ChemTS: an efficient python library for de novo molecular generation
Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural net...
        Saved in:
      
    
          | Published in | Science and technology of advanced materials Vol. 18; no. 1; pp. 972 - 976 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Taylor & Francis
    
        31.12.2017
     Taylor & Francis Ltd Taylor & Francis Group  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1468-6996 1878-5514 1878-5514  | 
| DOI | 10.1080/14686996.2017.1401424 | 
Cover
| Abstract | Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at
https://github.com/tsudalab/ChemTS
. | 
    
|---|---|
| AbstractList | Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS.Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS. Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS. Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS. Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS .  | 
    
| Author | Yoshizoe, Kazuki Terayama, Kei Tsuda, Koji Yang, Xiufeng Zhang, Jinzhe  | 
    
| Author_xml | – sequence: 1 givenname: Xiufeng surname: Yang fullname: Yang, Xiufeng organization: Graduate School of Frontier Sciences, The University of Tokyo – sequence: 2 givenname: Jinzhe surname: Zhang fullname: Zhang, Jinzhe organization: Department of Biosciences, INSA Lyon – sequence: 3 givenname: Kazuki surname: Yoshizoe fullname: Yoshizoe, Kazuki organization: RIKEN, Center for Advanced Intelligence Project – sequence: 4 givenname: Kei surname: Terayama fullname: Terayama, Kei organization: Graduate School of Frontier Sciences, The University of Tokyo – sequence: 5 givenname: Koji surname: Tsuda fullname: Tsuda, Koji email: tsuda@k.u-tokyo.ac.jp organization: National Institute for Materials Science  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29435094$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUk1vEzEUXKEi-gE_AbQSFy4Jz7u21wapAoWvSpU4UM6W1_ucOPLawbvbKv8ep0kr2gNwsGw9z8wbz_NpcRRiwKJ4SWBOQMBbQrngUvJ5BaSZEwqEVvRJcUJEI2aMEXqUzxkz24GOi9NhWAMAJxV9VhxXktYMJD0pPi1W2F_9eFfqUKK1zjgMY7nZjqsYSu_apNO2tDGVHZYhXseyjx7N5HUqlxgw6dHF8Lx4arUf8MVhPyt-fvl8tfg2u_z-9WLx8XJmGK_GWUsRoUUhOGmtEQ10rQRLqCVC6Fpi29C2gUpyISpoDHLTCrCMceyEbLuqPisu9rpd1Gu1Sa7P7lTUTt0WYloqnUZnPCqKlgld1cLWlBKpM52SriEa8qp1k7X4XmsKG7290d7fCxJQu4jVXcRqF7E6RJyJ53viZmp77EzOK2n_wM3Dm-BWahmvFRNAWA1Z4M1BIMVfEw6j6t1g0HsdME5D7gZEEsZh1-v1I-g6TinkjFVFJGe0IU2dUa_-dHRv5W7KGfB-DzApDkNCq4wbbyeXDTr_zwezR-z_DerDnudC_kC9vonJd2rUWx-TTToYN6j67xK_AbRt3pg | 
    
