Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling

Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a small set of high-fidelity observations. This is particularly effective when the low- and high-fidelity models exhibit strong correlations, a...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Vol. 473; no. 2198; p. 20160751
Main Authors Perdikaris, P., Raissi, M., Damianou, A., Lawrence, N. D., Karniadakis, G. E.
Format Journal Article
LanguageEnglish
Published England The Royal Society Publishing 01.02.2017
EditionRoyal Society (Great Britain)
Subjects
Online AccessGet full text
ISSN1364-5021
1471-2946
1471-2946
DOI10.1098/rspa.2016.0751

Cover

Abstract Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a small set of high-fidelity observations. This is particularly effective when the low- and high-fidelity models exhibit strong correlations, and can lead to significant computational gains over approaches that solely rely on high-fidelity models. However, in many cases of practical interest, low-fidelity models can only be well correlated to their high-fidelity counterparts for a specific range of input parameters, and potentially return wrong trends and erroneous predictions if probed outside of their validity regime. Here we put forth a probabilistic framework based on Gaussian process regression and nonlinear autoregressive schemes that is capable of learning complex nonlinear and space-dependent cross-correlations between models of variable fidelity, and can effectively safeguard against low-fidelity models that provide wrong trends. This introduces a new class of multi-fidelity information fusion algorithms that provide a fundamental extension to the existing linear autoregressive methodologies, while still maintaining the same algorithmic complexity and overall computational cost. The performance of the proposed methods is tested in several benchmark problems involving both synthetic and real multi-fidelity datasets from computational fluid dynamics simulations.
AbstractList Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a small set of high-fidelity observations. This is particularly effective when the low- and high-fidelity models exhibit strong correlations, and can lead to significant computational gains over approaches that solely rely on high-fidelity models. However, in many cases of practical interest, low-fidelity models can only be well correlated to their high-fidelity counterparts for a specific range of input parameters, and potentially return wrong trends and erroneous predictions if probed outside of their validity regime. Here we put forth a probabilistic framework based on Gaussian process regression and nonlinear autoregressive schemes that is capable of learning complex nonlinear and space-dependent cross-correlations between models of variable fidelity, and can effectively safeguard against low-fidelity models that provide wrong trends. This introduces a new class of multi-fidelity information fusion algorithms that provide a fundamental extension to the existing linear autoregressive methodologies, while still maintaining the same algorithmic complexity and overall computational cost. The performance of the proposed methods is tested in several benchmark problems involving both synthetic and real multi-fidelity datasets from computational fluid dynamics simulations.
Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a small set of high-fidelity observations. This is particularly effective when the low- and high-fidelity models exhibit strong correlations, and can lead to significant computational gains over approaches that solely rely on high-fidelity models. However, in many cases of practical interest, low-fidelity models can only be well correlated to their high-fidelity counterparts for a specific range of input parameters, and potentially return wrong trends and erroneous predictions if probed outside of their validity regime. Here we put forth a probabilistic framework based on Gaussian process regression and nonlinear autoregressive schemes that is capable of learning complex nonlinear and space-dependent cross-correlations between models of variable fidelity, and can effectively safeguard against low-fidelity models that provide wrong trends. This introduces a new class of multi-fidelity information fusion algorithms that provide a fundamental extension to the existing linear autoregressive methodologies, while still maintaining the same algorithmic complexity and overall computational cost. The performance of the proposed methods is tested in several benchmark problems involving both synthetic and real multi-fidelity datasets from computational fluid dynamics simulations.Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a small set of high-fidelity observations. This is particularly effective when the low- and high-fidelity models exhibit strong correlations, and can lead to significant computational gains over approaches that solely rely on high-fidelity models. However, in many cases of practical interest, low-fidelity models can only be well correlated to their high-fidelity counterparts for a specific range of input parameters, and potentially return wrong trends and erroneous predictions if probed outside of their validity regime. Here we put forth a probabilistic framework based on Gaussian process regression and nonlinear autoregressive schemes that is capable of learning complex nonlinear and space-dependent cross-correlations between models of variable fidelity, and can effectively safeguard against low-fidelity models that provide wrong trends. This introduces a new class of multi-fidelity information fusion algorithms that provide a fundamental extension to the existing linear autoregressive methodologies, while still maintaining the same algorithmic complexity and overall computational cost. The performance of the proposed methods is tested in several benchmark problems involving both synthetic and real multi-fidelity datasets from computational fluid dynamics simulations.
Author Raissi, M.
Damianou, A.
Perdikaris, P.
Karniadakis, G. E.
Lawrence, N. D.
AuthorAffiliation 4 Department of Neuroscience , University of Sheffield , Sheffield S10 2HQ, UK
2 Division of Applied Mathematics , Brown University , Providence, RI 02912, USA
3 Amazon.com , Cambridge CB3 0RD, UK
1 Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge, MA 02139, USA
AuthorAffiliation_xml – name: 2 Division of Applied Mathematics , Brown University , Providence, RI 02912, USA
– name: 3 Amazon.com , Cambridge CB3 0RD, UK
– name: 1 Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge, MA 02139, USA
– name: 4 Department of Neuroscience , University of Sheffield , Sheffield S10 2HQ, UK
Author_xml – sequence: 1
  givenname: P.
  orcidid: 0000-0002-2816-3229
  surname: Perdikaris
  fullname: Perdikaris, P.
  email: parisp@mit.edu
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 2
  givenname: M.
  surname: Raissi
  fullname: Raissi, M.
  organization: Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
– sequence: 3
  givenname: A.
  surname: Damianou
  fullname: Damianou, A.
  organization: Amazon.com, Cambridge CB3 0RD, UK
– sequence: 4
  givenname: N. D.
  surname: Lawrence
  fullname: Lawrence, N. D.
  organization: Amazon.com, Cambridge CB3 0RD, UK; Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
– sequence: 5
  givenname: G. E.
  surname: Karniadakis
  fullname: Karniadakis, G. E.
  organization: Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28293137$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1DAUjFAR_YArRxSJC5ds_fyR2BekqiofUgWIwtnyJvbWJbEX2ykKvx6nKdCuVDj5SW9mPDPvsNhz3umieA5oBUjw4xC3aoUR1CvUMHhUHABtoMKC1nt5JjWtGMKwXxzGeIUQEow3T4p9zLEgQJqD4uKDd711WoXSOuPDoJL1rjRjnB_Vb3yw6XKIZd6VnUqq0sbY1mqXymHsk62M7XRv01QOPg9Za_O0eGxUH_Wz2_eo-Prm7Mvpu-r849v3pyfnVctqnCqMiGjqrukEWmOtGEdgkEGIKk2MYGvgtDXcCNUJJrQWUGMDLReYGrPuqCZHxfGiO7qtmn6ovpfbYAcVJglIzvXIuR451yPnejLj9cLYjutBd21OEdRflldW3t84eyk3_loyQnANOAu8uhUI_vuoY5KDjW2OrZz2Y5TAm4YzDIxm6Msd6JUfg8uFSBCcEg4C1Rn14q6jP1Z-XygD6AJog48xaCNbm26OlA3a_uGkqx3af6shCyH4KXv0-cRpumP5Ida3f7E-X3w6uaYNsThHlogTQIwgBPKn3S5SeSltjKOWN5D78ru__QKFyOq9
CitedBy_id crossref_primary_10_1007_s00158_023_03487_y
crossref_primary_10_1016_j_inffus_2025_103045
crossref_primary_10_1016_j_cma_2024_116773
crossref_primary_10_1115_1_4063986
crossref_primary_10_1016_j_aei_2024_102999
crossref_primary_10_4271_2022_01_0790
crossref_primary_10_3233_ISP_230013
crossref_primary_10_1016_j_cma_2020_113533
crossref_primary_10_1109_ACCESS_2018_2882777
crossref_primary_10_1021_acs_jpca_0c05006
crossref_primary_10_1021_acs_iecr_4c04170
crossref_primary_10_1021_acs_jctc_4c00475
crossref_primary_10_1029_2019EA000954
crossref_primary_10_1109_ACCESS_2020_3010800
crossref_primary_10_1115_1_4055276
crossref_primary_10_1017_jfm_2018_872
crossref_primary_10_1016_j_metabol_2018_08_002
crossref_primary_10_1038_s41746_019_0193_y
crossref_primary_10_1002_gamm_201900008
crossref_primary_10_1021_acs_langmuir_2c02399
crossref_primary_10_1146_annurev_chembioeng_092120_020803
crossref_primary_10_1016_j_cma_2024_117577
crossref_primary_10_1080_13647830_2021_1887524
crossref_primary_10_1016_j_cma_2019_112724
crossref_primary_10_1002_nme_7349
crossref_primary_10_1088_1361_6501_ad9858
crossref_primary_10_1093_mnras_stab3114
crossref_primary_10_1002_gamm_201900011
crossref_primary_10_1080_00401706_2024_2376173
crossref_primary_10_1007_s00158_024_03744_8
crossref_primary_10_1016_j_engappai_2024_109228
crossref_primary_10_1038_s41598_024_78394_3
crossref_primary_10_1115_1_4065890
crossref_primary_10_1007_s11081_023_09807_x
crossref_primary_10_1021_acs_iecr_3c03931
crossref_primary_10_1016_j_cma_2020_113485
crossref_primary_10_1007_s00158_023_03633_6
crossref_primary_10_1002_nme_6268
crossref_primary_10_1016_j_jcp_2019_05_053
crossref_primary_10_1098_rspa_2019_0897
crossref_primary_10_1016_j_addma_2023_103398
crossref_primary_10_1098_rsif_2024_0194
crossref_primary_10_1016_j_probengmech_2023_103525
crossref_primary_10_1088_1402_4896_acaad5
crossref_primary_10_1088_2632_2153_ad718f
crossref_primary_10_1016_j_strusafe_2022_102222
crossref_primary_10_1016_j_knosys_2022_109645
crossref_primary_10_1016_j_oceaneng_2023_116016
crossref_primary_10_1016_j_jcp_2022_111252
crossref_primary_10_1088_2632_2153_ad0286
crossref_primary_10_1016_j_ymssp_2022_109039
crossref_primary_10_1063_5_0158919
crossref_primary_10_1093_mnras_stad2901
crossref_primary_10_1103_PhysRevE_104_065303
crossref_primary_10_1039_D2LC00151A
crossref_primary_10_1016_j_jcp_2017_01_060
crossref_primary_10_1063_5_0236980
crossref_primary_10_1016_j_apenergy_2021_117245
crossref_primary_10_1615_Int_J_UncertaintyQuantification_2023038376
crossref_primary_10_1016_j_jcp_2018_02_039
crossref_primary_10_1063_5_0076538
crossref_primary_10_1063_5_0099197
crossref_primary_10_1016_j_engappai_2017_10_008
crossref_primary_10_1016_j_ress_2025_110895
crossref_primary_10_1177_02783649211033317
crossref_primary_10_1016_j_jmapro_2024_07_085
crossref_primary_10_1007_s40192_018_0120_0
crossref_primary_10_1063_5_0096481
crossref_primary_10_1111_mice_13312
crossref_primary_10_1016_j_jcp_2019_108914
crossref_primary_10_1016_j_plrev_2018_06_012
crossref_primary_10_1016_j_jocs_2024_102511
crossref_primary_10_1109_TAP_2024_3384758
crossref_primary_10_1016_j_aei_2021_101430
crossref_primary_10_1016_j_ces_2021_117135
crossref_primary_10_1016_j_cma_2021_114212
crossref_primary_10_1103_PhysRevB_109_144523
crossref_primary_10_1109_TCAD_2022_3175241
crossref_primary_10_1007_s40430_023_04521_2
crossref_primary_10_1007_s40192_022_00276_1
crossref_primary_10_1063_5_0056019
crossref_primary_10_1103_PhysRevResearch_2_033107
crossref_primary_10_1016_j_compfluid_2025_106608
crossref_primary_10_1016_j_knosys_2022_108775
crossref_primary_10_1016_j_knosys_2024_111827
crossref_primary_10_1109_TPWRS_2023_3295795
crossref_primary_10_1093_mnras_stac2435
crossref_primary_10_1109_TAP_2022_3179597
crossref_primary_10_1007_s11740_020_00975_8
crossref_primary_10_1051_ps_2018011
crossref_primary_10_1007_s00158_022_03255_4
crossref_primary_10_1007_s10494_024_00629_0
crossref_primary_10_1021_acs_jcim_0c00699
crossref_primary_10_1029_2018WR022658
crossref_primary_10_1016_j_jocs_2021_101525
crossref_primary_10_1021_acs_jpcb_4c04456
crossref_primary_10_1115_1_4062332
crossref_primary_10_1146_annurev_fluid_120720_032612
crossref_primary_10_1098_rsif_2020_0802
crossref_primary_10_1063_5_0205780
crossref_primary_10_1007_s10543_025_01058_9
crossref_primary_10_1103_PhysRevFluids_4_124501
crossref_primary_10_1145_3582078
crossref_primary_10_1016_j_cma_2021_114147
crossref_primary_10_1109_JAS_2023_123537
crossref_primary_10_1109_TCSI_2023_3273593
crossref_primary_10_1137_20M1326404
crossref_primary_10_1098_rsfs_2018_0083
crossref_primary_10_1016_j_renene_2022_10_013
crossref_primary_10_1007_s00158_023_03518_8
crossref_primary_10_1007_s00366_024_02029_4
crossref_primary_10_1007_s00158_023_03728_0
crossref_primary_10_1016_j_cma_2025_117795
crossref_primary_10_1080_00401706_2020_1855253
crossref_primary_10_1093_jrsssc_qlaf003
crossref_primary_10_1109_TPAMI_2024_3355289
crossref_primary_10_1007_s00158_020_02802_1
crossref_primary_10_1016_j_actamat_2021_117008
crossref_primary_10_1615_JMachLearnModelComput_2024055786
crossref_primary_10_1080_24725854_2021_1931572
crossref_primary_10_1109_TEC_2020_2998142
crossref_primary_10_1186_s40323_023_00249_9
crossref_primary_10_1063_5_0105820
crossref_primary_10_1002_we_2851
crossref_primary_10_1007_s11081_024_09915_2
crossref_primary_10_1002_nme_7159
crossref_primary_10_1111_exsy_12809
crossref_primary_10_3934_mbe_2023799
crossref_primary_10_1016_j_knosys_2017_12_034
crossref_primary_10_1061_JGGEFK_GTENG_11819
crossref_primary_10_1080_00401706_2023_2281940
crossref_primary_10_1098_rsta_2020_0098
crossref_primary_10_1145_3611383
crossref_primary_10_1115_1_4064776
crossref_primary_10_1039_D1DD00047K
crossref_primary_10_1002_nag_3656
crossref_primary_10_1016_j_commatsci_2020_110187
crossref_primary_10_1016_j_ress_2022_108693
crossref_primary_10_1016_j_mfglet_2023_08_099
crossref_primary_10_1016_j_cpletx_2019_100022
crossref_primary_10_1016_j_physd_2025_134572
crossref_primary_10_3390_app132413176
crossref_primary_10_1007_s12650_024_01003_y
crossref_primary_10_1115_1_4064782
crossref_primary_10_1631_jzus_A2300340
crossref_primary_10_1051_jnwpu_20244220328
crossref_primary_10_1029_2018WR023615
crossref_primary_10_1115_1_4046697
crossref_primary_10_1016_j_jqsrt_2024_108958
crossref_primary_10_1615_Int_J_UncertaintyQuantification_2023044584
crossref_primary_10_1063_5_0087449
crossref_primary_10_1678_rheology_49_97
crossref_primary_10_1016_j_neucom_2024_127963
crossref_primary_10_1088_2632_2153_ad7ad5
crossref_primary_10_1016_j_jcp_2018_08_036
crossref_primary_10_1080_00401706_2021_2024453
crossref_primary_10_5194_hess_28_4903_2024
crossref_primary_10_1002_pamm_202000349
crossref_primary_10_1007_s00158_024_03887_8
crossref_primary_10_1063_5_0053349
crossref_primary_10_1080_00401706_2023_2238834
crossref_primary_10_1016_j_cma_2022_114799
crossref_primary_10_1109_JIOT_2022_3142242
crossref_primary_10_1109_MRA_2020_2977971
crossref_primary_10_1016_j_cma_2023_115946
crossref_primary_10_1063_5_0128661
crossref_primary_10_1177_13835416251328895
Cites_doi 10.1002/9780470770801
10.1007/BF01589116
10.1613/jair.295
10.1017/S0022112070001040
10.1615/Int.J.UncertaintyQuantification.2014006914
10.1017/jfm.2016.718
10.1162/neco.1992.4.4.590
10.1137/15M1055164
10.1093/biomet/87.1.1
10.1098/rsif.2015.1107
ContentType Journal Article
Copyright 2017 The Author(s)
Copyright The Royal Society Publishing Feb 2017
2017 The Author(s) 2017
Copyright_xml – notice: 2017 The Author(s)
– notice: Copyright The Royal Society Publishing Feb 2017
– notice: 2017 The Author(s) 2017
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1098/rspa.2016.0751
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
DocumentTitleAlternate Data-efficient multi-fidelity modeling
EISSN 1471-2946
Edition Royal Society (Great Britain)
EndPage 20160751
ExternalDocumentID 10.1098/rspa.2016.0751
PMC5332612
28293137
10_1098_rspa_2016_0751
Genre Journal Article
GrantInformation_xml – fundername: Defense Sciences Office, DARPA; ;
  grantid: N66001-15-2-4055
  funderid: http://dx.doi.org/10.13039/100006502
– fundername: ;
  grantid: N66001-15-2-4055
GroupedDBID 18M
4.4
5VS
AACGO
AANCE
ABBHK
ABFAN
ABPLY
ABPTK
ABTLG
ABXXB
ABYWD
ACGFO
ACIPV
ACIWK
ACMTB
ACNCT
ACQIA
ACTMH
ADBBV
ADODI
ADULT
ADZLD
AEUPB
AEXZC
AFVYC
AFXKK
ALMA_UNASSIGNED_HOLDINGS
BTFSW
DCCCD
DNJUQ
DOOOF
DQDLB
DSRWC
DWIUU
EBS
ECEWR
EFSUC
EJD
FRP
HH5
HQ6
ICLEN
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JMS
JPM
JSG
JSODD
JST
K-O
KQ8
MRS
MV1
NSAHA
OK1
OP1
RHF
RNS
RRY
SA0
TR2
V1E
W8F
XSW
YF5
~02
AAWIL
AAYXX
ABXSQ
ACHIC
ACRPL
ADNMO
ADQXQ
AGLNM
AGPVY
AGQPQ
AIHAF
AJZGM
ALMYZ
ALRMG
AQVQM
AS~
BGBPD
CAG
CITATION
COF
FEDTE
H13
HGD
HQ3
HTVGU
IPSME
ROL
WHG
ZCG
ZE2
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c562t-203976d7d90b2ea5801f0f004ae3f95b184cf8f9ad959ee9162f1c8924ffbd4e3
IEDL.DBID UNPAY
ISSN 1364-5021
1471-2946
IngestDate Wed Oct 29 11:54:11 EDT 2025
Thu Aug 21 13:57:13 EDT 2025
Fri Jul 11 12:19:45 EDT 2025
Mon Jun 30 08:28:11 EDT 2025
Thu Apr 03 07:06:30 EDT 2025
Tue Jul 01 04:05:47 EDT 2025
Thu Apr 24 22:56:37 EDT 2025
Wed Jan 17 02:37:16 EST 2024
Tue May 24 16:18:00 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2198
Keywords deep learning
uncertainty quantification
Bayesian inference
Gaussian processes
Language English
License http://royalsocietypublishing.org/licence: Published by the Royal Society. All rights reserved.
Published by the Royal Society. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c562t-203976d7d90b2ea5801f0f004ae3f95b184cf8f9ad959ee9162f1c8924ffbd4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This work was done while at the University of Sheffield, Sheffield S10 2HQ, UK.
ORCID 0000-0002-2816-3229
OpenAccessLink https://proxy.k.utb.cz/login?url=https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2016.0751
PMID 28293137
PQID 1984381906
PQPubID 2046233
PageCount 1
ParticipantIDs unpaywall_primary_10_1098_rspa_2016_0751
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5332612
pubmed_primary_28293137
crossref_citationtrail_10_1098_rspa_2016_0751
royalsociety_journals_10_1098_rspa_2016_0751
proquest_miscellaneous_1877852154
proquest_journals_1984381906
crossref_primary_10_1098_rspa_2016_0751
royalsociety_journals_RSPAv473i2198_0831053001_zip_rspa_473_issue_2198_rspa_2016_0751_rspa_2016_0751
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
PublicationTitleAbbrev Proc. R. Soc. A
PublicationTitleAlternate Proc Math Phys Eng Sci
PublicationYear 2017
Publisher The Royal Society Publishing
Publisher_xml – name: The Royal Society Publishing
References e_1_3_6_19_2
e_1_3_6_14_2
e_1_3_6_13_2
e_1_3_6_12_2
e_1_3_6_11_2
e_1_3_6_18_2
e_1_3_6_17_2
O'Hagan A (e_1_3_6_10_2) 1998; 98
e_1_3_6_16_2
Williams CK (e_1_3_6_6_2) 2006
e_1_3_6_15_2
e_1_3_6_20_2
e_1_3_6_21_2
e_1_3_6_5_2
e_1_3_6_4_2
e_1_3_6_3_2
e_1_3_6_2_2
e_1_3_6_9_2
e_1_3_6_8_2
e_1_3_6_7_2
Snelson E (e_1_3_6_27_2) 2004; 16
e_1_3_6_26_2
e_1_3_6_22_2
e_1_3_6_23_2
e_1_3_6_24_2
e_1_3_6_25_2
27194481 - J R Soc Interface. 2016 May;13(118):null
References_xml – ident: e_1_3_6_3_2
  doi: 10.1002/9780470770801
– ident: e_1_3_6_18_2
  doi: 10.1007/BF01589116
– ident: e_1_3_6_14_2
– ident: e_1_3_6_23_2
  doi: 10.1613/jair.295
– ident: e_1_3_6_24_2
  doi: 10.1017/S0022112070001040
– ident: e_1_3_6_9_2
  doi: 10.1615/Int.J.UncertaintyQuantification.2014006914
– ident: e_1_3_6_11_2
– ident: e_1_3_6_8_2
  doi: 10.1017/jfm.2016.718
– ident: e_1_3_6_22_2
  doi: 10.1162/neco.1992.4.4.590
– ident: e_1_3_6_25_2
– ident: e_1_3_6_17_2
– ident: e_1_3_6_5_2
  doi: 10.1137/15M1055164
– ident: e_1_3_6_16_2
– volume-title: Gaussian processes for machine learning
  year: 2006
  ident: e_1_3_6_6_2
– ident: e_1_3_6_21_2
– ident: e_1_3_6_13_2
– ident: e_1_3_6_7_2
  doi: 10.1093/biomet/87.1.1
– ident: e_1_3_6_19_2
– volume: 98
  start-page: 13
  year: 1998
  ident: e_1_3_6_10_2
  article-title: A Markov property for covariance structures
  publication-title: Stat. Res. Rep.
– ident: e_1_3_6_4_2
  doi: 10.1098/rsif.2015.1107
– ident: e_1_3_6_26_2
– ident: e_1_3_6_2_2
– ident: e_1_3_6_12_2
– ident: e_1_3_6_15_2
– ident: e_1_3_6_20_2
– volume: 16
  start-page: 337
  year: 2004
  ident: e_1_3_6_27_2
  article-title: Warped Gaussian processes
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: 27194481 - J R Soc Interface. 2016 May;13(118):null
SSID ssj0009587
Score 2.6471791
Snippet Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
royalsociety
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20160751
SubjectTerms Algorithms
Autoregressive processes
Bayesian Inference
Complexity
Computational fluid dynamics
Computer simulation
Correlation
Data integration
Deep Learning
Gaussian distribution
Gaussian process
