Integrated-boost IMRT or 3-D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme - a dosimetric comparison

Background Biological brain tumor imaging using O-(2-[ 18 F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach. The aim of this study was to compare inverse with f...

Full description

Saved in:
Bibliographic Details
Published inRadiation oncology (London, England) Vol. 4; no. 1; p. 57
Main Authors Piroth, Marc D, Pinkawa, Michael, Holy, Richard, Stoffels, Gabriele, Demirel, Cengiz, Attieh, Charbel, Kaiser, Hans J, Langen, Karl J, Eble, Michael J
Format Journal Article
LanguageEnglish
Published London BioMed Central 23.11.2009
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1748-717X
1748-717X
DOI10.1186/1748-717X-4-57

Cover

Abstract Background Biological brain tumor imaging using O-(2-[ 18 F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach. The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets. Methods In 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of ≥ 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy. Results After auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p < 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques. Conclusion In the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the achievable mean dose in the boost volume. With IB-IMRT a better homogeneity and conformity, compared to 3D-CRT, could be achieved.
AbstractList Abstract Background Biological brain tumor imaging using O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach. The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets. Methods In 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of ≥ 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy. Results After auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p < 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques. Conclusion In the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the achievable mean dose in the boost volume. With IB-IMRT a better homogeneity and conformity, compared to 3D-CRT, could be achieved.
Background Biological brain tumor imaging using O-(2-[ 18 F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach. The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets. Methods In 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of ≥ 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy. Results After auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p < 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques. Conclusion In the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the achievable mean dose in the boost volume. With IB-IMRT a better homogeneity and conformity, compared to 3D-CRT, could be achieved.
Abstract Background: Biological brain tumor imaging using O-(2-[18 F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach. The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets. Methods: In 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of ≥ 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy. Results: After auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p < 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques. Conclusion: In the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the achievable mean dose in the boost volume. With IB-IMRT a better homogeneity and conformity, compared to 3D-CRT, could be achieved.
Biological brain tumor imaging using O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach.The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets.BACKGROUNDBiological brain tumor imaging using O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach.The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets.In 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of > or = 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy.METHODSIn 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of > or = 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy.After auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p < 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques.RESULTSAfter auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p < 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques.In the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the achievable mean dose in the boost volume. With IB-IMRT a better homogeneity and conformity, compared to 3D-CRT, could be achieved.CONCLUSIONIn the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the achievable mean dose in the boost volume. With IB-IMRT a better homogeneity and conformity, compared to 3D-CRT, could be achieved.
Background Biological brain tumor imaging using O-(2-[.sup.18.sup.F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach. The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets. Methods In 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of [greater than or equal to] 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy. Results After auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p [less than] 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques. Conclusion In the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the achievable mean dose in the boost volume. With IB-IMRT a better homogeneity and conformity, compared to 3D-CRT, could be achieved.
Biological brain tumor imaging using O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach.The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets. In 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of > or = 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy. After auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p < 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques. In the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the achievable mean dose in the boost volume. With IB-IMRT a better homogeneity and conformity, compared to 3D-CRT, could be achieved.
ArticleNumber 57
Audience Academic
Author Attieh, Charbel
Piroth, Marc D
Holy, Richard
Kaiser, Hans J
Eble, Michael J
Pinkawa, Michael
Demirel, Cengiz
Stoffels, Gabriele
Langen, Karl J
AuthorAffiliation 3 Institute of Neurosciences and Medicine, Research Centre Jülich, 52425 Jülich, Germany
4 JARA (Jülich Aachen Research Alliance) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße, 52428 Jülich, Germany
2 Department of Nuclear Medicine, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen Germany
1 Department of Radiation Oncology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen Germany
AuthorAffiliation_xml – name: 3 Institute of Neurosciences and Medicine, Research Centre Jülich, 52425 Jülich, Germany
– name: 4 JARA (Jülich Aachen Research Alliance) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße, 52428 Jülich, Germany
– name: 1 Department of Radiation Oncology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen Germany