| CitedBy_id | crossref_primary_10_1021_acs_jcim_4c01792 crossref_primary_10_1186_s13015_021_00197_2 crossref_primary_10_1039_C8SC00148K crossref_primary_10_1021_acs_jcim_3c01220 crossref_primary_10_1038_s41524_019_0203_2 crossref_primary_10_1246_bcsj_20230130 crossref_primary_10_1016_j_ccr_2020_213487 crossref_primary_10_1039_D4SC05894A crossref_primary_10_1093_bioinformatics_btad222 crossref_primary_10_1021_acs_jcim_3c01745 crossref_primary_10_1063_1_5129551 crossref_primary_10_1007_s10489_021_03088_6 crossref_primary_10_1021_acs_analchem_2c05817 crossref_primary_10_1039_D4DD00008K crossref_primary_10_1063_5_0088353 crossref_primary_10_1246_cl_180665 crossref_primary_10_1021_acs_jcim_1c01289 crossref_primary_10_1039_D1SC04444C crossref_primary_10_1002_ange_202104405 crossref_primary_10_1186_s13321_021_00566_4 crossref_primary_10_1557_mrc_2019_40 crossref_primary_10_1021_acssynbio_4c00041 crossref_primary_10_1039_D2DD00003B crossref_primary_10_3389_fgene_2024_1483490 crossref_primary_10_3390_ijms22062847 crossref_primary_10_1002_minf_201900087 crossref_primary_10_1080_17460441_2023_2134340 crossref_primary_10_1039_D1TC03256A crossref_primary_10_1039_D2RE00451H crossref_primary_10_1038_s42003_024_06746_w crossref_primary_10_1186_s13321_023_00790_0 crossref_primary_10_1016_j_drudis_2020_01_020 crossref_primary_10_1038_s41598_021_90245_z crossref_primary_10_1186_s13321_025_00984_8 crossref_primary_10_1186_s13321_020_00458_z crossref_primary_10_1039_D1SC02783B crossref_primary_10_1039_D4SC06864E crossref_primary_10_1063_5_0051902 crossref_primary_10_1038_s41524_022_00765_z crossref_primary_10_1109_TCBB_2021_3112598 crossref_primary_10_1063_5_0076749 crossref_primary_10_1021_acs_chemrev_8b00728 crossref_primary_10_1016_j_eswa_2023_120592 crossref_primary_10_7717_peerj_pchem_11 crossref_primary_10_1021_acs_jctc_1c00301 crossref_primary_10_1021_acsomega_3c01078 crossref_primary_10_1080_14686996_2022_2075240 crossref_primary_10_1021_acs_jcim_4c00842 crossref_primary_10_1021_acsomega_3c05430 crossref_primary_10_1016_j_jmgm_2021_108045 crossref_primary_10_1002_wcms_1723 crossref_primary_10_1093_bib_bbab544 crossref_primary_10_4155_fmc_2018_0358 crossref_primary_10_1002_wcms_1680 crossref_primary_10_26599_TRCN_2025_9550005 crossref_primary_10_21468_SciPostChem_2_1_002 crossref_primary_10_1021_acs_jcim_4c01385 crossref_primary_10_1021_acs_jpca_2c04221 crossref_primary_10_1021_acs_jmedchem_2c01179 crossref_primary_10_1126_science_aat2663 crossref_primary_10_1021_acssuschemeng_0c08806 crossref_primary_10_1039_D0SC00982B crossref_primary_10_1002_adma_202303827 crossref_primary_10_1038_s42256_024_00843_5 crossref_primary_10_1093_pnasnexus_pgac227 crossref_primary_10_1021_acs_accounts_0c00713 crossref_primary_10_1002_minf_202100102 crossref_primary_10_1016_j_tips_2020_12_004 crossref_primary_10_1038_s41524_022_00702_0 crossref_primary_10_1038_s42256_024_00809_7 crossref_primary_10_1002_anie_202104405 crossref_primary_10_1002_wcms_1395 crossref_primary_10_1186_s13321_022_00598_4 crossref_primary_10_1109_TCBB_2024_3402675 crossref_primary_10_1039_C8SC05372C crossref_primary_10_1038_s41428_022_00648_6 crossref_primary_10_1109_TCBB_2024_3447780 crossref_primary_10_1016_j_seppur_2021_119117 crossref_primary_10_1021_acs_jcim_0c00692 crossref_primary_10_1021_acs_jcim_3c00579 crossref_primary_10_1039_D3SC04091G crossref_primary_10_1186_s13321_023_00759_z crossref_primary_10_1021_jacs_0c09105 crossref_primary_10_1080_07391102_2024_2445169 crossref_primary_10_1021_acs_jcim_3c00329 crossref_primary_10_1016_j_chbah_2024_100064 crossref_primary_10_1016_j_sbi_2021_10_001 crossref_primary_10_1021_acssuschemeng_4c00111 crossref_primary_10_1002_aisy_202300189 crossref_primary_10_1016_j_cogsc_2020_100370 crossref_primary_10_1021_acsomega_9b01480 crossref_primary_10_1080_27660400_2023_2204994 crossref_primary_10_1039_D0NR06091G crossref_primary_10_1021_acs_jcim_1c00679 crossref_primary_10_1016_j_aichem_2023_100039 crossref_primary_10_1039_D1CC07035E crossref_primary_10_1039_C9SC04026A crossref_primary_10_18034_ajase_v7i1_46 crossref_primary_10_1016_j_jece_2023_110086 crossref_primary_10_1007_s00894_023_05772_5 crossref_primary_10_1063_1_5018065 crossref_primary_10_1016_j_drudis_2024_103992 crossref_primary_10_1002_celc_202400252 crossref_primary_10_1016_j_mtcomm_2024_110050 crossref_primary_10_1021_acs_jcim_2c01345 crossref_primary_10_1021_acs_jcim_2c00812 crossref_primary_10_1002_jcc_26441 crossref_primary_10_1007_s10822_019_00242_8 crossref_primary_10_4028_www_scientific_net_MSF_1016_1492 crossref_primary_10_1021_acsami_9b17867 crossref_primary_10_1080_14686996_2023_2261833 crossref_primary_10_1360_SSC_2022_0135 crossref_primary_10_1109_TCBB_2024_3477592 crossref_primary_10_1186_s13321_021_00556_6 crossref_primary_10_3389_fphar_2020_565644 crossref_primary_10_3390_a13050124 crossref_primary_10_1186_s13321_019_0328_9 crossref_primary_10_1021_acs_jcim_4c01451 crossref_primary_10_1021_acs_jcim_9b00732 crossref_primary_10_1186_s13321_021_00572_6 crossref_primary_10_1038_s41467_020_17995_8 crossref_primary_10_3390_molecules27031039 crossref_primary_10_1002_celc_202400024 crossref_primary_10_1016_j_pmatsci_2022_101043 crossref_primary_10_1021_acs_jcim_2c00787 crossref_primary_10_1016_j_compbiomed_2022_105403 crossref_primary_10_1017_qrd_2022_12 crossref_primary_10_1021_acs_jcim_4c00759 crossref_primary_10_1021_acs_chemmater_4c02929 crossref_primary_10_1186_s13321_020_00454_3 crossref_primary_10_1126_sciadv_abj3906 crossref_primary_10_1038_s42005_020_0338_y crossref_primary_10_1021_acscentsci_7b00572 crossref_primary_10_1016_j_compbiolchem_2023_107927 crossref_primary_10_1016_j_cossms_2020_100893 crossref_primary_10_1186_s13321_020_00439_2 crossref_primary_10_1038_s42256_021_00403_1 crossref_primary_10_1021_acs_jcim_8b00234 crossref_primary_10_31083_j_fbl2706188 crossref_primary_10_1186_s13321_022_00646_z crossref_primary_10_1016_j_parint_2021_102366 crossref_primary_10_1021_acscentsci_8b00213 crossref_primary_10_1002_minf_201900107 crossref_primary_10_1021_acsami_9b01226 crossref_primary_10_2174_1568026623666221017143244 crossref_primary_10_5023_jappstat_52_75 crossref_primary_10_1380_vss_66_164 crossref_primary_10_1038_s42256_022_00506_3 crossref_primary_10_1063_5_0017042 crossref_primary_10_1021_acsomega_1c00477 crossref_primary_10_1039_C9ME00039A crossref_primary_10_3390_kinasesphosphatases1020008 crossref_primary_10_1007_s10489_023_05240_w  | 
    
