Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas

Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtaine...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 89; no. 2; pp. 384 - 397
Main Authors Michalareas, Georgios, Vezoli, Julien, van Pelt, Stan, Schoffelen, Jan-Mathijs, Kennedy, Henry, Fries, Pascal
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 20.01.2016
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0896-6273
1097-4199
1097-4199
DOI10.1016/j.neuron.2015.12.018

Cover

Abstract Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and we correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral- and dorsal-stream visual areas are differentially affected by inter-areal influences in the alpha-beta band. •Gamma mediates forward and alpha-beta feedback influences among human visual areas•Human inter-areal directed influences correlate with macaque laminar connectivity•Rhythmic inter-areal influences establish a hierarchy of 26 human visual areas•Alpha-beta influences differentially affect ventral- and dorsal-stream visual areas Michalareas et al. show that in human visual cortex influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. These influences constrain a functional hierarchy in agreement with macaque anatomical hierarchy.
AbstractList Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and we correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral- and dorsal-stream visual areas are differentially affected by inter-areal influences in the alpha-beta band.Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and we correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral- and dorsal-stream visual areas are differentially affected by inter-areal influences in the alpha-beta band.
Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral and dorsal stream visual areas are differentially affected by inter-areal influences in the alpha-beta band.
Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and we correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral- and dorsal-stream visual areas are differentially affected by inter-areal influences in the alpha-beta band. •Gamma mediates forward and alpha-beta feedback influences among human visual areas•Human inter-areal directed influences correlate with macaque laminar connectivity•Rhythmic inter-areal influences establish a hierarchy of 26 human visual areas•Alpha-beta influences differentially affect ventral- and dorsal-stream visual areas Michalareas et al. show that in human visual cortex influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. These influences constrain a functional hierarchy in agreement with macaque anatomical hierarchy.
Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and we correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral- and dorsal-stream visual areas are differentially affected by inter-areal influences in the alpha-beta band.
Author Schoffelen, Jan-Mathijs
Kennedy, Henry
Michalareas, Georgios
Fries, Pascal
van Pelt, Stan
Vezoli, Julien
AuthorAffiliation 2 Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN Nijmegen, Netherlands
1 Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany
3 Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, Netherlands
4 Stem Cell and Brain Research Institute, INSERM U846, 18 avenue Doyen Lépine, 69675 Bron, France
5 Université de Lyon, 37 rue du Repos, 69361 Lyon, France
AuthorAffiliation_xml – name: 3 Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, Netherlands
– name: 2 Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN Nijmegen, Netherlands
– name: 1 Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany
– name: 5 Université de Lyon, 37 rue du Repos, 69361 Lyon, France
– name: 4 Stem Cell and Brain Research Institute, INSERM U846, 18 avenue Doyen Lépine, 69675 Bron, France
Author_xml – sequence: 1
  givenname: Georgios
  surname: Michalareas
  fullname: Michalareas, Georgios
  email: giorgos.michalareas@esi-frankfurt.de
  organization: Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany
– sequence: 2
  givenname: Julien
  surname: Vezoli
  fullname: Vezoli, Julien
  organization: Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany
– sequence: 3
  givenname: Stan
  surname: van Pelt
  fullname: van Pelt, Stan
  organization: Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany
– sequence: 4
  givenname: Jan-Mathijs
  surname: Schoffelen
  fullname: Schoffelen, Jan-Mathijs
  organization: Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands
– sequence: 5
  givenname: Henry
  surname: Kennedy
  fullname: Kennedy, Henry
  organization: Stem Cell and Brain Research Institute, INSERM U846, 18 Avenue Doyen Lépine, 69675 Bron, France
– sequence: 6
  givenname: Pascal
  surname: Fries
  fullname: Fries, Pascal
  email: pascal.fries@esi-frankfurt.de
  organization: Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26777277$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLeFf4BQJC5cEjxOYicckJYV_ZAqIfF1tRxn0vU2sbd2sqj_vk53qaAHOI0tP_Nqxs8JObLOIiGvgWZAgb_fZBYn72zGKJQZsIxC9YwsgNYiLaCuj8iCVjVPORP5MTkJYUMpFGUNL8gx40IIJsSC3Cz77Vqln3BUibJtcq6GQSVf13fjegjJt6kJ6HeYnCG2jdI3D8x86Zz_pXybXNqun9BqDIkanL1OLqZB2eSnCZPqk5Xzo9HxsPSowkvyvFN9wFeHekp-nH3-vrpIr76cX66WV6kuOYypYpoVqijbXFQ8lrJhRcWg403VgdClbrq8YdhRzjk0LQdeQAU855hD10CZn5KP-9zt1AzYarSjV73cejMofyedMvLvF2vW8trtZFEJECXEgHeHAO9uJwyjHEzQ2PfKopuCBFFTyljNWETfPkE3bvI2rhepsqYAlNaRevPnRI-j_PYQgWIPaO9C8Ng9IkDlrFtu5F63nHVLYDLqjm0fnrRpM6rRuHkv0_-v-fBNGF3sDHoZtJlVtsajHmXrzL8D7gEiHMh6
CitedBy_id crossref_primary_10_1523_JNEUROSCI_2639_17_2018
crossref_primary_10_1016_j_neuron_2019_09_039
crossref_primary_10_1016_j_neuroimage_2017_11_068
crossref_primary_10_1016_j_neuron_2018_07_025
crossref_primary_10_1162_jocn_a_01280
crossref_primary_10_1016_j_bpsc_2017_09_009
crossref_primary_10_1371_journal_pbio_3000685
crossref_primary_10_3389_fncir_2023_1073537
crossref_primary_10_1109_JSEN_2024_3363045
crossref_primary_10_1038_s41398_021_01678_z
crossref_primary_10_1016_j_neuropsychologia_2019_04_017
crossref_primary_10_1016_j_pneurobio_2022_102367
crossref_primary_10_1002_hbm_24216
crossref_primary_10_1002_hbm_24458
crossref_primary_10_3389_fnins_2017_00487
crossref_primary_10_1152_jn_00450_2023
crossref_primary_10_1038_s41467_024_48576_8
crossref_primary_10_1016_j_celrep_2021_109083
crossref_primary_10_1038_s41598_019_47503_y
crossref_primary_10_1523_JNEUROSCI_1103_20_2020
crossref_primary_10_1152_jn_00281_2023
crossref_primary_10_7554_eLife_75897
crossref_primary_10_3389_fpsyg_2023_1234955
crossref_primary_10_1016_j_neunet_2020_06_008
crossref_primary_10_1371_journal_pone_0271659
crossref_primary_10_1016_j_neuroimage_2021_117757
crossref_primary_10_1016_j_nbd_2019_02_006
crossref_primary_10_3389_fnhum_2016_00371
crossref_primary_10_1016_j_brs_2023_09_019
crossref_primary_10_1038_s42003_024_06677_6
crossref_primary_10_1016_j_cub_2023_10_042
crossref_primary_10_1016_j_isci_2023_107064
crossref_primary_10_1016_j_neubiorev_2021_11_006
crossref_primary_10_1016_j_neuroimage_2023_120375
crossref_primary_10_1177_1545968319893286
crossref_primary_10_1016_j_cub_2023_02_018
crossref_primary_10_1016_j_neuroimage_2018_05_054
crossref_primary_10_1162_jocn_a_02118
crossref_primary_10_1016_j_tics_2016_12_001
crossref_primary_10_1093_cercor_bhaa218
crossref_primary_10_1523_ENEURO_0030_21_2021
crossref_primary_10_1002_hbm_26779
crossref_primary_10_7554_eLife_53715
crossref_primary_10_1016_j_biopsych_2018_05_015
crossref_primary_10_1038_s41593_022_01107_4
crossref_primary_10_3389_fnbeh_2019_00220
crossref_primary_10_1002_hbm_25322
crossref_primary_10_1016_j_nicl_2019_101752
crossref_primary_10_1140_epjs_s11734_024_01348_3
crossref_primary_10_1016_j_physrep_2021_03_002
crossref_primary_10_1162_jocn_a_01397
crossref_primary_10_1088_1741_2552_ac9c96
crossref_primary_10_1016_j_neuroimage_2021_117726
crossref_primary_10_1038_s42003_018_0110_y
crossref_primary_10_1109_ACCESS_2020_2982198
crossref_primary_10_1016_j_nicl_2020_102484
crossref_primary_10_1016_j_celrep_2020_03_050
crossref_primary_10_1038_s41598_018_32385_3
crossref_primary_10_1167_19_14_15
crossref_primary_10_1002_hbm_24784
crossref_primary_10_3389_fncom_2017_00006
crossref_primary_10_1016_j_neuroimage_2022_119047
crossref_primary_10_1016_j_bandc_2023_106121
crossref_primary_10_1016_j_neuroimage_2017_01_011
crossref_primary_10_1016_j_biopsych_2022_02_961
crossref_primary_10_1371_journal_pbio_3000487
crossref_primary_10_1523_JNEUROSCI_2363_17_2017
crossref_primary_10_7554_eLife_61679
crossref_primary_10_1113_JP287372
crossref_primary_10_1098_rsif_2021_0486
crossref_primary_10_1016_j_cobme_2021_100298
crossref_primary_10_1038_s41467_022_32378_x
crossref_primary_10_7554_eLife_37321
crossref_primary_10_1523_JNEUROSCI_0156_23_2023
crossref_primary_10_7554_eLife_68066
crossref_primary_10_1007_s12035_017_0737_6
crossref_primary_10_1016_j_biopsych_2016_09_018
crossref_primary_10_1002_hbm_24418
crossref_primary_10_1016_j_neuron_2019_10_019
crossref_primary_10_1038_s41598_019_42821_7
crossref_primary_10_1523_ENEURO_0170_17_2017
crossref_primary_10_1016_j_nicl_2024_103671
crossref_primary_10_1016_j_bpsc_2017_01_005
crossref_primary_10_1162_jocn_a_01250
crossref_primary_10_3389_fpsyt_2024_1483433
crossref_primary_10_1016_j_neuroimage_2016_10_044
crossref_primary_10_1162_jocn_a_01376
crossref_primary_10_3390_bs13110918
crossref_primary_10_1016_j_cobeha_2019_08_003
crossref_primary_10_2139_ssrn_4149960
crossref_primary_10_1016_j_neuroimage_2017_11_001
crossref_primary_10_3389_fnhum_2022_905837
crossref_primary_10_3389_fncom_2023_1253234
crossref_primary_10_1016_j_neuroimage_2017_11_002
crossref_primary_10_1016_j_neuroimage_2019_04_001
crossref_primary_10_1016_j_neuroimage_2023_120208
crossref_primary_10_1523_JNEUROSCI_2270_17_2017
crossref_primary_10_1016_j_neuron_2018_01_012
crossref_primary_10_1038_s41598_019_51747_z
crossref_primary_10_3389_fnsys_2021_598383
crossref_primary_10_1371_journal_pbio_3001466
crossref_primary_10_1016_j_neuron_2019_07_001
crossref_primary_10_7554_eLife_85035
crossref_primary_10_1146_annurev_vision_121219_081716
crossref_primary_10_7554_eLife_70907
crossref_primary_10_1016_j_biopsych_2024_11_014
crossref_primary_10_1523_ENEURO_0329_17_2018
crossref_primary_10_1097_WCO_0000000000000512
crossref_primary_10_1016_j_neuron_2021_09_052
crossref_primary_10_1016_j_neuroimage_2019_05_079
crossref_primary_10_1038_s42003_021_02010_7
crossref_primary_10_1016_j_neuron_2016_01_001
crossref_primary_10_1016_j_biopsych_2021_02_009
crossref_primary_10_3390_brainsci11010035
crossref_primary_10_1016_j_pneurobio_2023_102491
crossref_primary_10_1371_journal_pcbi_1007091
crossref_primary_10_1371_journal_pone_0222420
crossref_primary_10_1016_j_dcn_2022_101069
crossref_primary_10_1038_s41598_020_64243_6
crossref_primary_10_1016_j_cortex_2017_08_025
crossref_primary_10_1111_ejn_13747
crossref_primary_10_1016_j_schres_2023_08_033
crossref_primary_10_1177_17456916231185343
crossref_primary_10_1007_s12264_017_0181_7
crossref_primary_10_1038_s41467_021_26713_x
crossref_primary_10_1523_ENEURO_0362_20_2021
crossref_primary_10_1093_cercor_bhab016
crossref_primary_10_1093_cercor_bhad318
crossref_primary_10_1093_cercor_bhaa165
crossref_primary_10_1371_journal_pcbi_1012429
crossref_primary_10_1523_JNEUROSCI_0630_21_2022
crossref_primary_10_1007_s11571_020_09580_y
crossref_primary_10_1073_pnas_1701672114
crossref_primary_10_1098_rspb_2020_0115
crossref_primary_10_1073_pnas_2300558120
crossref_primary_10_1371_journal_pbio_3002365
crossref_primary_10_1371_journal_pone_0219107
crossref_primary_10_3389_fnana_2017_00071
crossref_primary_10_1038_s41467_022_34018_w
crossref_primary_10_1051_medsci_20163210011
crossref_primary_10_1523_ENEURO_0430_17_2018
crossref_primary_10_1093_braincomms_fcab296
crossref_primary_10_1016_j_cortex_2021_05_017
crossref_primary_10_1016_j_cub_2024_06_072
crossref_primary_10_7554_eLife_68240
crossref_primary_10_1093_scan_nsz096
crossref_primary_10_1016_j_neuroimage_2019_03_018
crossref_primary_10_3389_fneur_2023_1241481
crossref_primary_10_1016_j_neulet_2023_137409
crossref_primary_10_3390_info11050238
crossref_primary_10_1007_s11071_018_4668_1
crossref_primary_10_1111_ejn_13767
crossref_primary_10_1371_journal_pbio_3002239
crossref_primary_10_1007_s00429_017_1554_4
crossref_primary_10_1016_j_neuroimage_2017_07_032
crossref_primary_10_1016_j_neuroimage_2021_118307
crossref_primary_10_1016_j_pneurobio_2021_102033
crossref_primary_10_1016_j_neuroimage_2021_118788
crossref_primary_10_1371_journal_pcbi_1011595
crossref_primary_10_1093_brain_awy175
crossref_primary_10_1038_s41562_024_01838_3
crossref_primary_10_3389_fnhum_2019_00033
crossref_primary_10_3389_fpsyg_2018_01475
crossref_primary_10_1523_JNEUROSCI_1728_22_2023
crossref_primary_10_1016_j_neuron_2020_07_001
crossref_primary_10_1093_cercor_bhz038
crossref_primary_10_1016_j_neuroimage_2023_120036
crossref_primary_10_1111_ncn3_12508
crossref_primary_10_1093_cercor_bhx092
crossref_primary_10_7554_eLife_60988
crossref_primary_10_1093_cercor_bhy065
crossref_primary_10_1016_j_neuroimage_2021_118637
crossref_primary_10_1089_brain_2018_0624
crossref_primary_10_1038_s41583_018_0094_0
crossref_primary_10_1016_j_neuroimage_2020_117266
crossref_primary_10_1016_j_pneurobio_2023_102563
crossref_primary_10_1093_brain_awy120
crossref_primary_10_1016_j_neuron_2023_02_032
crossref_primary_10_1016_j_bandc_2020_105677
crossref_primary_10_1093_brain_awz214
crossref_primary_10_3389_fnsys_2016_00035
crossref_primary_10_1016_j_biopsycho_2023_108729
crossref_primary_10_1016_j_pneurobio_2017_06_002
crossref_primary_10_1093_cercor_bhac540
crossref_primary_10_1111_ejn_15605
crossref_primary_10_1038_s41598_018_25093_5
crossref_primary_10_3389_fnsys_2019_00031
crossref_primary_10_1152_jn_00807_2017
crossref_primary_10_1371_journal_pcbi_1008129
crossref_primary_10_1007_s13295_016_0028_0
crossref_primary_10_1038_srep28092
crossref_primary_10_1371_journal_pbio_2005346
crossref_primary_10_1016_j_heliyon_2022_e12287
crossref_primary_10_1016_j_neuron_2018_10_004
crossref_primary_10_1038_s41467_021_21979_7
crossref_primary_10_1146_annurev_neuro_110920_035434
crossref_primary_10_1093_cercor_bhaa370
crossref_primary_10_3389_fnsys_2018_00030
crossref_primary_10_1111_ejn_15739
crossref_primary_10_1016_j_cortex_2018_08_009
crossref_primary_10_1038_s41598_020_70448_6
crossref_primary_10_1016_j_neuroimage_2023_120298
crossref_primary_10_1162_neco_a_01115
crossref_primary_10_3389_fnins_2018_00949
crossref_primary_10_1093_cercor_bhz294
crossref_primary_10_1073_pnas_1710323115
crossref_primary_10_3389_fnhum_2024_1339728
crossref_primary_10_1016_j_neuroimage_2023_120171
crossref_primary_10_1162_netn_a_00100
crossref_primary_10_1016_j_cub_2018_03_044
crossref_primary_10_1016_j_tics_2025_01_012
crossref_primary_10_1016_j_neuroimage_2021_118613
crossref_primary_10_1186_s12868_017_0349_0
crossref_primary_10_1016_j_tics_2024_09_013
crossref_primary_10_1523_JNEUROSCI_1689_19_2019
crossref_primary_10_3389_fncom_2020_00074
crossref_primary_10_1016_j_brs_2022_07_056
crossref_primary_10_1002_hbm_24830
crossref_primary_10_1016_j_cnsns_2019_105093
crossref_primary_10_1523_JNEUROSCI_1568_18_2018
crossref_primary_10_7554_eLife_78108
crossref_primary_10_1162_NETN_a_00011
crossref_primary_10_3389_fncir_2023_1254009
crossref_primary_10_1038_nn_4386
crossref_primary_10_1038_s41467_020_18826_6
crossref_primary_10_1007_s11571_017_9470_0
crossref_primary_10_1371_journal_pone_0235744
crossref_primary_10_1016_j_neuron_2016_09_003
crossref_primary_10_1038_s41598_018_36353_9
crossref_primary_10_1016_j_neuroimage_2020_117479
crossref_primary_10_1371_journal_pbio_2003143
crossref_primary_10_1126_sciadv_1601335
crossref_primary_10_1162_jocn_a_01511
crossref_primary_10_1016_j_neuroimage_2020_117351
crossref_primary_10_1093_cercor_bhad412
crossref_primary_10_1523_ENEURO_0153_16_2017
crossref_primary_10_1523_JNEUROSCI_2359_19_2020
crossref_primary_10_3389_fncom_2022_883065
crossref_primary_10_3389_fncel_2024_1440834
crossref_primary_10_1523_JNEUROSCI_1660_19_2019
crossref_primary_10_1080_23273798_2020_1764990
crossref_primary_10_1016_j_neuroimage_2020_116927
crossref_primary_10_3389_fpsyt_2020_561973
crossref_primary_10_1016_j_biosystems_2022_104652
crossref_primary_10_3389_fnsys_2020_00008
crossref_primary_10_1371_journal_pone_0229334
crossref_primary_10_1371_journal_pone_0228365
crossref_primary_10_1016_j_crneur_2022_100053
crossref_primary_10_1016_j_neuroimage_2016_04_017
crossref_primary_10_1371_journal_pbio_3002178
crossref_primary_10_1038_s41467_022_28552_w
crossref_primary_10_1016_j_jneuroling_2021_101019
crossref_primary_10_1038_s41583_020_0262_x
crossref_primary_10_1111_psyp_14051
crossref_primary_10_1016_j_bpsc_2018_07_004
crossref_primary_10_1038_s41598_023_45308_8
crossref_primary_10_3389_fncom_2018_00023
crossref_primary_10_1109_TBME_2019_2913928
crossref_primary_10_1016_j_neuroimage_2017_06_023
crossref_primary_10_1038_s41598_019_42380_x
crossref_primary_10_1016_j_tins_2024_12_005
crossref_primary_10_1016_j_conb_2017_08_012
crossref_primary_10_1016_j_neuroimage_2016_11_001
crossref_primary_10_1016_j_neuroimage_2022_119307
crossref_primary_10_1007_s40750_023_00230_1
crossref_primary_10_1016_j_neuropsychologia_2024_108900
crossref_primary_10_1016_j_isci_2022_104068
crossref_primary_10_1162_jocn_a_01708
crossref_primary_10_1007_s00422_021_00859_9
crossref_primary_10_1038_s41598_021_96849_9
crossref_primary_10_1088_2053_1583_ab7976
crossref_primary_10_1073_pnas_2315160121
crossref_primary_10_1162_neco_a_01301
crossref_primary_10_2174_0929867331666230707123345
crossref_primary_10_1016_j_neuron_2020_01_026
crossref_primary_10_1038_s41467_023_42088_7
crossref_primary_10_1016_j_neuron_2018_11_020
crossref_primary_10_1007_s11571_021_09767_x
crossref_primary_10_1016_j_jneumeth_2021_109217
crossref_primary_10_1016_j_compbiomed_2022_106480
crossref_primary_10_1016_j_heliyon_2024_e30752
crossref_primary_10_1016_j_neuroimage_2019_116313
crossref_primary_10_1103_PhysRevE_97_052405
crossref_primary_10_1002_hbm_25196
crossref_primary_10_1093_cercor_bhac374
crossref_primary_10_1016_j_physd_2017_12_011
crossref_primary_10_1073_pnas_1904160116
crossref_primary_10_1111_ejn_15314
crossref_primary_10_1002_hbm_26284
crossref_primary_10_1016_j_biosystems_2021_104452
crossref_primary_10_1038_s42003_022_04049_6
crossref_primary_10_1155_2021_8874516
crossref_primary_10_1016_j_neubiorev_2016_10_002
crossref_primary_10_1093_cercor_bhy333
crossref_primary_10_1016_j_neuroimage_2019_116323
crossref_primary_10_1016_j_tins_2018_06_003
crossref_primary_10_1111_nyas_13664
crossref_primary_10_1016_j_neuroimage_2018_06_005
crossref_primary_10_1038_s42003_023_04628_1
crossref_primary_10_1103_PhysRevE_110_024403
crossref_primary_10_1016_j_clinph_2018_03_042
crossref_primary_10_1371_journal_pcbi_1007566
crossref_primary_10_1038_s41398_025_03225_6
crossref_primary_10_1038_s41598_022_23720_w
crossref_primary_10_1038_s41467_021_25895_8
crossref_primary_10_1152_jn_00061_2017
crossref_primary_10_1152_jn_00936_2017
crossref_primary_10_1038_s41598_022_10647_5
crossref_primary_10_3389_frai_2020_00030
crossref_primary_10_1093_cercor_bhac154
crossref_primary_10_1093_cercor_bhy125
crossref_primary_10_1007_s40750_025_00257_6
crossref_primary_10_1007_s11427_023_2436_x
crossref_primary_10_1016_j_concog_2020_103034
crossref_primary_10_1007_s11554_020_00960_5
crossref_primary_10_1103_PhysRevE_104_054404
crossref_primary_10_53765_20512201_29_3_078
crossref_primary_10_1073_pnas_2116616119
crossref_primary_10_1523_JNEUROSCI_1337_20_2021
crossref_primary_10_1162_netn_a_00062
crossref_primary_10_1523_ENEURO_0338_17_2017
crossref_primary_10_1523_ENEURO_0137_21_2022
crossref_primary_10_1177_1073858418755352
crossref_primary_10_3389_fnagi_2025_1488811
crossref_primary_10_3389_fnins_2018_00433
crossref_primary_10_1140_epjst_e2019_900077_7
crossref_primary_10_1016_j_schres_2016_06_003
crossref_primary_10_1093_cercor_bhad127
crossref_primary_10_1152_jn_00224_2018
crossref_primary_10_1016_j_celrep_2023_113249
crossref_primary_10_7554_eLife_53588
crossref_primary_10_3390_brainsci11111443
crossref_primary_10_1038_s41562_023_01529_5
crossref_primary_10_1093_pnasnexus_pgae288
crossref_primary_10_1016_j_neuroimage_2023_119914
crossref_primary_10_1152_jn_00444_2019
crossref_primary_10_7554_eLife_22749
crossref_primary_10_3758_s13423_024_02511_6
crossref_primary_10_7554_eLife_42101
crossref_primary_10_3389_fnsys_2021_669256
crossref_primary_10_1016_j_celrep_2023_113242
crossref_primary_10_1523_ENEURO_0030_23_2024
crossref_primary_10_3389_fpsyg_2024_1386370
crossref_primary_10_1088_1741_2552_ab92b2
crossref_primary_10_3389_fnins_2022_910443
crossref_primary_10_1073_pnas_1817317116
crossref_primary_10_3389_fneur_2022_814940
crossref_primary_10_1111_nyas_14321
crossref_primary_10_1016_j_brs_2022_02_018
crossref_primary_10_1523_JNEUROSCI_0900_19_2019
crossref_primary_10_1038_s41598_020_78172_x
crossref_primary_10_1016_j_cub_2017_06_033
crossref_primary_10_1523_JNEUROSCI_1889_18_2018
crossref_primary_10_7554_eLife_33977
crossref_primary_10_1016_j_isci_2024_110489
crossref_primary_10_1016_j_neuroimage_2025_121058
crossref_primary_10_1016_j_jneumeth_2019_108443
crossref_primary_10_1016_j_neuron_2018_09_023
crossref_primary_10_1016_j_neuroimage_2025_121172
crossref_primary_10_1038_s41598_018_37912_w
crossref_primary_10_1111_ejn_16212
crossref_primary_10_1093_texcom_tgab032
crossref_primary_10_1016_j_neuroimage_2020_116882
crossref_primary_10_1007_s11571_022_09914_y
crossref_primary_10_2139_ssrn_3188377
crossref_primary_10_7554_eLife_31670
crossref_primary_10_1073_pnas_1703155114
crossref_primary_10_1162_imag_a_00499
crossref_primary_10_1126_sciadv_add7572
crossref_primary_10_1038_s41467_020_19828_0
crossref_primary_10_1016_j_isci_2024_109140
crossref_primary_10_1038_s41593_023_01554_7
crossref_primary_10_1038_srep30932
crossref_primary_10_1016_j_neuron_2018_09_019
crossref_primary_10_1111_pcn_13300
crossref_primary_10_3389_fnhum_2021_630813
crossref_primary_10_1016_j_neuroimage_2018_07_067
crossref_primary_10_1073_pnas_2407457121
crossref_primary_10_1038_nn_4504
crossref_primary_10_1038_s41598_018_25267_1
crossref_primary_10_7554_eLife_43620
crossref_primary_10_1016_j_biopsych_2023_09_011
crossref_primary_10_1016_j_neunet_2018_06_013
crossref_primary_10_1371_journal_pone_0303959
crossref_primary_10_1523_JNEUROSCI_0689_20_2020
crossref_primary_10_1001_jamapsychiatry_2020_0284
crossref_primary_10_1016_j_tins_2018_01_002
crossref_primary_10_1016_j_celrep_2018_10_029
crossref_primary_10_3389_fnins_2020_625721
crossref_primary_10_1073_pnas_1917156117
crossref_primary_10_3390_e21050500
crossref_primary_10_3389_fncom_2021_632730
crossref_primary_10_1038_nrn_2016_163
crossref_primary_10_1038_s41598_019_53270_7
crossref_primary_10_1002_hbm_70045
crossref_primary_10_1523_JNEUROSCI_3015_16_2017
crossref_primary_10_1016_j_jpain_2019_08_017
crossref_primary_10_1111_psyp_13314
crossref_primary_10_1111_psyp_14403
crossref_primary_10_1016_j_concog_2022_103375
crossref_primary_10_1126_sciadv_adi2321
crossref_primary_10_1002_pcn5_68
crossref_primary_10_1111_ejn_15393
crossref_primary_10_3390_brainsci13020211
crossref_primary_10_1016_j_cognition_2017_03_012
crossref_primary_10_1016_j_neurot_2024_e00384
crossref_primary_10_1016_j_nicl_2021_102876
crossref_primary_10_3389_fncel_2022_785199
crossref_primary_10_3758_s13423_021_01894_0
crossref_primary_10_1016_j_neuroimage_2018_06_083
crossref_primary_10_1038_s41583_024_00845_7
crossref_primary_10_1016_j_tins_2023_07_003
crossref_primary_10_1016_j_neuroimage_2017_10_069
crossref_primary_10_1371_journal_pone_0249317
crossref_primary_10_1146_annurev_bioeng_062117_120853
crossref_primary_10_1523_ENEURO_0467_18_2019
crossref_primary_10_1038_s41598_022_06570_4
crossref_primary_10_3724_SP_J_1042_2021_00031
crossref_primary_10_1016_j_conb_2020_11_002
crossref_primary_10_7554_eLife_74653
crossref_primary_10_1016_j_concog_2021_103155
crossref_primary_10_1371_journal_pbio_3001750
crossref_primary_10_1073_pnas_2313304121
crossref_primary_10_1371_journal_pone_0253813
crossref_primary_10_1371_journal_pcbi_1007991
crossref_primary_10_1089_brain_2020_0885
crossref_primary_10_1371_journal_pcbi_1005574
crossref_primary_10_1016_j_cophys_2020_08_008
crossref_primary_10_1016_j_neuroimage_2021_118299
crossref_primary_10_1007_s00701_020_04276_y
crossref_primary_10_1016_j_neuroimage_2017_03_008
crossref_primary_10_1523_ENEURO_0244_21_2022
crossref_primary_10_1016_j_nicl_2020_102318
crossref_primary_10_1016_j_celrep_2021_109585
crossref_primary_10_1016_j_neubiorev_2023_105373
crossref_primary_10_1093_cercor_bhae063
crossref_primary_10_1016_j_neuroimage_2023_119998
crossref_primary_10_1111_psyp_13462
crossref_primary_10_1016_j_tics_2016_09_007
crossref_primary_10_1162_jocn_a_02169
crossref_primary_10_1016_j_tics_2021_08_008
Cites_doi 10.1016/j.brainres.2015.02.004
10.1016/S0006-3495(99)77236-X
10.1038/nn.2810
10.1016/j.bandl.2012.08.003
10.1080/01621459.1982.10477803
10.1152/physrev.00035.2008
10.1038/nature08573
10.1155/2011/156869
10.1016/j.neuroimage.2005.08.043
10.1016/j.conb.2014.08.010
10.1371/journal.pone.0032536
10.2307/1912791
10.1016/j.neuroimage.2014.01.049
10.1002/hbm.20745
10.1016/j.tics.2005.08.011
10.1016/j.neuron.2015.09.034
10.1016/j.neuron.2014.12.018
10.1152/physrev.1995.75.1.107
10.1016/j.neuron.2012.06.037
10.1016/j.jneumeth.2007.03.024
10.1088/0031-9155/48/22/002
10.1073/pnas.0907658106
10.1126/science.1171402
10.1016/S0079-6123(05)49013-5
10.1093/cercor/1.1.1
10.1038/nn.3764
10.1111/j.1469-8986.1984.tb00254.x
10.1523/JNEUROSCI.5592-11.2012
10.1016/j.neuroimage.2012.02.084
10.1152/jn.1996.75.6.2467
10.1371/journal.pcbi.1003164
10.1073/pnas.97.26.14748
10.1016/j.cub.2015.08.057
10.1111/ejn.12687
10.1016/j.neuron.2014.08.051
10.1016/j.neuron.2012.10.038
10.1103/PhysRevLett.100.018701
10.1093/cercor/bhg087
10.1126/science.1138071
10.1016/j.neuroimage.2014.06.042
10.1002/cne.23458
10.1126/science.1247003
10.1073/pnas.1011284108
10.1523/JNEUROSCI.20-09-03263.2000
10.1073/pnas.1201478109
10.1523/JNEUROSCI.2180-11.2011
10.1016/j.neuron.2012.03.011
10.1016/j.neuroimage.2008.03.025
10.1093/cercor/bhr291
10.1016/j.neuroimage.2010.06.010
10.1038/ncomms5694
10.1523/JNEUROSCI.2699-08.2008
10.1523/JNEUROSCI.5580-10.2011
10.1073/pnas.1402773111
10.1016/j.neuroimage.2006.01.021
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright Elsevier Limited Jan 20, 2016
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright Elsevier Limited Jan 20, 2016
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.neuron.2015.12.018
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Nursing & Allied Health Premium
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
EndPage 397
ExternalDocumentID PMC4871751
3929446191
26777277
10_1016_j_neuron_2015_12_018
S0896627315011204
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: NIMH NIH HHS
  grantid: 1U54MH091657
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
3V.
4.4
457
4G.
53G
5RE
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGKMS
AHHHB
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HCIFZ
HVGLF
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
WQ6
ZA5
.55
.GJ
29N
3O-
5VS
AAFWJ
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
G-2
HZ~
ITC
MVM
OZT
R2-
X7M
ZGI
ZKB
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
EFKBS
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c561t-a2c24a45d378645d5b24821f6b8f17c5cbf3b2ef06661bd6164181636e31fb153
IEDL.DBID IXB
ISSN 0896-6273
1097-4199
IngestDate Thu Aug 21 14:00:22 EDT 2025
Sun Sep 28 01:37:01 EDT 2025
Sun Jul 13 04:12:38 EDT 2025
Thu Apr 03 07:11:15 EDT 2025
Tue Jul 01 01:16:12 EDT 2025
Thu Apr 24 22:53:10 EDT 2025
Fri Feb 23 02:11:26 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c561t-a2c24a45d378645d5b24821f6b8f17c5cbf3b2ef06661bd6164181636e31fb153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0896627315011204
PMID 26777277
PQID 1759011009
PQPubID 2031076
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4871751
proquest_miscellaneous_1790022922
proquest_journals_1759011009
pubmed_primary_26777277
crossref_primary_10_1016_j_neuron_2015_12_018
crossref_citationtrail_10_1016_j_neuron_2015_12_018
elsevier_sciencedirect_doi_10_1016_j_neuron_2015_12_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-20
PublicationDateYYYYMMDD 2016-01-20
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2016
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Buffalo, Fries, Landman, Buschman, Desimone (bib12) 2011; 108
Sethian (bib49) 1999
Nolte (bib39) 2003; 48
Reuter, Schmansky, Rosas, Fischl (bib44) 2012; 61
Jutai, Gruzelier, Connolly (bib32) 1984; 21
Haegens, Cousijn, Wallis, Harrison, Nobre (bib30) 2014; 92
Barone, Batardiere, Knoblauch, Kennedy (bib4) 2000; 20
Colgin, Denninger, Fyhn, Hafting, Bonnevie, Jensen, Moser, Moser (bib15) 2009; 462
Oostenveld, Fries, Maris, Schoffelen (bib41) 2011; 2011
Van Essen (bib50) 2005; 149
Arnal, Wyart, Giraud (bib2) 2011; 14
Fries (bib24) 2015; 88
Bollimunta, Chen, Schroeder, Ding (bib7) 2008; 28
Fries (bib23) 2005; 9
Bosman, Schoffelen, Brunet, Oostenveld, Bastos, Womelsdorf, Rubehn, Stieglitz, De Weerd, Fries (bib9) 2012; 75
Bastos, Usrey, Adams, Mangun, Fries, Friston (bib5) 2012; 76
Abdollahi, Kolster, Glasser, Robinson, Coalson, Dierker, Jenkinson, Van Essen, Orban (bib1) 2014; 99
Geweke (bib25) 1982; 77
Bollimunta, Mo, Schroeder, Ding (bib8) 2011; 31
Dhamala, Rangarajan, Ding (bib19) 2008; 100
Hoogenboom, Schoffelen, Oostenveld, Parkes, Fries (bib31) 2006; 29
Cloutman (bib14) 2013; 127
Wang (bib55) 2010; 90
Schoffelen, Gross (bib47) 2009; 30
von Stein, Chiang, König (bib54) 2000; 97
Granger (bib27) 1969; 37
Percival, Walden (bib42) 2000
Muckli, De Martino, Vizioli, Petro, Smith, Ugurbil, Goebel, Yacoub (bib38) 2015; 25
Bastos, Vezoli, Bosman, Schoffelen, Oostenveld, Dowdall, De Weerd, Kennedy, Fries (bib6) 2015; 85
Olman, Harel, Feinberg, He, Zhang, Ugurbil, Yacoub (bib40) 2012; 7
Buffalo, Fries, Landman, Liang, Desimone (bib11) 2010; 107
Felleman, Van Essen (bib20) 1991; 1
Livingstone (bib34) 1996; 75
Womelsdorf, Valiante, Sahin, Miller, Tiesinga (bib57) 2014; 17
Xing, Yeh, Burns, Shapley (bib58) 2012; 109
Gregoriou, Paneri, Sapountzis (bib29) 2015; 1626
Maris, Oostenveld (bib35) 2007; 164
Markov, Vezoli, Chameau, Falchier, Quilodran, Huissoud, Lamy, Misery, Giroud, Ullman (bib36) 2014; 522
Plomp, Quairiaux, Kiss, Astolfi, Michel (bib43) 2014; 40
Mitra, Pesaran (bib37) 1999; 76
Roe, Chelazzi, Connor, Conway, Fujita, Gallant, Lu, Vanduffel (bib45) 2012; 74
Gregoriou, Gotts, Zhou, Desimone (bib28) 2009; 324
Wang, Chen, Ding (bib56) 2008; 41
Lee, Whittington, Kopell (bib33) 2013; 9
Baldauf, Desimone (bib3) 2014; 344
Dehaene, Duhamel, Hauser, Rizzolatti (bib16) 2005
Bressler, Richter (bib10) 2015; 31
Fischl, van der Kouwe, Destrieux, Halgren, Ségonne, Salat, Busa, Seidman, Goldstein, Kennedy (bib21) 2004; 14
Buschman, Miller (bib13) 2007; 315
Destrieux, Fischl, Dale, Halgren (bib18) 2010; 53
Salin, Bullier (bib46) 1995; 75
Fontolan, Morillon, Liegeois-Chauvel, Giraud (bib22) 2014; 5
van Kerkoerle, Self, Dagnino, Gariel-Mathis, Poort, van der Togt, Roelfsema (bib52) 2014; 111
van Pelt, Boomsma, Fries (bib53) 2012; 32
Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman (bib17) 2006; 31
Glasser, Van Essen (bib26) 2011; 31
Schomburg, Fernández-Ruiz, Mizuseki, Berényi, Anastassiou, Koch, Buzsáki (bib48) 2014; 84
Van Essen, Glasser, Dierker, Harwell, Coalson (bib51) 2012; 22
Livingstone (10.1016/j.neuron.2015.12.018_bib34) 1996; 75
Felleman (10.1016/j.neuron.2015.12.018_bib20) 1991; 1
Schomburg (10.1016/j.neuron.2015.12.018_bib48) 2014; 84
Abdollahi (10.1016/j.neuron.2015.12.018_bib1) 2014; 99
Geweke (10.1016/j.neuron.2015.12.018_bib25) 1982; 77
Womelsdorf (10.1016/j.neuron.2015.12.018_bib57) 2014; 17
Bollimunta (10.1016/j.neuron.2015.12.018_bib8) 2011; 31
Markov (10.1016/j.neuron.2015.12.018_bib36) 2014; 522
Fries (10.1016/j.neuron.2015.12.018_bib24) 2015; 88
Bastos (10.1016/j.neuron.2015.12.018_bib6) 2015; 85
Glasser (10.1016/j.neuron.2015.12.018_bib26) 2011; 31
Bollimunta (10.1016/j.neuron.2015.12.018_bib7) 2008; 28
Dhamala (10.1016/j.neuron.2015.12.018_bib19) 2008; 100
Percival (10.1016/j.neuron.2015.12.018_bib42) 2000
van Pelt (10.1016/j.neuron.2015.12.018_bib53) 2012; 32
Bastos (10.1016/j.neuron.2015.12.018_bib5) 2012; 76
Olman (10.1016/j.neuron.2015.12.018_bib40) 2012; 7
Van Essen (10.1016/j.neuron.2015.12.018_bib51) 2012; 22
Gregoriou (10.1016/j.neuron.2015.12.018_bib29) 2015; 1626
Plomp (10.1016/j.neuron.2015.12.018_bib43) 2014; 40
Barone (10.1016/j.neuron.2015.12.018_bib4) 2000; 20
Hoogenboom (10.1016/j.neuron.2015.12.018_bib31) 2006; 29
Wang (10.1016/j.neuron.2015.12.018_bib55) 2010; 90
Fries (10.1016/j.neuron.2015.12.018_bib23) 2005; 9
Schoffelen (10.1016/j.neuron.2015.12.018_bib47) 2009; 30
Gregoriou (10.1016/j.neuron.2015.12.018_bib28) 2009; 324
Maris (10.1016/j.neuron.2015.12.018_bib35) 2007; 164
Buffalo (10.1016/j.neuron.2015.12.018_bib11) 2010; 107
Baldauf (10.1016/j.neuron.2015.12.018_bib3) 2014; 344
Fontolan (10.1016/j.neuron.2015.12.018_bib22) 2014; 5
Desikan (10.1016/j.neuron.2015.12.018_bib17) 2006; 31
Xing (10.1016/j.neuron.2015.12.018_bib58) 2012; 109
Jutai (10.1016/j.neuron.2015.12.018_bib32) 1984; 21
Dehaene (10.1016/j.neuron.2015.12.018_bib16) 2005
Sethian (10.1016/j.neuron.2015.12.018_bib49) 1999
van Kerkoerle (10.1016/j.neuron.2015.12.018_bib52) 2014; 111
Buschman (10.1016/j.neuron.2015.12.018_bib13) 2007; 315
Van Essen (10.1016/j.neuron.2015.12.018_bib50) 2005; 149
Fischl (10.1016/j.neuron.2015.12.018_bib21) 2004; 14
Granger (10.1016/j.neuron.2015.12.018_bib27) 1969; 37
Arnal (10.1016/j.neuron.2015.12.018_bib2) 2011; 14
Buffalo (10.1016/j.neuron.2015.12.018_bib12) 2011; 108
Bressler (10.1016/j.neuron.2015.12.018_bib10) 2015; 31
Destrieux (10.1016/j.neuron.2015.12.018_bib18) 2010; 53
Lee (10.1016/j.neuron.2015.12.018_bib33) 2013; 9
Salin (10.1016/j.neuron.2015.12.018_bib46) 1995; 75
Wang (10.1016/j.neuron.2015.12.018_bib56) 2008; 41
Nolte (10.1016/j.neuron.2015.12.018_bib39) 2003; 48
Oostenveld (10.1016/j.neuron.2015.12.018_bib41) 2011; 2011
Cloutman (10.1016/j.neuron.2015.12.018_bib14) 2013; 127
Mitra (10.1016/j.neuron.2015.12.018_bib37) 1999; 76
Roe (10.1016/j.neuron.2015.12.018_bib45) 2012; 74
von Stein (10.1016/j.neuron.2015.12.018_bib54) 2000; 97
Muckli (10.1016/j.neuron.2015.12.018_bib38) 2015; 25
Reuter (10.1016/j.neuron.2015.12.018_bib44) 2012; 61
Haegens (10.1016/j.neuron.2015.12.018_bib30) 2014; 92
Bosman (10.1016/j.neuron.2015.12.018_bib9) 2012; 75
Colgin (10.1016/j.neuron.2015.12.018_bib15) 2009; 462
16530430 - Neuroimage. 2006 Jul 1;31(3):968-80
22448223 - PLoS One. 2012;7(3):e32536
26447583 - Neuron. 2015 Oct 7;88(1):220-35
23950699 - PLoS Comput Biol. 2013;9(8):e1003164
19924214 - Nature. 2009 Nov 19;462(7271):353-7
11121074 - Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14748-53
9929474 - Biophys J. 1999 Feb;76(2):691-708
23983048 - J Comp Neurol. 2014 Jan 1;522(1):225-59
24971513 - Neuroimage. 2014 Oct 1;99:509-24
22399760 - J Neurosci. 2012 Mar 7;32(10):3388-92
20007766 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):361-5
24763592 - Science. 2014 Apr 25;344(6182):424-7
25178489 - Nat Commun. 2014;5:4694
26441356 - Curr Biol. 2015 Oct 19;25(20):2690-5
6514943 - Psychophysiology. 1984 Nov;21(6):665-72
25065440 - Nat Neurosci. 2014 Aug;17(8):1031-9
7831395 - Physiol Rev. 1995 Jan;75(1):107-54
10777791 - J Neurosci. 2000 May 1;20(9):3263-81
17517438 - J Neurosci Methods. 2007 Aug 15;164(1):177-90
25217807 - Curr Opin Neurobiol. 2015 Apr;31:62-6
14680264 - Phys Med Biol. 2003 Nov 21;48(22):3637-52
18829955 - J Neurosci. 2008 Oct 1;28(40):9976-88
25263753 - Neuron. 2014 Oct 22;84(2):470-85
22872866 - Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13871-6
22958827 - Neuron. 2012 Sep 6;75(5):875-88
22968092 - Brain Lang. 2013 Nov;127(2):251-63
21552273 - Nat Neurosci. 2011 Jun;14(6):797-801
1822724 - Cereb Cortex. 1991 Jan-Feb;1(1):1-47
16216533 - Neuroimage. 2006 Feb 1;29(3):764-73
21253357 - Comput Intell Neurosci. 2011;2011:156869
18455441 - Neuroimage. 2008 Jul 1;41(3):767-76
22500626 - Neuron. 2012 Apr 12;74(1):12-29
22430496 - Neuroimage. 2012 Jul 16;61(4):1402-18
25712615 - Brain Res. 2015 Nov 11;1626:165-82
20547229 - Neuroimage. 2010 Oct 15;53(1):1-15
21690410 - Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11262-7
24508648 - Neuroimage. 2014 May 15;92:46-55
18232831 - Phys Rev Lett. 2008 Jan 11;100(1):018701
25556836 - Neuron. 2015 Jan 21;85(2):390-401
20664082 - Physiol Rev. 2010 Jul;90(3):1195-268
19235884 - Hum Brain Mapp. 2009 Jun;30(6):1857-65
25145779 - Eur J Neurosci. 2014 Oct;40(8):3215-23
8793757 - J Neurophysiol. 1996 Jun;75(6):2467-85
25205811 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14332-41
23177956 - Neuron. 2012 Nov 21;76(4):695-711
16150631 - Trends Cogn Sci. 2005 Oct;9(10):474-80
16226584 - Prog Brain Res. 2005;149:173-85
19478185 - Science. 2009 May 29;324(5931):1207-10
22047963 - Cereb Cortex. 2012 Oct;22(10):2241-62
21832190 - J Neurosci. 2011 Aug 10;31(32):11597-616
21451032 - J Neurosci. 2011 Mar 30;31(13):4935-43
17395832 - Science. 2007 Mar 30;315(5820):1860-2
26796688 - Neuron. 2016 Jan 20;89(2):244-7
14654453 - Cereb Cortex. 2004 Jan;14(1):11-22
References_xml – volume: 108
  start-page: 11262
  year: 2011
  end-page: 11267
  ident: bib12
  article-title: Laminar differences in gamma and alpha coherence in the ventral stream
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 315
  start-page: 1860
  year: 2007
  end-page: 1862
  ident: bib13
  article-title: Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices
  publication-title: Science
– volume: 76
  start-page: 695
  year: 2012
  end-page: 711
  ident: bib5
  article-title: Canonical microcircuits for predictive coding
  publication-title: Neuron
– volume: 462
  start-page: 353
  year: 2009
  end-page: 357
  ident: bib15
  article-title: Frequency of gamma oscillations routes flow of information in the hippocampus
  publication-title: Nature
– volume: 9
  start-page: e1003164
  year: 2013
  ident: bib33
  article-title: Top-down beta rhythms support selective attention via interlaminar interaction: a model
  publication-title: PLoS Comput. Biol.
– volume: 32
  start-page: 3388
  year: 2012
  end-page: 3392
  ident: bib53
  article-title: Magnetoencephalography in twins reveals a strong genetic determination of the peak frequency of visually induced γ-band synchronization
  publication-title: J. Neurosci.
– volume: 53
  start-page: 1
  year: 2010
  end-page: 15
  ident: bib18
  article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
  publication-title: Neuroimage
– volume: 324
  start-page: 1207
  year: 2009
  end-page: 1210
  ident: bib28
  article-title: High-frequency, long-range coupling between prefrontal and visual cortex during attention
  publication-title: Science
– volume: 164
  start-page: 177
  year: 2007
  end-page: 190
  ident: bib35
  article-title: Nonparametric statistical testing of EEG- and MEG-data
  publication-title: J. Neurosci. Methods
– volume: 84
  start-page: 470
  year: 2014
  end-page: 485
  ident: bib48
  article-title: Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks
  publication-title: Neuron
– volume: 111
  start-page: 14332
  year: 2014
  end-page: 14341
  ident: bib52
  article-title: Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 1626
  start-page: 165
  year: 2015
  end-page: 182
  ident: bib29
  article-title: Oscillatory synchrony as a mechanism of attentional processing
  publication-title: Brain Res.
– volume: 37
  start-page: 424
  year: 1969
  end-page: 438
  ident: bib27
  article-title: Investigating causal relations by econometric models and cross-spectral methods
  publication-title: Econometrica
– volume: 97
  start-page: 14748
  year: 2000
  end-page: 14753
  ident: bib54
  article-title: Top-down processing mediated by interareal synchronization
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 76
  start-page: 691
  year: 1999
  end-page: 708
  ident: bib37
  article-title: Analysis of dynamic brain imaging data
  publication-title: Biophys. J.
– volume: 75
  start-page: 107
  year: 1995
  end-page: 154
  ident: bib46
  article-title: Corticocortical connections in the visual system: structure and function
  publication-title: Physiol. Rev.
– volume: 14
  start-page: 11
  year: 2004
  end-page: 22
  ident: bib21
  article-title: Automatically parcellating the human cerebral cortex
  publication-title: Cereb. Cortex
– volume: 85
  start-page: 390
  year: 2015
  end-page: 401
  ident: bib6
  article-title: Visual areas exert feedforward and feedback influences through distinct frequency channels
  publication-title: Neuron
– year: 2005
  ident: bib16
  article-title: From Monkey Brain to Human Brain: A Fyssen Foundation Symposium
– volume: 22
  start-page: 2241
  year: 2012
  end-page: 2262
  ident: bib51
  article-title: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases
  publication-title: Cereb. Cortex
– volume: 25
  start-page: 2690
  year: 2015
  end-page: 2695
  ident: bib38
  article-title: Contextual Feedback to Superficial Layers of V1
  publication-title: Curr. Biol.
– volume: 21
  start-page: 665
  year: 1984
  end-page: 672
  ident: bib32
  article-title: Spectral analysis of the visual evoked potential (VEP): effects of stimulus luminance
  publication-title: Psychophysiology
– volume: 2011
  start-page: 156869
  year: 2011
  ident: bib41
  article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput. Intell. Neurosci.
– volume: 522
  start-page: 225
  year: 2014
  end-page: 259
  ident: bib36
  article-title: Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex
  publication-title: J. Comp. Neurol.
– volume: 61
  start-page: 1402
  year: 2012
  end-page: 1418
  ident: bib44
  article-title: Within-subject template estimation for unbiased longitudinal image analysis
  publication-title: Neuroimage
– volume: 9
  start-page: 474
  year: 2005
  end-page: 480
  ident: bib23
  article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence
  publication-title: Trends Cogn. Sci.
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  ident: bib17
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
– volume: 99
  start-page: 509
  year: 2014
  end-page: 524
  ident: bib1
  article-title: Correspondences between retinotopic areas and myelin maps in human visual cortex
  publication-title: Neuroimage
– volume: 48
  start-page: 3637
  year: 2003
  ident: bib39
  article-title: The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors
  publication-title: Phys. Med. Biol.
– volume: 344
  start-page: 424
  year: 2014
  end-page: 427
  ident: bib3
  article-title: Neural mechanisms of object-based attention
  publication-title: Science
– volume: 77
  start-page: 304
  year: 1982
  end-page: 313
  ident: bib25
  article-title: Measurement of linear dependence and feedback between multiple time series
  publication-title: J. Am. Stat. Assoc.