– name: 2 Department of Nuclear Medicine, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen Germany
Author_xml – sequence: 1
  givenname: Marc D
  surname: Piroth
  fullname: Piroth, Marc D
  email: mpiroth@ukaachen.de
  organization: Department of Radiation Oncology, RWTH Aachen University Hospital, JARA (Jülich Aachen Research Alliance) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße
– sequence: 2
  givenname: Michael
  surname: Pinkawa
  fullname: Pinkawa, Michael
  organization: Department of Radiation Oncology, RWTH Aachen University Hospital, JARA (Jülich Aachen Research Alliance) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße
– sequence: 3
  givenname: Richard
  surname: Holy
  fullname: Holy, Richard
  organization: Department of Radiation Oncology, RWTH Aachen University Hospital, JARA (Jülich Aachen Research Alliance) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße
– sequence: 4
  givenname: Gabriele
  surname: Stoffels
  fullname: Stoffels, Gabriele
  organization: Institute of Neurosciences and Medicine, Research Centre Jülich, JARA (Jülich Aachen Research Alliance) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße
– sequence: 5
  givenname: Cengiz
  surname: Demirel
  fullname: Demirel, Cengiz
  organization: Department of Radiation Oncology, RWTH Aachen University Hospital
– sequence: 6
  givenname: Charbel
  surname: Attieh
  fullname: Attieh, Charbel
  organization: Department of Radiation Oncology, RWTH Aachen University Hospital
– sequence: 7
  givenname: Hans J
  surname: Kaiser
  fullname: Kaiser, Hans J
  organization: Department of Nuclear Medicine, RWTH Aachen University Hospital
– sequence: 8
  givenname: Karl J
  surname: Langen
  fullname: Langen, Karl J
  organization: Institute of Neurosciences and Medicine, Research Centre Jülich, JARA (Jülich Aachen Research Alliance) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße
– sequence: 9
  givenname: Michael J
  surname: Eble
  fullname: Eble, Michael J
  organization: Department of Radiation Oncology, RWTH Aachen University Hospital, JARA (Jülich Aachen Research Alliance) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19930657$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhiNURD_gyhFZXDhlazt2nFyQqm2BlYpAaJG4WY49CV4ldrGdSvwO_jDe3bK0laocPJ687-OxZ06LI-cdFMVrgheENPU5EawpBRE_SlZy8aw4OSSO7sXHxWmMG4wZr3D7ojgmbVvhmouT4s_KJRiCSmDKzvuY0OrztzXyAVXlZbnM4RytG9CHq3X59WqNOhXBIDUnX2rvkp9D3iYVBkjo1o_zBMjAaB2oZL1DfQYNo_XdqGLyk0LTPCabs1lXIoWMj3aCFKxG2k83Ktjo3cviea_GCK_u1rPiez5--am8_vJxtby4LjWvSSoN74HWLeMMCIhaEU4E7wg2ouaattRUhhDGVacaCrXojKk16F70pmGYElGdFas913i1kTfBTir8ll5ZuUv4MEgVktUjyK7nTV_RRpsGM61Vq5gCLmqaY9yxLrPe71k3czeB0eBSUOMD6MM_zv6Ug7-VVDSC020x7-4Awf-aISY52ahhHJUDP0cpKkbqhuI2K98-Um5yG1x-KdlimhvMWpZFi71oULl863qfT9X5MzDZ3Dnobc5fUFJVrM3cbHhz_wKHyv-NShawvUAHH2OAXmqbdl3OZDtKguV2IuV26OR26CSTO9vike1AfspwvjfELHQDhP_Xe8LxF1Qu8so
CitedBy_id crossref_primary_10_1016_j_radonc_2012_04_022
crossref_primary_10_2310_7290_2012_00022
crossref_primary_10_1007_s00066_021_01770_9
crossref_primary_10_1016_j_canrad_2016_02_007
crossref_primary_10_1016_j_radonc_2015_01_016
crossref_primary_10_1186_s12885_016_2399_6
crossref_primary_10_1053_j_semnuclmed_2012_06_001
crossref_primary_10_1007_s12149_013_0792_7
crossref_primary_10_2967_jnumed_116_180075
crossref_primary_10_1016_j_cpet_2010_02_004
crossref_primary_10_1186_s13014_016_0665_z
crossref_primary_10_3892_ol_2011_384
crossref_primary_10_4236_ijmpcero_2021_102010
crossref_primary_10_1002_acm2_13151
crossref_primary_10_1093_neuonc_nov118
crossref_primary_10_2967_jnumed_115_171033
crossref_primary_10_1097_WCO_0000000000000574
crossref_primary_10_1016_j_ymeth_2017_05_019
crossref_primary_10_23736_S1824_4785_18_03092_3
crossref_primary_10_3760_cma_j_issn_0366_6999_20130218
crossref_primary_10_1007_s00066_011_0060_5
crossref_primary_10_23736_S1824_4785_18_03116_3
crossref_primary_10_1016_j_wneu_2018_07_232
crossref_primary_10_1016_j_jns_2010_07_024
crossref_primary_10_1080_0284186X_2017_1285498
crossref_primary_10_1016_j_canrad_2010_06_005
crossref_primary_10_1016_j_radonc_2011_03_001
crossref_primary_10_1007_s11060_012_0980_7
crossref_primary_10_1007_s10147_012_0462_0
crossref_primary_10_1053_j_seminoncol_2019_07_001
crossref_primary_10_1016_j_radonc_2010_08_018
crossref_primary_10_7785_tcrt_2012_500341
crossref_primary_10_3389_fneur_2017_00756
crossref_primary_10_1007_s11060_017_2735_y
crossref_primary_10_1016_j_canrad_2011_07_237
crossref_primary_10_1016_j_meddos_2020_09_003
crossref_primary_10_3390_cancers10110456
crossref_primary_10_1186_s13014_017_0810_3
crossref_primary_10_3390_biomedicines12040789
crossref_primary_10_1007_s00761_010_1960_1
crossref_primary_10_1016_j_radonc_2011_03_006
crossref_primary_10_1007_s40336_017_0225_z
crossref_primary_10_1007_s00259_018_3969_4
crossref_primary_10_1016_j_nucmedbio_2013_05_001
crossref_primary_10_1186_1748_717X_6_153
crossref_primary_10_1093_neuonc_nos300
crossref_primary_10_3389_fonc_2021_645316
crossref_primary_10_1007_s11060_016_2366_8
crossref_primary_10_1016_j_ijrobp_2010_01_055
crossref_primary_10_24060_2076_3093_2024_14_2_153_157
Cites_doi 10.1016/0360-3016(91)90172-Z
10.1016/j.ijrobp.2008.04.050
10.1016/S0360-3016(03)00743-0
10.1016/j.meddos.2007.03.001
10.1016/0360-3016(96)85888-3
10.1016/S0167-8140(00)00216-4
10.1016/S0360-3016(98)00231-4
10.1186/1748-717X-3-44
10.1007/s00259-004-1705-8
10.1177/030089169808400208
10.1016/0360-3016(91)90171-Y
10.1016/S0360-3016(00)00772-0
10.1016/j.nucmedbio.2006.01.002
10.1038/bjc.1991.396
10.1093/brain/awh399
10.1016/0360-3016(94)00621-Q
10.1016/S0167-8140(01)00371-1
10.1118/1.3013556
10.1016/j.ijrobp.2005.12.022
10.1007/s00066-008-1883-6
10.3171/foc.2006.20.4.10
10.1007/s002590050208
10.1016/0360-3016(93)90345-V
10.1088/0031-9155/53/1/002
10.3171/jns.1999.90.1.0072
10.1016/j.ijrobp.2008.05.034
10.1016/S0360-3016(00)00502-2
10.1227/01.NEU.0000171642.49553.B0
10.1016/j.ijrobp.2005.01.056
10.1007/s00259-008-0943-6
10.1016/j.ijrobp.2005.05.067
10.1007/s00259-004-1590-1
10.1002/ana.410260406
10.1016/j.ijrobp.2006.12.009
10.1118/1.598063
10.1177/153303460400300107
10.1118/1.1485060
10.1016/S0360-3016(98)00159-X
10.1016/j.radonc.2009.07.014
10.1016/0360-3016(94)00494-6
10.1002/ijc.1042
10.1016/S1470-2045(09)70025-7
10.1016/j.ijrobp.2006.10.032
10.1118/1.1598852
10.1097/00006123-200208000-00009
10.1212/WNL.30.9.907
10.1017/S0317167100032972
10.1016/S1470-2045(05)70395-8
10.1120/jacmp.v8i2.2423
10.1016/0360-3016(79)90553-4
10.1148/radiology.186.1.8380108
10.1016/j.ijrobp.2004.04.011
10.1016/j.meddos.2003.08.004
10.1056/NEJMoa043330
10.1200/JCO.1992.10.9.1379
10.1007/s00066-007-1588-2
10.3171/jns.2000.93.supplement_3.0219
10.1016/j.ijrobp.2003.09.059
ContentType Journal Article
Copyright Piroth et al; licensee BioMed Central Ltd. 2009
COPYRIGHT 2009 BioMed Central Ltd.