| Cites_doi | 10.1039/C4CS00391H 10.1038/nature16961 10.1021/ci3001277 10.1021/acs.jcim.6b00426 10.1109/TCIAIG.2012.2186810 10.1038/ncomms9476 10.1016/j.md.2016.04.001 10.1016/j.commatsci.2012.10.028 10.1038/nmat2137 10.1186/1758-2946-1-8 10.1080/14686996.2017.1344083 10.18653/v1/K16-1002 10.1007/s10822-016-0008-z 10.1021/ja507132m 10.1021/ci00057a005 10.1039/C4TA04994B 10.3115/v1/D14-1179  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2017 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis 2017 2017 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2017 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis 2017 The Author(s)  | 
    
| Copyright_xml | – notice: 2017 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis 2017 – notice: 2017 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2017 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis 2017 The Author(s)  | 
    
| DBID | 0YH AAYXX CITATION NPM 3V. 7U5 7XB 8BQ 8FD 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH JG9 L7M M2O MBDVC PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1080/14686996.2017.1401424 | 
    
| DatabaseName | Taylor & Francis Open Access CrossRef PubMed ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) METADEX Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep Materials Research Database Advanced Technologies Database with Aerospace Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed Materials Research Database Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China METADEX ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library Solid State and Superconductivity Abstracts ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1878-5514 | 
    
| EndPage | 976 | 
    
| ExternalDocumentID | oai_doaj_org_article_4ef58a238f34419abd241d71a071a3a7 10.1080/14686996.2017.1401424 PMC5801530 29435094 10_1080_14686996_2017_1401424 1401424  | 
    
| Genre | Article Journal Article  | 
    
| GrantInformation_xml | – fundername: Japan Science and Technology Agency grantid: MI2I project funderid: 10.13039/501100002241 – fundername: Japan Society for the Promotion of Science grantid: 25106005 funderid: 10.13039/501100001691 – fundername: Ministry of Education, Culture, Sports, Science and Technology grantid: Priorty Issue on Post-K Computer funderid: 10.13039/501100001700 – fundername: Core Research for Evolutional Science and Technology grantid: JPMJCR1502 funderid: 10.13039/501100003382 – fundername: ; ; grantid: JPMJCR1502 – fundername: ; ; grantid: 25106005 – fundername: ; ; grantid: MI2I project – fundername: ; ; grantid: Priorty Issue on Post-K Computer  | 
    
