ChemTS: an efficient python library for de novo molecular generation

Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural net...

Full description

Saved in:
Bibliographic Details
Published inScience and technology of advanced materials Vol. 18; no. 1; pp. 972 - 976
Main Authors Yang, Xiufeng, Zhang, Jinzhe, Yoshizoe, Kazuki, Terayama, Kei, Tsuda, Koji
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 31.12.2017
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN1468-6996
1878-5514
1878-5514
DOI10.1080/14686996.2017.1401424

Cover

Abstract Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS .
AbstractList Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS.Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS.
Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS.
Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS.
Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS .
Author Yoshizoe, Kazuki
Terayama, Kei
Tsuda, Koji
Yang, Xiufeng
Zhang, Jinzhe
Author_xml – sequence: 1
  givenname: Xiufeng
  surname: Yang
  fullname: Yang, Xiufeng
  organization: Graduate School of Frontier Sciences, The University of Tokyo
– sequence: 2
  givenname: Jinzhe
  surname: Zhang
  fullname: Zhang, Jinzhe
  organization: Department of Biosciences, INSA Lyon
– sequence: 3
  givenname: Kazuki
  surname: Yoshizoe
  fullname: Yoshizoe, Kazuki
  organization: RIKEN, Center for Advanced Intelligence Project
– sequence: 4
  givenname: Kei
  surname: Terayama
  fullname: Terayama, Kei
  organization: Graduate School of Frontier Sciences, The University of Tokyo
– sequence: 5
  givenname: Koji
  surname: Tsuda
  fullname: Tsuda, Koji
  email: tsuda@k.u-tokyo.ac.jp
  organization: National Institute for Materials Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29435094$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1vEzEUXKEi-gE_AbQSFy4Jz7u21wapAoWvSpU4UM6W1_ucOPLawbvbKv8ep0kr2gNwsGw9z8wbz_NpcRRiwKJ4SWBOQMBbQrngUvJ5BaSZEwqEVvRJcUJEI2aMEXqUzxkz24GOi9NhWAMAJxV9VhxXktYMJD0pPi1W2F_9eFfqUKK1zjgMY7nZjqsYSu_apNO2tDGVHZYhXseyjx7N5HUqlxgw6dHF8Lx4arUf8MVhPyt-fvl8tfg2u_z-9WLx8XJmGK_GWUsRoUUhOGmtEQ10rQRLqCVC6Fpi29C2gUpyISpoDHLTCrCMceyEbLuqPisu9rpd1Gu1Sa7P7lTUTt0WYloqnUZnPCqKlgld1cLWlBKpM52SriEa8qp1k7X4XmsKG7290d7fCxJQu4jVXcRqF7E6RJyJ53viZmp77EzOK2n_wM3Dm-BWahmvFRNAWA1Z4M1BIMVfEw6j6t1g0HsdME5D7gZEEsZh1-v1I-g6TinkjFVFJGe0IU2dUa_-dHRv5W7KGfB-DzApDkNCq4wbbyeXDTr_zwezR-z_DerDnudC_kC9vonJd2rUWx-TTToYN6j67xK_AbRt3pg
CitedBy_id crossref_primary_10_1021_acs_jcim_4c01792
crossref_primary_10_1186_s13015_021_00197_2
crossref_primary_10_1039_C8SC00148K
crossref_primary_10_1021_acs_jcim_3c01220
crossref_primary_10_1038_s41524_019_0203_2
crossref_primary_10_1246_bcsj_20230130
crossref_primary_10_1016_j_ccr_2020_213487
crossref_primary_10_1039_D4SC05894A
crossref_primary_10_1093_bioinformatics_btad222
crossref_primary_10_1021_acs_jcim_3c01745
crossref_primary_10_1063_1_5129551
crossref_primary_10_1007_s10489_021_03088_6
crossref_primary_10_1021_acs_analchem_2c05817
crossref_primary_10_1039_D4DD00008K
crossref_primary_10_1063_5_0088353
crossref_primary_10_1246_cl_180665
crossref_primary_10_1021_acs_jcim_1c01289
crossref_primary_10_1039_D1SC04444C
crossref_primary_10_1002_ange_202104405
crossref_primary_10_1186_s13321_021_00566_4
