Metal artifact reduction combined with deep learning image reconstruction algorithm for CT image quality optimization: a phantom study

Aiming to evaluate the effects of the smart metal artifact reduction (MAR) algorithm and combinations of various scanning parameters, including radiation dose levels, tube voltage, and reconstruction algorithms, on metal artifact reduction and overall image quality, to identify the optimal protocol...

Full description

Saved in:
Bibliographic Details
Published inPeerJ (San Francisco, CA) Vol. 13; p. e19516
Main Authors Zou, Huachun, Wang, Zonghuo, Guo, Mengya, Peng, Kun, Zhou, Jian, Zhou, Lili, Fan, Bing
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 04.06.2025
PeerJ, Inc
PeerJ Inc
Subjects
Online AccessGet full text
ISSN2167-8359
2167-8359
2376-5992
DOI10.7717/peerj.19516

Cover

Abstract Aiming to evaluate the effects of the smart metal artifact reduction (MAR) algorithm and combinations of various scanning parameters, including radiation dose levels, tube voltage, and reconstruction algorithms, on metal artifact reduction and overall image quality, to identify the optimal protocol for clinical application. A phantom with a pacemaker was examined using standard dose (effective dose (ED): 3 mSv) and low dose (ED: 0.5 mSv), with three scan voltages (70, 100, and 120 kVp) selected for each dose. Raw data were reconstructed using 50% adaptive statistical iterative reconstruction-V (ASIR-V), ASIR-V with MAR, high-strength deep learning image reconstruction (DLIR-H), and DLIR-H with MAR. Quantitative analyses (artifact index (AI), noise, signal-to-noise ratio (SNR) of artifact-impaired pulmonary nodules (PNs), and noise power spectrum (NPS) of artifact-free regions) and qualitative evaluation were performed. Quantitatively, the deep learning image recognition (DLIR) algorithm or high tube voltages exhibited lower noise compared to the ASIR-V or low tube voltages (  < 0.001). AI of images with MAR or high tube voltages was significantly lower than that of images without MAR or low tube voltages (  < 0.001). No significant difference was observed in AI between low-dose images with 120 kVp DLIR-H MAR and standard-dose images with 70 kVp ASIR-V MAR (  = 0.143). Only the 70 kVp 3 mSv protocol demonstrated statistically significant differences in SNR for artifact-impaired PNs (  = 0.041). The f and f values were similar across various scenarios, indicating that the MAR algorithm did not alter the image texture in artifact-free regions. The qualitative results of the extent of metal artifacts, the confidence in diagnosing artifact-impaired PNs, and the overall image quality were generally consistent with the quantitative results. The MAR algorithm combined with DLIR-H can reduce metal artifacts and enhance the overall image quality, particularly at high kVp tube voltages.
AbstractList Aiming to evaluate the effects of the smart metal artifact reduction (MAR) algorithm and combinations of various scanning parameters, including radiation dose levels, tube voltage, and reconstruction algorithms, on metal artifact reduction and overall image quality, to identify the optimal protocol for clinical application. A phantom with a pacemaker was examined using standard dose (effective dose (ED): 3 mSv) and low dose (ED: 0.5 mSv), with three scan voltages (70, 100, and 120 kVp) selected for each dose. Raw data were reconstructed using 50% adaptive statistical iterative reconstruction-V (ASIR-V), ASIR-V with MAR, high-strength deep learning image reconstruction (DLIR-H), and DLIR-H with MAR. Quantitative analyses (artifact index (AI), noise, signal-to-noise ratio (SNR) of artifact-impaired pulmonary nodules (PNs), and noise power spectrum (NPS) of artifact-free regions) and qualitative evaluation were performed. Quantitatively, the deep learning image recognition (DLIR) algorithm or high tube voltages exhibited lower noise compared to the ASIR-V or low tube voltages (  < 0.001). AI of images with MAR or high tube voltages was significantly lower than that of images without MAR or low tube voltages (  < 0.001). No significant difference was observed in AI between low-dose images with 120 kVp DLIR-H MAR and standard-dose images with 70 kVp ASIR-V MAR (  = 0.143). Only the 70 kVp 3 mSv protocol demonstrated statistically significant differences in SNR for artifact-impaired PNs (  = 0.041). The f and f values were similar across various scenarios, indicating that the MAR algorithm did not alter the image texture in artifact-free regions. The qualitative results of the extent of metal artifacts, the confidence in diagnosing artifact-impaired PNs, and the overall image quality were generally consistent with the quantitative results. The MAR algorithm combined with DLIR-H can reduce metal artifacts and enhance the overall image quality, particularly at high kVp tube voltages.
Background Aiming to evaluate the effects of the smart metal artifact reduction (MAR) algorithm and combinations of various scanning parameters, including radiation dose levels, tube voltage, and reconstruction algorithms, on metal artifact reduction and overall image quality, to identify the optimal protocol for clinical application. Methods A phantom with a pacemaker was examined using standard dose (effective dose (ED): 3 mSv) and low dose (ED: 0.5 mSv), with three scan voltages (70, 100, and 120 kVp) selected for each dose. Raw data were reconstructed using 50% adaptive statistical iterative reconstruction-V (ASIR-V), ASIR-V with MAR, high-strength deep learning image reconstruction (DLIR-H), and DLIR-H with MAR. Quantitative analyses (artifact index (AI), noise, signal-to-noise ratio (SNR) of artifact-impaired pulmonary nodules (PNs), and noise power spectrum (NPS) of artifact-free regions) and qualitative evaluation were performed. Results Quantitatively, the deep learning image recognition (DLIR) algorithm or high tube voltages exhibited lower noise compared to the ASIR-V or low tube voltages (p < 0.001). AI of images with MAR or high tube voltages was significantly lower than that of images without MAR or low tube voltages (p < 0.001). No significant difference was observed in AI between low-dose images with 120 kVp DLIR-H MAR and standard-dose images with 70 kVp ASIR-V MAR (p = 0.143). Only the 70 kVp 3 mSv protocol demonstrated statistically significant differences in SNR for artifact-impaired PNs (p = 0.041). The fpeak and favg values were similar across various scenarios, indicating that the MAR algorithm did not alter the image texture in artifact-free regions. The qualitative results of the extent of metal artifacts, the confidence in diagnosing artifact-impaired PNs, and the overall image quality were generally consistent with the quantitative results. Conclusion The MAR algorithm combined with DLIR-H can reduce metal artifacts and enhance the overall image quality, particularly at high kVp tube voltages.