| GroupedDBID | 0R~ 0YH 123 1JI 2WC 4.4 5VS 8G5 ABUWG ACBEA ACGFO ACGFS ACHIP ADBBV ADCVX AENEX AFKRA AFYNE AHSEE AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AQTUD AZQEC BCNDV BENPR BPHCQ CCPQU CS3 DU5 DWQXO E3Z EBS EDWGO EJD EQZZN FDB G-Q GNUQQ GROUPED_DOAJ GUQSH H13 HH5 HYE IOP KOT KQ8 M2O M45 M48 M4Z N5L NT- O3W O9- OK1 OVT P2P PHGZM PHGZT PQQKQ PROAC RDKPK RIN RNS RPM RPZ SDP SY9 T37 TDBHL TFW TR2 W28 AAYXX CITATION PUEGO --K 02O 1B1 1WK 1~5 4G. 7-5 AAEDT AALHV AALRI AAQFI AAQXK AATNI AAXUO ABWVN ACAFW ACARI ACRPL ACVFH ADCNI ADDVE ADMUD ADNMO AEFHF AEJGL AEUPX AFPUW AGQPQ AIGII AIYBF ARNYC ASPBG AVWKF AZFZN BBWZM C1A CJUJL EO8 FEDTE FGOYB HVGLF HZ~ IHE IJHAN IPNFZ JCGBZ NPM NQ- PJBAE Q02 R2- RIG ROL S3P SEW UHS XPP 3V. 7U5 7XB 8BQ 8FD 8FK JG9 L7M MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC AEINN UNPAY  | 
    
| ID | FETCH-LOGICAL-c562t-b4ee0be8861bfc870db90f14f188a39eb74b7029688207ce6cb80f556ed89bd23 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1468-6996 1878-5514  | 
    
| IngestDate | Tue Oct 14 18:57:35 EDT 2025 Sun Oct 26 03:56:51 EDT 2025 Tue Sep 30 14:57:07 EDT 2025 Wed Oct 01 13:11:49 EDT 2025 Sun Jun 29 16:51:31 EDT 2025 Mon Jul 21 05:55:25 EDT 2025 Wed Oct 01 01:19:58 EDT 2025 Thu Apr 24 22:55:52 EDT 2025 Mon Oct 20 23:49:57 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | 60 New topics/Others Molecular design Monte Carlo tree search recurrent neural network python library 404 Materials informatics / Genomics  | 
    
| Language | English | 
    
| License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c562t-b4ee0be8861bfc870db90f14f188a39eb74b7029688207ce6cb80f556ed89bd23 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/14686996.2017.1401424 | 
    
| PMID | 29435094 | 
    
| PQID | 2196547173 | 
    
| PQPubID | 3934964 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5801530 crossref_citationtrail_10_1080_14686996_2017_1401424 crossref_primary_10_1080_14686996_2017_1401424 doaj_primary_oai_doaj_org_article_4ef58a238f34419abd241d71a071a3a7 informaworld_taylorfrancis_310_1080_14686996_2017_1401424 proquest_miscellaneous_2001915604 pubmed_primary_29435094 unpaywall_primary_10_1080_14686996_2017_1401424 proquest_journals_2196547173  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-12-31 | 
    
| PublicationDateYYYYMMDD | 2017-12-31 | 
    
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-31 day: 31  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Abingdon  | 
    
| PublicationTitle | Science and technology of advanced materials | 
    
| PublicationTitleAlternate | Sci Technol Adv Mater | 
    
| PublicationYear | 2017 | 
    
| Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group  | 
    
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group  | 
    
| References | Oord Avd (CIT0010) 2016 CIT0021 Kusner MJ (CIT0012) 2017 CIT0020 CIT0001 Gómez-Bombarelli R (CIT0011) 2016 CIT0022 Kingma D (CIT0018) 2014 CIT0003 CIT0014 CIT0002 CIT0005 CIT0016 CIT0004 CIT0015 CIT0007 Segler MH (CIT0013) 2017 CIT0006 CIT0017 CIT0009 CIT0008 CIT0019  | 
    