crossref_primary_10_1557_mrc_2019_40
crossref_primary_10_1021_acssynbio_4c00041
crossref_primary_10_1039_D2DD00003B
crossref_primary_10_3389_fgene_2024_1483490
crossref_primary_10_3390_ijms22062847
crossref_primary_10_1002_minf_201900087
crossref_primary_10_1080_17460441_2023_2134340
crossref_primary_10_1039_D1TC03256A
crossref_primary_10_1039_D2RE00451H
crossref_primary_10_1038_s42003_024_06746_w
crossref_primary_10_1186_s13321_023_00790_0
crossref_primary_10_1016_j_drudis_2020_01_020
crossref_primary_10_1038_s41598_021_90245_z
crossref_primary_10_1186_s13321_025_00984_8
crossref_primary_10_1186_s13321_020_00458_z
crossref_primary_10_1039_D1SC02783B
crossref_primary_10_1039_D4SC06864E
crossref_primary_10_1063_5_0051902
crossref_primary_10_1038_s41524_022_00765_z
crossref_primary_10_1109_TCBB_2021_3112598
crossref_primary_10_1063_5_0076749
crossref_primary_10_1021_acs_chemrev_8b00728
crossref_primary_10_1016_j_eswa_2023_120592
crossref_primary_10_7717_peerj_pchem_11
crossref_primary_10_1021_acs_jctc_1c00301
crossref_primary_10_1021_acsomega_3c01078
crossref_primary_10_1080_14686996_2022_2075240
crossref_primary_10_1021_acs_jcim_4c00842
crossref_primary_10_1021_acsomega_3c05430
crossref_primary_10_1016_j_jmgm_2021_108045
crossref_primary_10_1002_wcms_1723
crossref_primary_10_1093_bib_bbab544
crossref_primary_10_4155_fmc_2018_0358
crossref_primary_10_1002_wcms_1680
crossref_primary_10_26599_TRCN_2025_9550005
crossref_primary_10_21468_SciPostChem_2_1_002
crossref_primary_10_1021_acs_jcim_4c01385
crossref_primary_10_1021_acs_jpca_2c04221
crossref_primary_10_1021_acs_jmedchem_2c01179
crossref_primary_10_1126_science_aat2663
crossref_primary_10_1021_acssuschemeng_0c08806
crossref_primary_10_1039_D0SC00982B
crossref_primary_10_1002_adma_202303827
crossref_primary_10_1038_s42256_024_00843_5
crossref_primary_10_1093_pnasnexus_pgac227
crossref_primary_10_1021_acs_accounts_0c00713
crossref_primary_10_1002_minf_202100102
crossref_primary_10_1016_j_tips_2020_12_004
crossref_primary_10_1038_s41524_022_00702_0
crossref_primary_10_1038_s42256_024_00809_7
crossref_primary_10_1002_anie_202104405
crossref_primary_10_1002_wcms_1395
crossref_primary_10_1186_s13321_022_00598_4
crossref_primary_10_1109_TCBB_2024_3402675
crossref_primary_10_1039_C8SC05372C
crossref_primary_10_1038_s41428_022_00648_6
crossref_primary_10_1109_TCBB_2024_3447780
crossref_primary_10_1016_j_seppur_2021_119117
crossref_primary_10_1021_acs_jcim_0c00692
crossref_primary_10_1021_acs_jcim_3c00579
crossref_primary_10_1039_D3SC04091G
crossref_primary_10_1186_s13321_023_00759_z
crossref_primary_10_1021_jacs_0c09105
crossref_primary_10_1080_07391102_2024_2445169
crossref_primary_10_1021_acs_jcim_3c00329
crossref_primary_10_1016_j_chbah_2024_100064
crossref_primary_10_1016_j_sbi_2021_10_001
crossref_primary_10_1021_acssuschemeng_4c00111
crossref_primary_10_1002_aisy_202300189
crossref_primary_10_1016_j_cogsc_2020_100370
crossref_primary_10_1021_acsomega_9b01480
crossref_primary_10_1080_27660400_2023_2204994
crossref_primary_10_1039_D0NR06091G
crossref_primary_10_1021_acs_jcim_1c00679
crossref_primary_10_1016_j_aichem_2023_100039
crossref_primary_10_1039_D1CC07035E
crossref_primary_10_1039_C9SC04026A
crossref_primary_10_18034_ajase_v7i1_46