BackgroundAiming to evaluate the effects of the smart metal artifact reduction (MAR) algorithm and combinations of various scanning parameters, including radiation dose levels, tube voltage, and reconstruction algorithms, on metal artifact reduction and overall image quality, to identify the optimal protocol for clinical application. MethodsA phantom with a pacemaker was examined using standard dose (effective dose (ED): 3 mSv) and low dose (ED: 0.5 mSv), with three scan voltages (70, 100, and 120 kVp) selected for each dose. Raw data were reconstructed using 50% adaptive statistical iterative reconstruction-V (ASIR-V), ASIR-V with MAR, high-strength deep learning image reconstruction (DLIR-H), and DLIR-H with MAR. Quantitative analyses (artifact index (AI), noise, signal-to-noise ratio (SNR) of artifact-impaired pulmonary nodules (PNs), and noise power spectrum (NPS) of artifact-free regions) and qualitative evaluation were performed. ResultsQuantitatively, the deep learning image recognition (DLIR) algorithm or high tube voltages exhibited lower noise compared to the ASIR-V or low tube voltages (p < 0.001). AI of images with MAR or high tube voltages was significantly lower than that of images without MAR or low tube voltages (p < 0.001). No significant difference was observed in AI between low-dose images with 120 kVp DLIR-H MAR and standard-dose images with 70 kVp ASIR-V MAR (p = 0.143). Only the 70 kVp 3 mSv protocol demonstrated statistically significant differences in SNR for artifact-impaired PNs (p = 0.041). The fpeak and favg values were similar across various scenarios, indicating that the MAR algorithm did not alter the image texture in artifact-free regions. The qualitative results of the extent of metal artifacts, the confidence in diagnosing artifact-impaired PNs, and the overall image quality were generally consistent with the quantitative results. ConclusionThe MAR algorithm combined with DLIR-H can reduce metal artifacts and enhance the overall image quality, particularly at high kVp tube voltages.
A phantom with a pacemaker was examined using standard dose (effective dose (ED): 3 mSv) and low dose (ED: 0.5 mSv), with three scan voltages (70, 100, and 120 kVp) selected for each dose. Raw data were reconstructed using 50% adaptive statistical iterative reconstruction-V (ASIR-V), ASIR-V with MAR, high-strength deep learning image reconstruction (DLIR-H), and DLIR-H with MAR. Quantitative analyses (artifact index (AI), noise, signal-to-noise ratio (SNR) of artifact-impaired pulmonary nodules (PNs), and noise power spectrum (NPS) of artifact-free regions) and qualitative evaluation were performed. Quantitatively, the deep learning image recognition (DLIR) algorithm or high tube voltages exhibited lower noise compared to the ASIR-V or low tube voltages (p<0.001). AI of images with MAR or high tube voltages was significantly lower than that of images without MAR or low tube voltages (p<0.001). No significant difference was observed in AI between low-dose images with 120 kVp DLIR-H MAR and standard-dose images with 70 kVp ASIR-V MAR (p=0.143). Only the 70 kVp 3 mSv protocol demonstrated statistically significant differences in SNR for artifact-impaired PNs (p=0.041). The f.sub.peak and f.sub.avg values were similar across various scenarios, indicating that the MAR algorithm did not alter the image texture in artifact-free regions. The qualitative results of the extent of metal artifacts, the confidence in diagnosing artifact-impaired PNs, and the overall image quality were generally consistent with the quantitative results. The MAR algorithm combined with DLIR-H can reduce metal artifacts and enhance the overall image quality, particularly at high kVp tube voltages.
Aiming to evaluate the effects of the smart metal artifact reduction (MAR) algorithm and combinations of various scanning parameters, including radiation dose levels, tube voltage, and reconstruction algorithms, on metal artifact reduction and overall image quality, to identify the optimal protocol for clinical application.BackgroundAiming to evaluate the effects of the smart metal artifact reduction (MAR) algorithm and combinations of various scanning parameters, including radiation dose levels, tube voltage, and reconstruction algorithms, on metal artifact reduction and overall image quality, to identify the optimal protocol for clinical application.A phantom with a pacemaker was examined using standard dose (effective dose (ED): 3 mSv) and low dose (ED: 0.5 mSv), with three scan voltages (70, 100, and 120 kVp) selected for each dose. Raw data were reconstructed using 50% adaptive statistical iterative reconstruction-V (ASIR-V), ASIR-V with MAR, high-strength deep learning image reconstruction (DLIR-H), and DLIR-H with MAR. Quantitative analyses (artifact index (AI), noise, signal-to-noise ratio (SNR) of artifact-impaired pulmonary nodules (PNs), and noise power spectrum (NPS) of artifact-free regions) and qualitative evaluation were performed.MethodsA phantom with a pacemaker was examined using standard dose (effective dose (ED): 3 mSv) and low dose (ED: 0.5 mSv), with three scan voltages (70, 100, and 120 kVp) selected for each dose. Raw data were reconstructed using 50% adaptive statistical iterative reconstruction-V (ASIR-V), ASIR-V with MAR, high-strength deep learning image reconstruction (DLIR-H), and DLIR-H with MAR. Quantitative analyses (artifact index (AI), noise, signal-to-noise ratio (SNR) of artifact-impaired pulmonary nodules (PNs), and noise power spectrum (NPS) of artifact-free regions) and qualitative evaluation were performed.Quantitatively, the deep learning image recognition (DLIR) algorithm or high tube voltages exhibited lower noise compared to the ASIR-V or low tube voltages (p < 0.001). AI of images with MAR or high tube voltages was significantly lower than that of images without MAR or low tube voltages (p < 0.001). No significant difference was observed in AI between low-dose images with 120 kVp DLIR-H MAR and standard-dose images with 70 kVp ASIR-V MAR (p = 0.143). Only the 70 kVp 3 mSv protocol demonstrated statistically significant differences in SNR for artifact-impaired PNs (p = 0.041). The fpeak and favg values were similar across various scenarios, indicating that the MAR algorithm did not alter the image texture in artifact-free regions. The qualitative results of the extent of metal artifacts, the confidence in diagnosing artifact-impaired PNs, and the overall image quality were generally consistent with the quantitative results.ResultsQuantitatively, the deep learning image recognition (DLIR) algorithm or high tube voltages exhibited lower noise compared to the ASIR-V or low tube voltages (p < 0.001). AI of images with MAR or high tube voltages was significantly lower than that of images without MAR or low tube voltages (p < 0.001). No significant difference was observed in AI between low-dose images with 120 kVp DLIR-H MAR and standard-dose images with 70 kVp ASIR-V MAR (p = 0.143). Only the 70 kVp 3 mSv protocol demonstrated statistically significant differences in SNR for artifact-impaired PNs (p = 0.041). The fpeak and favg values were similar across various scenarios, indicating that the MAR algorithm did not alter the image texture in artifact-free regions. The qualitative results of the extent of metal artifacts, the confidence in diagnosing artifact-impaired PNs, and the overall image quality were generally consistent with the quantitative results.The MAR algorithm combined with DLIR-H can reduce metal artifacts and enhance the overall image quality, particularly at high kVp tube voltages.ConclusionThe MAR algorithm combined with DLIR-H can reduce metal artifacts and enhance the overall image quality, particularly at high kVp tube voltages.
