoS4DczkZibJMhatQqEFuw-TmUlN0cQmiLiviD9YFDdqMSC4EpfdpPo2TQffwkBd3QPn49wNVIuTWNVQnTDbMsAidB01sywKMAZCKXPcOvLKvFgU923P2OmVj3e97mEV9Mebnk_0z4OeT_XLuLy8XnxP9NNMfz6XV0V586rzr-U0_30fL2e3m2gt5MeZav7fBurv7fZb-0an2z5oeR1DUAZGoGgIARYWlZIFwEloMwGOI4UAZUpQlBEQrlSVsZUKJATEZVWLVUg4UdBA26vZcx6HPB74w-QsjauH_lCOTEyoiTGBim2tmDhK4sEoquBpGp3w9MJnjJnMpo4Ff3ZoZVM |
ClassificationCodes | TM715 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DatabaseName | 中文科技期刊数据库 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | Short-term prediction of photovoltaic power generation output based on GA-BP and POS-BP neural network |
DocumentTitle_FL | Short-term prediction of photovoltaic power generation output based on GA-BP and POS-BP neural network |
EndPage | 89 |
ExternalDocumentID | jdq201520013 666267584 |
GrantInformation_xml | – fundername: 智能教育与信息工程黑龙江省高校重点实验室开放课题; 齐齐哈尔市科技局工业攻关项目 funderid: (SEIE2014-05); (GYGG-201106) |
GroupedDBID | -03 2RA 5XA 5XD 92L ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CQIGP GROUPED_DOAJ U1G W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
ID | FETCH-LOGICAL-c563-be5f3b0c45dd6b3a1f76c388dcc3e2d3e5613c9deb0c7eebd3b196dcc0ef1a1e3 |
ISSN | 1674-3415 |
IngestDate | Thu May 29 04:03:01 EDT 2025 Wed Feb 14 10:28:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | POS-BP算法 GA-BP算法 光伏发电短期预测 BP神经网络算法 GA-BP algorithm POS-BP algorithm BP neural network algorithm photovoltaic power short-term prediction |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c563-be5f3b0c45dd6b3a1f76c388dcc3e2d3e5613c9deb0c7eebd3b196dcc0ef1a1e3 |
Notes | In the current PV output short-term forecast, BP or optimization BP neural network algorithm is used commonly, which has problems of single optimization algorithm, the lack of a variety of optimization algorithms for comparison and selection, and big forecast error. Therefore, based on local 5 kW small-scale distributed PV power station, considering the related factors that influence PV output such as solar radiation intensity, environmental temperature, wind speed and historical generation data of photovoltaic power station, this paper uses BP, GA-BP and POS-BP neural network algorithm respectively to construct short-term prediction model of PV output in sunny, cloudy and rainy weather conditions. Test results show that three kinds of neural network prediction models all reach certain prediction accuracy under three different weather conditions, among which GA-BP and POS-BP prediction models reduce the prediction errors compared to the traditional BP model, and POS algorithm has a better optimization effect |
PageCount | 7 |
ParticipantIDs | wanfang_journals_jdq201520013 chongqing_primary_666267584 |
PublicationCentury | 2000 |
PublicationDate | 2015 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015 |