crossref_primary_10_1016_j_jece_2023_110086
crossref_primary_10_1007_s00894_023_05772_5
crossref_primary_10_1063_1_5018065
crossref_primary_10_1016_j_drudis_2024_103992
crossref_primary_10_1002_celc_202400252
crossref_primary_10_1016_j_mtcomm_2024_110050
crossref_primary_10_1021_acs_jcim_2c01345
crossref_primary_10_1021_acs_jcim_2c00812
crossref_primary_10_1002_jcc_26441
crossref_primary_10_1007_s10822_019_00242_8
crossref_primary_10_4028_www_scientific_net_MSF_1016_1492
crossref_primary_10_1021_acsami_9b17867
crossref_primary_10_1080_14686996_2023_2261833
crossref_primary_10_1360_SSC_2022_0135
crossref_primary_10_1109_TCBB_2024_3477592
crossref_primary_10_1186_s13321_021_00556_6
crossref_primary_10_3389_fphar_2020_565644
crossref_primary_10_3390_a13050124
crossref_primary_10_1186_s13321_019_0328_9
crossref_primary_10_1021_acs_jcim_4c01451
crossref_primary_10_1021_acs_jcim_9b00732
crossref_primary_10_1186_s13321_021_00572_6
crossref_primary_10_1038_s41467_020_17995_8
crossref_primary_10_3390_molecules27031039
crossref_primary_10_1002_celc_202400024
crossref_primary_10_1016_j_pmatsci_2022_101043
crossref_primary_10_1021_acs_jcim_2c00787
crossref_primary_10_1016_j_compbiomed_2022_105403
crossref_primary_10_1017_qrd_2022_12
crossref_primary_10_1021_acs_jcim_4c00759
crossref_primary_10_1021_acs_chemmater_4c02929
crossref_primary_10_1186_s13321_020_00454_3
crossref_primary_10_1126_sciadv_abj3906
crossref_primary_10_1038_s42005_020_0338_y
crossref_primary_10_1021_acscentsci_7b00572
crossref_primary_10_1016_j_compbiolchem_2023_107927
crossref_primary_10_1016_j_cossms_2020_100893
crossref_primary_10_1186_s13321_020_00439_2
crossref_primary_10_1038_s42256_021_00403_1
crossref_primary_10_1021_acs_jcim_8b00234
crossref_primary_10_31083_j_fbl2706188
crossref_primary_10_1186_s13321_022_00646_z
crossref_primary_10_1016_j_parint_2021_102366
crossref_primary_10_1021_acscentsci_8b00213
crossref_primary_10_1002_minf_201900107
crossref_primary_10_1021_acsami_9b01226
crossref_primary_10_2174_1568026623666221017143244
crossref_primary_10_5023_jappstat_52_75
crossref_primary_10_1380_vss_66_164
crossref_primary_10_1038_s42256_022_00506_3
crossref_primary_10_1063_5_0017042
crossref_primary_10_1021_acsomega_1c00477
crossref_primary_10_1039_C9ME00039A
crossref_primary_10_3390_kinasesphosphatases1020008
crossref_primary_10_1007_s10489_023_05240_w
Cites_doi 10.1039/C4CS00391H
10.1038/nature16961
10.1021/ci3001277
10.1021/acs.jcim.6b00426
10.1109/TCIAIG.2012.2186810
10.1038/ncomms9476
10.1016/j.md.2016.04.001
10.1016/j.commatsci.2012.10.028
10.1038/nmat2137
10.1186/1758-2946-1-8
10.1080/14686996.2017.1344083
10.18653/v1/K16-1002
10.1007/s10822-016-0008-z
10.1021/ja507132m
10.1021/ci00057a005
10.1039/C4TA04994B
10.3115/v1/D14-1179
ContentType Journal Article
Copyright 2017 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis 2017
2017 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2017 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis 2017 The Author(s)
Copyright_xml – notice: 2017 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis 2017
– notice: 2017 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2017 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis 2017 The Author(s)
DBID 0YH
AAYXX
CITATION
NPM
3V.