2009 Piroth et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2009 Piroth et al; licensee BioMed Central Ltd. 2009 Piroth et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Piroth et al; licensee BioMed Central Ltd. 2009
– notice: COPYRIGHT 2009 BioMed Central Ltd.
– notice: 2009 Piroth et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2009 Piroth et al; licensee BioMed Central Ltd. 2009 Piroth et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7X7
7XB
88E
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FR3
FYUFA
GHDGH
K9.
M0S
M1P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/1748-717X-4-57
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1748-717X
EndPage 57
ExternalDocumentID oai_doaj_org_article_bf58f328cd804cca9a4ae5762cca0b4b
PMC2787527
2504131621
A213349682
19930657
10_1186_1748_717X_4_57
Genre Clinical Trial, Phase II
Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID ---
0R~
123
29P
2VQ
2WC
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
H13
HMCUK
HYE
I-F
IAO
IHR
INH
INR
IPNFZ
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SMD
SOJ
TUS
UKHRP
WOQ
WOW
~8M
AAYXX
ALIPV
CITATION
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c561t-d5fe269454e1e76a15175b10d765c292d3d1145aba82e67bdd6cecf7fd8402173
IEDL.DBID C6C
ISSN 1748-717X
IngestDate Wed Aug 27 00:59:06 EDT 2025
Thu Aug 21 17:28:40 EDT 2025
Fri Sep 05 04:41:45 EDT 2025
Sat Jul 26 02:22:09 EDT 2025
Tue Jun 10 21:21:31 EDT 2025
Thu Jan 02 23:09:09 EST 2025
Tue Jul 01 03:39:13 EDT 2025
Thu Apr 24 22:53:14 EDT 2025
Sat Sep 06 07:29:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Target Volume
Normal Tissue Complication Probability
Glioblastoma Multiforme
Conformity Index
Positron Emission Tomography
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c561t-d5fe269454e1e76a15175b10d765c292d3d1145aba82e67bdd6cecf7fd8402173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://doi.org/10.1186/1748-717X-4-57
PMID 19930657
PQID 902309494
PQPubID 55355
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_bf58f328cd804cca9a4ae5762cca0b4b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2787527
proquest_miscellaneous_734168209
proquest_journals_902309494
gale_infotracacademiconefile_A213349682
pubmed_primary_19930657
crossref_citationtrail_10_1186_1748_717X_4_57
crossref_primary_10_1186_1748_717X_4_57
springer_journals_10_1186_1748_717X_4_57
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-11-23
PublicationDateYYYYMMDD 2009-11-23
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-23
  day: 23
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Radiation oncology (London, England)
PublicationTitleAbbrev Radiat Oncol
PublicationTitleAlternate Radiat Oncol
PublicationYear 2009
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References R Stupp (194_CR1) 2005; 352
NM Bleehen (194_CR3) 1991; 64
R Stupp (194_CR2) 2009; 10
M Weckesser (194_CR20) 1998; 25
A Taghian (194_CR7) 1996; 35
NJ Laperriere (194_CR42) 1998; 41
M Pinkawa (194_CR52) 2009; 93
C Weltens (194_CR47) 2001; 60
EP Jansen (194_CR35) 2000; 56
RaySearch Laboratories AB SS (194_CR30) 2003
B Emami (194_CR25) 1991; 21
M Pinkawa (194_CR51) 2007; 183
XS Qi (194_CR61) 2006; 64
L Cozzi (194_CR48) 2004; 58
JS Loeffler (194_CR9) 1992; 10
M Fuss (194_CR17) 2004; 3
C Burman (194_CR31) 1991; 21
WA Tome (194_CR60) 2002; 29
I Paddick (194_CR27) 2000; 3
M Rickhey (194_CR44) 2008; 184
C Thilmann (194_CR58) 2001; 96
194_CR23
194_CR24
SM MacDonald (194_CR56) 2007; 8
IH Lee (194_CR13) 2009; 73
WD Irish (194_CR38) 1997; 24
W Rachinger (194_CR16) 2005; 57
KJ Langen (194_CR18) 2006; 33
G Luxton (194_CR32) 2008; 53
A Narayana (194_CR55) 2006; 64
A Niemierko (194_CR29) 1998; 84
DC Shrieve (194_CR36) 1999; 90
G Popperl (194_CR21) 2004; 31
C Thieke (194_CR62) 2003; 30
A Pirzkall (194_CR53) 2000; 48
T Ogawa (194_CR14) 1993; 186
EL Chang (194_CR59) 2007; 68
A Taghian (194_CR6) 1995; 32
M Tanaka (194_CR37) 2005; 6
D Pauleit (194_CR15) 2005; 128
A Niemierko (194_CR28) 1997; 24
H Vees (194_CR45) 2009; 36
MJ Winger (194_CR40) 1989; 26
P Roesch (194_CR19) 2003
C Tsien (194_CR41) 2009; 73
MF Chan (194_CR54) 2003; 28
JN Sarkaria (194_CR10) 1995; 32
MD Walker (194_CR4) 1979; 5
AL Grosu (194_CR12) 2005; 63
A Taghian (194_CR8) 1998; 42
IS Grills (194_CR49) 2003; 57
FH Hochberg (194_CR34) 1980; 30
M Weckesser (194_CR22) 2005; 32
L Souhami (194_CR11) 2004; 60
RG Selker (194_CR43) 2002; 51
A Taghian (194_CR5) 1993; 25
U Hermanto (194_CR57) 2007; 67
VA Semenenko (194_CR33) 2008; 35
WA Tome (194_CR26) 2000; 47
NS Litofsky (194_CR39) 2006; 20
DC Weber (194_CR46) 2008; 3
RN Selvaraj (194_CR50) 2007; 32
16168843 - Int J Radiat Oncol Biol Phys. 2005 Oct 1;63(2):511-9
8380568 - Int J Radiat Oncol Biol Phys. 1993 Jan 15;25(2):243-9
14529795 - Int J Radiat Oncol Biol Phys. 2003 Nov 1;57(3):875-90
12182772 - Neurosurgery. 2002 Aug;51(2):343-55; discussion 355-7
14750894 - Technol Cancer Res Treat. 2004 Feb;3(1):59-67
19717197 - Radiother Oncol. 2009 Nov;93(2):213-9
18818918 - Eur J Nucl Med Mol Imaging. 2009 Feb;36(2):182-93
19175141 - Med Phys. 2008 Dec;35(12):5851-60
18723297 - Int J Radiat Oncol Biol Phys. 2009 Mar 1;73(3):699-708
9620236 - Tumori. 1998 Mar-Apr;84(2):140-3
9719109 - Int J Radiat Oncol Biol Phys. 1998 Jul 15;41(5):1005-11
15650870 - Eur J Nucl Med Mol Imaging. 2005 Apr;32(4):422-9
10863087 - Int J Radiat Oncol Biol Phys. 2000 Jul 1;47(4):1137-43
6252514 - Neurology. 1980 Sep;30(9):907-11
19016044 - Strahlenther Onkol. 2008 Oct;184(10):536-42
16458777 - Int J Radiat Oncol Biol Phys. 2006 Mar 1;64(3):892-7
15465203 - Int J Radiat Oncol Biol Phys. 2004 Nov 1;60(3):853-60
7607967 - Int J Radiat Oncol Biol Phys. 1995 Jul 15;32(4):931-41
15689365 - Brain. 2005 Mar;128(Pt 3):678-87
18834673 - Int J Radiat Oncol Biol Phys. 2009 Feb 1;73(2):479-85
16631076 - Nucl Med Biol. 2006 Apr;33(3):287-94
16145529 - Neurosurgery. 2005 Sep;57(3):505-11; discussion 505-11
17592465 - J Appl Clin Med Phys. 2007;8(2):47-60
11410304 - Radiother Oncol. 2001 Jul;60(1):49-59
19108742 - Radiat Oncol. 2008;3:44
14751535 - Int J Radiat Oncol Biol Phys. 2004 Feb 1;58(2):617-24
10927133 - Radiother Oncol. 2000 Aug;56(2):151-6
1654987 - Br J Cancer. 1991 Oct;64(4):769-74
10413158 - J Neurosurg. 1999 Jan;90(1):72-7
19269895 - Lancet Oncol. 2009 May;10(5):459-66
15248032 - Eur J Nucl Med Mol Imaging. 2004 Nov;31(11):1464-70
14528955 - Med Phys. 2003 Sep;30(9):2332-9
11745504 - Int J Cancer. 2001 Dec 20;96(6):341-9
11143252 - J Neurosurg. 2000 Dec;93 Suppl 3:219-22
12148742 - Med Phys. 2002 Jul;29(7):1590-8
2032883 - Int J Radiat Oncol Biol Phys. 1991 May 15;21(1):123-35
8751425 - Int J Radiat Oncol Biol Phys. 1996 Jul 15;35(5):1124-5
9788430 - Int J Radiat Oncol Biol Phys. 1998 Sep 1;42(2):464
16709021 - Neurosurg Focus. 2006;20(4):E16
8380108 - Radiology. 1993 Jan;186(1):45-53
2032882 - Int J Radiat Oncol Biol Phys. 1991 May 15;21(1):109-22
9398977 - Can J Neurol Sci. 1997 Nov;24(4):307-12
17980832 - Med Dosim. 2007 Winter;32(4):299-304
1325539 - J Clin Oncol. 1992 Sep;10(9):1379-85
17306935 - Int J Radiat Oncol Biol Phys. 2007 May 1;68(1):144-50
231022 - Int J Radiat Oncol Biol Phys. 1979 Oct;5(10):1725-31
15758009 - N Engl J Med. 2005 Mar 10;352(10):987-96
17208388 - Int J Radiat Oncol Biol Phys. 2007 Mar 15;67(4):1135-44
16321763 - Lancet Oncol. 2005 Dec;6(12):953-60
9029544 - Med Phys. 1997 Jan;24(1):103-10
9473263 - Eur J Nucl Med. 1998 Feb;25(2):150-6
17225942 - Strahlenther Onkol. 2007 Jan;183(1):23-9
14684191 - Med Dosim. 2003 Winter;28(4):261-5
7721644 - Int J Radiat Oncol Biol Phys. 1995 Apr 30;32(1):99-104
16580506 - Int J Radiat Oncol Biol Phys. 2006 Apr 1;64(5):1570-80
2684003 - Ann Neurol. 1989 Oct;26(4):531-4
11121636 - Int J Radiat Oncol Biol Phys. 2000 Dec 1;48(5):1371-80
18182685 - Phys Med Biol. 2008 Jan 7;53(1):23-36
References_xml – volume: 21
  start-page: 123
  issue: 1
  year: 1991
  ident: 194_CR31
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/0360-3016(91)90172-Z
– volume: 73
  start-page: 479
  issue: 2
  year: 2009
  ident: 194_CR13
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2008.04.050
– ident: 194_CR24
– volume: 57
  start-page: 875
  issue: 3
  year: 2003
  ident: 194_CR49
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(03)00743-0
– volume: 32
  start-page: 299
  issue: 4
  year: 2007
  ident: 194_CR50
  publication-title: Med Dosim
  doi: 10.1016/j.meddos.2007.03.001
– volume: 35
  start-page: 1124
  issue: 5
  year: 1996
  ident: 194_CR7
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/0360-3016(96)85888-3
– volume: 56
  start-page: 151
  issue: 2
  year: 2000
  ident: 194_CR35
  publication-title: Radiother Oncol
  doi: 10.1016/S0167-8140(00)00216-4
– volume: 42
  start-page: 464
  issue: 2
  year: 1998
  ident: 194_CR8
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(98)00231-4
– volume: 3
  start-page: 44
  year: 2008
  ident: 194_CR46
  publication-title: Radiat Oncol
  doi: 10.1186/1748-717X-3-44
– volume: 32
  start-page: 422
  issue: 4
  year: 2005
  ident: 194_CR22
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-004-1705-8
– volume: 84
  start-page: 140
  issue: 2
  year: 1998
  ident: 194_CR29
  publication-title: Tumori
  doi: 10.1177/030089169808400208
– volume: 21
  start-page: 109
  issue: 1
  year: 1991
  ident: 194_CR25
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/0360-3016(91)90171-Y
– volume: 48
  start-page: 1371
  issue: 5
  year: 2000
  ident: 194_CR53
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(00)00772-0
– volume: 33
  start-page: 287
  issue: 3
  year: 2006
  ident: 194_CR18
  publication-title: Nucl Med Biol
  doi: 10.1016/j.nucmedbio.2006.01.002
– volume: 64
  start-page: 769
  issue: 4
  year: 1991
  ident: 194_CR3
  publication-title: Br J Cancer
  doi: 10.1038/bjc.1991.396
– volume: 128
  start-page: 678
  issue: Pt 3
  year: 2005
  ident: 194_CR15
  publication-title: Brain
  doi: 10.1093/brain/awh399
– volume: 32
  start-page: 931
  issue: 4
  year: 1995
  ident: 194_CR10
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/0360-3016(94)00621-Q
– volume: 60
  start-page: 49
  issue: 1
  year: 2001
  ident: 194_CR47
  publication-title: Radiother Oncol
  doi: 10.1016/S0167-8140(01)00371-1
– volume: 35
  start-page: 5851
  issue: 12
  year: 2008
  ident: 194_CR33
  publication-title: Med Phys
  doi: 10.1118/1.3013556
– volume: 64
  start-page: 1570
  issue: 5
  year: 2006
  ident: 194_CR61
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2005.12.022
– volume: 184
  start-page: 536
  issue: 10
  year: 2008
  ident: 194_CR44
  publication-title: Strahlenther Onkol
  doi: 10.1007/s00066-008-1883-6
– volume: 20
  start-page: E16
  issue: 4
  year: 2006
  ident: 194_CR39
  publication-title: Neurosurg Focus
  doi: 10.3171/foc.2006.20.4.10
– volume: 25
  start-page: 150
  issue: 2
  year: 1998
  ident: 194_CR20
  publication-title: Eur J Nucl Med
  doi: 10.1007/s002590050208
– volume: 25
  start-page: 243
  issue: 2
  year: 1993
  ident: 194_CR5
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/0360-3016(93)90345-V
– volume: 53
  start-page: 23
  issue: 1
  year: 2008
  ident: 194_CR32
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/53/1/002
– volume: 90
  start-page: 72
  issue: 1
  year: 1999
  ident: 194_CR36
  publication-title: J Neurosurg
  doi: 10.3171/jns.1999.90.1.0072
– volume: 73
  start-page: 699
  issue: 3
  year: 2009
  ident: 194_CR41
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2008.05.034
– volume: 47
  start-page: 1137
  issue: 4
  year: 2000
  ident: 194_CR26
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(00)00502-2
– volume: 57
  start-page: 505
  issue: 3
  year: 2005
  ident: 194_CR16
  publication-title: Neurosurgery
  doi: 10.1227/01.NEU.0000171642.49553.B0
– volume: 63
  start-page: 511
  issue: 2
  year: 2005
  ident: 194_CR12
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2005.01.056
– volume: 36
  start-page: 182
  issue: 2
  year: 2009
  ident: 194_CR45
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-008-0943-6
– volume: 64
  start-page: 892
  issue: 3
  year: 2006
  ident: 194_CR55
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2005.05.067
– volume: 31
  start-page: 1464
  issue: 11
  year: 2004
  ident: 194_CR21
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-004-1590-1
– volume: 26
  start-page: 531
  issue: 4
  year: 1989
  ident: 194_CR40
  publication-title: Ann Neurol
  doi: 10.1002/ana.410260406
– volume: 68
  start-page: 144
  issue: 1
  year: 2007
  ident: 194_CR59
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2006.12.009
– volume: 24
  start-page: 103
  issue: 1
  year: 1997
  ident: 194_CR28
  publication-title: Med Phys
  doi: 10.1118/1.598063
– volume: 3
  start-page: 59
  issue: 1
  year: 2004
  ident: 194_CR17
  publication-title: Technol Cancer Res Treat
  doi: 10.1177/153303460400300107
– volume: 29
  start-page: 1590
  issue: 7
  year: 2002
  ident: 194_CR60
  publication-title: Med Phys
  doi: 10.1118/1.1485060
– volume: 41
  start-page: 1005
  issue: 5
  year: 1998
  ident: 194_CR42
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(98)00159-X
– volume: 93
  start-page: 213
  issue: 2
  year: 2009
  ident: 194_CR52
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2009.07.014
– volume: 32
  start-page: 99
  issue: 1
  year: 1995
  ident: 194_CR6
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/0360-3016(94)00494-6
– volume: 96
  start-page: 341
  issue: 6
  year: 2001
  ident: 194_CR58
  publication-title: Int J Cancer
  doi: 10.1002/ijc.1042
– volume: 10
  start-page: 459
  issue: 5
  year: 2009
  ident: 194_CR2
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(09)70025-7
– volume: 67
  start-page: 1135
  issue: 4
  year: 2007
  ident: 194_CR57
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2006.10.032
– volume: 30
  start-page: 2332
  issue: 9
  year: 2003
  ident: 194_CR62
  publication-title: Med Phys
  doi: 10.1118/1.1598852
– volume-title: Philips White Paper
  year: 2003
  ident: 194_CR19
– volume: 51
  start-page: 343
  issue: 2
  year: 2002
  ident: 194_CR43
  publication-title: Neurosurgery
  doi: 10.1097/00006123-200208000-00009
– ident: 194_CR23
– volume: 30
  start-page: 907
  issue: 9
  year: 1980
  ident: 194_CR34
  publication-title: Neurology
  doi: 10.1212/WNL.30.9.907
– volume: 24
  start-page: 307
  issue: 4
  year: 1997
  ident: 194_CR38
  publication-title: Can J Neurol Sci
  doi: 10.1017/S0317167100032972
– volume: 6
  start-page: 953
  issue: 12
  year: 2005
  ident: 194_CR37
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(05)70395-8
– volume: 8
  start-page: 47
  issue: 2
  year: 2007
  ident: 194_CR56
  publication-title: J Appl Clin Med Phys
  doi: 10.1120/jacmp.v8i2.2423
– volume: 5
  start-page: 1725
  issue: 10
  year: 1979
  ident: 194_CR4
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/0360-3016(79)90553-4
– volume: 186
  start-page: 45
  issue: 1
  year: 1993
  ident: 194_CR14
  publication-title: Radiology
  doi: 10.1148/radiology.186.1.8380108
– volume: 60
  start-page: 853
  issue: 3
  year: 2004
  ident: 194_CR11
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2004.04.011
– volume-title: RaySearch White Paper
  year: 2003
  ident: 194_CR30
– volume: 28
  start-page: 261
  issue: 4
  year: 2003
  ident: 194_CR54
  publication-title: Med Dosim
  doi: 10.1016/j.meddos.2003.08.004
– volume: 352
  start-page: 987
  issue: 10
  year: 2005
  ident: 194_CR1
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa043330
– volume: 10
  start-page: 1379
  issue: 9
  year: 1992
  ident: 194_CR9
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.1992.10.9.1379
– volume: 183
  start-page: 23
  issue: 1
  year: 2007
  ident: 194_CR51
  publication-title: Strahlenther Onkol
  doi: 10.1007/s00066-007-1588-2
– volume: 3
  start-page: 219
  year: 2000
  ident: 194_CR27
  publication-title: J Neurosurg
  doi: 10.3171/jns.2000.93.supplement_3.0219
– volume: 58
  start-page: 617
  issue: 2
  year: 2004
  ident: 194_CR48
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2003.09.059
– reference: 15650870 - Eur J Nucl Med Mol Imaging. 2005 Apr;32(4):422-9
– reference: 16580506 - Int J Radiat Oncol Biol Phys. 2006 Apr 1;64(5):1570-80
– reference: 8751425 - Int J Radiat Oncol Biol Phys. 1996 Jul 15;35(5):1124-5
– reference: 15248032 - Eur J Nucl Med Mol Imaging. 2004 Nov;31(11):1464-70
– reference: 18723297 - Int J Radiat Oncol Biol Phys. 2009 Mar 1;73(3):699-708
– reference: 19269895 - Lancet Oncol. 2009 May;10(5):459-66
– reference: 12182772 - Neurosurgery. 2002 Aug;51(2):343-55; discussion 355-7
– reference: 18818918 - Eur J Nucl Med Mol Imaging. 2009 Feb;36(2):182-93
– reference: 6252514 - Neurology. 1980 Sep;30(9):907-11
– reference: 1325539 - J Clin Oncol. 1992 Sep;10(9):1379-85
– reference: 9719109 - Int J Radiat Oncol Biol Phys. 1998 Jul 15;41(5):1005-11
– reference: 8380568 - Int J Radiat Oncol Biol Phys. 1993 Jan 15;25(2):243-9
– reference: 10413158 - J Neurosurg. 1999 Jan;90(1):72-7
– reference: 17592465 - J Appl Clin Med Phys. 2007;8(2):47-60
– reference: 11143252 - J Neurosurg. 2000 Dec;93 Suppl 3:219-22
– reference: 17208388 - Int J Radiat Oncol Biol Phys. 2007 Mar 15;67(4):1135-44
– reference: 8380108 - Radiology. 1993 Jan;186(1):45-53
– reference: 16631076 - Nucl Med Biol. 2006 Apr;33(3):287-94
– reference: 9620236 - Tumori. 1998 Mar-Apr;84(2):140-3
– reference: 17306935 - Int J Radiat Oncol Biol Phys. 2007 May 1;68(1):144-50
– reference: 9473263 - Eur J Nucl Med. 1998 Feb;25(2):150-6
– reference: 9029544 - Med Phys. 1997 Jan;24(1):103-10
– reference: 14684191 - Med Dosim. 2003 Winter;28(4):261-5
– reference: 9398977 - Can J Neurol Sci. 1997 Nov;24(4):307-12
– reference: 10863087 - Int J Radiat Oncol Biol Phys. 2000 Jul 1;47(4):1137-43
– reference: 16709021 - Neurosurg Focus. 2006;20(4):E16
– reference: 15465203 - Int J Radiat Oncol Biol Phys. 2004 Nov 1;60(3):853-60
– reference: 7607967 - Int J Radiat Oncol Biol Phys. 1995 Jul 15;32(4):931-41
– reference: 1654987 - Br J Cancer. 1991 Oct;64(4):769-74
– reference: 16168843 - Int J Radiat Oncol Biol Phys. 2005 Oct 1;63(2):511-9
– reference: 18182685 - Phys Med Biol. 2008 Jan 7;53(1):23-36
– reference: 14529795 - Int J Radiat Oncol Biol Phys. 2003 Nov 1;57(3):875-90
– reference: 2032883 - Int J Radiat Oncol Biol Phys. 1991 May 15;21(1):123-35
– reference: 19108742 - Radiat Oncol. 2008;3:44
– reference: 9788430 - Int J Radiat Oncol Biol Phys. 1998 Sep 1;42(2):464
– reference: 10927133 - Radiother Oncol. 2000 Aug;56(2):151-6
– reference: 11410304 - Radiother Oncol. 2001 Jul;60(1):49-59
– reference: 2032882 - Int J Radiat Oncol Biol Phys. 1991 May 15;21(1):109-22
– reference: 12148742 - Med Phys. 2002 Jul;29(7):1590-8
– reference: 11745504 - Int J Cancer. 2001 Dec 20;96(6):341-9
– reference: 14750894 - Technol Cancer Res Treat. 2004 Feb;3(1):59-67
– reference: 18834673 - Int J Radiat Oncol Biol Phys. 2009 Feb 1;73(2):479-85
– reference: 19175141 - Med Phys. 2008 Dec;35(12):5851-60
– reference: 2684003 - Ann Neurol. 1989 Oct;26(4):531-4
– reference: 16145529 - Neurosurgery. 2005 Sep;57(3):505-11; discussion 505-11
– reference: 11121636 - Int J Radiat Oncol Biol Phys. 2000 Dec 1;48(5):1371-80
– reference: 16321763 - Lancet Oncol. 2005 Dec;6(12):953-60
– reference: 19717197 - Radiother Oncol. 2009 Nov;93(2):213-9
– reference: 19016044 - Strahlenther Onkol. 2008 Oct;184(10):536-42
– reference: 16458777 - Int J Radiat Oncol Biol Phys. 2006 Mar 1;64(3):892-7
– reference: 7721644 - Int J Radiat Oncol Biol Phys. 1995 Apr 30;32(1):99-104
– reference: 14751535 - Int J Radiat Oncol Biol Phys. 2004 Feb 1;58(2):617-24
– reference: 17225942 - Strahlenther Onkol. 2007 Jan;183(1):23-9
– reference: 17980832 - Med Dosim. 2007 Winter;32(4):299-304
– reference: 15689365 - Brain. 2005 Mar;128(Pt 3):678-87
– reference: 14528955 - Med Phys. 2003 Sep;30(9):2332-9
– reference: 15758009 - N Engl J Med. 2005 Mar 10;352(10):987-96
– reference: 231022 - Int J Radiat Oncol Biol Phys. 1979 Oct;5(10):1725-31
SSID ssj0045309
Score 2.1212034
Snippet Background Biological brain tumor imaging using O-(2-[ 18 F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted...
Biological brain tumor imaging using O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose...
Background Biological brain tumor imaging using O-(2-[.sup.18.sup.F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally...
Abstract Background: Biological brain tumor imaging using O-(2-[18 F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally...
