Integrated-boost IMRT or 3-D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme - a dosimetric comparison
Background Biological brain tumor imaging using O-(2-[ 18 F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach. The aim of this study was to compare inverse with f...
Saved in:
Published in | Radiation oncology (London, England) Vol. 4; no. 1; p. 57 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
23.11.2009
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1748-717X 1748-717X |
DOI | 10.1186/1748-717X-4-57 |
Cover
Abstract | Background
Biological brain tumor imaging using O-(2-[
18
F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach.
The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets.
Methods
In 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of ≥ 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy.
Results
After auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p < 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques.
Conclusion
In the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the achievable mean dose in the boost volume. With IB-IMRT a better homogeneity and conformity, compared to 3D-CRT, could be achieved. |
---|---|
AbstractList | Abstract Background Biological brain tumor imaging using O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach. The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets. Methods In 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of ≥ 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy. Results After auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p < 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques. Conclusion In the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the achievable mean dose in the boost volume. With IB-IMRT a better homogeneity and conformity, compared to 3D-CRT, could be achieved. Background Biological brain tumor imaging using O-(2-[ 18 F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach. The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets. Methods In 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of ≥ 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy. Results After auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p < 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques. Conclusion In the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the achievable mean dose in the boost volume. With IB-IMRT a better homogeneity and conformity, compared to 3D-CRT, could be achieved. Abstract Background: Biological brain tumor imaging using O-(2-[18 F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach. The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets. Methods: In 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of ≥ 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy. Results: After auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p < 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques. Conclusion: In the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the achievable mean dose in the boost volume. With IB-IMRT a better homogeneity and conformity, compared to 3D-CRT, could be achieved. Biological brain tumor imaging using O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach.The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets.BACKGROUNDBiological brain tumor imaging using O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach.The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets.In 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of > or = 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy.METHODSIn 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of > or = 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy.After auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p < 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques.RESULTSAfter auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p < 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques.In the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the achievable mean dose in the boost volume. With IB-IMRT a better homogeneity and conformity, compared to 3D-CRT, could be achieved.CONCLUSIONIn the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the achievable mean dose in the boost volume. With IB-IMRT a better homogeneity and conformity, compared to 3D-CRT, could be achieved. Background Biological brain tumor imaging using O-(2-[.sup.18.sup.F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach. The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets. Methods In 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of [greater than or equal to] 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy. Results After auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p [less than] 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques. Conclusion In the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the achievable mean dose in the boost volume. With IB-IMRT a better homogeneity and conformity, compared to 3D-CRT, could be achieved. Biological brain tumor imaging using O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach.The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets. In 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of > or = 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy. After auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p < 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques. In the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the achievable mean dose in the boost volume. With IB-IMRT a better homogeneity and conformity, compared to 3D-CRT, could be achieved. |