| References_xml | – volume-title: Automatic chemical design using a data-driven continuous representation of molecules year: 2016 ident: CIT0011 – ident: CIT0004 doi: 10.1039/C4CS00391H – start-page: 1945 volume-title: Proceedings of 34th International Conference on Machine Learning (ICML) year: 2017 ident: CIT0012 – ident: CIT0016 doi: 10.1038/nature16961 – ident: CIT0020 doi: 10.1021/ci3001277 – start-page: 1747 volume-title: Proceedings of 33rd International Conference on Machine Learning (ICML) year: 2016 ident: CIT0010 – ident: CIT0006 doi: 10.1021/acs.jcim.6b00426 – ident: CIT0015 doi: 10.1109/TCIAIG.2012.2186810 – volume-title: Adam: a method for stochastic optimization year: 2014 ident: CIT0018 – ident: CIT0002 doi: 10.1038/ncomms9476 – ident: CIT0021 doi: 10.1016/j.md.2016.04.001 – ident: CIT0022 doi: 10.1016/j.commatsci.2012.10.028 – volume-title: Generating focussed molecule libraries for drug discovery with recurrent neural networks year: 2017 ident: CIT0013 – ident: CIT0005 doi: 10.1038/nmat2137 – ident: CIT0019 doi: 10.1186/1758-2946-1-8 – ident: CIT0017 doi: 10.1080/14686996.2017.1344083 – ident: CIT0009 doi: 10.18653/v1/K16-1002 – ident: CIT0007 doi: 10.1007/s10822-016-0008-z – ident: CIT0003 doi: 10.1021/ja507132m – ident: CIT0008 doi: 10.1021/ci00057a005 – ident: CIT0001 doi: 10.1039/C4TA04994B – ident: CIT0014 doi: 10.3115/v1/D14-1179  | 
    
| SSID | ssj0006124 | 
    
| Score | 2.5933383 | 
    
| Snippet | Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref informaworld  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 972 | 
    
| SubjectTerms | 404 Materials informatics / Genomics 60 New topics/Others Algorithms Artificial neural networks Computer simulation Design optimization Fragments Libraries Molecular design Monte Carlo tree search Neural networks New topics/Others Organic materials Python python library recurrent neural network Recurrent neural networks  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABlXdKQUbimm4S24ndW3lUFRJcaKXeLNsZA9KSXdHdVv33zCROtAtIy4GrHVvxPDKfHc83jL3xGNV8A5B7hCO5jOjpWkSXy7asY6i1UYrynT99rs8u5MdLdblR6ovuhA30wIPgZhKi0g4DSxQYuY3zLcactikdxkYnXJ9HXmgzbqbSNxjjthzzimqE9GPuji5m1EZNdK2rOaL9hazkVlTqyft_oy79GwD98x7l3XW3dLc3bj7fCFKn--xBQpf8ZFjVQ3YHukfs_gbn4GP2nigCzr8cc9dx6PkjcFq-vCUOAZ7OdDi-EW-Bd4vrBf8xFtDlX3uKatLkE3Zx-uH83VmeSinkAQHOKvcSoPCgdV36GNBHW2-KWKJutHbCgG-kb4rK1Ai4iyZAHbwuolI1tNqgyMVTttctOnjOuEeMpoLRLUiQKjpdyVBBKKuqbYSSImNyFKUNiWecyl3MbZnoSEcNWNKATRrI2NE0bDkQbewa8Jb0ND1MPNl9A1qPTdZjd1lPxsymlu2qPyaJQ00TK3a8wOFoEjY5_pWtiKFR0tWGjL2eutFl6T-M62CxvqLKn7hLRqiJUzwbLGhaRWUQv-KWO2PNlm1tLXO7p_v-racFVwg2lCgyNpus8N8kefA_JPmC3aM5Bw7MQ7a3-rmGl4jXVv5V75q_AAS7MyE priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeEG8CBRkJccs2DzuxkRDiVVVI5UJX6s2yE7tFWpLtdrew_56ZxFl2oVCueVi2Z0bz2R5_H8ALi1nNls7FFuFIzD1Gusy9iXmdFr4qpBKC7jsffi4OxvzTsTjegqFsLEzg-aVLO9KTGs8mox9nyzcY8K9Dhdwe3R4qELdToVY5ohUDz_jL6VlM2lJ0BhuENq7BdcxfigQeDvkvTnHM8Xy4g0TNDPd8_tbyRgbriP5_ozm9DKz-WXN5Y9FMzfK7mUzWEtr-bbgVkCh727vOHdhyzV3YWeMnvAcfiE7g6MsrZhrmOq4JbJZNl8Q3wML-D8Mesdqxpr1o2bdBbJeddHTWZPX7MN7_ePT-IA6yC3GFYGgeW-5cYp2URWp9hfFcW5X4FO0opcmVsyW3ZZKpAsF5UlauqKxMvBCFq6WydZY_gO2mbdwjYBbxnKiUrB13XHgjM15lrkqzrC5zwfMI-DCVugqc5CSNMdFpoC4dLKDJAjpYIILR6rdpT8px1Q_vyE6rj4lTu3vQzk50CFHNnRfSIITxOWJEZXAoPK3L1CAKM7kpI1DrVtbzbkvF9_onOr-iA7uDS-jBx3VGbI6cyiAieL56jeFNZzamce3inFRCcUWNsBSbeNh70GoUmUKsi8vzCMoN39oY5uab5utpRyEuEJiIPIlgb-WF_zeTj_89kCdwk77umTB3YXs-W7iniNrm9lkXdD8BYhY2IA priority: 102 providerName: Scholars Portal – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHIAD4k2gICNxTZv4Edu9FdpqhQQXWglOlp3YLdKSrLq7oP57ZhIn2uWhInFMHFu2Z8b-xhl_Q8gbD7uaVyHkHuBILiJYuubR5aIpq1hX2kiJ950_fKxmZ-L9ZzlGEy5TWCX60HEgiujXajRu55djRNw-3haqAKdjYJbaQw9BMHGT3GKqNKjYxZfZtBjDBi7GC0ZYZ7zE87dmtrannsX_Fw7TPyHR3wMqb6_bhbv64ebzjd3q5D65l2AmPRz04gG5EdqH5O4G-eAjcoRcAaefDqhraeiJJKBZurhCMgGaDnco9Ig2gbbd945-GzPp0vOeqxpF-picnRyfvpvlKadCXgPSWeVehFD4oHVV-liDsTbeFLEEIWntuAleCa8KZipA3oWqQ1V7XUQpq9Bo4xvGn5CdtmvDM0I9gDVZG90EEYSMTjNRs1CXjDWKS8EzIsaptHUiHMe8F3NbJl7SUQIWJWCTBDKyN1VbDIwb11V4i3KaPkbC7P5Fd3luk_1ZEaLUDvBJ5AAAjYOhiLJRpQOI5bhTGTGbUrar_rwkDslNLL-mA7ujSti0AiwtQ6pGgTEOGXk9FYPt4g8Z14ZuvcQUoOAuA-aEJp4OGjSNghkAsuB7Z0Rt6dbWMLdL2q8XPT-4BNQheZGR_UkL_20mn__HJLwgd_Bx4MDcJTury3V4CXht5V_1FvkTKcQwbQ priority: 102 providerName: Taylor & Francis – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6V9AAceBcWCjIS1033Ye_aSAiFR1UhUYFopHJa2V67IMJulCag8uuZ2ZeSAipI3JI4Xu1MPo8_b2a-AXhicFczuXOhQToSco8rXaZeh7yMM28zqYSgeue3h9nBlL85Fsdb8L6vhaG0SjpD-1YooonVtLjnpe8z4vaoWihDnk6JWfmYTgg84c8rjPaTpsngs-Vi5S7BdiaQno9ge3r4bvKxrzKiifRa4umJ2EJf1fOn627sV42s_zlR099R018zLC-vqrk--65ns7Xta_86LHrD26yVL-PV0oztj3OakP_VMzfgWkd22aRF503YctUtuLomgXgbXpFiwdGHp0xXzDVyFmgLm5-RpAHrHjExdAMrHavqbzX72vfzZSeNYjYB6w5M918fvTwIu84OoUW-tQwNdy4yTsosNt5iyCiNinyMUJFSp8qZnJs8SlSG_D_KrcuskZEXInOlVKZM0h0YVXXl7gEzSBmFVbJ03HHhtUy4TZyNk6TMU8HTAHj_-xW2kz2n7huzIu7UUXunFeS0onNaAONh2rzV_bhowgsCx_Blku1uPqgXJ0UXBQruvJAaWZJPkYYqjabwuMxjjURPpzoPQK1Dq1g2T21822KlSC-4gd0eh0UXh06LhAQjOWVaBPB4GMYIQn8L6crVq1NqRIqHdmS-eIm7LWwHKxKFdDpSOJJvAHrDzM2R6vOnRqVcIPcRaRTA3gD9v_Pk_X-e8QCu0NtWf3MXRoTyh8gVl-ZRt_p_Ant5WWY priority: 102 providerName: Unpaywall  | 
    