Abstract Background Biological brain tumor imaging using O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 57
SubjectTerms Acquisitions & mergers
Adult
Aged
Biomedical and Life Sciences
Biomedicine
Brain
Brain cancer
Brain Neoplasms - radiotherapy
Cancer Research
Care and treatment
Diagnosis
Female
Glioblastoma - radiotherapy
Glioblastoma multiforme
Health aspects
Hospitals
Humans
Imaging
Intensity-modulated radiotherapy
Magnetic Resonance Imaging
Male
Medical imaging
Methods
Middle Aged
Oncology
PET imaging
Positron-Emission Tomography
Radiation therapy
Radiology
Radiopharmaceuticals
Radiotherapy
Radiotherapy Planning, Computer-Assisted - methods
Radiotherapy, Conformal
Radiotherapy, Intensity-Modulated
Studies
Tomography
Tyrosine - analogs & derivatives
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4s3SgnxAgovVxLET-1hKqxZpEUJbaW-WH5OyUpugbvaX8Ic7dh7dLSAu3LKJs87Yn2e-kcczhLy3TkiOwGBQ25oJUdTM2gBMeOQWTiElSMej51_LswvxZSmXW6W-YkxYnx64H7hDV0tVF1z5oDKB3WkrLCBJ5nidOeGi9s10NjpTvQ4WskjBHUi3FUOHZTmka8xVeTjdY4JFo7RljlLW_t9185Zxuh84eW_3NBml0yfk8cAm6VEvxVPyAJpn5OF82C9_Tn6dj9kgAkM6ve7o-fz7grY3tGCf2TFexrj3S3p6smDfThY02rRA7aZrWYxhx7_Hn32wOO31GA3xAHtPNCkSXnp5tWodUvCuvbY0hSdGGgyUUUtDu15dx5Jdnvqp3uELcoHdHZ-xoQwD80iuOhZkDfG8qxSQQ1Va5AiVdHkWqlJ6rnkoAjpV0jqrOJSVC6H04OuqDug8osdTvCR7TdvAa0IFaozcAqIBWQxobZXVDkDkwAEUuBlh42wYP-Qoj6UyrkzyVVRp4uyZOHtGGFnNyIep_c8-O8dfW36Kkzu1ilm10w3EmhmwZv6FNewuQsPEtY-f5e1whAGFi1m0zBFHj1_oUvEZ2R_RYwalsDY6-ntaaDEjdHqKqzlu0dgG2s3aVEgq8PVMz8irHmp3ciGTRL6IklQ7INwRafdJs_qREoZz1MqS45sfR7jefdSfh-vN_xiuffIo7b3lOePFAdnrbjbwFilc596l1XoLDTJE2w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgL4s1SQD4glYvVjWMnzgmV0qpFWoTQVtqb5cekXandlN3sL-EPM5N402553PKwEzsznvkmM55h7IPzSktkDAG1q4VSeS2ciyBUQGzhDUKCbnv05Ftxcqa-zvQsxeasUljlRiZ2gjo2gf6R71cElitVqU_XPwUVjSLnaqqgcZ89yBCIUOWGcjbYW0pjh5SnMTPFPmJvI9B6mQklSBvd0kNduv4_hfItrXQ3YvKO27TTRsdP2OMEI_lBT_en7B4snrGHk-Qof85-nW7SQESBOHrV8tPJjylvljwXX8QhHlLA-zk_PpqK70dTTsoscrduG0HB6_h4PO2jxHkvwHiknes9wuSIdPn55bzxiL3b5srxLi6R8C9wwR2PzWp-RbW6Ag9DocMX7Axfd3giUv0FERBVtSLqGmijq1aQQVk4BAel9tk4loUOspIxj2hNaeedkVCUPsYiQKjLOqLViKZO_pLtLJoFvGZcoajIHCAbIHyBqnLGVR5AZSABDPgRExtq2JCSk1ONjEvbGSmmsEQ9S9SzyupyxPaG9td9Wo5_tvxMxB1aUTrt7kKzPLdpdVpfa1Pn0oRoxgp5unLKAVpiEo_HXuHw9og1LC16HFZwae8CTo7SZ9kDiaa-qgojR2x3wz02SYOVHXh3xPhwF5cx-WbcApr1ypaIJrD7uBqxVz2r3cwLISQCRZxJucWEW1PavrOYX3SZwiWKYy2x58cNu94M6u-f681_x7_LHnXetCwTMn_LdtrlGt4hKGv9-27p_QZh-Thi
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZgSIgXxG-yAfID0ngxNI6d2A8IjbFpQypCqJX6ZtnxpVTqGtamEvwd_MOcnTSl25B4S2I7sePv7O905ztCXlsnJEdgMKhsxYTIKmatByZK5BZOISWIx6OHX_Kzsfg8kZOt_1P3A1c3qnYhn9R4OX_78_LXBxT491HgVf4OSbViqJZMmGCyuE3uRFtRcOMTvUVByGygu6CN19vsbEoxdv_1FfqvLeqq--QVG2rcmk4fkPsdp6RHLQgekluweETuDjur-WPy-3wTE8IzJNWrhp4Pv41ovaQZ-8SO8TJ4v0_p6cmIfT0Z0bCzeWrXTc2CJzu-Hm9bl3HarmbUh2PsLd2kSHvpdD6rHRLxpr6wNDopBjIMlFFLfb2aXYTEXSUt-6yHT8gYP3d8xrpkDKxEitUwLysIp16lgBSK3CJTKKRLB77IZck195lH1UpaZxWHvHDe5yWUVVF5VCFR78mekr1FvYDnhApcN1ILiAnkMqC1VVY7AJECB1DgEsI2s2HKLlJ5SJgxN1FjUbkJs2fC7BlhZJGQw77-jzZGxz9rfgyT29cKsbXjg3o5NZ2oGldJVWVclV4NBAJcW2EB1TKO1wMnsHuHARomYBK7VdruIAMOLsTSMkcc9X6hc8UTcrBBj9kg2-ig9WmhRUJoX4oyHQw1dgH1emUKpBbYfKAT8qyF2nZcyCeRNeJIih0Q7gxpt2Qx-x7DhnNcmyXHlm82cN126ubftf__VQ_IvWhnS1PGsxdkr1mu4SXStca9inL4B7gtPns
  priority: 102
  providerName: Scholars Portal
Title Integrated-boost IMRT or 3-D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme - a dosimetric comparison
URI https://link.springer.com/article/10.1186/1748-717X-4-57
https://www.ncbi.nlm.nih.gov/pubmed/19930657