ArticleNumber | 57 |
Audience | Academic |
Author | Attieh, Charbel Piroth, Marc D Holy, Richard Kaiser, Hans J Eble, Michael J Pinkawa, Michael Demirel, Cengiz Stoffels, Gabriele Langen, Karl J |
AuthorAffiliation | 3 Institute of Neurosciences and Medicine, Research Centre Jülich, 52425 Jülich, Germany 4 JARA (Jülich Aachen Research Alliance) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße, 52428 Jülich, Germany 2 Department of Nuclear Medicine, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen Germany 1 Department of Radiation Oncology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen Germany |
AuthorAffiliation_xml | – name: 3 Institute of Neurosciences and Medicine, Research Centre Jülich, 52425 Jülich, Germany – name: 4 JARA (Jülich Aachen Research Alliance) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße, 52428 Jülich, Germany – name: 1 Department of Radiation Oncology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen Germany – name: 2 Department of Nuclear Medicine, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen Germany |
Author_xml | – sequence: 1 givenname: Marc D surname: Piroth fullname: Piroth, Marc D email: mpiroth@ukaachen.de organization: Department of Radiation Oncology, RWTH Aachen University Hospital, JARA (Jülich Aachen Research Alliance) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße – sequence: 2 givenname: Michael surname: Pinkawa fullname: Pinkawa, Michael organization: Department of Radiation Oncology, RWTH Aachen University Hospital, JARA (Jülich Aachen Research Alliance) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße – sequence: 3 givenname: Richard surname: Holy fullname: Holy, Richard organization: Department of Radiation Oncology, RWTH Aachen University Hospital, JARA (Jülich Aachen Research Alliance) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße – sequence: 4 givenname: Gabriele surname: Stoffels fullname: Stoffels, Gabriele organization: Institute of Neurosciences and Medicine, Research Centre Jülich, JARA (Jülich Aachen Research Alliance) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße – sequence: 5 givenname: Cengiz surname: Demirel fullname: Demirel, Cengiz organization: Department of Radiation Oncology, RWTH Aachen University Hospital – sequence: 6 givenname: Charbel surname: Attieh fullname: Attieh, Charbel organization: Department of Radiation Oncology, RWTH Aachen University Hospital – sequence: 7 givenname: Hans J surname: Kaiser fullname: Kaiser, Hans J organization: Department of Nuclear Medicine, RWTH Aachen University Hospital – sequence: 8 givenname: Karl J surname: Langen fullname: Langen, Karl J organization: Institute of Neurosciences and Medicine, Research Centre Jülich, JARA (Jülich Aachen Research Alliance) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße – sequence: 9 givenname: Michael J surname: Eble fullname: Eble, Michael J organization: Department of Radiation Oncology, RWTH Aachen University Hospital, JARA (Jülich Aachen Research Alliance) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19930657$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1v1DAQhiNURD_gyhFZXDhlazt2nFyQqm2BlYpAaJG4WY49CV4ldrGdSvwO_jDe3bK0laocPJ687-OxZ06LI-cdFMVrgheENPU5EawpBRE_SlZy8aw4OSSO7sXHxWmMG4wZr3D7ojgmbVvhmouT4s_KJRiCSmDKzvuY0OrztzXyAVXlZbnM4RytG9CHq3X59WqNOhXBIDUnX2rvkp9D3iYVBkjo1o_zBMjAaB2oZL1DfQYNo_XdqGLyk0LTPCabs1lXIoWMj3aCFKxG2k83Ktjo3cviea_GCK_u1rPiez5--am8_vJxtby4LjWvSSoN74HWLeMMCIhaEU4E7wg2ouaattRUhhDGVacaCrXojKk16F70pmGYElGdFas913i1kTfBTir8ll5ZuUv4MEgVktUjyK7nTV_RRpsGM61Vq5gCLmqaY9yxLrPe71k3czeB0eBSUOMD6MM_zv6Ug7-VVDSC020x7-4Awf-aISY52ahhHJUDP0cpKkbqhuI2K98-Um5yG1x-KdlimhvMWpZFi71oULl863qfT9X5MzDZ3Dnobc5fUFJVrM3cbHhz_wKHyv-NShawvUAHH2OAXmqbdl3OZDtKguV2IuV26OR26CSTO9vike1AfspwvjfELHQDhP_Xe8LxF1Qu8so |