7U5
7XB
8BQ
8FD
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
JG9
L7M
M2O
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1080/14686996.2017.1401424
DatabaseName Taylor & Francis Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
METADEX
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
Materials Research Database
Advanced Technologies Database with Aerospace
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Materials Research Database
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
METADEX
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
Solid State and Superconductivity Abstracts
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-5514
EndPage 976
ExternalDocumentID oai_doaj_org_article_4ef58a238f34419abd241d71a071a3a7
10.1080/14686996.2017.1401424
PMC5801530
29435094
10_1080_14686996_2017_1401424
1401424
Genre Article
Journal Article
GrantInformation_xml – fundername: Japan Science and Technology Agency
  grantid: MI2I project
  funderid: 10.13039/501100002241
– fundername: Japan Society for the Promotion of Science
  grantid: 25106005
  funderid: 10.13039/501100001691
– fundername: Ministry of Education, Culture, Sports, Science and Technology
  grantid: Priorty Issue on Post-K Computer
  funderid: 10.13039/501100001700
– fundername: Core Research for Evolutional Science and Technology
  grantid: JPMJCR1502
  funderid: 10.13039/501100003382
– fundername: ; ;
  grantid: JPMJCR1502
– fundername: ; ;
  grantid: 25106005
– fundername: ; ;
  grantid: MI2I project
– fundername: ; ;
  grantid: Priorty Issue on Post-K Computer
GroupedDBID 0R~
0YH
123
1JI
2WC
4.4
5VS
8G5
ABUWG
ACBEA
ACGFO
ACGFS
ACHIP
ADBBV
ADCVX
AENEX
AFKRA
AFYNE
AHSEE
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AQTUD
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CS3
DU5
DWQXO
E3Z
EBS
EDWGO
EJD
EQZZN
FDB
G-Q
GNUQQ
GROUPED_DOAJ
GUQSH
H13
HH5
HYE
IOP
KOT
KQ8
M2O
M45
M48
M4Z
N5L
NT-
O3W
O9-
OK1
OVT
P2P
PHGZM
PHGZT
PQQKQ
PROAC
RDKPK
RIN
RNS
RPM
RPZ
SDP
SY9
T37
TDBHL
TFW
TR2
W28
AAYXX
CITATION
PUEGO
--K
02O
1B1
1WK
1~5
4G.
7-5
AAEDT
AALHV
AALRI
AAQFI
AAQXK
AATNI
AAXUO
ABWVN
ACAFW
ACARI
ACRPL
ACVFH
ADCNI
ADDVE
ADMUD
ADNMO
AEFHF
AEJGL
AEUPX
AFPUW
AGQPQ
AIGII
AIYBF
ARNYC
ASPBG
AVWKF
AZFZN
BBWZM
C1A
CJUJL
EO8
FEDTE
FGOYB
HVGLF
HZ~
IHE
IJHAN
IPNFZ
JCGBZ
NPM
NQ-
PJBAE
Q02
R2-
RIG
ROL
S3P
SEW
UHS
XPP
3V.
7U5
7XB
8BQ
8FD
8FK
JG9
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
AEINN
UNPAY
ID FETCH-LOGICAL-c562t-b4ee0be8861bfc870db90f14f188a39eb74b7029688207ce6cb80f556ed89bd23
IEDL.DBID BENPR
ISSN 1468-6996
1878-5514
IngestDate Tue Oct 14 18:57:35 EDT 2025
Sun Oct 26 03:56:51 EDT 2025
Tue Sep 30 14:57:07 EDT 2025
Wed Oct 01 13:11:49 EDT 2025
Sun Jun 29 16:51:31 EDT 2025
Mon Jul 21 05:55:25 EDT 2025
Wed Oct 01 01:19:58 EDT 2025
Thu Apr 24 22:55:52 EDT 2025
Mon Oct 20 23:49:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 60 New topics/Others
Molecular design
Monte Carlo tree search
recurrent neural network
python library
404 Materials informatics / Genomics