PublicationDecade | 2010 |
PublicationTitle | 电力系统保护与控制 |
PublicationTitleAlternate | Relay |
PublicationTitle_FL | Power System Protection and Control |
PublicationYear | 2015 |
Publisher | 齐齐哈尔大学通信与电子工程学院,黑龙江 齐齐哈尔,161006%哈尔滨师范大学计算机与信息工程学院,黑龙江 哈尔滨,150080 |
Publisher_xml | – name: 齐齐哈尔大学通信与电子工程学院,黑龙江 齐齐哈尔,161006%哈尔滨师范大学计算机与信息工程学院,黑龙江 哈尔滨,150080 |
SSID | ssib003155689 ssib017479473 ssib023166999 ssj0002912115 ssib051374514 ssib002424069 ssib036435463 |
Score | 2.090253 |
Snippet | 当前在光伏电站出力短期预测方面较多的采用BP或者优化的BP神经网络算法,存在采用的优化算法单一、缺乏多种优化算法比较选优、预测误差大的问题。基于本地5 k W小型分布式光伏... TM715; 当前在光伏电站出力短期预测方面较多的采用BP或者优化的BP神经网络算法,存在采用的优化算法单一、缺乏多种优化算法比较选优、预测误差大的问题.基于本地5 kW小型分布... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 83 |
SubjectTerms | BP神经网络算法 GA-BP算法 POS-BP算法 光伏发电短期预测 |
Title | 基于GA-BP和POS-BP神经网络的光伏电站出力短期预测 |
URI | http://lib.cqvip.com/qk/90494A/201520/666267584.html https://d.wanfangdata.com.cn/periodical/jdq201520013 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1674-3415 databaseCode: DOA dateStart: 20080101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0002912115 providerName: Directory of Open Access Journals |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0Fr1xAWBAFFKUQ_4tArKxo4TH5NtQsUBKrFIva3ycFpx2FLYXnouQjxEBeICVKyExAlx7GULn8EfdBvxF8xMQjYHhABpZU1mx5MZj-OZcWyHsevg87VKbGmldpJaMtGFlSiTWLZtlHJFAl6GFsjeVmv35K0Nd6PT-d5atbQ7Tm9ke7_dV_I_VgUc2BV3yf6DZRumgAAY7AslWBjKv7Ixj1yuYx4GPJJY-tHNwArXCe1wv79-5y5dejwATIRAGHI_JmCV616N0X0ENDCQWNeHnyaW_ZpYA-wSHyDWROPRbQEIuA6JJubBKo8UcgM40jxwiKHCun7YDoNbPFscQoHC1CLFJEDMNfEEmkASxgctCRPxwKPqPg-b6UVEBKQK0oY8dEgioIq7JAlo7ZNsAhqkQjnIAu4KHBu1ddClVrR5KJEc1K1aC5j7Ybdpb-KuuRYkNgjptKdRqi2k9ZivPGmBM3fbTqE6O6ru_I7dGuKr7-78Chb03I82qxshI3QwD8NTaiH-s1uJfh0U4Xbj1qiKp8A115Aiwhg5DyohAFdKz5NGATFk-xsGbk940q3fhWP84Wg8tg_X7jaa4cEhW9ujzR0Ih2h32qhIRputQGpwjp2tM6CVoOrO51lnb-sCC2aT6cn0JXXf2esXVcctP30ojw_Kb6_K48Py3f7s8dOTrwflm6Py89vZk-ns2fty8uX0cPLj4_7p0fOLbBBHg_6aVX_dw8pcJazUuIVI7Uy6ea5SkfQKT2XC9_MsE8bJhcHMNtO5ARrPmDQXKTgL-Nc2RS_pGXGJLYy2R-YyWwGno_B1dVa4hew5qU4LXPvj6iQxqW_kIltqtB8-qA5xGTZGWmTLdXsM60f70fB-voN9BNcbiit_rL3EziBlNSl3lS2MH-6aZQhTx-k1svpPN9hs4Q |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EGA-BP%E5%92%8CPOS-BP%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E5%85%89%E4%BC%8F%E7%94%B5%E7%AB%99%E5%87%BA%E5%8A%9B%E7%9F%AD%E6%9C%9F%E9%A2%84%E6%B5%8B&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E5%A7%9A%E4%BB%B2%E6%95%8F+%E6%BD%98%E9%A3%9E+%E6%B2%88%E7%8E%89%E4%BC%9A+%E5%90%B4%E9%87%91%E7%A7%8B+%E4%BA%8E%E6%99%93%E7%BA%A2&rft.date=2015&rft.issn=1674-3415&rft.volume=43&rft.issue=20&rft.spage=83&rft.epage=89&rft.externalDocID=666267584 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90494A%2F90494A.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg |