Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling
Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a small set of high-fidelity observations. This is particularly effective when the low- and high-fidelity models exhibit strong correlations, a...
Saved in:
| Published in | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Vol. 473; no. 2198; p. 20160751 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
The Royal Society Publishing
01.02.2017
|
| Edition | Royal Society (Great Britain) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1364-5021 1471-2946 1471-2946 |
| DOI | 10.1098/rspa.2016.0751 |
Cover
| Abstract | Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a small set of high-fidelity observations. This is particularly effective when the low- and high-fidelity models exhibit strong correlations, and can lead to significant computational gains over approaches that solely rely on high-fidelity models. However, in many cases of practical interest, low-fidelity models can only be well correlated to their high-fidelity counterparts for a specific range of input parameters, and potentially return wrong trends and erroneous predictions if probed outside of their validity regime. Here we put forth a probabilistic framework based on Gaussian process regression and nonlinear autoregressive schemes that is capable of learning complex nonlinear and space-dependent cross-correlations between models of variable fidelity, and can effectively safeguard against low-fidelity models that provide wrong trends. This introduces a new class of multi-fidelity information fusion algorithms that provide a fundamental extension to the existing linear autoregressive methodologies, while still maintaining the same algorithmic complexity and overall computational cost. The performance of the proposed methods is tested in several benchmark problems involving both synthetic and real multi-fidelity datasets from computational fluid dynamics simulations. |
|---|---|
| AbstractList | Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a small set of high-fidelity observations. This is particularly effective when the low- and high-fidelity models exhibit strong correlations, and can lead to significant computational gains over approaches that solely rely on high-fidelity models. However, in many cases of practical interest, low-fidelity models can only be well correlated to their high-fidelity counterparts for a specific range of input parameters, and potentially return wrong trends and erroneous predictions if probed outside of their validity regime. Here we put forth a probabilistic framework based on Gaussian process regression and nonlinear autoregressive schemes that is capable of learning complex nonlinear and space-dependent cross-correlations between models of variable fidelity, and can effectively safeguard against low-fidelity models that provide wrong trends. This introduces a new class of multi-fidelity information fusion algorithms that provide a fundamental extension to the existing linear autoregressive methodologies, while still maintaining the same algorithmic complexity and overall computational cost. The performance of the proposed methods is tested in several benchmark problems involving both synthetic and real multi-fidelity datasets from computational fluid dynamics simulations. Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a small set of high-fidelity observations. This is particularly effective when the low- and high-fidelity models exhibit strong correlations, and can lead to significant computational gains over approaches that solely rely on high-fidelity models. However, in many cases of practical interest, low-fidelity models can only be well correlated to their high-fidelity counterparts for a specific range of input parameters, and potentially return wrong trends and erroneous predictions if probed outside of their validity regime. Here we put forth a probabilistic framework based on Gaussian process regression and nonlinear autoregressive schemes that is capable of learning complex nonlinear and space-dependent cross-correlations between models of variable fidelity, and can effectively safeguard against low-fidelity models that provide wrong trends. This introduces a new class of multi-fidelity information fusion algorithms that provide a fundamental extension to the existing linear autoregressive methodologies, while still maintaining the same algorithmic complexity and overall computational cost. The performance of the proposed methods is tested in several benchmark problems involving both synthetic and real multi-fidelity datasets from computational fluid dynamics simulations.Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a small set of high-fidelity observations. This is particularly effective when the low- and high-fidelity models exhibit strong correlations, and can lead to significant computational gains over approaches that solely rely on high-fidelity models. However, in many cases of practical interest, low-fidelity models can only be well correlated to their high-fidelity counterparts for a specific range of input parameters, and potentially return wrong trends and erroneous predictions if probed outside of their validity regime. Here we put forth a probabilistic framework based on Gaussian process regression and nonlinear autoregressive schemes that is capable of learning complex nonlinear and space-dependent cross-correlations between models of variable fidelity, and can effectively safeguard against low-fidelity models that provide wrong trends. This introduces a new class of multi-fidelity information fusion algorithms that provide a fundamental extension to the existing linear autoregressive methodologies, while still maintaining the same algorithmic complexity and overall computational cost. The performance of the proposed methods is tested in several benchmark problems involving both synthetic and real multi-fidelity datasets from computational fluid dynamics simulations. |
| Author | Raissi, M. Damianou, A. Perdikaris, P. Karniadakis, G. E. Lawrence, N. D. |
| AuthorAffiliation | 4 Department of Neuroscience , University of Sheffield , Sheffield S10 2HQ, UK 2 Division of Applied Mathematics , Brown University , Providence, RI 02912, USA 3 Amazon.com , Cambridge CB3 0RD, UK 1 Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge, MA 02139, USA |
| AuthorAffiliation_xml | – name: 2 Division of Applied Mathematics , Brown University , Providence, RI 02912, USA – name: 3 Amazon.com , Cambridge CB3 0RD, UK – name: 1 Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge, MA 02139, USA – name: 4 Department of Neuroscience , University of Sheffield , Sheffield S10 2HQ, UK |
| Author_xml | – sequence: 1 givenname: P. orcidid: 0000-0002-2816-3229 surname: Perdikaris fullname: Perdikaris, P. email: parisp@mit.edu organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 2 givenname: M. surname: Raissi fullname: Raissi, M. organization: Division of Applied Mathematics, Brown University, Providence, RI 02912, USA – sequence: 3 givenname: A. surname: Damianou fullname: Damianou, A. organization: Amazon.com, Cambridge CB3 0RD, UK – sequence: 4 givenname: N. D. surname: Lawrence fullname: Lawrence, N. D. organization: Amazon.com, Cambridge CB3 0RD, UK; Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK – sequence: 5 givenname: G. E. surname: Karniadakis fullname: Karniadakis, G. E. organization: Division of Applied Mathematics, Brown University, Providence, RI 02912, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28293137$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUU1v1DAUjFAR_YArRxSJC5ds_fyR2BekqiofUgWIwtnyJvbWJbEX2ykKvx6nKdCuVDj5SW9mPDPvsNhz3umieA5oBUjw4xC3aoUR1CvUMHhUHABtoMKC1nt5JjWtGMKwXxzGeIUQEow3T4p9zLEgQJqD4uKDd711WoXSOuPDoJL1rjRjnB_Vb3yw6XKIZd6VnUqq0sbY1mqXymHsk62M7XRv01QOPg9Za_O0eGxUH_Wz2_eo-Prm7Mvpu-r849v3pyfnVctqnCqMiGjqrukEWmOtGEdgkEGIKk2MYGvgtDXcCNUJJrQWUGMDLReYGrPuqCZHxfGiO7qtmn6ovpfbYAcVJglIzvXIuR451yPnejLj9cLYjutBd21OEdRflldW3t84eyk3_loyQnANOAu8uhUI_vuoY5KDjW2OrZz2Y5TAm4YzDIxm6Msd6JUfg8uFSBCcEg4C1Rn14q6jP1Z-XygD6AJog48xaCNbm26OlA3a_uGkqx3af6shCyH4KXv0-cRpumP5Ida3f7E-X3w6uaYNsThHlogTQIwgBPKn3S5SeSltjKOWN5D78ru__QKFyOq9 |
| CitedBy_id | crossref_primary_10_1007_s00158_023_03487_y crossref_primary_10_1016_j_inffus_2025_103045 crossref_primary_10_1016_j_cma_2024_116773 crossref_primary_10_1115_1_4063986 crossref_primary_10_1016_j_aei_2024_102999 crossref_primary_10_4271_2022_01_0790 crossref_primary_10_3233_ISP_230013 crossref_primary_10_1016_j_cma_2020_113533 crossref_primary_10_1109_ACCESS_2018_2882777 crossref_primary_10_1021_acs_jpca_0c05006 crossref_primary_10_1021_acs_iecr_4c04170 crossref_primary_10_1021_acs_jctc_4c00475 crossref_primary_10_1029_2019EA000954 crossref_primary_10_1109_ACCESS_2020_3010800 crossref_primary_10_1115_1_4055276 crossref_primary_10_1017_jfm_2018_872 crossref_primary_10_1016_j_metabol_2018_08_002 crossref_primary_10_1038_s41746_019_0193_y crossref_primary_10_1002_gamm_201900008 crossref_primary_10_1021_acs_langmuir_2c02399 crossref_primary_10_1146_annurev_chembioeng_092120_020803 crossref_primary_10_1016_j_cma_2024_117577 crossref_primary_10_1080_13647830_2021_1887524 crossref_primary_10_1016_j_cma_2019_112724 crossref_primary_10_1002_nme_7349 crossref_primary_10_1088_1361_6501_ad9858 crossref_primary_10_1093_mnras_stab3114 crossref_primary_10_1002_gamm_201900011 crossref_primary_10_1080_00401706_2024_2376173 crossref_primary_10_1007_s00158_024_03744_8 crossref_primary_10_1016_j_engappai_2024_109228 crossref_primary_10_1038_s41598_024_78394_3 crossref_primary_10_1115_1_4065890 crossref_primary_10_1007_s11081_023_09807_x crossref_primary_10_1021_acs_iecr_3c03931 crossref_primary_10_1016_j_cma_2020_113485 crossref_primary_10_1007_s00158_023_03633_6 crossref_primary_10_1002_nme_6268 crossref_primary_10_1016_j_jcp_2019_05_053 crossref_primary_10_1098_rspa_2019_0897 crossref_primary_10_1016_j_addma_2023_103398 crossref_primary_10_1098_rsif_2024_0194 crossref_primary_10_1016_j_probengmech_2023_103525 crossref_primary_10_1088_1402_4896_acaad5 crossref_primary_10_1088_2632_2153_ad718f crossref_primary_10_1016_j_strusafe_2022_102222 crossref_primary_10_1016_j_knosys_2022_109645 crossref_primary_10_1016_j_oceaneng_2023_116016 crossref_primary_10_1016_j_jcp_2022_111252 crossref_primary_10_1088_2632_2153_ad0286 crossref_primary_10_1016_j_ymssp_2022_109039 crossref_primary_10_1063_5_0158919 crossref_primary_10_1093_mnras_stad2901 crossref_primary_10_1103_PhysRevE_104_065303 crossref_primary_10_1039_D2LC00151A crossref_primary_10_1016_j_jcp_2017_01_060 crossref_primary_10_1063_5_0236980 crossref_primary_10_1016_j_apenergy_2021_117245 crossref_primary_10_1615_Int_J_UncertaintyQuantification_2023038376 crossref_primary_10_1016_j_jcp_2018_02_039 crossref_primary_10_1063_5_0076538 crossref_primary_10_1063_5_0099197 crossref_primary_10_1016_j_engappai_2017_10_008 crossref_primary_10_1016_j_ress_2025_110895 crossref_primary_10_1177_02783649211033317 crossref_primary_10_1016_j_jmapro_2024_07_085 crossref_primary_10_1007_s40192_018_0120_0 crossref_primary_10_1063_5_0096481 crossref_primary_10_1111_mice_13312 crossref_primary_10_1016_j_jcp_2019_108914 crossref_primary_10_1016_j_plrev_2018_06_012 crossref_primary_10_1016_j_jocs_2024_102511 crossref_primary_10_1109_TAP_2024_3384758 crossref_primary_10_1016_j_aei_2021_101430 crossref_primary_10_1016_j_ces_2021_117135 crossref_primary_10_1016_j_cma_2021_114212 crossref_primary_10_1103_PhysRevB_109_144523 crossref_primary_10_1109_TCAD_2022_3175241 crossref_primary_10_1007_s40430_023_04521_2 crossref_primary_10_1007_s40192_022_00276_1 crossref_primary_10_1063_5_0056019 crossref_primary_10_1103_PhysRevResearch_2_033107 crossref_primary_10_1016_j_compfluid_2025_106608 crossref_primary_10_1016_j_knosys_2022_108775 crossref_primary_10_1016_j_knosys_2024_111827 crossref_primary_10_1109_TPWRS_2023_3295795 crossref_primary_10_1093_mnras_stac2435 crossref_primary_10_1109_TAP_2022_3179597 crossref_primary_10_1007_s11740_020_00975_8 crossref_primary_10_1051_ps_2018011 crossref_primary_10_1007_s00158_022_03255_4 crossref_primary_10_1007_s10494_024_00629_0 crossref_primary_10_1021_acs_jcim_0c00699 crossref_primary_10_1029_2018WR022658 crossref_primary_10_1016_j_jocs_2021_101525 crossref_primary_10_1021_acs_jpcb_4c04456 crossref_primary_10_1115_1_4062332 crossref_primary_10_1146_annurev_fluid_120720_032612 crossref_primary_10_1098_rsif_2020_0802 crossref_primary_10_1063_5_0205780 crossref_primary_10_1007_s10543_025_01058_9 crossref_primary_10_1103_PhysRevFluids_4_124501 crossref_primary_10_1145_3582078 crossref_primary_10_1016_j_cma_2021_114147 crossref_primary_10_1109_JAS_2023_123537 crossref_primary_10_1109_TCSI_2023_3273593 crossref_primary_10_1137_20M1326404 crossref_primary_10_1098_rsfs_2018_0083 crossref_primary_10_1016_j_renene_2022_10_013 crossref_primary_10_1007_s00158_023_03518_8 crossref_primary_10_1007_s00366_024_02029_4 crossref_primary_10_1007_s00158_023_03728_0 crossref_primary_10_1016_j_cma_2025_117795 crossref_primary_10_1080_00401706_2020_1855253 crossref_primary_10_1093_jrsssc_qlaf003 crossref_primary_10_1109_TPAMI_2024_3355289 crossref_primary_10_1007_s00158_020_02802_1 crossref_primary_10_1016_j_actamat_2021_117008 crossref_primary_10_1615_JMachLearnModelComput_2024055786 crossref_primary_10_1080_24725854_2021_1931572 crossref_primary_10_1109_TEC_2020_2998142 crossref_primary_10_1186_s40323_023_00249_9 crossref_primary_10_1063_5_0105820 crossref_primary_10_1002_we_2851 crossref_primary_10_1007_s11081_024_09915_2 crossref_primary_10_1002_nme_7159 crossref_primary_10_1111_exsy_12809 crossref_primary_10_3934_mbe_2023799 crossref_primary_10_1016_j_knosys_2017_12_034 crossref_primary_10_1061_JGGEFK_GTENG_11819 crossref_primary_10_1080_00401706_2023_2281940 crossref_primary_10_1098_rsta_2020_0098 crossref_primary_10_1145_3611383 crossref_primary_10_1115_1_4064776 crossref_primary_10_1039_D1DD00047K crossref_primary_10_1002_nag_3656 crossref_primary_10_1016_j_commatsci_2020_110187 crossref_primary_10_1016_j_ress_2022_108693 crossref_primary_10_1016_j_mfglet_2023_08_099 crossref_primary_10_1016_j_cpletx_2019_100022 crossref_primary_10_1016_j_physd_2025_134572 crossref_primary_10_3390_app132413176 crossref_primary_10_1007_s12650_024_01003_y crossref_primary_10_1115_1_4064782 crossref_primary_10_1631_jzus_A2300340 crossref_primary_10_1051_jnwpu_20244220328 crossref_primary_10_1029_2018WR023615 crossref_primary_10_1115_1_4046697 crossref_primary_10_1016_j_jqsrt_2024_108958 crossref_primary_10_1615_Int_J_UncertaintyQuantification_2023044584 crossref_primary_10_1063_5_0087449 crossref_primary_10_1678_rheology_49_97 crossref_primary_10_1016_j_neucom_2024_127963 crossref_primary_10_1088_2632_2153_ad7ad5 crossref_primary_10_1016_j_jcp_2018_08_036 crossref_primary_10_1080_00401706_2021_2024453 crossref_primary_10_5194_hess_28_4903_2024 crossref_primary_10_1002_pamm_202000349 crossref_primary_10_1007_s00158_024_03887_8 crossref_primary_10_1063_5_0053349 crossref_primary_10_1080_00401706_2023_2238834 crossref_primary_10_1016_j_cma_2022_114799 crossref_primary_10_1109_JIOT_2022_3142242 crossref_primary_10_1109_MRA_2020_2977971 crossref_primary_10_1016_j_cma_2023_115946 crossref_primary_10_1063_5_0128661 crossref_primary_10_1177_13835416251328895 |
| Cites_doi | 10.1002/9780470770801 10.1007/BF01589116 10.1613/jair.295 10.1017/S0022112070001040 10.1615/Int.J.UncertaintyQuantification.2014006914 10.1017/jfm.2016.718 10.1162/neco.1992.4.4.590 10.1137/15M1055164 10.1093/biomet/87.1.1 10.1098/rsif.2015.1107 |
| ContentType | Journal Article |
| Copyright | 2017 The Author(s) Copyright The Royal Society Publishing Feb 2017 2017 The Author(s) 2017 |
| Copyright_xml | – notice: 2017 The Author(s) – notice: Copyright The Royal Society Publishing Feb 2017 – notice: 2017 The Author(s) 2017 |
| DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1098/rspa.2016.0751 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| DocumentTitleAlternate | Data-efficient multi-fidelity modeling |
| EISSN | 1471-2946 |
| Edition | Royal Society (Great Britain) |
| EndPage | 20160751 |
| ExternalDocumentID | 10.1098/rspa.2016.0751 PMC5332612 28293137 10_1098_rspa_2016_0751 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Defense Sciences Office, DARPA; ; grantid: N66001-15-2-4055 funderid: http://dx.doi.org/10.13039/100006502 – fundername: ; grantid: N66001-15-2-4055 |
| GroupedDBID | 18M 4.4 5VS AACGO AANCE ABBHK ABFAN ABPLY ABPTK ABTLG ABXXB ABYWD ACGFO ACIPV ACIWK ACMTB ACNCT ACQIA ACTMH ADBBV ADODI ADULT ADZLD AEUPB AEXZC AFVYC AFXKK ALMA_UNASSIGNED_HOLDINGS BTFSW DCCCD DNJUQ DOOOF DQDLB DSRWC DWIUU EBS ECEWR EFSUC EJD FRP HH5 HQ6 ICLEN JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JMS JPM JSG JSODD JST K-O KQ8 MRS MV1 NSAHA OK1 OP1 RHF RNS RRY SA0 TR2 V1E W8F XSW YF5 ~02 AAWIL AAYXX ABXSQ ACHIC ACRPL ADNMO ADQXQ AGLNM AGPVY AGQPQ AIHAF AJZGM ALMYZ ALRMG AQVQM AS~ BGBPD CAG CITATION COF FEDTE H13 HGD HQ3 HTVGU IPSME ROL WHG ZCG ZE2 NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c562t-203976d7d90b2ea5801f0f004ae3f95b184cf8f9ad959ee9162f1c8924ffbd4e3 |
| IEDL.DBID | UNPAY |
| ISSN | 1364-5021 1471-2946 |
| IngestDate | Wed Oct 29 11:54:11 EDT 2025 Thu Aug 21 13:57:13 EDT 2025 Fri Jul 11 12:19:45 EDT 2025 Mon Jun 30 08:28:11 EDT 2025 Thu Apr 03 07:06:30 EDT 2025 Tue Jul 01 04:05:47 EDT 2025 Thu Apr 24 22:56:37 EDT 2025 Wed Jan 17 02:37:16 EST 2024 Tue May 24 16:18:00 EDT 2022 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2198 |
| Keywords | deep learning uncertainty quantification Bayesian inference Gaussian processes |
| Language | English |
| License | http://royalsocietypublishing.org/licence: Published by the Royal Society. All rights reserved. Published by the Royal Society. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c562t-203976d7d90b2ea5801f0f004ae3f95b184cf8f9ad959ee9162f1c8924ffbd4e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This work was done while at the University of Sheffield, Sheffield S10 2HQ, UK. |
| ORCID | 0000-0002-2816-3229 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2016.0751 |
| PMID | 28293137 |
| PQID | 1984381906 |
| PQPubID | 2046233 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1098_rspa_2016_0751 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5332612 pubmed_primary_28293137 crossref_citationtrail_10_1098_rspa_2016_0751 royalsociety_journals_10_1098_rspa_2016_0751 proquest_miscellaneous_1877852154 proquest_journals_1984381906 crossref_primary_10_1098_rspa_2016_0751 royalsociety_journals_RSPAv473i2198_0831053001_zip_rspa_473_issue_2198_rspa_2016_0751_rspa_2016_0751 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-02-01 |
| PublicationDateYYYYMMDD | 2017-02-01 |
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
| PublicationTitleAbbrev | Proc. R. Soc. A |
| PublicationTitleAlternate | Proc Math Phys Eng Sci |
| PublicationYear | 2017 |
| Publisher | The Royal Society Publishing |
| Publisher_xml | – name: The Royal Society Publishing |
| References | e_1_3_6_19_2 e_1_3_6_14_2 e_1_3_6_13_2 e_1_3_6_12_2 e_1_3_6_11_2 e_1_3_6_18_2 e_1_3_6_17_2 O'Hagan A (e_1_3_6_10_2) 1998; 98 e_1_3_6_16_2 Williams CK (e_1_3_6_6_2) 2006 e_1_3_6_15_2 e_1_3_6_20_2 e_1_3_6_21_2 e_1_3_6_5_2 e_1_3_6_4_2 e_1_3_6_3_2 e_1_3_6_2_2 e_1_3_6_9_2 e_1_3_6_8_2 e_1_3_6_7_2 Snelson E (e_1_3_6_27_2) 2004; 16 e_1_3_6_26_2 e_1_3_6_22_2 e_1_3_6_23_2 e_1_3_6_24_2 e_1_3_6_25_2 27194481 - J R Soc Interface. 2016 May;13(118):null |
| References_xml | – ident: e_1_3_6_3_2 doi: 10.1002/9780470770801 – ident: e_1_3_6_18_2 doi: 10.1007/BF01589116 – ident: e_1_3_6_14_2 – ident: e_1_3_6_23_2 doi: 10.1613/jair.295 – ident: e_1_3_6_24_2 doi: 10.1017/S0022112070001040 – ident: e_1_3_6_9_2 doi: 10.1615/Int.J.UncertaintyQuantification.2014006914 – ident: e_1_3_6_11_2 – ident: e_1_3_6_8_2 doi: 10.1017/jfm.2016.718 – ident: e_1_3_6_22_2 doi: 10.1162/neco.1992.4.4.590 – ident: e_1_3_6_25_2 – ident: e_1_3_6_17_2 – ident: e_1_3_6_5_2 doi: 10.1137/15M1055164 – ident: e_1_3_6_16_2 – volume-title: Gaussian processes for machine learning year: 2006 ident: e_1_3_6_6_2 – ident: e_1_3_6_21_2 – ident: e_1_3_6_13_2 – ident: e_1_3_6_7_2 doi: 10.1093/biomet/87.1.1 – ident: e_1_3_6_19_2 – volume: 98 start-page: 13 year: 1998 ident: e_1_3_6_10_2 article-title: A Markov property for covariance structures publication-title: Stat. Res. Rep. – ident: e_1_3_6_4_2 doi: 10.1098/rsif.2015.1107 – ident: e_1_3_6_26_2 – ident: e_1_3_6_2_2 – ident: e_1_3_6_12_2 – ident: e_1_3_6_15_2 – ident: e_1_3_6_20_2 – volume: 16 start-page: 337 year: 2004 ident: e_1_3_6_27_2 article-title: Warped Gaussian processes publication-title: Adv. Neural Inf. Process. Syst. – reference: 27194481 - J R Soc Interface. 2016 May;13(118):null |