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c562t-b4ee0be8861bfc870db90f14f188a39eb74b7029688207ce6cb80f556ed89bd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/14686996.2017.1401424
PMID 29435094
PQID 2196547173
PQPubID 3934964
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5801530
crossref_citationtrail_10_1080_14686996_2017_1401424
crossref_primary_10_1080_14686996_2017_1401424
doaj_primary_oai_doaj_org_article_4ef58a238f34419abd241d71a071a3a7
informaworld_taylorfrancis_310_1080_14686996_2017_1401424
proquest_miscellaneous_2001915604
pubmed_primary_29435094
unpaywall_primary_10_1080_14686996_2017_1401424
proquest_journals_2196547173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-31
PublicationDateYYYYMMDD 2017-12-31
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Abingdon
PublicationTitle Science and technology of advanced materials
PublicationTitleAlternate Sci Technol Adv Mater
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References Oord Avd (CIT0010) 2016
CIT0021
Kusner MJ (CIT0012) 2017
CIT0020
CIT0001
Gómez-Bombarelli R (CIT0011) 2016
CIT0022
Kingma D (CIT0018) 2014
CIT0003
CIT0014
CIT0002
CIT0005
CIT0016
CIT0004
CIT0015
CIT0007
Segler MH (CIT0013) 2017
CIT0006
CIT0017
CIT0009
CIT0008
CIT0019
References_xml – volume-title: Automatic chemical design using a data-driven continuous representation of molecules
  year: 2016
  ident: CIT0011
– ident: CIT0004
  doi: 10.1039/C4CS00391H
– start-page: 1945
  volume-title: Proceedings of 34th International Conference on Machine Learning (ICML)
  year: 2017
  ident: CIT0012
– ident: CIT0016
  doi: 10.1038/nature16961
– ident: CIT0020
  doi: 10.1021/ci3001277
– start-page: 1747
  volume-title: Proceedings of 33rd International Conference on Machine Learning (ICML)
  year: 2016
  ident: CIT0010
– ident: CIT0006
  doi: 10.1021/acs.jcim.6b00426
– ident: CIT0015
  doi: 10.1109/TCIAIG.2012.2186810
– volume-title: Adam: a method for stochastic optimization
  year: 2014
  ident: CIT0018
– ident: CIT0002
  doi: 10.1038/ncomms9476
– ident: CIT0021
  doi: 10.1016/j.md.2016.04.001
– ident: CIT0022
  doi: 10.1016/j.commatsci.2012.10.028
– volume-title: Generating focussed molecule libraries for drug discovery with recurrent neural networks
  year: 2017
  ident: CIT0013
– ident: CIT0005
  doi: 10.1038/nmat2137
– ident: CIT0019
  doi: 10.1186/1758-2946-1-8
– ident: CIT0017
  doi: 10.1080/14686996.2017.1344083
– ident: CIT0009
  doi: 10.18653/v1/K16-1002
– ident: CIT0007
  doi: 10.1007/s10822-016-0008-z
– ident: CIT0003
  doi: 10.1021/ja507132m
– ident: CIT0008
  doi: 10.1021/ci00057a005
– ident: CIT0001
  doi: 10.1039/C4TA04994B
– ident: CIT0014
  doi: 10.3115/v1/D14-1179
SSID ssj0006124
Score 2.5933383
Snippet Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 972
SubjectTerms 404 Materials informatics / Genomics
60 New topics/Others
Algorithms
Artificial neural networks
Computer simulation
Design optimization
Fragments
Libraries
Molecular design
Monte Carlo tree search
Neural networks
New topics/Others
Organic materials
Python
python library
recurrent neural network