CitedBy_id | crossref_primary_10_1016_j_radonc_2012_04_022 crossref_primary_10_2310_7290_2012_00022 crossref_primary_10_1007_s00066_021_01770_9 crossref_primary_10_1016_j_canrad_2016_02_007 crossref_primary_10_1016_j_radonc_2015_01_016 crossref_primary_10_1186_s12885_016_2399_6 crossref_primary_10_1053_j_semnuclmed_2012_06_001 crossref_primary_10_1007_s12149_013_0792_7 crossref_primary_10_2967_jnumed_116_180075 crossref_primary_10_1016_j_cpet_2010_02_004 crossref_primary_10_1186_s13014_016_0665_z crossref_primary_10_3892_ol_2011_384 crossref_primary_10_4236_ijmpcero_2021_102010 crossref_primary_10_1002_acm2_13151 crossref_primary_10_1093_neuonc_nov118 crossref_primary_10_2967_jnumed_115_171033 crossref_primary_10_1097_WCO_0000000000000574 crossref_primary_10_1016_j_ymeth_2017_05_019 crossref_primary_10_23736_S1824_4785_18_03092_3 crossref_primary_10_3760_cma_j_issn_0366_6999_20130218 crossref_primary_10_1007_s00066_011_0060_5 crossref_primary_10_23736_S1824_4785_18_03116_3 crossref_primary_10_1016_j_wneu_2018_07_232 crossref_primary_10_1016_j_jns_2010_07_024 crossref_primary_10_1080_0284186X_2017_1285498 crossref_primary_10_1016_j_canrad_2010_06_005 crossref_primary_10_1016_j_radonc_2011_03_001 crossref_primary_10_1007_s11060_012_0980_7 crossref_primary_10_1007_s10147_012_0462_0 crossref_primary_10_1053_j_seminoncol_2019_07_001 crossref_primary_10_1016_j_radonc_2010_08_018 crossref_primary_10_7785_tcrt_2012_500341 crossref_primary_10_3389_fneur_2017_00756 crossref_primary_10_1007_s11060_017_2735_y crossref_primary_10_1016_j_canrad_2011_07_237 crossref_primary_10_1016_j_meddos_2020_09_003 crossref_primary_10_3390_cancers10110456 crossref_primary_10_1186_s13014_017_0810_3 crossref_primary_10_3390_biomedicines12040789 crossref_primary_10_1007_s00761_010_1960_1 crossref_primary_10_1016_j_radonc_2011_03_006 crossref_primary_10_1007_s40336_017_0225_z crossref_primary_10_1007_s00259_018_3969_4 crossref_primary_10_1016_j_nucmedbio_2013_05_001 crossref_primary_10_1186_1748_717X_6_153 crossref_primary_10_1093_neuonc_nos300 crossref_primary_10_3389_fonc_2021_645316 crossref_primary_10_1007_s11060_016_2366_8 crossref_primary_10_1016_j_ijrobp_2010_01_055 crossref_primary_10_24060_2076_3093_2024_14_2_153_157 |
Cites_doi | 10.1016/0360-3016(91)90172-Z 10.1016/j.ijrobp.2008.04.050 10.1016/S0360-3016(03)00743-0 10.1016/j.meddos.2007.03.001 10.1016/0360-3016(96)85888-3 10.1016/S0167-8140(00)00216-4 10.1016/S0360-3016(98)00231-4 10.1186/1748-717X-3-44 10.1007/s00259-004-1705-8 10.1177/030089169808400208 10.1016/0360-3016(91)90171-Y 10.1016/S0360-3016(00)00772-0 10.1016/j.nucmedbio.2006.01.002 10.1038/bjc.1991.396 10.1093/brain/awh399 10.1016/0360-3016(94)00621-Q 10.1016/S0167-8140(01)00371-1 10.1118/1.3013556 10.1016/j.ijrobp.2005.12.022 10.1007/s00066-008-1883-6 10.3171/foc.2006.20.4.10 10.1007/s002590050208 10.1016/0360-3016(93)90345-V 10.1088/0031-9155/53/1/002 10.3171/jns.1999.90.1.0072 10.1016/j.ijrobp.2008.05.034 10.1016/S0360-3016(00)00502-2 10.1227/01.NEU.0000171642.49553.B0 10.1016/j.ijrobp.2005.01.056 10.1007/s00259-008-0943-6 10.1016/j.ijrobp.2005.05.067 10.1007/s00259-004-1590-1 10.1002/ana.410260406 10.1016/j.ijrobp.2006.12.009 10.1118/1.598063 10.1177/153303460400300107 10.1118/1.1485060 10.1016/S0360-3016(98)00159-X 10.1016/j.radonc.2009.07.014 10.1016/0360-3016(94)00494-6 10.1002/ijc.1042 10.1016/S1470-2045(09)70025-7 10.1016/j.ijrobp.2006.10.032 10.1118/1.1598852 10.1097/00006123-200208000-00009 10.1212/WNL.30.9.907 10.1017/S0317167100032972 10.1016/S1470-2045(05)70395-8 10.1120/jacmp.v8i2.2423 10.1016/0360-3016(79)90553-4 10.1148/radiology.186.1.8380108 10.1016/j.ijrobp.2004.04.011 10.1016/j.meddos.2003.08.004 10.1056/NEJMoa043330 10.1200/JCO.1992.10.9.1379 10.1007/s00066-007-1588-2 10.3171/jns.2000.93.supplement_3.0219 10.1016/j.ijrobp.2003.09.059 |
ContentType | Journal Article |
Copyright | Piroth et al; licensee BioMed Central Ltd. 2009 COPYRIGHT 2009 BioMed Central Ltd. 2009 Piroth et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2009 Piroth et al; licensee BioMed Central Ltd. 2009 Piroth et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: Piroth et al; licensee BioMed Central Ltd. 2009 – notice: COPYRIGHT 2009 BioMed Central Ltd. – notice: 2009 Piroth et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2009 Piroth et al; licensee BioMed Central Ltd. 2009 Piroth et al; licensee BioMed Central Ltd. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7X7 7XB 88E 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FR3 FYUFA GHDGH K9. M0S M1P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/1748-717X-4-57 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1748-717X |
EndPage | 57 |
ExternalDocumentID | oai_doaj_org_article_bf58f328cd804cca9a4ae5762cca0b4b PMC2787527 2504131621 A213349682 19930657 10_1186_1748_717X_4_57 |
Genre | Clinical Trial, Phase II Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | --- 0R~ 123 29P 2VQ 2WC 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK E3Z EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ H13 HMCUK HYE I-F IAO IHR INH INR IPNFZ ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SMD SOJ TUS UKHRP WOQ WOW ~8M AAYXX ALIPV CITATION -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM PMFND 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c561t-d5fe269454e1e76a15175b10d765c292d3d1145aba82e67bdd6cecf7fd8402173 |
IEDL.DBID | C6C |
ISSN | 1748-717X |
IngestDate | Wed Aug 27 00:59:06 EDT 2025 Thu Aug 21 17:28:40 EDT 2025 Fri Sep 05 04:41:45 EDT 2025 Sat Jul 26 02:22:09 EDT 2025 Tue Jun 10 21:21:31 EDT 2025 Thu Jan 02 23:09:09 EST 2025 Tue Jul 01 03:39:13 EDT 2025 Thu Apr 24 22:53:14 EDT 2025 Sat Sep 06 07:29:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Target Volume Normal Tissue Complication Probability Glioblastoma Multiforme Conformity Index Positron Emission Tomography |