| SSID | ssj0009587 |
| Score | 2.6471791 |
| Snippet | Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref royalsociety |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 20160751 |
| SubjectTerms | Algorithms Autoregressive processes Bayesian Inference Complexity Computational fluid dynamics Computer simulation Correlation Data integration Deep Learning Gaussian distribution Gaussian process Gaussian Processes Multisensor fusion Statistical analysis Trends Uncertainty Quantification |
| Title | Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling |
| URI | https://royalsocietypublishing.org/doi/full/10.1098/rspa.2016.0751 https://www.ncbi.nlm.nih.gov/pubmed/28293137 https://www.proquest.com/docview/1984381906 https://www.proquest.com/docview/1877852154 https://pubmed.ncbi.nlm.nih.gov/PMC5332612 https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2016.0751 |
| UnpaywallVersion | publishedVersion |
| Volume | 473 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2946 dateEnd: 20231102 omitProxy: true ssIdentifier: ssj0009587 issn: 1364-5021 databaseCode: KQ8 dateStart: 20151102 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B9wB7ADa-AmMKEhJDwqNJHMd5rBDTBFo1GJXgybIdm1Xr0qofIPbXc5ekUbsPgcSzr058vY-f47ufAV5FQmCMswkTXAvGnRdMW8EZZs40NVJ47agb-agvDgf847d0WU1IvTBT2jTP6oLFSfshpjrSJx-fFL7hQJLvcN9HxEERsW9SE_WGSBGOd2Bj0D_ufa_7rThLu3XvFQZhFudctMSNlydYT0xX0OY1RZOr77oJdxblRP_-pUejlQR1cB_Mcml1XcrZ_mJu9u3FJdbH_1r7A7jXwNewV9vbFtxy5TZsHrXcr7Nt2GrCxSzcazit3zyEk35NyaGnYUPVSgYR-gV9rAv16Md4Opyfns9CHAupapW5itsCtRBWNY_MEx8XbhnC6u4eaqJ_BIODD1_fH7LmPgdmEWXN0SEJ_BRZkXdN7HSKydF3PXqpdonPU4ObTeulz3WRp7lzCFxjH1mJO0TvTcFd8hg65bh0TyG0PLb42yjPbESUZ9KIrs0tF94YjComALb8M5VtyM7pzo2Rqg_dpSINKtKgIg0G8LqVn9Q0HzdK7ixtQzXuPlNRLokqLe-KAF62w-iodPqiSzdeoIzMMolgKeUBPKlNqX0UHWcnUZIFkK0ZWStAJODrI-XwtCIDR7hOLHABvF01n5VXu2EVxfXiX06Oez95lgwxk0lVXUOXJghl1MVwUs-Bg6qKCaoSWZ_3ymP2Wq_4i16f_bvoc7gbE7iqaud3oDOfLtwLhIZzswu3P32Wu00I-AN1q2PJ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-h7gH2MNj4CgwUJCSGhEeTOE7yWCGmCWnVxKgET5bt2KyipFWbDrG_nrs4jdp9CCSefXXi6338HN_9DPA6EgJjnEmY4Eowbp1gygjOMHOmqc6FU5a6kU-G4njEP31NV9WE1Aszp03zwhcszroPMc2RPvn4rHQtB1L-Hvd9RBwUEfsmNVFviRTheA-2RsPTwTffb8VZ2ve9VxiEWVxw0RE3Xp1gMzFdQ5s3FE2uv-s23F1WM_X7l5pM1hLU0X3Qq6X5upQfh8taH5rLK6yP_7X2B7DTwtdw4O1tF-7Yag-2Tzru18Ue7LbhYhEetJzWbx_C2dBTcqh52FK1kkGEbkkf60I1-T6dj-vzn4sQx0KqWmW24bZALYRNzSNzxMeFW4awubuHmugfwejo45cPx6y9z4EZRFk1OiSBnzIri76OrUoxObq-Qy9VNnFFqnGzaVzuClUWaWEtAtfYRSbHHaJzuuQ2eQy9alrZpxAaHhv8bVRkJiLKs1yLvikMF05rjCo6ALb6M6Vpyc7pzo2J9IfuuSQNStKgJA0G8KaTn3maj1sl91e2IVt3X8ioyIkqreiLAF51w-iodPqiKjtdokyeZTmCpZQH8MSbUvcoOs5OoiQLINswsk6ASMA3R6rxeUMGjnCdWOACeLduPmuvdssqypvFP5-dDi54lowxk-WyuYYuTRDKyMvxzM-Bg7KJCbIR2Zz32mMOOq_4i16f_bvoc7gXE7hqauf3oVfPl_YFQsNav2yd_w8kkmLU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+information+fusion+algorithms+for+data-efficient+multi-fidelity+modelling&rft.jtitle=Proceedings+of+the+Royal+Society.+A%2C+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Perdikaris%2C+P&rft.au=Raissi%2C+M&rft.au=Damianou%2C+A&rft.au=Lawrence%2C+N+D&rft.date=2017-02-01&rft.pub=The+Royal+Society+Publishing&rft.issn=1364-5021&rft.eissn=1471-2946&rft.volume=473&rft.issue=2198&rft.spage=20160751&rft.epage=20160751&rft_id=info:doi/10.1098%2Frspa.2016.0751&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-5021&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-5021&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-5021&client=summon |