Recurrent neural networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABlXdKQUbimm4S24ndW3lUFRJcaKXeLNsZA9KSXdHdVv33zCROtAtIy4GrHVvxPDKfHc83jL3xGNV8A5B7hCO5jOjpWkSXy7asY6i1UYrynT99rs8u5MdLdblR6ovuhA30wIPgZhKi0g4DSxQYuY3zLcactikdxkYnXJ9HXmgzbqbSNxjjthzzimqE9GPuji5m1EZNdK2rOaL9hazkVlTqyft_oy79GwD98x7l3XW3dLc3bj7fCFKn--xBQpf8ZFjVQ3YHukfs_gbn4GP2nigCzr8cc9dx6PkjcFq-vCUOAZ7OdDi-EW-Bd4vrBf8xFtDlX3uKatLkE3Zx-uH83VmeSinkAQHOKvcSoPCgdV36GNBHW2-KWKJutHbCgG-kb4rK1Ai4iyZAHbwuolI1tNqgyMVTttctOnjOuEeMpoLRLUiQKjpdyVBBKKuqbYSSImNyFKUNiWecyl3MbZnoSEcNWNKATRrI2NE0bDkQbewa8Jb0ND1MPNl9A1qPTdZjd1lPxsymlu2qPyaJQ00TK3a8wOFoEjY5_pWtiKFR0tWGjL2eutFl6T-M62CxvqLKn7hLRqiJUzwbLGhaRWUQv-KWO2PNlm1tLXO7p_v-racFVwg2lCgyNpus8N8kefA_JPmC3aM5Bw7MQ7a3-rmGl4jXVv5V75q_AAS7MyE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeEG8CBRkJccs2DzuxkRDiVVVI5UJX6s2yE7tFWpLtdrew_56ZxFl2oVCueVi2Z0bz2R5_H8ALi1nNls7FFuFIzD1Gusy9iXmdFr4qpBKC7jsffi4OxvzTsTjegqFsLEzg-aVLO9KTGs8mox9nyzcY8K9Dhdwe3R4qELdToVY5ohUDz_jL6VlM2lJ0BhuENq7BdcxfigQeDvkvTnHM8Xy4g0TNDPd8_tbyRgbriP5_ozm9DKz-WXN5Y9FMzfK7mUzWEtr-bbgVkCh727vOHdhyzV3YWeMnvAcfiE7g6MsrZhrmOq4JbJZNl8Q3wML-D8Mesdqxpr1o2bdBbJeddHTWZPX7MN7_ePT-IA6yC3GFYGgeW-5cYp2URWp9hfFcW5X4FO0opcmVsyW3ZZKpAsF5UlauqKxMvBCFq6WydZY_gO2mbdwjYBbxnKiUrB13XHgjM15lrkqzrC5zwfMI-DCVugqc5CSNMdFpoC4dLKDJAjpYIILR6rdpT8px1Q_vyE6rj4lTu3vQzk50CFHNnRfSIITxOWJEZXAoPK3L1CAKM7kpI1DrVtbzbkvF9_onOr-iA7uDS-jBx3VGbI6cyiAieL56jeFNZzamce3inFRCcUWNsBSbeNh70GoUmUKsi8vzCMoN39oY5uab5utpRyEuEJiIPIlgb-WF_zeTj_89kCdwk77umTB3YXs-W7iniNrm9lkXdD8BYhY2IA
  priority: 102
  providerName: Scholars Portal
– databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHIAD4k2gICNxTZv4Edu9FdpqhQQXWglOlp3YLdKSrLq7oP57ZhIn2uWhInFMHFu2Z8b-xhl_Q8gbD7uaVyHkHuBILiJYuubR5aIpq1hX2kiJ950_fKxmZ-L9ZzlGEy5TWCX60HEgiujXajRu55djRNw-3haqAKdjYJbaQw9BMHGT3GKqNKjYxZfZtBjDBi7GC0ZYZ7zE87dmtrannsX_Fw7TPyHR3wMqb6_bhbv64ebzjd3q5D65l2AmPRz04gG5EdqH5O4G-eAjcoRcAaefDqhraeiJJKBZurhCMgGaDnco9Ig2gbbd945-GzPp0vOeqxpF-picnRyfvpvlKadCXgPSWeVehFD4oHVV-liDsTbeFLEEIWntuAleCa8KZipA3oWqQ1V7XUQpq9Bo4xvGn5CdtmvDM0I9gDVZG90EEYSMTjNRs1CXjDWKS8EzIsaptHUiHMe8F3NbJl7SUQIWJWCTBDKyN1VbDIwb11V4i3KaPkbC7P5Fd3luk_1ZEaLUDvBJ5AAAjYOhiLJRpQOI5bhTGTGbUrar_rwkDslNLL-mA7ujSti0AiwtQ6pGgTEOGXk9FYPt4g8Z14ZuvcQUoOAuA-aEJp4OGjSNghkAsuB7Z0Rt6dbWMLdL2q8XPT-4BNQheZGR_UkL_20mn__HJLwgd_Bx4MDcJTury3V4CXht5V_1FvkTKcQwbQ
  priority: 102
  providerName: Taylor & Francis
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6V9AAceBcWCjIS1033Ye_aSAiFR1UhUYFopHJa2V67IMJulCag8uuZ2ZeSAipI3JI4Xu1MPo8_b2a-AXhicFczuXOhQToSco8rXaZeh7yMM28zqYSgeue3h9nBlL85Fsdb8L6vhaG0SjpD-1YooonVtLjnpe8z4vaoWihDnk6JWfmYTgg84c8rjPaTpsngs-Vi5S7BdiaQno9ge3r4bvKxrzKiifRa4umJ2EJf1fOn627sV42s_zlR099R018zLC-vqrk--65ns7Xta_86LHrD26yVL-PV0oztj3OakP_VMzfgWkd22aRF503YctUtuLomgXgbXpFiwdGHp0xXzDVyFmgLm5-RpAHrHjExdAMrHavqbzX72vfzZSeNYjYB6w5M918fvTwIu84OoUW-tQwNdy4yTsosNt5iyCiNinyMUJFSp8qZnJs8SlSG_D_KrcuskZEXInOlVKZM0h0YVXXl7gEzSBmFVbJ03HHhtUy4TZyNk6TMU8HTAHj_-xW2kz2n7huzIu7UUXunFeS0onNaAONh2rzV_bhowgsCx_Blku1uPqgXJ0UXBQruvJAaWZJPkYYqjabwuMxjjURPpzoPQK1Dq1g2T21822KlSC-4gd0eh0UXh06LhAQjOWVaBPB4GMYIQn8L6crVq1NqRIqHdmS-eIm7LWwHKxKFdDpSOJJvAHrDzM2R6vOnRqVcIPcRaRTA3gD9v_Pk_X-e8QCu0NtWf3MXRoTyh8gVl-ZRt_p_Ant5WWY
  priority: 102
  providerName: Unpaywall
Title ChemTS: an efficient python library for de novo molecular generation
URI https://www.tandfonline.com/doi/abs/10.1080/14686996.2017.1401424
https://www.ncbi.nlm.nih.gov/pubmed/29435094
https://www.proquest.com/docview/2196547173
https://www.proquest.com/docview/2001915604
https://pubmed.ncbi.nlm.nih.gov/PMC5801530
https://www.tandfonline.com/doi/pdf/10.1080/14686996.2017.1401424?needAccess=true
https://doaj.org/article/4ef58a238f34419abd241d71a071a3a7
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1878-5514
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006124
  issn: 1468-6996
  databaseCode: HH5
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1878-5514
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006124
  issn: 1468-6996
  databaseCode: KQ8
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1878-5514
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006124
  issn: 1468-6996
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1878-5514
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006124
  issn: 1468-6996
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: EJS IOP Science
  customDbUrl:
  eissn: 1878-5514
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006124
  issn: 1468-6996
  databaseCode: IOP
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1878-5514
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006124
  issn: 1468-6996
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1878-5514
  dateEnd: 20201231
  omitProxy: true
  ssIdentifier: ssj0006124
  issn: 1468-6996
  databaseCode: BENPR
  dateStart: 20110201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAUI
  databaseName: Routledge Open
  customDbUrl:
  eissn: 1878-5514
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006124
  issn: 1468-6996
  databaseCode: RDKPK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/openaccess/openjournals
  providerName: Routledge
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1878-5514
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0006124
  issn: 1468-6996
  databaseCode: M48
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 1878-5514
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006124
  issn: 1468-6996
  databaseCode: 0YH
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB612wNwQLwJlJWRuKabOHbiICHUQqsFqcsKulJ7imzHKUhLsrS7oP57ZvJiFxDl4oNfsj0z9ufXNwAvDK5qJnHONwhHfFGgpauo0L7Iw7iwsUqlpP_Ox5N4PBPvT-XpFky6vzD0rLKbE-uJOq8snZGPOFHfCbozfr345pPXKLpd7Vxo6Na1Qv6qphjbhh1OzFgD2Dk4nEw_9nMzruei-28UI9Tv_vSoYERxFEXPvZI92ncILjZWq5rU_zdK078B0z_fV95YlQt99UPP52uL19EduN2iTrbfqMld2HLlPbi1xkV4H94SdcDJp5dMl8zVvBJYLVtcEbcAa896GLaI5Y6V1feKfe0c67LzmrqaJPwAZkeHJ2_GfutiwbcIfJa-Ec4FxikVh6awaLu5SYMiRJkppaPUmUSYJOBpjEA8SKyLrVFBIWXscpWanEcPYVBWpXsMzCB2kzZVuRNOyEIrLix3NuQ8TyIpIg9EN5SZbfnHyQ3GPAtbmtJOAhlJIGsl4MFeX2zREHBcV-CA5NRnJv7sOqK6OM9ac8yEK6TSCFeKCPFgqrErIsyTUCPi0pFOPEjXpZwt6-OTovF1kkXXNGC3U4msnRAus1_q68HzPhlNme5ndOmq1SV5BMXdM0JQrOJRo0F9L3iKuBa34h4kG7q10c3NlPLL55ouXCIIkVHgwajXwv8bySf_7shTuEm5G9bLXRgsL1buGSK0pRnCdnA2HrbGN6zPOTB892GK4bFQmDKbTPfPfgIkJzcG