Background Aiming to evaluate the effects of the smart metal artifact reduction (MAR) algorithm and combinations of various scanning parameters, including radiation dose levels, tube voltage, and reconstruction algorithms, on metal artifact reduction and overall image quality, to identify the optimal protocol for clinical application. Methods A phantom with a pacemaker was examined using standard dose (effective dose (ED): 3 mSv) and low dose (ED: 0.5 mSv), with three scan voltages (70, 100, and 120 kVp) selected for each dose. Raw data were reconstructed using 50% adaptive statistical iterative reconstruction-V (ASIR-V), ASIR-V with MAR, high-strength deep learning image reconstruction (DLIR-H), and DLIR-H with MAR. Quantitative analyses (artifact index (AI), noise, signal-to-noise ratio (SNR) of artifact-impaired pulmonary nodules (PNs), and noise power spectrum (NPS) of artifact-free regions) and qualitative evaluation were performed. Results Quantitatively, the deep learning image recognition (DLIR) algorithm or high tube voltages exhibited lower noise compared to the ASIR-V or low tube voltages (p<0.001). AI of images with MAR or high tube voltages was significantly lower than that of images without MAR or low tube voltages (p<0.001). No significant difference was observed in AI between low-dose images with 120 kVp DLIR-H MAR and standard-dose images with 70 kVp ASIR-V MAR (p=0.143). Only the 70 kVp 3 mSv protocol demonstrated statistically significant differences in SNR for artifact-impaired PNs (p=0.041). The f.sub.peak and f.sub.avg values were similar across various scenarios, indicating that the MAR algorithm did not alter the image texture in artifact-free regions. The qualitative results of the extent of metal artifacts, the confidence in diagnosing artifact-impaired PNs, and the overall image quality were generally consistent with the quantitative results. Conclusion The MAR algorithm combined with DLIR-H can reduce metal artifacts and enhance the overall image quality, particularly at high kVp tube voltages.
ArticleNumber e19516
Audience Academic
Author Zhou, Jian
Guo, Mengya
Zhou, Lili
Wang, Zonghuo
Peng, Kun
Zou, Huachun
Fan, Bing
Author_xml – sequence: 1
  givenname: Huachun
  surname: Zou
  fullname: Zou, Huachun
  organization: School of Medical and Information Engineering, Gannan Medical University, Ganzhou, China, Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
– sequence: 2
  givenname: Zonghuo
  surname: Wang
  fullname: Wang, Zonghuo
  organization: Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
– sequence: 3
  givenname: Mengya
  surname: Guo
  fullname: Guo, Mengya
  organization: CT Imaging Research Center, GE Healthcare China, Beijing, China
– sequence: 4
  givenname: Kun
  surname: Peng
  fullname: Peng, Kun
  organization: Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
– sequence: 5
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  organization: Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
– sequence: 6
  givenname: Lili
  surname: Zhou
  fullname: Zhou, Lili
  organization: School of Medical and Information Engineering, Gannan Medical University, Ganzhou, China
– sequence: 7
  givenname: Bing
  surname: Fan
  fullname: Fan, Bing
  organization: Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40487060$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9v1DAQxSMEoqX0xB1ZQkJIsMV2HCfhgqqKP5WKuJRzNLEnu145duo4VMsH4HPjdJdqFyFwDo4mv3kZvTdPsofOO8yyZ4yelSUr3w6IYX3G6oLJB9kxZ7JcVHlRP9x7P8pOx3FN06m4pFX-ODsSVFQllfQ4-_kFI1gCIZoOVCQB9aSi8Y4o37fGoSa3Jq6IRhyIRQjOuCUxPSwxscq7MYZdA9ilD4ntSecDubjeUTcTWBM3xA_R9OYHzOw7AmRYgYu-J2Oc9OZp9qgDO-Lp7j7Jvn38cH3xeXH19dPlxfnVQhWSx0XVqYpJ3QrOCqZrBAVCaCm7SiOwolRadrqTSLHgUHBKoazz5FMtJLS1YPlJdrnV1R7WzRDSiGHTeDDNXcGHZTNboSw2WmDRdqoFVLkoctGyilctZxUtGa9ZnbTebLUmN8DmFqy9F2S0mdNp7tJp7tJJ-PstPkxtj1qhiwHswQyHX5xZNUv_vWGciYJWZVJ4tVMI_mbCMTa9GRVaCw79NDZ5ijwNxvmMvvgDXfspuGRtovKa05Ln_6UY56Leo5aQbDGu82k8Nf-6Oa8El7IW-ezs2V-o9GjsTdoT7EyqHzS83GtYIdi4Gr2d5v0YD8Hn-8bdO_Z7iRPweguo4McxYPfPHH4BVGgDcg
Cites_doi 10.7326/M19-1895
10.1016/j.ejrad.2023.111276
10.1097/MD.0000000000020579
10.1148/radiol.210551
10.21037/qims-23-1659
10.1177/08465371231169672
10.21037/qims-21-815
10.1186/s13244-023-01533-3
10.1016/j.acra.2024.11.042
10.1007/s00261-022-03682-3
10.1007/s00330-020-06932-4
10.1177/02841851241258845
10.1007/s00234-017-1871-6
10.1097/RLI.0000000000000497
10.1371/journal.pone.0143584
10.1016/j.radonc.2017.09.029
10.3390/cancers14205016
10.1186/s40644-024-00703-w
10.1177/0284185116684675
10.1186/s12880-022-00889-0
10.1007/s00330-018-5928-7
10.1186/s13244-022-01308-2
10.1007/s00330-023-10171-8
10.3233/XST-210953
10.1016/j.ejro.2020.100255
10.1007/s10278-024-01016-x
10.1016/j.brachy.2022.07.003
10.3348/kjr.2020.0548
10.3390/jcm14041124
10.1148/radiol.211838
10.1007/s00330-021-07746-8
10.1016/j.ejrad.2020.109254
10.1016/j.acra.2023.04.007
10.2214/AJR.18.19757
10.2214/AJR.20.23397
10.1097/MD.0000000000019268
ContentType Journal Article
Copyright 2025 Zou et al.
COPYRIGHT 2025 PeerJ. Ltd.
2025 Zou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Zou et al. 2025 Zou et al.
Copyright_xml – notice: 2025 Zou et al.
– notice: COPYRIGHT 2025 PeerJ. Ltd.
– notice: 2025 Zou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Zou et al. 2025 Zou et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
88I
8FH
BBNVY
BHPHI
LK8
M2P
M7P
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.7717/peerj.19516
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Science Database (Alumni Edition)
ProQuest Natural Science Journals
Biological Science Collection
Natural Science Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
ProQuest Natural Science Collection
ProQuest Central China
Natural Science Collection
Biological Science Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Science Journals
Biological Science Database
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database

MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 2167-8359
2376-5992
ExternalDocumentID oai_doaj_org_article_d4e5bfcbaec34534b1828b2180712919
10.7717/peerj.19516
PMC12145087
A842669431
40487060
10_7717_peerj_19516
Genre Journal Article
GeographicLocations South Dakota
United States--US
GeographicLocations_xml – name: South Dakota
– name: United States--US
GroupedDBID 53G
5VS
88I
8FE
8FH
AAFWJ
AAYXX
ABUWG
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
ECGQY
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IEA
IHR
IHW
ITC
KQ8
LK8
M2P
M7P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RPM
W2D
YAO
CGR
CUY
CVF
ECM
EIF
H13
M48
NPM
PMFND
3V.
7XB
8AL
8FG
8FK
ARAPS
ARCSS
BGLVJ
FRP
ICD
ISR
JQ2
K6V
K7-
M0N
P62
PKEHL
PQEST
PQUKI
Q9U
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c562t-8fc816db42151d9eaca44d66f8dea157cd6fdf6e0e52a5200a793771946ab9413
IEDL.DBID BENPR
ISSN 2167-8359
IngestDate Fri Oct 03 12:54:05 EDT 2025
Sun Oct 26 04:10:17 EDT 2025
Tue Sep 30 17:03:10 EDT 2025
Fri Sep 05 15:55:41 EDT 2025
Tue Sep 30 12:10:45 EDT 2025
Sat Aug 23 13:14:39 EDT 2025
Mon Oct 20 22:40:52 EDT 2025
Mon Oct 20 16:54:05 EDT 2025
Tue Jun 10 02:10:28 EDT 2025
Thu Jun 12 01:53:19 EDT 2025
Wed Oct 01 06:01:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Image quality
CT
Diagnostic performance
Deep learning image reconstruction
Metal artifact reduction
Language English
License https://creativecommons.org/licenses/by/4.0
2025 Zou et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c562t-8fc816db42151d9eaca44d66f8dea157cd6fdf6e0e52a5200a793771946ab9413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3239207237?pq-origsite=%requestingapplication%&accountid=15518
PMID 40487060
PQID 3239122497
PQPubID 2045934
ParticipantIDs doaj_primary_oai_doaj_org_article_d4e5bfcbaec34534b1828b2180712919
unpaywall_primary_10_7717_peerj_19516
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12145087
proquest_miscellaneous_3216919227
proquest_journals_3239207237
proquest_journals_3239122497
gale_infotracmisc_A842669431
gale_infotracacademiconefile_A842669431
gale_healthsolutions_A842669431
pubmed_primary_40487060
crossref_primary_10_7717_peerj_19516
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-04
PublicationDateYYYYMMDD 2025-06-04
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ (San Francisco, CA)
PublicationTitleAlternate PeerJ
PublicationYear 2025
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Bongers (10.7717/peerj.19516/ref-2) 2015; 10
Long (10.7717/peerj.19516/ref-23) 2019; 212
Wong (10.7717/peerj.19516/ref-29) 2019; 171
Sun (10.7717/peerj.19516/ref-26) 2024; 14
Bayerl (10.7717/peerj.19516/ref-1) 2023; 30
Kanani (10.7717/peerj.19516/ref-15) 2022; 21
Caruso (10.7717/peerj.19516/ref-3) 2024; 34
Jensen (10.7717/peerj.19516/ref-11) 2022; 303
Laukamp (10.7717/peerj.19516/ref-20) 2019; 29
Chae (10.7717/peerj.19516/ref-4) 2020; 30
Zhang (10.7717/peerj.19516/ref-33) 2020; 99
D’Hondt (10.7717/peerj.19516/ref-6) 2024; 24
Kikuchi (10.7717/peerj.19516/ref-17) 2020; 99
Dunet (10.7717/peerj.19516/ref-7) 2017; 59
Khodarahmi (10.7717/peerj.19516/ref-16) 2018; 53
Kim (10.7717/peerj.19516/ref-18) 2020; 132
Li (10.7717/peerj.19516/ref-22) 2024; 65
Zhao (10.7717/peerj.19516/ref-35) 2022; 14
Wichtmann (10.7717/peerj.19516/ref-28) 2023; 48
Lehti (10.7717/peerj.19516/ref-21) 2020; 7
Szczykutowicz (10.7717/peerj.19516/ref-27) 2021; 216
Selles (10.7717/peerj.19516/ref-25) 2024; 170
Jiang (10.7717/peerj.19516/ref-12) 2022; 303
Yao (10.7717/peerj.19516/ref-31) 2022; 12
Fukugawa (10.7717/peerj.19516/ref-10) 2022; 22
Kovacs (10.7717/peerj.19516/ref-19) 2018; 126
Yang (10.7717/peerj.19516/ref-30) 2021; 29
Zhao (10.7717/peerj.19516/ref-34) 2023; 14
Enache (10.7717/peerj.19516/ref-8) 2025; 14
Jiang (10.7717/peerj.19516/ref-13) 2022; 13
Fujita (10.7717/peerj.19516/ref-9) 2023; 74
Yasaka (10.7717/peerj.19516/ref-32) 2017; 58
Jiang (10.7717/peerj.19516/ref-14) 2024; 37
Pennig (10.7717/peerj.19516/ref-24) 2021; 31
Choo (10.7717/peerj.19516/ref-5) 2021; 22
Zhu (10.7717/peerj.19516/ref-36) 2024; 32
References_xml – volume: 171
  start-page: 368
  issue: 5
  year: 2019
  ident: 10.7717/peerj.19516/ref-29
  article-title: Cardiac device implantation complications: a gap in the quality of care?
  publication-title: Annals of Internal Medicine
  doi: 10.7326/M19-1895
– volume: 170
  start-page: 111276
  year: 2024
  ident: 10.7717/peerj.19516/ref-25
  article-title: Advances in metal artifact reduction in CT images: a review of traditional and novel metal artifact reduction techniques
  publication-title: European Journal of Radiology
  doi: 10.1016/j.ejrad.2023.111276
– volume: 99
  start-page: e20579
  issue: 24
  year: 2020
  ident: 10.7717/peerj.19516/ref-17
  article-title: The effect of the reconstruction algorithm for the pulmonary nodule detection under the metal artifact caused by a pacemaker
  publication-title: Medicine
  doi: 10.1097/MD.0000000000020579
– volume: 303
  start-page: 202
  issue: 1
  year: 2022
  ident: 10.7717/peerj.19516/ref-12
  article-title: Deep learning reconstruction shows better lung nodule detection for ultra-low-dose chest CT
  publication-title: Radiology
  doi: 10.1148/radiol.210551
– volume: 14
  start-page: 4648
  issue: 7
  year: 2024
  ident: 10.7717/peerj.19516/ref-26
  article-title: Application of metal artifact reduction algorithm in reducing metal artifacts in post-surgery pediatric low radiation dose spine computed tomography (CT) images
  publication-title: Quantitative Imaging in Medicine and Surgery
  doi: 10.21037/qims-23-1659
– volume: 74
  start-page: 688
  issue: 4
  year: 2023
  ident: 10.7717/peerj.19516/ref-9
  article-title: Assessing the effects of deep learning reconstruction on abdominal CT without arm elevation
  publication-title: Canadian Association of Radiologists Journal
  doi: 10.1177/08465371231169672
– volume: 12
  start-page: 2777
  issue: 5
  year: 2022
  ident: 10.7717/peerj.19516/ref-31
  article-title: The influence of a deep learning image reconstruction algorithm on the image quality and auto-analysis of pulmonary nodules at ultra-low dose chest CT: a phantom study
  publication-title: Quantitative Imaging in Medicine and Surgery
  doi: 10.21037/qims-21-815
– volume: 14
  start-page: 181
  issue: 1
  year: 2023
  ident: 10.7717/peerj.19516/ref-34
  article-title: Optimal combination periprosthetic vasculature visualization and metal artifact reduction by spectral computed tomography using virtual monoenergetic images in total hip arthroplasty
  publication-title: Insights into Imaging
  doi: 10.1186/s13244-023-01533-3
– volume: 32
  start-page: 2309
  issue: 4
  year: 2024
  ident: 10.7717/peerj.19516/ref-36
  article-title: Feasibility of sub-millisievert low-dose computed tomography with deep learning image reconstruction in evaluating pulmonary subsolid nodules: a prospective intra-individual comparison study
  publication-title: Academic Radiology
  doi: 10.1016/j.acra.2024.11.042
– volume: 48
  start-page: 424
  issue: 1
  year: 2023
  ident: 10.7717/peerj.19516/ref-28
  article-title: Metal implants on abdominal CT: does split-filter dual-energy CT provide additional value over iterative metal artifact reduction?
  publication-title: Abdominal Radiology
  doi: 10.1007/s00261-022-03682-3
– volume: 30
  start-page: 5298
  issue: 10
  year: 2020
  ident: 10.7717/peerj.19516/ref-4
  article-title: Combined use of virtual monochromatic images and projection-based metal artifact reduction methods in evaluation of total knee arthroplasty
  publication-title: European Radiology
  doi: 10.1007/s00330-020-06932-4
– volume: 65
  start-page: 907
  issue: 8
  year: 2024
  ident: 10.7717/peerj.19516/ref-22
  article-title: Artificial intelligence iterative reconstruction in abdominal CT of patients with irregular arm positioning: a case-by-case evaluation
  publication-title: Acta Radiologica
  doi: 10.1177/02841851241258845
– volume: 59
  start-page: 845
  issue: 9
  year: 2017
  ident: 10.7717/peerj.19516/ref-7
  article-title: Impact of metal artifact reduction software on image quality of gemstone spectral imaging dual-energy cerebral CT angiography after intracranial aneurysm clipping
  publication-title: Neuroradiology
  doi: 10.1007/s00234-017-1871-6
– volume: 53
  start-page: 728
  issue: 12
  year: 2018
  ident: 10.7717/peerj.19516/ref-16
  article-title: Metal artifact reduction computed tomography of arthroplasty implants: effects of combined modeled iterative reconstruction and dual-energy virtual monoenergetic extrapolation at higher photon energies
  publication-title: Investigative Radiology
  doi: 10.1097/RLI.0000000000000497
– volume: 10
  start-page: e0143584
  issue: 11
  year: 2015
  ident: 10.7717/peerj.19516/ref-2
  article-title: Comparison and combination of dual-energy- and iterative-based metal artefact reduction on hip prosthesis and dental implants
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0143584
– volume: 126
  start-page: 479
  issue: 3
  year: 2018
  ident: 10.7717/peerj.19516/ref-19
  article-title: Metal artefact reduction for accurate tumour delineation in radiotherapy
  publication-title: Radiotherapy and Oncology
  doi: 10.1016/j.radonc.2017.09.029
– volume: 14
  start-page: 5016
  issue: 20
  year: 2022
  ident: 10.7717/peerj.19516/ref-35
  article-title: Measurement accuracy and repeatability of RECIST-defined pulmonary lesions and lymph nodes in ultra-low-dose CT based on deep learning image reconstruction
  publication-title: Cancers
  doi: 10.3390/cancers14205016
– volume: 24
  start-page: 60
  issue: 1
  year: 2024
  ident: 10.7717/peerj.19516/ref-6
  article-title: Impact of deep learning image reconstruction on volumetric accuracy and image quality of pulmonary nodules with different morphologies in low-dose CT
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-024-00703-w
– volume: 58
  start-page: 1085
  issue: 9
  year: 2017
  ident: 10.7717/peerj.19516/ref-32
  article-title: Full and hybrid iterative reconstruction to reduce artifacts in abdominal CT for patients scanned without arm elevation
  publication-title: Acta Radiologica
  doi: 10.1177/0284185116684675
– volume: 22
  start-page: 161
  issue: 1
  year: 2022
  ident: 10.7717/peerj.19516/ref-10
  article-title: Impact of metal artifact reduction algorithm on gross tumor volume delineation in tonsillar cancer: reducing the interobserver variation
  publication-title: BMC Medical Imaging
  doi: 10.1186/s12880-022-00889-0
– volume: 29
  start-page: 4228
  issue: 8
  year: 2019
  ident: 10.7717/peerj.19516/ref-20
  article-title: Metal artifacts in patients with large dental implants and bridges: combination of metal artifact reduction algorithms and virtual monoenergetic images provides an approach to handle even strongest artifacts
  publication-title: European Radiology
  doi: 10.1007/s00330-018-5928-7
– volume: 13
  start-page: 182
  issue: 1
  year: 2022
  ident: 10.7717/peerj.19516/ref-13
  article-title: Deep learning image reconstruction algorithm for carotid dual-energy computed tomography angiography: evaluation of image quality and diagnostic performance
  publication-title: Insights Imaging
  doi: 10.1186/s13244-022-01308-2
– volume: 34
  start-page: 2384
  issue: 4
  year: 2024
  ident: 10.7717/peerj.19516/ref-3
  article-title: Low-dose liver CT: image quality and diagnostic accuracy of deep learning image reconstruction algorithm
  publication-title: European Radiology
  doi: 10.1007/s00330-023-10171-8
– volume: 29
  start-page: 1009
  issue: 6
  year: 2021
  ident: 10.7717/peerj.19516/ref-30
  article-title: Impact of novel deep learning image reconstruction algorithm on diagnosis of contrast-enhanced liver computed tomography imaging: comparing to adaptive statistical iterative reconstruction algorithm
  publication-title: Journal of X-ray Science and Technology
  doi: 10.3233/XST-210953
– volume: 7
  start-page: 100255
  year: 2020
  ident: 10.7717/peerj.19516/ref-21
  article-title: Iterative metal artifact reduction in aortic CTA after Onyx®-embolization
  publication-title: European Journal of Radiology Open
  doi: 10.1016/j.ejro.2020.100255
– volume: 37
  start-page: 1960
  issue: 4
  year: 2024
  ident: 10.7717/peerj.19516/ref-14
  article-title: Deep learning imaging reconstruction algorithm for carotid dual energy CT angiography: opportunistic evaluation of cervical intervertebral discs-a preliminary study
  publication-title: Journal of Imaging Informatics in Medicine
  doi: 10.1007/s10278-024-01016-x
– volume: 21
  start-page: 933
  issue: 6
  year: 2022
  ident: 10.7717/peerj.19516/ref-15
  article-title: Metal artifact reduction in cervix brachytherapy with titanium applicators using dual-energy CT through virtual monoenergetic images and an iterative algorithm: a phantom study
  publication-title: Brachytherapy
  doi: 10.1016/j.brachy.2022.07.003
– volume: 22
  start-page: 1341
  issue: 8
  year: 2021
  ident: 10.7717/peerj.19516/ref-5
  article-title: Comparison of the quality of various polychromatic and monochromatic dual-energy CT images with or without a metal artifact reduction algorithm to evaluate total knee arthroplasty
  publication-title: Korean Journal of Radiology
  doi: 10.3348/kjr.2020.0548
– volume: 14
  start-page: 1124
  issue: 4
  year: 2025
  ident: 10.7717/peerj.19516/ref-8
  article-title: Surgical stabilization of the spine: a clinical review of spinal fractures, spondylolisthesis, and instrumentation methods
  publication-title: Journal of Clinical Medicine
  doi: 10.3390/jcm14041124
– volume: 303
  start-page: 90
  issue: 1
  year: 2022
  ident: 10.7717/peerj.19516/ref-11
  article-title: Reduced-dose deep learning reconstruction for abdominal CT of liver metastases
  publication-title: Radiology
  doi: 10.1148/radiol.211838
– volume: 31
  start-page: 7151
  issue: 9
  year: 2021
  ident: 10.7717/peerj.19516/ref-24
  article-title: Reduction of CT artifacts from cardiac implantable electronic devices using a combination of virtual monoenergetic images and post-processing algorithms
  publication-title: European Radiology
  doi: 10.1007/s00330-021-07746-8
– volume: 132
  start-page: 109254
  year: 2020
  ident: 10.7717/peerj.19516/ref-18
  article-title: The optimal combination of monochromatic and metal artifact reconstruction dual-energy CT to evaluate total knee replacement arthroplasty
  publication-title: European Journal of Radiology
  doi: 10.1016/j.ejrad.2020.109254
– volume: 30
  start-page: 2962
  issue: 12
  year: 2023
  ident: 10.7717/peerj.19516/ref-1
  article-title: Iterative metal artifact reduction in head and neck CT facilitates tumor visualization of oral and oropharyngeal cancer obscured by artifacts from dental hardware
  publication-title: Academic Radiology
  doi: 10.1016/j.acra.2023.04.007
– volume: 212
  start-page: 395
  issue: 2
  year: 2019
  ident: 10.7717/peerj.19516/ref-23
  article-title: Clinical assessment of metal artifact reduction methods in dual-energy CT examinations of instrumented spines
  publication-title: AJR American Journal of Roentgenology
  doi: 10.2214/AJR.18.19757
– volume: 216
  start-page: 1668
  issue: 6
  year: 2021
  ident: 10.7717/peerj.19516/ref-27
  article-title: Protocol optimization considerations for implementing deep learning CT reconstruction
  publication-title: American Journal of Roentgenology
  doi: 10.2214/AJR.20.23397
– volume: 99
  start-page: e19268
  issue: 11
  year: 2020
  ident: 10.7717/peerj.19516/ref-33
  article-title: Metal artifact reduction of orthopedics metal artifact reduction algorithm in total hip and knee arthroplasty
  publication-title: Medicine
  doi: 10.1097/MD.0000000000019268
SSID ssj0000826083
ssj0001511119
Score 2.3548813
Snippet Aiming to evaluate the effects of the smart metal artifact reduction (MAR) algorithm and combinations of various scanning parameters, including radiation dose...
Background Aiming to evaluate the effects of the smart metal artifact reduction (MAR) algorithm and combinations of various scanning parameters, including...
A phantom with a pacemaker was examined using standard dose (effective dose (ED): 3 mSv) and low dose (ED: 0.5 mSv), with three scan voltages (70, 100, and 120...
BackgroundAiming to evaluate the effects of the smart metal artifact reduction (MAR) algorithm and combinations of various scanning parameters, including...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e19516
SubjectTerms Algorithms
Artificial intelligence
Cardiology
Computational Science
Computed tomography
CT imaging
Data Mining and Machine Learning
Data Science
Deep Learning
Deep learning image reconstruction
Diagnostic performance
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image quality
Image reconstruction
Lung nodules
Machine learning
Medical imaging
Medical research
Metal artifact reduction
Metals
Nodules
Optimization
Pacemakers
Phantoms, Imaging
Quantitative analysis
Radiation
Radiation Dosage
Radiographic Image Interpretation, Computer-Assisted - methods
Radiology and Medical Imaging
Signal to noise ratio
Software
Statistical analysis
Tomography, X-Ray Computed - methods
Transplants & implants
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD8AFlfdCC0Yq4hQ1cRzH5tZWVBXScmql3iw_Jm2l3Wy0tKr6B_jdzDhptAEBF67xJEo8r28cz2fG9nLjovAl-rfKYyZjjnFQFpBVEMvgg3Iq0NLA_Js6OZNfz6vzjaO-aE9YTw_cT9x-lFD5JngHoZRVKT0CYu0xMWFuFCYRfopcm41iKsVgRM0ILvqGvBpLlv0OYI1xAQGFmqSgxNT_ezzeSEi_bpZ8dNN27u7WLRYbmeh4mz0ZICQ_6F_9KXsA7TP2cD78JH_OfswBETWnT6O2Bb4mdlaaf47WhYUwRE6rrzwCdHw4NeKCXy0xsvBUH4-cstwtLlZrlF1yxLb86HSQ6jsx7_gK481yaOT8zB3vLulI4iVPnLUv2Nnxl9Ojk2w4biELCIKuM90EXajoJaGAaDAiOymjUo2O4IqqDlE1sVGQQyUcsTU54tarCyOV8waT4Uu21a5aeM14AXXUtfR10QRZNsrhDbGAqEPuZV0WM7Z3rwHb9awaFqsRUpRNirJJUTN2SNoZRYgKO11AA7GDgdh_GciMvSfd2r6vdHRoe6AJnBhJb_MpSZBLo4qDGzoT8FuIHGsiuTORRFcM0-F7-7FDKPhuS1Ea-n1p6j8Oi7wWJQ5_GIfpwbT7rYXVDckQpZERAmVe9dY4zonEEEwMSDOmJ3Y6mbTpSHt1mXjEC2KpzzU-9ONo0n9Tx5v_oY637LGgI5RpIUvusC20aNhFXHft3yUX_gn5dE4s
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJ8Fe-GYUBhipiKeWOHGcmLcybZqQOvGwSuMp8le6QZtGpRUafwB_N3eOGy1DfLzmzlbiO59_dny_I2QQSWVjncD8FpEdchtBHOTMDVNnE6ONUMLg0cDkVJxM-cfz9HyHDLa5MLVzqy8-Qm8vhr1jAALEqLblLbIrUkDcPbI7Pf00_ox145C2G0CEbFLvMtichC58q85i4zn5f4-815aem9ci72yqWl19V_P5tTXn-B45at_WXzX5Otqs9cj8uEHk-K_PuU_uBtBJx43wAdlx1UNyexJ-qz8iPycOMDjFxpjoQFfI54oWo9AnbJ2dpXheS61zNQ11Jmb0cgGxiPoddctCS9V8tlyB7oICGqaHZ0Gryd28okuIUIuQ-vmeKlpfYBHjBfUst4_J9Pjo7PBkGAo0DA3ApvUwL03OhNUccYOVEMMV51aIMrdOsTQzVpS2FC5yaayQ30khG1_GJBdKS1g-n5BetazcU0KZy2yecZ2x0vCkFAoaWOZsbiLNs4T1yWBryaJueDgK2L-gwQs_yIUf1z75gFZuVZA82z9YrmZFMEFhuUt1abRyJuFpwjXssXINWAfgViyZ7JNX6CNFk4nahoBinCOckRzf5q3XwCAArmJUyGWAb0E6rY7mQUcTJq_pird-WITg8a1I4kTiD0-Z_VEcR1mcgPh1K8aO8b5c5ZYb1EESJBnHoLPfeHU7JhyCNnIm9Une8ffOoHUl1eWFZx5nyGsf5dDpm3Zq_M0cz_5T7znZi7GuMp5u8QPSA6d1LwDsrfXLMNd_AdSxWKM
  priority: 102
  providerName: Unpaywall
Title Metal artifact reduction combined with deep learning image reconstruction algorithm for CT image quality optimization: a phantom study
URI https://www.ncbi.nlm.nih.gov/pubmed/40487060
https://www.proquest.com/docview/3239122497
https://www.proquest.com/docview/3239207237
https://www.proquest.com/docview/3216919227
https://pubmed.ncbi.nlm.nih.gov/PMC12145087
https://peerj.com/articles/19516.pdf
https://doaj.org/article/d4e5bfcbaec34534b1828b2180712919
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2167-8359
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: DIK
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: GX1
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2167-8359
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2167-8359
  databaseCode: RPM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: RPM
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2167-8359
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: BENPR
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2167-8359
  databaseCode: 8FG