Language | English |
License | http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c561t-d5fe269454e1e76a15175b10d765c292d3d1145aba82e67bdd6cecf7fd8402173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://doi.org/10.1186/1748-717X-4-57 |
PMID | 19930657 |
PQID | 902309494 |
PQPubID | 55355 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bf58f328cd804cca9a4ae5762cca0b4b pubmedcentral_primary_oai_pubmedcentral_nih_gov_2787527 proquest_miscellaneous_734168209 proquest_journals_902309494 gale_infotracacademiconefile_A213349682 pubmed_primary_19930657 crossref_citationtrail_10_1186_1748_717X_4_57 crossref_primary_10_1186_1748_717X_4_57 springer_journals_10_1186_1748_717X_4_57 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-11-23 |
PublicationDateYYYYMMDD | 2009-11-23 |
PublicationDate_xml | – month: 11 year: 2009 text: 2009-11-23 day: 23 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Radiation oncology (London, England) |
PublicationTitleAbbrev | Radiat Oncol |
PublicationTitleAlternate | Radiat Oncol |
PublicationYear | 2009 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | R Stupp (194_CR1) 2005; 352 NM Bleehen (194_CR3) 1991; 64 R Stupp (194_CR2) 2009; 10 M Weckesser (194_CR20) 1998; 25 A Taghian (194_CR7) 1996; 35 NJ Laperriere (194_CR42) 1998; 41 M Pinkawa (194_CR52) 2009; 93 C Weltens (194_CR47) 2001; 60 EP Jansen (194_CR35) 2000; 56 RaySearch Laboratories AB SS (194_CR30) 2003 B Emami (194_CR25) 1991; 21 M Pinkawa (194_CR51) 2007; 183 XS Qi (194_CR61) 2006; 64 L Cozzi (194_CR48) 2004; 58 JS Loeffler (194_CR9) 1992; 10 M Fuss (194_CR17) 2004; 3 C Burman (194_CR31) 1991; 21 WA Tome (194_CR60) 2002; 29 I Paddick (194_CR27) 2000; 3 M Rickhey (194_CR44) 2008; 184 C Thilmann (194_CR58) 2001; 96 194_CR23 194_CR24 SM MacDonald (194_CR56) 2007; 8 IH Lee (194_CR13) 2009; 73 WD Irish (194_CR38) 1997; 24 W Rachinger (194_CR16) 2005; 57 KJ Langen (194_CR18) 2006; 33 G Luxton (194_CR32) 2008; 53 A Narayana (194_CR55) 2006; 64 A Niemierko (194_CR29) 1998; 84 DC Shrieve (194_CR36) 1999; 90 G Popperl (194_CR21) 2004; 31 C Thieke (194_CR62) 2003; 30 A Pirzkall (194_CR53) 2000; 48 T Ogawa (194_CR14) 1993; 186 EL Chang (194_CR59) 2007; 68 A Taghian (194_CR6) 1995; 32 M Tanaka (194_CR37) 2005; 6 D Pauleit (194_CR15) 2005; 128 A Niemierko (194_CR28) 1997; 24 H Vees (194_CR45) 2009; 36 MJ Winger (194_CR40) 1989; 26 P Roesch (194_CR19) 2003 C Tsien (194_CR41) 2009; 73 MF Chan (194_CR54) 2003; 28 JN Sarkaria (194_CR10) 1995; 32 MD Walker (194_CR4) 1979; 5 AL Grosu (194_CR12) 2005; 63 A Taghian (194_CR8) 1998; 42 IS Grills (194_CR49) 2003; 57 FH Hochberg (194_CR34) 1980; 30 M Weckesser (194_CR22) 2005; 32 L Souhami (194_CR11) 2004; 60 RG Selker (194_CR43) 2002; 51 A Taghian (194_CR5) 1993; 25 U Hermanto (194_CR57) 2007; 67 VA Semenenko (194_CR33) 2008; 35 WA Tome (194_CR26) 2000; 47 NS Litofsky (194_CR39) 2006; 20 DC Weber (194_CR46) 2008; 3 RN Selvaraj (194_CR50) 2007; 32 16168843 - Int J Radiat Oncol Biol Phys. 2005 Oct 1;63(2):511-9 8380568 - Int J Radiat Oncol Biol Phys. 1993 Jan 15;25(2):243-9 14529795 - Int J Radiat Oncol Biol Phys. 2003 Nov 1;57(3):875-90 12182772 - Neurosurgery. 2002 Aug;51(2):343-55; discussion 355-7 14750894 - Technol Cancer Res Treat. 2004 Feb;3(1):59-67 19717197 - Radiother Oncol. 2009 Nov;93(2):213-9 18818918 - Eur J Nucl Med Mol Imaging. 2009 Feb;36(2):182-93 19175141 - Med Phys. 2008 Dec;35(12):5851-60 18723297 - Int J Radiat Oncol Biol Phys. 2009 Mar 1;73(3):699-708 9620236 - Tumori. 1998 Mar-Apr;84(2):140-3 9719109 - Int J Radiat Oncol Biol Phys. 1998 Jul 15;41(5):1005-11 15650870 - Eur J Nucl Med Mol Imaging. 2005 Apr;32(4):422-9 10863087 - Int J Radiat Oncol Biol Phys. 2000 Jul 1;47(4):1137-43 6252514 - Neurology. 1980 Sep;30(9):907-11 19016044 - Strahlenther Onkol. 2008 Oct;184(10):536-42 16458777 - Int J Radiat Oncol Biol Phys. 2006 Mar 1;64(3):892-7 15465203 - Int J Radiat Oncol Biol Phys. 2004 Nov 1;60(3):853-60 7607967 - Int J Radiat Oncol Biol Phys. 1995 Jul 15;32(4):931-41 15689365 - Brain. 2005 Mar;128(Pt 3):678-87 18834673 - Int J Radiat Oncol Biol Phys. 2009 Feb 1;73(2):479-85 16631076 - Nucl Med Biol. 2006 Apr;33(3):287-94 16145529 - Neurosurgery. 2005 Sep;57(3):505-11; discussion 505-11 17592465 - J Appl Clin Med Phys. 2007;8(2):47-60 11410304 - Radiother Oncol. 2001 Jul;60(1):49-59 19108742 - Radiat Oncol. 2008;3:44 14751535 - Int J Radiat Oncol Biol Phys. 2004 Feb 1;58(2):617-24 10927133 - Radiother Oncol. 2000 Aug;56(2):151-6 1654987 - Br J Cancer. 1991 Oct;64(4):769-74 10413158 - J Neurosurg. 1999 Jan;90(1):72-7 19269895 - Lancet Oncol. 2009 May;10(5):459-66 15248032 - Eur J Nucl Med Mol Imaging. 2004 Nov;31(11):1464-70 14528955 - Med Phys. 2003 Sep;30(9):2332-9 11745504 - Int J Cancer. 2001 Dec 20;96(6):341-9 11143252 - J Neurosurg. 2000 Dec;93 Suppl 3:219-22 12148742 - Med Phys. 2002 Jul;29(7):1590-8 2032883 - Int J Radiat Oncol Biol Phys. 1991 May 15;21(1):123-35 8751425 - Int J Radiat Oncol Biol Phys. 1996 Jul 15;35(5):1124-5 9788430 - Int J Radiat Oncol Biol Phys. 1998 Sep 1;42(2):464 16709021 - Neurosurg Focus. 