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELam7WHwgPhNxgAjwWPWxLETB2lCjG3q2FYh6KS9eXbiDKQuKWvL1H-Ov427xAktIMbLXp3Ysn1n33e27ztCXhmwaiax1jcAR3xewEqXUaF9nodxkcUyFQLjnY8Hcf-EfzgVpyvkRxsLg88q2z2x3qjzKsMz8h5D6juOd8Zvx998zBqFt6ttCg3tUivk2zXFmAvsOLTzK3DhJtsHuyDv14zt7w3f932XZcDPwPZPfcOtDYyVMg5NkYH65iYNihC6LaWOUmsSbpKApTFg0SDJbJwZGRRCxDaXqcmR-ABMwBqPeArO39rO3uDjp84WAH7gbXxTDK5FG0Mkgx6WYRE-L0u20M_hjC9ZxzqJwG8Uqn8Dwn--51yflWM9v9Kj0YKx3L9L7jiUS981anmPrNjyPrm9wH34gOwiVcHw8xuqS2prHgtolo7nyGVA3dkShR7R3NKy-l7RizaRLz2vqbJRox6SkxuZ7EdktaxK-4RQA1hRZKnMLbdcFFoynjGbhYzlSSR45BHeTqXKHN85pt0YqdDRorYSUCgB5STgka2u2rgh_Liuwg7KqfsZ-brrguryXLnlr7gthNQAj4oI8GeqYSg8zJNQA8LTkU48ki5KWU3r45qiya2ioms6sNmqhHIb0ET9Wi4eedl9hq0D74N0aavZBDOQgrcOkBeaeNxoUDcKlgKOBtffI8mSbi0Nc_lL-fVLTU8uAPSIKPBIr9PC_5vJjX8P5AVZ7w-Pj9TRweDwKbmFNRvGzU2yOr2c2WeADqfmuVuClJzd9Kr_Causbt4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BkTgeEFdpoICReE2bw04c3oCyWq4KiVaCJ8tnQdomq-4uqP-emVza5VCReI1jK_bMeD47M98APDPo1UzpfWwQjsQ8oKXLPOiYu7QItpCVEJTv_OGwmB7zt5_FEE246MMq6QwdOqKIdq8m4567METE7VO2UIE4nQKzyj06IfCMX4YrQqJ7Q5VOvkzHzRgdOB8SjKjPkMTzt2E23FPL4v8Lh-mfkOjvAZXXVvVcn__Qs9mat5rcgps9zGQvOr24DZd8fQdurJEP3oUD4go4-vSc6Zr5lkgCh2XzcyITYP3lDsMvYs6zuvnesNOhki47abmqSaT34Hjy-ujVNO5rKsQWkc4yNtz7xHgpi9QEi8bqTJWEFIUkpc4rb0puyiSrCkTeSWl9YY1MghCFd7IyLsu3Yatuar8DzCBYE7aSznPPRdAy4zbzNs0yV-aC5xHwYSmV7QnHqe7FTKU9L-kgAUUSUL0EItgbu807xo2LOrwkOY0vE2F2-6A5O1G9_Snug5Aa8UnIEQBWGqfCU1emGiGWznUZQbUuZbVs70tCV9xE5Rd8wO6gEqrfARYqI6pGTjEOETwdm9F26YeMrn2zWlAJUDwuI-bEIe53GjTOIqsQyOLZO4JyQ7c2prnZUn_72vKDC0QdIk8i2B-18N9W8sF_LMITuPrxYKLevzl89xCuU0tHh7kLW8uzlX-E0G1pHrfG-RNxtTMC
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6V9AAceBcWCjIS1033Ye_aSAiFR1UhUYFopHJa2V67IMJulCag8uuZ2ZeSAipI3JI4Xu1MPo8_b2a-AXhicFczuXOhQToSco8rXaZeh7yMM28zqYSgeue3h9nBlL85Fsdb8L6vhaG0SjpD-1YooonVtLjnpe8z4vaoWihDnk6JWfmYTgg84c8rjPaTpsngs-Vi5S7BdiaQno9ge3r4bvKxrzKiifRa4umJ2EJf1fOn627sV42s_zlR099R018zLC-vqrk--65ns7Xta_86LHrD26yVL-PV0oztj3OakP_VMzfgWkd22aRF503YctUtuLomgXgbXpFiwdGHp0xXzDVyFmgLm5-RpAHrHjExdAMrHavqbzX72vfzZSeNYjYB6w5M918fvTwIu84OoUW-tQwNdy4yTsosNt5iyCiNinyMUJFSp8qZnJs8SlSG_D_KrcuskZEXInOlVKZM0h0YVXXl7gEzSBmFVbJ03HHhtUy4TZyNk6TMU8HTAHj_-xW2kz2n7huzIu7UUXunFeS0onNaAONh2rzV_bhowgsCx_Blku1uPqgXJ0UXBQruvJAaWZJPkYYqjabwuMxjjURPpzoPQK1Dq1g2T21822KlSC-4gd0eh0UXh06LhAQjOWVaBPB4GMYIQn8L6crVq1NqRIqHdmS-eIm7LWwHKxKFdDpSOJJvAHrDzM2R6vOnRqVcIPcRaRTA3gD9v_Pk_X-e8QCu0NtWf3MXRoTyh8gVl-ZRt_p_Ant5WWY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ChemTS%3A+an+efficient+python+library+for+de+novo+molecular+generation&rft.jtitle=Science+and+technology+of+advanced+materials&rft.au=Yang%2C+Xiufeng&rft.au=Zhang%2C+Jinzhe&rft.au=Yoshizoe%2C+Kazuki&rft.au=Terayama%2C+Kei&rft.date=2017-12-31&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1468-6996&rft.eissn=1878-5514&rft.volume=18&rft.issue=1&rft.epage=976&rft_id=info:doi/10.1080%2F14686996.2017.1401424
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-6996&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-6996&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-6996&client=summon