| Title | ChemTS: an efficient python library for de novo molecular generation | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/14686996.2017.1401424 https://www.ncbi.nlm.nih.gov/pubmed/29435094 https://www.proquest.com/docview/2196547173 https://www.proquest.com/docview/2001915604 https://pubmed.ncbi.nlm.nih.gov/PMC5801530 https://www.tandfonline.com/doi/pdf/10.1080/14686996.2017.1401424?needAccess=true https://doaj.org/article/4ef58a238f34419abd241d71a071a3a7  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 18 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1878-5514 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006124 issn: 1468-6996 databaseCode: HH5 dateStart: 20000101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1878-5514 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006124 issn: 1468-6996 databaseCode: KQ8 dateStart: 20130301 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1878-5514 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006124 issn: 1468-6996 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1878-5514 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006124 issn: 1468-6996 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: EJS IOP Science customDbUrl: eissn: 1878-5514 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006124 issn: 1468-6996 databaseCode: IOP dateStart: 20000101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1878-5514 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006124 issn: 1468-6996 databaseCode: RPM dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1878-5514 dateEnd: 20201231 omitProxy: true ssIdentifier: ssj0006124 issn: 1468-6996 databaseCode: BENPR dateStart: 20110201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAUI databaseName: Routledge Open customDbUrl: eissn: 1878-5514 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006124 issn: 1468-6996 databaseCode: RDKPK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/openaccess/openjournals providerName: Routledge – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1878-5514 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0006124 issn: 1468-6996 databaseCode: M48 dateStart: 20000301 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 1878-5514 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006124 issn: 1468-6996 databaseCode: 0YH dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB612wNwQLwJlJWRuKabOHbiICHUQqsFqcsKulJ7imzHKUhLsrS7oP57ZvJiFxDl4oNfsj0z9ufXNwAvDK5qJnHONwhHfFGgpauo0L7Iw7iwsUqlpP_Ox5N4PBPvT-XpFky6vzD0rLKbE-uJOq8snZGPOFHfCbozfr345pPXKLpd7Vxo6Na1Qv6qphjbhh1OzFgD2Dk4nEw_9nMzruei-28UI9Tv_vSoYERxFEXPvZI92ncILjZWq5rU_zdK078B0z_fV95YlQt99UPP52uL19EduN2iTrbfqMld2HLlPbi1xkV4H94SdcDJp5dMl8zVvBJYLVtcEbcAa896GLaI5Y6V1feKfe0c67LzmrqaJPwAZkeHJ2_GfutiwbcIfJa-Ec4FxikVh6awaLu5SYMiRJkppaPUmUSYJOBpjEA8SKyLrVFBIWXscpWanEcPYVBWpXsMzCB2kzZVuRNOyEIrLix3NuQ8TyIpIg9EN5SZbfnHyQ3GPAtbmtJOAhlJIGsl4MFeX2zREHBcV-CA5NRnJv7sOqK6OM9ac8yEK6TSCFeKCPFgqrErIsyTUCPi0pFOPEjXpZwt6-OTovF1kkXXNGC3U4msnRAus1_q68HzPhlNme5ndOmq1SV5BMXdM0JQrOJRo0F9L3iKuBa34h4kG7q10c3NlPLL55ouXCIIkVHgwajXwv8bySf_7shTuEm5G9bLXRgsL1buGSK0pRnCdnA2HrbGN6zPOTB892GK4bFQmDKbTPfPfgIkJzcG | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELam7WHwgPhNxgAjwWPWxLETB2lCjG3q2FYh6KS9eXbiDKQuKWvL1H-Ov427xAktIMbLXp3Ysn1n33e27ztCXhmwaiax1jcAR3xewEqXUaF9nodxkcUyFQLjnY8Hcf-EfzgVpyvkRxsLg88q2z2x3qjzKsMz8h5D6juOd8Zvx998zBqFt6ttCg3tUivk2zXFmAvsOLTzK3DhJtsHuyDv14zt7w3f932XZcDPwPZPfcOtDYyVMg5NkYH65iYNihC6LaWOUmsSbpKApTFg0SDJbJwZGRRCxDaXqcmR-ABMwBqPeArO39rO3uDjp84WAH7gbXxTDK5FG0Mkgx6WYRE-L0u20M_hjC9ZxzqJwG8Uqn8Dwn--51yflWM9v9Kj0YKx3L9L7jiUS981anmPrNjyPrm9wH34gOwiVcHw8xuqS2prHgtolo7nyGVA3dkShR7R3NKy-l7RizaRLz2vqbJRox6SkxuZ7EdktaxK-4RQA1hRZKnMLbdcFFoynjGbhYzlSSR45BHeTqXKHN85pt0YqdDRorYSUCgB5STgka2u2rgh_Liuwg7KqfsZ-brrguryXLnlr7gthNQAj4oI8GeqYSg8zJNQA8LTkU48ki5KWU3r45qiya2ioms6sNmqhHIb0ET9Wi4eedl9hq0D74N0aavZBDOQgrcOkBeaeNxoUDcKlgKOBtffI8mSbi0Nc_lL-fVLTU8uAPSIKPBIr9PC_5vJjX8P5AVZ7w-Pj9TRweDwKbmFNRvGzU2yOr2c2WeADqfmuVuClJzd9Kr_Causbt4 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BkTgeEFdpoICReE2bw04c3oCyWq4KiVaCJ8tnQdomq-4uqP-emVza5VCReI1jK_bMeD47M98APDPo1UzpfWwQjsQ8oKXLPOiYu7QItpCVEJTv_OGwmB7zt5_FEE246MMq6QwdOqKIdq8m4567METE7VO2UIE4nQKzyj06IfCMX4YrQqJ7Q5VOvkzHzRgdOB8SjKjPkMTzt2E23FPL4v8Lh-mfkOjvAZXXVvVcn__Qs9mat5rcgps9zGQvOr24DZd8fQdurJEP3oUD4go4-vSc6Zr5lkgCh2XzcyITYP3lDsMvYs6zuvnesNOhki47abmqSaT34Hjy-ujVNO5rKsQWkc4yNtz7xHgpi9QEi8bqTJWEFIUkpc4rb0puyiSrCkTeSWl9YY1MghCFd7IyLsu3Yatuar8DzCBYE7aSznPPRdAy4zbzNs0yV-aC5xHwYSmV7QnHqe7FTKU9L-kgAUUSUL0EItgbu807xo2LOrwkOY0vE2F2-6A5O1G9_Snug5Aa8UnIEQBWGqfCU1emGiGWznUZQbUuZbVs70tCV9xE5Rd8wO6gEqrfARYqI6pGTjEOETwdm9F26YeMrn2zWlAJUDwuI-bEIe53GjTOIqsQyOLZO4JyQ7c2prnZUn_72vKDC0QdIk8i2B-18N9W8sF_LMITuPrxYKLevzl89xCuU0tHh7kLW8uzlX-E0G1pHrfG-RNxtTMC | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6V9AAceBcWCjIS1033Ye_aSAiFR1UhUYFopHJa2V67IMJulCag8uuZ2ZeSAipI3JI4Xu1MPo8_b2a-AXhicFczuXOhQToSco8rXaZeh7yMM28zqYSgeue3h9nBlL85Fsdb8L6vhaG0SjpD-1YooonVtLjnpe8z4vaoWihDnk6JWfmYTgg84c8rjPaTpsngs-Vi5S7BdiaQno9ge3r4bvKxrzKiifRa4umJ2EJf1fOn627sV42s_zlR099R018zLC-vqrk--65ns7Xta_86LHrD26yVL-PV0oztj3OakP_VMzfgWkd22aRF503YctUtuLomgXgbXpFiwdGHp0xXzDVyFmgLm5-RpAHrHjExdAMrHavqbzX72vfzZSeNYjYB6w5M918fvTwIu84OoUW-tQwNdy4yTsosNt5iyCiNinyMUJFSp8qZnJs8SlSG_D_KrcuskZEXInOlVKZM0h0YVXXl7gEzSBmFVbJ03HHhtUy4TZyNk6TMU8HTAHj_-xW2kz2n7huzIu7UUXunFeS0onNaAONh2rzV_bhowgsCx_Blku1uPqgXJ0UXBQruvJAaWZJPkYYqjabwuMxjjURPpzoPQK1Dq1g2T21822KlSC-4gd0eh0UXh06LhAQjOWVaBPB4GMYIQn8L6crVq1NqRIqHdmS-eIm7LWwHKxKFdDpSOJJvAHrDzM2R6vOnRqVcIPcRaRTA3gD9v_Pk_X-e8QCu0NtWf3MXRoTyh8gVl-ZRt_p_Ant5WWY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ChemTS%3A+an+efficient+python+library+for+de+novo+molecular+generation&rft.jtitle=Science+and+technology+of+advanced+materials&rft.au=Yang%2C+Xiufeng&rft.au=Zhang%2C+Jinzhe&rft.au=Yoshizoe%2C+Kazuki&rft.au=Terayama%2C+Kei&rft.date=2017-12-31&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1468-6996&rft.eissn=1878-5514&rft.volume=18&rft.issue=1&rft.epage=976&rft_id=info:doi/10.1080%2F14686996.2017.1401424 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-6996&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-6996&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-6996&client=summon |