2006;20(4):E16 8380108 - Radiology. 1993 Jan;186(1):45-53 2032882 - Int J Radiat Oncol Biol Phys. 1991 May 15;21(1):109-22 9398977 - Can J Neurol Sci. 1997 Nov;24(4):307-12 17980832 - Med Dosim. 2007 Winter;32(4):299-304 1325539 - J Clin Oncol. 1992 Sep;10(9):1379-85 17306935 - Int J Radiat Oncol Biol Phys. 2007 May 1;68(1):144-50 231022 - Int J Radiat Oncol Biol Phys. 1979 Oct;5(10):1725-31 15758009 - N Engl J Med. 2005 Mar 10;352(10):987-96 17208388 - Int J Radiat Oncol Biol Phys. 2007 Mar 15;67(4):1135-44 16321763 - Lancet Oncol. 2005 Dec;6(12):953-60 9029544 - Med Phys. 1997 Jan;24(1):103-10 9473263 - Eur J Nucl Med. 1998 Feb;25(2):150-6 17225942 - Strahlenther Onkol. 2007 Jan;183(1):23-9 14684191 - Med Dosim. 2003 Winter;28(4):261-5 7721644 - Int J Radiat Oncol Biol Phys. 1995 Apr 30;32(1):99-104 16580506 - Int J Radiat Oncol Biol Phys. 2006 Apr 1;64(5):1570-80 2684003 - Ann Neurol. 1989 Oct;26(4):531-4 11121636 - Int J Radiat Oncol Biol Phys. 2000 Dec 1;48(5):1371-80 18182685 - Phys Med Biol. 2008 Jan 7;53(1):23-36 |
References_xml | – volume: 21 start-page: 123 issue: 1 year: 1991 ident: 194_CR31 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/0360-3016(91)90172-Z – volume: 73 start-page: 479 issue: 2 year: 2009 ident: 194_CR13 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2008.04.050 – ident: 194_CR24 – volume: 57 start-page: 875 issue: 3 year: 2003 ident: 194_CR49 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(03)00743-0 – volume: 32 start-page: 299 issue: 4 year: 2007 ident: 194_CR50 publication-title: Med Dosim doi: 10.1016/j.meddos.2007.03.001 – volume: 35 start-page: 1124 issue: 5 year: 1996 ident: 194_CR7 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/0360-3016(96)85888-3 – volume: 56 start-page: 151 issue: 2 year: 2000 ident: 194_CR35 publication-title: Radiother Oncol doi: 10.1016/S0167-8140(00)00216-4 – volume: 42 start-page: 464 issue: 2 year: 1998 ident: 194_CR8 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(98)00231-4 – volume: 3 start-page: 44 year: 2008 ident: 194_CR46 publication-title: Radiat Oncol doi: 10.1186/1748-717X-3-44 – volume: 32 start-page: 422 issue: 4 year: 2005 ident: 194_CR22 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-004-1705-8 – volume: 84 start-page: 140 issue: 2 year: 1998 ident: 194_CR29 publication-title: Tumori doi: 10.1177/030089169808400208 – volume: 21 start-page: 109 issue: 1 year: 1991 ident: 194_CR25 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/0360-3016(91)90171-Y – volume: 48 start-page: 1371 issue: 5 year: 2000 ident: 194_CR53 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(00)00772-0 – volume: 33 start-page: 287 issue: 3 year: 2006 ident: 194_CR18 publication-title: Nucl Med Biol doi: 10.1016/j.nucmedbio.2006.01.002 – volume: 64 start-page: 769 issue: 4 year: 1991 ident: 194_CR3 publication-title: Br J Cancer doi: 10.1038/bjc.1991.396 – volume: 128 start-page: 678 issue: Pt 3 year: 2005 ident: 194_CR15 publication-title: Brain doi: 10.1093/brain/awh399 – volume: 32 start-page: 931 issue: 4 year: 1995 ident: 194_CR10 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/0360-3016(94)00621-Q – volume: 60 start-page: 49 issue: 1 year: 2001 ident: 194_CR47 publication-title: Radiother Oncol doi: 10.1016/S0167-8140(01)00371-1 – volume: 35 start-page: 5851 issue: 12 year: 2008 ident: 194_CR33 publication-title: Med Phys doi: 10.1118/1.3013556 – volume: 64 start-page: 1570 issue: 5 year: 2006 ident: 194_CR61 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2005.12.022 – volume: 184 start-page: 536 issue: 10 year: 2008 ident: 194_CR44 publication-title: Strahlenther Onkol doi: 10.1007/s00066-008-1883-6 – volume: 20 start-page: E16 issue: 4 year: 2006 ident: 194_CR39 publication-title: Neurosurg Focus doi: 10.3171/foc.2006.20.4.10 – volume: 25 start-page: 150 issue: 2 year: 1998 ident: 194_CR20 publication-title: Eur J Nucl Med doi: 10.1007/s002590050208 – volume: 25 start-page: 243 issue: 2 year: 1993 ident: 194_CR5 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/0360-3016(93)90345-V – volume: 53 start-page: 23 issue: 1 year: 2008 ident: 194_CR32 publication-title: Phys Med Biol doi: 10.1088/0031-9155/53/1/002 – volume: 90 start-page: 72 issue: 1 year: 1999 ident: 194_CR36 publication-title: J Neurosurg doi: 10.3171/jns.1999.90.1.0072 – volume: 73 start-page: 699 issue: 3 year: 2009 ident: 194_CR41 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2008.05.034 – volume: 47 start-page: 1137 issue: 4 year: 2000 ident: 194_CR26 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(00)00502-2 – volume: 57 start-page: 505 issue: 3 year: 2005 ident: 194_CR16 publication-title: Neurosurgery doi: 10.1227/01.NEU.0000171642.49553.B0 – volume: 63 start-page: 511 issue: 2 year: 2005 ident: 194_CR12 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2005.01.056 – volume: 36 start-page: 182 issue: 2 year: 2009 ident: 194_CR45 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-008-0943-6 – volume: 64 start-page: 892 issue: 3 year: 2006 ident: 194_CR55 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2005.05.067 – volume: 31 start-page: 1464 issue: 11 year: 2004 ident: 194_CR21 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-004-1590-1 – volume: 26 start-page: 531 issue: 4 year: 1989 ident: 194_CR40 publication-title: Ann Neurol doi: 10.1002/ana.410260406 – volume: 68 start-page: 144 issue: 1 year: 2007 ident: 194_CR59 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2006.12.009 – volume: 24 start-page: 103 issue: 1 year: 1997 ident: 194_CR28 publication-title: Med Phys doi: 10.1118/1.598063 – volume: 3 start-page: 59 issue: 1 year: 2004 ident: 194_CR17 publication-title: Technol Cancer Res Treat doi: 10.1177/153303460400300107 – volume: 29 start-page: 1590 issue: 7 year: 2002 ident: 194_CR60 publication-title: Med Phys doi: 10.1118/1.1485060 – volume: 41 start-page: 1005 issue: 5 year: 1998 ident: 194_CR42 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(98)00159-X – volume: 93 start-page: 213 issue: 2 year: 2009 ident: 194_CR52 publication-title: Radiother Oncol doi: 10.1016/j.radonc.2009.07.014 – volume: 32 start-page: 99 issue: 1 year: 1995 ident: 194_CR6 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/0360-3016(94)00494-6 – volume: 96 start-page: 341 issue: 6 year: 2001 ident: 194_CR58 publication-title: Int J Cancer doi: 10.1002/ijc.1042 – volume: 10 start-page: 459 issue: 5 year: 2009 ident: 194_CR2 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(09)70025-7 – volume: 67 start-page: 1135 issue: 4 year: 2007 ident: 194_CR57 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2006.10.032 – volume: 30 start-page: 2332 issue: 9 year: 2003 ident: 194_CR62 publication-title: Med Phys doi: 10.1118/1.1598852 – volume-title: Philips White Paper year: 2003 ident: 194_CR19 – volume: 51 start-page: 343 issue: 2 year: 2002 ident: 194_CR43 publication-title: Neurosurgery doi: 10.1097/00006123-200208000-00009 – ident: 194_CR23 – volume: 30 start-page: 907 issue: 9 year: 1980 ident: 194_CR34 publication-title: Neurology doi: 10.1212/WNL.30.9.907 – volume: 24 start-page: 307 issue: 4 year: 1997 ident: 194_CR38 publication-title: Can J Neurol Sci doi: 10.1017/S0317167100032972 – volume: 6 start-page: 953 issue: 12 year: 2005 ident: 194_CR37 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(05)70395-8 – volume: 8 start-page: 47 issue: 2 year: 2007 ident: 194_CR56 publication-title: J Appl Clin Med Phys doi: 10.1120/jacmp.v8i2.2423 – volume: 5 start-page: 1725 issue: 10 year: 1979 ident: 194_CR4 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/0360-3016(79)90553-4 – volume: 186 start-page: 45 issue: 1 year: 1993 ident: 194_CR14 publication-title: Radiology doi: 10.1148/radiology.186.1.8380108 – volume: 60 start-page: 853 issue: 3 year: 2004 ident: 194_CR11 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2004.04.011 – volume-title: RaySearch White Paper year: 2003 ident: 194_CR30 – volume: 28 start-page: 261 issue: 4 year: 2003 ident: 194_CR54 publication-title: Med Dosim doi: 10.1016/j.meddos.2003.08.004 – volume: 352 start-page: 987 issue: 10 year: 2005 ident: 194_CR1 publication-title: N Engl J Med doi: 10.1056/NEJMoa043330 – volume: 10 start-page: 1379 issue: 9 year: 1992 ident: 194_CR9 publication-title: J Clin Oncol doi: 10.1200/JCO.1992.10.9.1379 – volume: 183 start-page: 23 issue: 1 year: 2007 ident: 194_CR51 publication-title: Strahlenther Onkol doi: 10.1007/s00066-007-1588-2 – volume: 3 start-page: 219 year: 2000 ident: 194_CR27 publication-title: J Neurosurg doi: 10.3171/jns.2000.93.supplement_3.0219 – volume: 58 start-page: 617 issue: 2 year: 2004 ident: 194_CR48 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2003.09.059 – reference: 15650870 - Eur J Nucl Med Mol Imaging. 2005 Apr;32(4):422-9 – reference: 16580506 - Int J Radiat Oncol Biol Phys. 2006 Apr 1;64(5):1570-80 – reference: 8751425 - Int J Radiat Oncol Biol Phys. 1996 Jul 15;35(5):1124-5 – reference: 15248032 - Eur J Nucl Med Mol Imaging. 2004 Nov;31(11):1464-70 – reference: 18723297 - Int J Radiat Oncol Biol Phys. 2009 Mar 1;73(3):699-708 – reference: 19269895 - Lancet Oncol. 2009 May;10(5):459-66 – reference: 12182772 - Neurosurgery. 2002 Aug;51(2):343-55; discussion 355-7 – reference: 18818918 - Eur J Nucl Med Mol Imaging. 2009 Feb;36(2):182-93 – reference: 6252514 - Neurology. 1980 Sep;30(9):907-11 – reference: 1325539 - J Clin Oncol. 1992 Sep;10(9):1379-85 – reference: 9719109 - Int J Radiat Oncol Biol Phys. 1998 Jul 15;41(5):1005-11 – reference: 8380568 - Int J Radiat Oncol Biol Phys. 1993 Jan 15;25(2):243-9 – reference: 10413158 - J Neurosurg. 1999 Jan;90(1):72-7 – reference: 17592465 - J Appl Clin Med Phys. 2007;8(2):47-60 – reference: 11143252 - J Neurosurg. 2000 Dec;93 Suppl 3:219-22 – reference: 17208388 - Int J Radiat Oncol Biol Phys. 2007 Mar 15;67(4):1135-44 – reference: 8380108 - Radiology. 1993 Jan;186(1):45-53 – reference: 16631076 - Nucl Med Biol. 2006 Apr;33(3):287-94 – reference: 9620236 - Tumori. 