Gaussian Processes
Multisensor fusion
Statistical analysis
Trends
Uncertainty Quantification
Title Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling
URI https://royalsocietypublishing.org/doi/full/10.1098/rspa.2016.0751
https://www.ncbi.nlm.nih.gov/pubmed/28293137
https://www.proquest.com/docview/1984381906
https://www.proquest.com/docview/1877852154
https://pubmed.ncbi.nlm.nih.gov/PMC5332612
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2016.0751
UnpaywallVersion publishedVersion
Volume 473
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2946
  dateEnd: 20231102
  omitProxy: true
  ssIdentifier: ssj0009587
  issn: 1364-5021
  databaseCode: KQ8
  dateStart: 20151102
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B9wB7ADa-AmMKEhJDwqNJHMd5rBDTBFo1GJXgybIdm1Xr0qofIPbXc5ekUbsPgcSzr058vY-f47ufAV5FQmCMswkTXAvGnRdMW8EZZs40NVJ47agb-agvDgf847d0WU1IvTBT2jTP6oLFSfshpjrSJx-fFL7hQJLvcN9HxEERsW9SE_WGSBGOd2Bj0D_ufa_7rThLu3XvFQZhFudctMSNlydYT0xX0OY1RZOr77oJdxblRP_-pUejlQR1cB_Mcml1XcrZ_mJu9u3FJdbH_1r7A7jXwNewV9vbFtxy5TZsHrXcr7Nt2GrCxSzcazit3zyEk35NyaGnYUPVSgYR-gV9rAv16Md4Opyfns9CHAupapW5itsCtRBWNY_MEx8XbhnC6u4eaqJ_BIODD1_fH7LmPgdmEWXN0SEJ_BRZkXdN7HSKydF3PXqpdonPU4ObTeulz3WRp7lzCFxjH1mJO0TvTcFd8hg65bh0TyG0PLb42yjPbESUZ9KIrs0tF94YjComALb8M5VtyM7pzo2Rqg_dpSINKtKgIg0G8LqVn9Q0HzdK7ixtQzXuPlNRLokqLe-KAF62w-iodPqiSzdeoIzMMolgKeUBPKlNqX0UHWcnUZIFkK0ZWStAJODrI-XwtCIDR7hOLHABvF01n5VXu2EVxfXiX06Oez95lgwxk0lVXUOXJghl1MVwUs-Bg6qKCaoSWZ_3ymP2Wq_4i16f_bvoc7gbE7iqaud3oDOfLtwLhIZzswu3P32Wu00I-AN1q2PJ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-h7gH2MNj4CgwUJCSGhEeTOE7yWCGmCWnVxKgET5bt2KyipFWbDrG_nrs4jdp9CCSefXXi6338HN_9DPA6EgJjnEmY4Eowbp1gygjOMHOmqc6FU5a6kU-G4njEP31NV9WE1Aszp03zwhcszroPMc2RPvn4rHQtB1L-Hvd9RBwUEfsmNVFviRTheA-2RsPTwTffb8VZ2ve9VxiEWVxw0RE3Xp1gMzFdQ5s3FE2uv-s23F1WM_X7l5pM1hLU0X3Qq6X5upQfh8taH5rLK6yP_7X2B7DTwtdw4O1tF-7Yag-2Tzru18Ue7LbhYhEetJzWbx_C2dBTcqh52FK1kkGEbkkf60I1-T6dj-vzn4sQx0KqWmW24bZALYRNzSNzxMeFW4awubuHmugfwejo45cPx6y9z4EZRFk1OiSBnzIri76OrUoxObq-Qy9VNnFFqnGzaVzuClUWaWEtAtfYRSbHHaJzuuQ2eQy9alrZpxAaHhv8bVRkJiLKs1yLvikMF05rjCo6ALb6M6Vpyc7pzo2J9IfuuSQNStKgJA0G8KaTn3maj1sl91e2IVt3X8ioyIkqreiLAF51w-iodPqiKjtdokyeZTmCpZQH8MSbUvcoOs5OoiQLINswsk6ASMA3R6rxeUMGjnCdWOACeLduPmuvdssqypvFP5-dDi54lowxk-WyuYYuTRDKyMvxzM-Bg7KJCbIR2Zz32mMOOq_4i16f_bvoc7gXE7hqauf3oVfPl_YFQsNav2yd_w8kkmLU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+information+fusion+algorithms+for+data-efficient+multi-fidelity+modelling&rft.jtitle=Proceedings+of+the+Royal+Society.+A%2C+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Perdikaris%2C+P&rft.au=Raissi%2C+M&rft.au=Damianou%2C+A&rft.au=Lawrence%2C+N+D&rft.date=2017-02-01&rft.pub=The+Royal+Society+Publishing&rft.issn=1364-5021&rft.eissn=1471-2946&rft.volume=473&rft.issue=2198&rft.spage=20160751&rft.epage=20160751&rft_id=info:doi/10.1098%2Frspa.2016.0751&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-5021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-5021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-5021&client=summon