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdtCttexj67bF2mQceeTC1blu3BGGlpWgYJZTTQPRl9OSkkjpeljP4D-7t3Jyum3lhf_GCdja371En3O0IOw1yaSMWg3yI0ATch2EHObJBYE2ulhRQaUwPjiTif8q9XydUOmWxrYfBY5dYmOkNtVhpz5EdxBJ48TKM4_VL_CLBrFO6ubltoSN9awXx2EGO7ZC9CZKwe2Ts-nVx8a7Mu4PAEBB1NoV4KS5mj2to12AsINETHNTkE_3_t9B1H9fchyoc3VS1vf8nF4o6HGj0hj31oSYeNLDwlO7Z6Rh6M_eb5c_J7bCHSpigrWM5A14jainyhMAOwQLaGYlaWGmtr6rtJzOj1EiwOdevmFmuWysUM5mYzX1KIeenJpadqKjRv6Qrs0NIXeH6iktZzbFW8pA7L9gWZjk4vT84D34Yh0BAcbYKs1BkTRnGMDkwOllpyboQoM2MlS1JtRGlKYUObRBJRnCRi7qUs50KqHJzkS9KrVpV9RSizqclSrlJWah6XQsIDhlmT6VDxNGZ9crjlQFE3aBsFrFKQUYVjVOEY1SfHyJ2WBCGy3Y3VelZ4jSsMt4kqtZJWxzyJuYKVVKYgooGgKspZ3ifvkLdFU2_aKnoxzDBoyTl-zUdHgaoOLNbSVyzAvyBoVofyoEMJKqq7w1v5KbyJ-FmgQOO2Zp7-d7iR9z553w7ji_FUXGVXN0iDUEd5FAHNfiON7ZxwMM2IjNQnWUdOO5PWHamu5w5fnCF6fZjBSz-0In0fO17f__1vyKMImyZj6oofkB7Iqn0LkdxGDchuNjobeCUduHwIXM-uGNybTi6G3_8AHBlQ-Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bTttAEF1RkEpfqt4bSstWAvXJwpf12q6EKqCgUEhUVUHibbs3J0iJY0IQyg_0s_ptnbE3Fm5V3njNji1nZ_bMzO7OGUK2_UyaUEWwvrlvPGZ8wEEWWC-2JtJKc8k1bg30-rx7zr5dxBcr5PeyFgavVS4xsQJqM9W4R74bheDJ_SSMki_llYddo_B0ddlCQ7rWCmavohhzhR2ndnELKdz13slX0PdOGB4fDQ67nusy4Gnw_XMvzXUacKMYOj-TARBJxgzneWqsDOJEG56bnFvfxqFEkiKJlHIJJP9cqgx8ALz3EVljEcsg-Vs7OOp__9Hs8oCD5RDk1IWB8FCyW1o7A3yCwIa3XGHVMeBfv3DHMf59aXP9pijl4laOx3c84vEz8tSFsnS_tr3nZMUWL8jjnjusf0l-9SxE9hRtE8sn6AxZYtEOKMw4JOTWUNwFpsbakrruFUN6OQGEo1We3nDbUjkegi7mowmFGJseDpxUXRG6oFPAvYkrKP1MJS1H2Bp5Qivu3Ffk_EEU8pqsFtPCviU0sIlJE6aSINcsyrmEB0xgTap9xZIo6JDtpQZEWbN7CMiKUFGiUpSoFNUhB6idRgQpuasfprOhcCtcGGZjlWslrY5YHDEFmVuqIIKCIC7MgqxDtlC3oq5vbYBF7KcYJGUMv-ZTJYHQAirW0lVIwH9Bkq6W5GZLEiBBt4eX9iMcJF0LXEB4jJol_x2u11eHfGyG8cV4C6-w0xuUQWqlLAxB5k1tjc2cMHAFyMTUIWnLTluT1h4pLkcVn3mAbPl-Ci_daUz6PnVs3P_9W2S9O-idibOT_uk78iTEhs24bcY2ySrYrX0PUeRcfXBLlZKfD40OfwCtVYmn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bTttAEF1RkGhfqt6blpatBOqTFV_Wa7sSqrhFUJoIVSDxtuzNCVLiuCEI5Qf6cf2qztgbC7cqb7x6xyt7Z_bM7GXOELLlZ9KEKoL5zX3jMeMDDrLAerE1kVaaS65xa6A_4Efn7NtFfLFCfi9zYfBa5RITK6A2U4175N0oBE_uJ2GUdHN3LeL0oPe1_OlhBSk8aV2W05CuzILZqejGXJLHiV3cwnLueuf4AHS_HYa9w7P9I89VHPA0xAFzL811GnCjGDpCkwEoScYM53lqrAziRBuem5xb38ahRMIiifRySZAxLlUG_gD6fUTW8PALQGJt73Bw-qPZ8QFnyyHgqZME4aWkW1o7A6wCYd5yi1X1gH99xB0n-fcFzsc3RSkXt3I8vuMde8_IUxfW0t3aDp-TFVu8IOt9d3D_kvzqW4jyKdopplLQGTLGok1QGH1YnFtDcUeYGmtL6ipZDOnVBNCOVmv2hueWyvEQdDEfTSjE23T_zEnV2aELOgUMnLjk0i9U0nKEZZIntOLRfUXOH0Qhr8lqMS3sW0IDm5g0YSoJcs2inEt4wQTWpNpXLImCDtlaakCUNdOHgBUSKkpUihKVojpkD7XTiCA9d_VgOhsKN9uFYTZWuVbS6ojFEVOwiksVRFMQ0IVZkHXIJupW1LmuDciI3RQDpozh13yuJBBmQMVaumwJ-Bck7GpJbrQkAR50u3lpP8LB07XAyYRHqlny3-Z6rnXIp6YZO8YbeYWd3qAM0ixlYQgyb2prbMaEgVtAVqYOSVt22hq0dktxNaq4zQNkzvdT6HS7Men71PHu_u_fJOuAEuL78eDkPXkSYu1m3EFjG2QVzNZ-gIByrj66mUrJ5UODwx_SpI3W
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJ8Fe-GYUBhipiKeWOHGcmLcybZqQOvGwSuMp8le6QZtGpRUafwB_N3eOGy1DfLzmzlbiO59_dny_I2QQSWVjncD8FpEdchtBHOTMDVNnE6ONUMLg0cDkVJxM-cfz9HyHDLa5MLVzqy8-Qm8vhr1jAALEqLblLbIrUkDcPbI7Pf00_ox145C2G0CEbFLvMtichC58q85i4zn5f4-815aem9ci72yqWl19V_P5tTXn-B45at_WXzX5Otqs9cj8uEHk-K_PuU_uBtBJx43wAdlx1UNyexJ-qz8iPycOMDjFxpjoQFfI54oWo9AnbJ2dpXheS61zNQ11Jmb0cgGxiPoddctCS9V8tlyB7oICGqaHZ0Gryd28okuIUIuQ-vmeKlpfYBHjBfUst4_J9Pjo7PBkGAo0DA3ApvUwL03OhNUccYOVEMMV51aIMrdOsTQzVpS2FC5yaayQ30khG1_GJBdKS1g-n5BetazcU0KZy2yecZ2x0vCkFAoaWOZsbiLNs4T1yWBryaJueDgK2L-gwQs_yIUf1z75gFZuVZA82z9YrmZFMEFhuUt1abRyJuFpwjXssXINWAfgViyZ7JNX6CNFk4nahoBinCOckRzf5q3XwCAArmJUyGWAb0E6rY7mQUcTJq_pird-WITg8a1I4kTiD0-Z_VEcR1mcgPh1K8aO8b5c5ZYb1EESJBnHoLPfeHU7JhyCNnIm9Une8ffOoHUl1eWFZx5nyGsf5dDpm3Zq_M0cz_5T7znZi7GuMp5u8QPSA6d1LwDsrfXLMNd_AdSxWKM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+artifact+reduction+combined+with+deep+learning+image+reconstruction+algorithm+for+CT+image+quality+optimization%3A+a+phantom+study&rft.jtitle=PeerJ+%28San+Francisco%2C+CA%29&rft.au=Zou%2C+Huachun&rft.au=Wang%2C+Zonghuo&rft.au=Guo%2C+Mengya&rft.au=Peng%2C+Kun&rft.date=2025-06-04&rft.pub=PeerJ%2C+Inc&rft.eissn=2167-8359&rft_id=info:doi/10.7717%2Fpeerj.19516&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2167-8359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2167-8359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2167-8359&client=summon