1998 Mar-Apr;84(2):140-3 – reference: 17306935 - Int J Radiat Oncol Biol Phys. 2007 May 1;68(1):144-50 – reference: 9473263 - Eur J Nucl Med. 1998 Feb;25(2):150-6 – reference: 9029544 - Med Phys. 1997 Jan;24(1):103-10 – reference: 14684191 - Med Dosim. 2003 Winter;28(4):261-5 – reference: 9398977 - Can J Neurol Sci. 1997 Nov;24(4):307-12 – reference: 10863087 - Int J Radiat Oncol Biol Phys. 2000 Jul 1;47(4):1137-43 – reference: 16709021 - Neurosurg Focus. 2006;20(4):E16 – reference: 15465203 - Int J Radiat Oncol Biol Phys. 2004 Nov 1;60(3):853-60 – reference: 7607967 - Int J Radiat Oncol Biol Phys. 1995 Jul 15;32(4):931-41 – reference: 1654987 - Br J Cancer. 1991 Oct;64(4):769-74 – reference: 16168843 - Int J Radiat Oncol Biol Phys. 2005 Oct 1;63(2):511-9 – reference: 18182685 - Phys Med Biol. 2008 Jan 7;53(1):23-36 – reference: 14529795 - Int J Radiat Oncol Biol Phys. 2003 Nov 1;57(3):875-90 – reference: 2032883 - Int J Radiat Oncol Biol Phys. 1991 May 15;21(1):123-35 – reference: 19108742 - Radiat Oncol. 2008;3:44 – reference: 9788430 - Int J Radiat Oncol Biol Phys. 1998 Sep 1;42(2):464 – reference: 10927133 - Radiother Oncol. 2000 Aug;56(2):151-6 – reference: 11410304 - Radiother Oncol. 2001 Jul;60(1):49-59 – reference: 2032882 - Int J Radiat Oncol Biol Phys. 1991 May 15;21(1):109-22 – reference: 12148742 - Med Phys. 2002 Jul;29(7):1590-8 – reference: 11745504 - Int J Cancer. 2001 Dec 20;96(6):341-9 – reference: 14750894 - Technol Cancer Res Treat. 2004 Feb;3(1):59-67 – reference: 18834673 - Int J Radiat Oncol Biol Phys. 2009 Feb 1;73(2):479-85 – reference: 19175141 - Med Phys. 2008 Dec;35(12):5851-60 – reference: 2684003 - Ann Neurol. 1989 Oct;26(4):531-4 – reference: 16145529 - Neurosurgery. 2005 Sep;57(3):505-11; discussion 505-11 – reference: 11121636 - Int J Radiat Oncol Biol Phys. 2000 Dec 1;48(5):1371-80 – reference: 16321763 - Lancet Oncol. 2005 Dec;6(12):953-60 – reference: 19717197 - Radiother Oncol. 2009 Nov;93(2):213-9 – reference: 19016044 - Strahlenther Onkol. 2008 Oct;184(10):536-42 – reference: 16458777 - Int J Radiat Oncol Biol Phys. 2006 Mar 1;64(3):892-7 – reference: 7721644 - Int J Radiat Oncol Biol Phys. 1995 Apr 30;32(1):99-104 – reference: 14751535 - Int J Radiat Oncol Biol Phys. 2004 Feb 1;58(2):617-24 – reference: 17225942 - Strahlenther Onkol. 2007 Jan;183(1):23-9 – reference: 17980832 - Med Dosim. 2007 Winter;32(4):299-304 – reference: 15689365 - Brain. 2005 Mar;128(Pt 3):678-87 – reference: 14528955 - Med Phys. 2003 Sep;30(9):2332-9 – reference: 15758009 - N Engl J Med. 2005 Mar 10;352(10):987-96 – reference: 231022 - Int J Radiat Oncol Biol Phys. 1979 Oct;5(10):1725-31 |
SSID | ssj0045309 |
Score | 2.1212034 |
Snippet | Background
Biological brain tumor imaging using O-(2-[
18
F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted... Biological brain tumor imaging using O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose... Background Biological brain tumor imaging using O-(2-[.sup.18.sup.F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally... Abstract Background: Biological brain tumor imaging using O-(2-[18 F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally... Abstract Background Biological brain tumor imaging using O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 57 |
SubjectTerms | Acquisitions & mergers Adult Aged Biomedical and Life Sciences Biomedicine Brain Brain cancer Brain Neoplasms - radiotherapy Cancer Research Care and treatment Diagnosis Female Glioblastoma - radiotherapy Glioblastoma multiforme Health aspects Hospitals Humans Imaging Intensity-modulated radiotherapy Magnetic Resonance Imaging Male Medical imaging Methods Middle Aged Oncology PET imaging Positron-Emission Tomography Radiation therapy Radiology Radiopharmaceuticals Radiotherapy Radiotherapy Planning, Computer-Assisted - methods Radiotherapy, Conformal Radiotherapy, Intensity-Modulated Studies Tomography Tyrosine - analogs & derivatives |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4s3SgnxAgovVxLET-1hKqxZpEUJbaW-WH5OyUpugbvaX8Ic7dh7dLSAu3LKJs87Yn2e-kcczhLy3TkiOwGBQ25oJUdTM2gBMeOQWTiElSMej51_LswvxZSmXW6W-YkxYnx64H7hDV0tVF1z5oDKB3WkrLCBJ5nidOeGi9s10NjpTvQ4WskjBHUi3FUOHZTmka8xVeTjdY4JFo7RljlLW_t9185Zxuh84eW_3NBml0yfk8cAm6VEvxVPyAJpn5OF82C9_Tn6dj9kgAkM6ve7o-fz7grY3tGCf2TFexrj3S3p6smDfThY02rRA7aZrWYxhx7_Hn32wOO31GA3xAHtPNCkSXnp5tWodUvCuvbY0hSdGGgyUUUtDu15dx5Jdnvqp3uELcoHdHZ-xoQwD80iuOhZkDfG8qxSQQ1Va5AiVdHkWqlJ6rnkoAjpV0jqrOJSVC6H04OuqDug8osdTvCR7TdvAa0IFaozcAqIBWQxobZXVDkDkwAEUuBlh42wYP-Qoj6UyrkzyVVRp4uyZOHtGGFnNyIep_c8-O8dfW36Kkzu1ilm10w3EmhmwZv6FNewuQsPEtY-f5e1whAGFi1m0zBFHj1_oUvEZ2R_RYwalsDY6-ntaaDEjdHqKqzlu0dgG2s3aVEgq8PVMz8irHmp3ciGTRL6IklQ7INwRafdJs_qREoZz1MqS45sfR7jefdSfh-vN_xiuffIo7b3lOePFAdnrbjbwFilc596l1XoLDTJE2w priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgL4s1SQD4glYvVjWMnzgmV0qpFWoTQVtqb5cekXandlN3sL-EPM5N402553PKwEzsznvkmM55h7IPzSktkDAG1q4VSeS2ciyBUQGzhDUKCbnv05Ftxcqa-zvQsxeasUljlRiZ2gjo2gf6R71cElitVqU_XPwUVjSLnaqqgcZ89yBCIUOWGcjbYW0pjh5SnMTPFPmJvI9B6mQklSBvd0kNduv4_hfItrXQ3YvKO27TTRsdP2OMEI_lBT_en7B4snrGHk-Qof85-nW7SQESBOHrV8tPJjylvljwXX8QhHlLA-zk_PpqK70dTTsoscrduG0HB6_h4PO2jxHkvwHiknes9wuSIdPn55bzxiL3b5srxLi6R8C9wwR2PzWp-RbW6Ag9DocMX7Axfd3giUv0FERBVtSLqGmijq1aQQVk4BAel9tk4loUOspIxj2hNaeedkVCUPsYiQKjLOqLViKZO_pLtLJoFvGZcoajIHCAbIHyBqnLGVR5AZSABDPgRExtq2JCSk1ONjEvbGSmmsEQ9S9SzyupyxPaG9td9Wo5_tvxMxB1aUTrt7kKzPLdpdVpfa1Pn0oRoxgp5unLKAVpiEo_HXuHw9og1LC16HFZwae8CTo7SZ9kDiaa-qgojR2x3wz02SYOVHXh3xPhwF5cx-WbcApr1ypaIJrD7uBqxVz2r3cwLISQCRZxJucWEW1PavrOYX3SZwiWKYy2x58cNu94M6u-f681_x7_LHnXetCwTMn_LdtrlGt4hKGv9-27p_QZh-Thi priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZgSIgXxG-yAfID0ngxNI6d2A8IjbFpQypCqJX6ZtnxpVTqGtamEvwd_MOcnTSl25B4S2I7sePv7O905ztCXlsnJEdgMKhsxYTIKmatByZK5BZOISWIx6OHX_Kzsfg8kZOt_1P3A1c3qnYhn9R4OX_78_LXBxT491HgVf4OSbViqJZMmGCyuE3uRFtRcOMTvUVByGygu6CN19vsbEoxdv_1FfqvLeqq--QVG2rcmk4fkPsdp6RHLQgekluweETuDjur-WPy-3wTE8IzJNWrhp4Pv41ovaQZ-8SO8TJ4v0_p6cmIfT0Z0bCzeWrXTc2CJzu-Hm9bl3HarmbUh2PsLd2kSHvpdD6rHRLxpr6wNDopBjIMlFFLfb2aXYTEXSUt-6yHT8gYP3d8xrpkDKxEitUwLysIp16lgBSK3CJTKKRLB77IZck195lH1UpaZxWHvHDe5yWUVVF5VCFR78mekr1FvYDnhApcN1ILiAnkMqC1VVY7AJECB1DgEsI2s2HKLlJ5SJgxN1FjUbkJs2fC7BlhZJGQw77-jzZGxz9rfgyT29cKsbXjg3o5NZ2oGldJVWVclV4NBAJcW2EB1TKO1wMnsHuHARomYBK7VdruIAMOLsTSMkcc9X6hc8UTcrBBj9kg2-ig9WmhRUJoX4oyHQw1dgH1emUKpBbYfKAT8qyF2nZcyCeRNeJIih0Q7gxpt2Qx-x7DhnNcmyXHlm82cN126ubftf__VQ_IvWhnS1PGsxdkr1mu4SXStca9inL4B7gtPns priority: 102 providerName: Scholars Portal |
Title | Integrated-boost IMRT or 3-D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme - a dosimetric comparison |
URI | https://link.springer.com/article/10.1186/1748-717X-4-57 https://www.ncbi.nlm.nih.gov/pubmed/19930657 https://www.proquest.com/docview/902309494 https://www.proquest.com/docview/734168209 https://pubmed.ncbi.nlm.nih.gov/PMC2787527 https://doaj.org/article/bf58f328cd804cca9a4ae5762cca0b4b |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9swFLYGSNNept1X2Co_TGIv1hrHju3H0hVBpSLEitQ3y45PoBIkE01_yf4wx0laKGzSXpqbndo9F3-n52JCvjkvJEfGYFC4ggmRFsy5AEzkiC28RkjQpEdPz7KTSzGZy3kXIBtzYR777xOd_UDArBmaHHMmmFQ7ZE-i0o2cPMpGa40rZDowXUHG5322FpymLv9z7fto-XkaGvnEP9osO8dvyOsOL9JhS-C35AWU78jLaecRf0_-nK7rPQSGgHlZ09PpxYxWdzRlP9kIT2Nk-xU9Hs_Y-XhG46oVqFvVFYtR6vh6vGzDwWmrqWiIKeotlKQIaenVzaLyCLLr6tbRJgAxAl2gjDoaquXiNm7KldN8s6PhB3KJXzc6Yd1GCyxH-FSzIAuIGa1SQAIqc4gClPTJIKhM5tzwkAY0m6TzTnPIlA8hyyEvVBHQPESbJv1IdsuqhM-ECtQJiQOkN-IUMMZpZzyASIADaPA9wtbUsHlXhTxuhnFjG2tEZzZSz0bqWWGl6pHDTfvfbf2Nf7Y8isTdtIp1s5sbyE62E0PrC6mLlOs86IFA5jVOOECTi-P5wAsc3mFkDRulG4eVuy5JAScX62TZIUebXphM8x45WHOP7cR-aU206Iwwokfo5inKa3TCuBKq1dIqhA3YfWB65FPLag_zQqyIiBBnoraYcGtK20_KxXVTEpyj3pUce35fs-vDoP7-c-3_f9MD8qrxoSUJ4-kXslvfreArQrHa98mOmqs-2RsOJ78meDwan51f9Bvp7Dd_b-DnVOh7Wrk1zw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECVSB2h7Kbqmbrrw0CK9ELEoUqIOQZHFgd3ERhA4QG4sKVKugcRKbRlFv6Pf03_rjBYnTpdbblooYagZzrwRZyHkvbFCchAM5jOTMSHCjBnjPBMpYAurABKU6dGDYdQ7E5_P5fka-dXkwmBYZaMTS0Xt8hT_kW8nCJYTkYhPV98YNo3CzdWmg4apOyu4nbLCWJ3XceR_fAcPbr7TPwB2f-D8sDva77G6yQBLAToUzMnMYzanFD7wcWTAAsbSBh0XRzLlCXehA5dBGmsU91FsnYtSn2Zx5sA1AjwfwnvvkXWB_09aZH2vOzw5bUyBkEByXSkyUNE2oH_FwH86Z4KhPbxhCcuGAX-ahRt28XbM5q2N29IeHj4mj2ogS3cryXtC1vz0Kbk_qLfqn5Gf_aYQhWOA5OcF7Q9ORzSf0ZAdsH04xJD7MYWvxU66I4rm1FGzKHKG4fPwejit4tRppUKpw9z5CuNSwNp0fDHJLaD_Ir80tIyMRATuKaOGunw-ucRuYSlNl60Wn5OzO2HOC9Ka5lP_klAByiowHgQRAJRPEqNMYr0XgefeK2_bhDXc0GldHh27dFzo0k1SkUbuaeSeFlrGbbK1HH9VFQb558g9ZO5yFBb0Li_ks7Gu9YO2mVRZyFXqVEfAqkqMMB58QQ7HHSuAvC0UDY1qB8hKTZ09AZPDAl56lwch1v5XvE02G-nRtT6a6-XqaRO6vAuKBHeHzNTni7mOAc_A452kTTYqUbueF4BYgKowk3hFCFemtHpnOvla1irnYBAkhyc_NuJ6TdTfP9er_9L_jjzojQbH-rg_PNokD8u9vSBgPHxNWsVs4d8ARCzs23ohUvLlrtf-b06de6Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBZdC2UvY_dm3UUPg-5FNJYlW4K9ZG1Dky2lbCnkTUjWcRZo7ZI4v2R_eEe-pEu7wd5sS7Iln4u-w7mIkI_WCcmRMRjkNmdCxDmz1gMTGWILpxAS1OnRk4vk_EqMZ3K2Qz53uTB1tHvnkmxyGkKVpqI6vvV5I-IqOUYYrRgaIjMmmEwfkT0ltUbTa28wGP8Yd5pYyLiv20KND0dtbUR1vf6HWvmPbel-yOQ9v2m9HQ2fkictjqSDhvDPyA4Uz8n-pPWUvyC_Rl0dCM8QSK8qOpp8n9JySWN2yk7wMkS8z-nwbMouz6Y07Gae2nVVsvAr8PV424SJ00aDUR9S1xuISRHq0vn1onQIvqvyxtI6MDEAYKCMWurL1eImHNaV0Wxz0uFLcoWfOzln7QEMLENYVTEvcwiZrlJABGliER2k0kV9nyYy45r72KM5Ja2zikOSOu-TDLI8zT2ajWjrxK_IblEWcECoQF0RWUA-QPwCWltltQMQEXAABa5HWEcNk7XVycMhGdemtlJUYgL1TKCeEUamPXK06X_b1OX4Z88vgbibXqGedv2gXM5NK57G5VLlMVeZV32BTK2tsICmGMfrvhM4vaPAGiZIPU4rs23yAi4u1M8yA462vtCJ4j1y2HGPadXByuhg6WmhRY_QTSvKcXDO2ALK9cqkCCdweF_3yOuG1e7WhRgSkSKuJN1iwq0lbbcUi591qXCO-lhyHPmpY9e7Sf39d735_64fyP7l6dB8G118PSSPazdbFDEevyW71XIN7xCtVe59K5S_AXQsPKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated-boost+IMRT+or+3-D-CRT+using+FET-PET+based+auto-contoured+target+volume+delineation+for+glioblastoma+multiforme+-+a+dosimetric+comparison&rft.jtitle=Radiation+oncology+%28London%2C+England%29&rft.au=Piroth%2C+Marc+D&rft.au=Pinkawa%2C+Michael&rft.au=Holy%2C+Richard&rft.au=Stoffels%2C+Gabriele&rft.date=2009-11-23&rft.pub=BioMed+Central&rft.eissn=1748-717X&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1186%2F1748-717X-4-57&rft.externalDocID=10_1186_1748_717X_4_57 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-717X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-717X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-717X&client=summon |