https://www.proquest.com/docview/902309494
https://www.proquest.com/docview/734168209
https://pubmed.ncbi.nlm.nih.gov/PMC2787527
https://doaj.org/article/bf58f328cd804cca9a4ae5762cca0b4b
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9swFLYGSNNept1X2Co_TGIv1hrHju3H0hVBpSLEitQ3y45PoBIkE01_yf4wx0laKGzSXpqbndo9F3-n52JCvjkvJEfGYFC4ggmRFsy5AEzkiC28RkjQpEdPz7KTSzGZy3kXIBtzYR777xOd_UDArBmaHHMmmFQ7ZE-i0o2cPMpGa40rZDowXUHG5322FpymLv9z7fto-XkaGvnEP9osO8dvyOsOL9JhS-C35AWU78jLaecRf0_-nK7rPQSGgHlZ09PpxYxWdzRlP9kIT2Nk-xU9Hs_Y-XhG46oVqFvVFYtR6vh6vGzDwWmrqWiIKeotlKQIaenVzaLyCLLr6tbRJgAxAl2gjDoaquXiNm7KldN8s6PhB3KJXzc6Yd1GCyxH-FSzIAuIGa1SQAIqc4gClPTJIKhM5tzwkAY0m6TzTnPIlA8hyyEvVBHQPESbJv1IdsuqhM-ECtQJiQOkN-IUMMZpZzyASIADaPA9wtbUsHlXhTxuhnFjG2tEZzZSz0bqWWGl6pHDTfvfbf2Nf7Y8isTdtIp1s5sbyE62E0PrC6mLlOs86IFA5jVOOECTi-P5wAsc3mFkDRulG4eVuy5JAScX62TZIUebXphM8x45WHOP7cR-aU206Iwwokfo5inKa3TCuBKq1dIqhA3YfWB65FPLag_zQqyIiBBnoraYcGtK20_KxXVTEpyj3pUce35fs-vDoP7-c-3_f9MD8qrxoSUJ4-kXslvfreArQrHa98mOmqs-2RsOJ78meDwan51f9Bvp7Dd_b-DnVOh7Wrk1zw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECVSB2h7Kbqmbrrw0CK9ELEoUqIOQZHFgd3ERhA4QG4sKVKugcRKbRlFv6Pf03_rjBYnTpdbblooYagZzrwRZyHkvbFCchAM5jOTMSHCjBnjPBMpYAurABKU6dGDYdQ7E5_P5fka-dXkwmBYZaMTS0Xt8hT_kW8nCJYTkYhPV98YNo3CzdWmg4apOyu4nbLCWJ3XceR_fAcPbr7TPwB2f-D8sDva77G6yQBLAToUzMnMYzanFD7wcWTAAsbSBh0XRzLlCXehA5dBGmsU91FsnYtSn2Zx5sA1AjwfwnvvkXWB_09aZH2vOzw5bUyBkEByXSkyUNE2oH_FwH86Z4KhPbxhCcuGAX-ahRt28XbM5q2N29IeHj4mj2ogS3cryXtC1vz0Kbk_qLfqn5Gf_aYQhWOA5OcF7Q9ORzSf0ZAdsH04xJD7MYWvxU66I4rm1FGzKHKG4fPwejit4tRppUKpw9z5CuNSwNp0fDHJLaD_Ir80tIyMRATuKaOGunw-ucRuYSlNl60Wn5OzO2HOC9Ka5lP_klAByiowHgQRAJRPEqNMYr0XgefeK2_bhDXc0GldHh27dFzo0k1SkUbuaeSeFlrGbbK1HH9VFQb558g9ZO5yFBb0Li_ks7Gu9YO2mVRZyFXqVEfAqkqMMB58QQ7HHSuAvC0UDY1qB8hKTZ09AZPDAl56lwch1v5XvE02G-nRtT6a6-XqaRO6vAuKBHeHzNTni7mOAc_A452kTTYqUbueF4BYgKowk3hFCFemtHpnOvla1irnYBAkhyc_NuJ6TdTfP9er_9L_jjzojQbH-rg_PNokD8u9vSBgPHxNWsVs4d8ARCzs23ohUvLlrtf-b06de6Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBZdC2UvY_dm3UUPg-5FNJYlW4K9ZG1Dky2lbCnkTUjWcRZo7ZI4v2R_eEe-pEu7wd5sS7Iln4u-w7mIkI_WCcmRMRjkNmdCxDmz1gMTGWILpxAS1OnRk4vk_EqMZ3K2Qz53uTB1tHvnkmxyGkKVpqI6vvV5I-IqOUYYrRgaIjMmmEwfkT0ltUbTa28wGP8Yd5pYyLiv20KND0dtbUR1vf6HWvmPbel-yOQ9v2m9HQ2fkictjqSDhvDPyA4Uz8n-pPWUvyC_Rl0dCM8QSK8qOpp8n9JySWN2yk7wMkS8z-nwbMouz6Y07Gae2nVVsvAr8PV424SJ00aDUR9S1xuISRHq0vn1onQIvqvyxtI6MDEAYKCMWurL1eImHNaV0Wxz0uFLcoWfOzln7QEMLENYVTEvcwiZrlJABGliER2k0kV9nyYy45r72KM5Ja2zikOSOu-TDLI8zT2ajWjrxK_IblEWcECoQF0RWUA-QPwCWltltQMQEXAABa5HWEcNk7XVycMhGdemtlJUYgL1TKCeEUamPXK06X_b1OX4Z88vgbibXqGedv2gXM5NK57G5VLlMVeZV32BTK2tsICmGMfrvhM4vaPAGiZIPU4rs23yAi4u1M8yA462vtCJ4j1y2HGPadXByuhg6WmhRY_QTSvKcXDO2ALK9cqkCCdweF_3yOuG1e7WhRgSkSKuJN1iwq0lbbcUi591qXCO-lhyHPmpY9e7Sf39d735_64fyP7l6dB8G118PSSPazdbFDEevyW71XIN7xCtVe59K5S_AXQsPKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated-boost+IMRT+or+3-D-CRT+using+FET-PET+based+auto-contoured+target+volume+delineation+for+glioblastoma+multiforme+-+a+dosimetric+comparison&rft.jtitle=Radiation+oncology+%28London%2C+England%29&rft.au=Piroth%2C+Marc+D&rft.au=Pinkawa%2C+Michael&rft.au=Holy%2C+Richard&rft.au=Stoffels%2C+Gabriele&rft.date=2009-11-23&rft.pub=BioMed+Central&rft.eissn=1748-717X&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1186%2F1748-717X-4-57&rft.externalDocID=10_1186_1748_717X_4_57
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-717X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-717X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-717X&client=summon