– volume: 31
  start-page: 4935
  year: 2011
  end-page: 4943
  ident: bib8
  article-title: Neuronal mechanisms and attentional modulation of corticothalamic α oscillations
  publication-title: J. Neurosci.
– volume: 74
  start-page: 12
  year: 2012
  end-page: 29
  ident: bib45
  article-title: Toward a unified theory of visual area V4
  publication-title: Neuron
– volume: 7
  start-page: e32536
  year: 2012
  ident: bib40
  article-title: Layer-specific fMRI reflects different neuronal computations at different depths in human V1
  publication-title: PLoS ONE
– volume: 100
  start-page: 018701
  year: 2008
  ident: bib19
  article-title: Estimating Granger causality from Fourier and wavelet transforms of time series data
  publication-title: Phys. Rev. Lett.
– volume: 149
  start-page: 173
  year: 2005
  end-page: 185
  ident: bib50
  article-title: Corticocortical and thalamocortical information flow in the primate visual system
  publication-title: Prog. Brain Res.
– volume: 17
  start-page: 1031
  year: 2014
  end-page: 1039
  ident: bib57
  article-title: Dynamic circuit motifs underlying rhythmic gain control, gating and integration
  publication-title: Nat. Neurosci.
– volume: 31
  start-page: 11597
  year: 2011
  end-page: 11616
  ident: bib26
  article-title: Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI
  publication-title: J. Neurosci.
– year: 1999
  ident: bib49
  article-title: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
– volume: 30
  start-page: 1857
  year: 2009
  end-page: 1865
  ident: bib47
  article-title: Source connectivity analysis with MEG and EEG
  publication-title: Hum. Brain Mapp.
– year: 2000
  ident: bib42
  article-title: Wavelet Methods for Time Series Analysis (Cambridge Series in Statistical and Probabilistic Mathematics)
– volume: 41
  start-page: 767
  year: 2008
  end-page: 776
  ident: bib56
  article-title: Estimating Granger causality after stimulus onset: a cautionary note
  publication-title: Neuroimage
– volume: 1
  start-page: 1
  year: 1991
  end-page: 47
  ident: bib20
  article-title: Distributed hierarchical processing in the primate cerebral cortex
  publication-title: Cereb. Cortex
– volume: 109
  start-page: 13871
  year: 2012
  end-page: 13876
  ident: bib58
  article-title: Laminar analysis of visually evoked activity in the primary visual cortex
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 75
  start-page: 2467
  year: 1996
  end-page: 2485
  ident: bib34
  article-title: Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex
  publication-title: J. Neurophysiol.
– volume: 92
  start-page: 46
  year: 2014
  end-page: 55
  ident: bib30
  article-title: Inter- and intra-individual variability in alpha peak frequency
  publication-title: Neuroimage
– volume: 14
  start-page: 797
  year: 2011
  end-page: 801
  ident: bib2
  article-title: Transitions in neural oscillations reflect prediction errors generated in audiovisual speech
  publication-title: Nat. Neurosci.
– volume: 75
  start-page: 875
  year: 2012
  end-page: 888
  ident: bib9
  article-title: Attentional stimulus selection through selective synchronization between monkey visual areas
  publication-title: Neuron
– volume: 90
  start-page: 1195
  year: 2010
  end-page: 1268
  ident: bib55
  article-title: Neurophysiological and computational principles of cortical rhythms in cognition
  publication-title: Physiol. Rev.
– volume: 88
  start-page: 220
  year: 2015
  end-page: 235
  ident: bib24
  article-title: Rhythms for cognition: Communication through coherence
  publication-title: Neuron
– volume: 20
  start-page: 3263
  year: 2000
  end-page: 3281
  ident: bib4
  article-title: Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule
  publication-title: J. Neurosci.
– volume: 127
  start-page: 251
  year: 2013
  end-page: 263
  ident: bib14
  article-title: Interaction between dorsal and ventral processing streams: where, when and how?
  publication-title: Brain Lang.
– volume: 5
  year: 2014
  ident: bib22
  article-title: The contribution of frequency-specific activity to hierarchical information processing in the human auditory cortex
  publication-title: Nat. Commun.
– volume: 29
  start-page: 764
  year: 2006
  end-page: 773
  ident: bib31
  article-title: Localizing human visual gamma-band activity in frequency, time and space
  publication-title: Neuroimage
– volume: 31
  start-page: 62
  year: 2015
  end-page: 66
  ident: bib10
  article-title: Interareal oscillatory synchronization in top-down neocortical processing
  publication-title: Curr. Opin. Neurobiol.
– volume: 28
  start-page: 9976
  year: 2008
  end-page: 9988
  ident: bib7
  article-title: Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques
  publication-title: J. Neurosci.
– volume: 40
  start-page: 3215
  year: 2014
  end-page: 3223
  ident: bib43
  article-title: Dynamic connectivity among cortical layers in local and large-scale sensory processing
  publication-title: Eur. J. Neurosci.
– volume: 107
  start-page: 361
  year: 2010
  end-page: 365
  ident: bib11
  article-title: A backward progression of attentional effects in the ventral stream
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 1626
  start-page: 165
  year: 2015
  ident: 10.1016/j.neuron.2015.12.018_bib29
  article-title: Oscillatory synchrony as a mechanism of attentional processing
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2015.02.004
– volume: 76
  start-page: 691
  year: 1999
  ident: 10.1016/j.neuron.2015.12.018_bib37
  article-title: Analysis of dynamic brain imaging data
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)77236-X
– volume: 14
  start-page: 797
  year: 2011
  ident: 10.1016/j.neuron.2015.12.018_bib2
  article-title: Transitions in neural oscillations reflect prediction errors generated in audiovisual speech
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2810
– volume: 127
  start-page: 251
  year: 2013
  ident: 10.1016/j.neuron.2015.12.018_bib14
  article-title: Interaction between dorsal and ventral processing streams: where, when and how?
  publication-title: Brain Lang.
  doi: 10.1016/j.bandl.2012.08.003
– volume: 77
  start-page: 304
  year: 1982
  ident: 10.1016/j.neuron.2015.12.018_bib25
  article-title: Measurement of linear dependence and feedback between multiple time series
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1982.10477803
– volume: 90
  start-page: 1195
  year: 2010
  ident: 10.1016/j.neuron.2015.12.018_bib55
  article-title: Neurophysiological and computational principles of cortical rhythms in cognition
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00035.2008
– volume: 462
  start-page: 353
  year: 2009
  ident: 10.1016/j.neuron.2015.12.018_bib15
  article-title: Frequency of gamma oscillations routes flow of information in the hippocampus
  publication-title: Nature
  doi: 10.1038/nature08573
– volume: 2011
  start-page: 156869
  year: 2011
  ident: 10.1016/j.neuron.2015.12.018_bib41
  article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/156869
– volume: 29
  start-page: 764
  year: 2006
  ident: 10.1016/j.neuron.2015.12.018_bib31
  article-title: Localizing human visual gamma-band activity in frequency, time and space
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.08.043
– volume: 31
  start-page: 62
  year: 2015
  ident: 10.1016/j.neuron.2015.12.018_bib10
  article-title: Interareal oscillatory synchronization in top-down neocortical processing
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2014.08.010
– volume: 7
  start-page: e32536
  year: 2012
  ident: 10.1016/j.neuron.2015.12.018_bib40
  article-title: Layer-specific fMRI reflects different neuronal computations at different depths in human V1
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0032536
– volume: 37
  start-page: 424
  year: 1969
  ident: 10.1016/j.neuron.2015.12.018_bib27
  article-title: Investigating causal relations by econometric models and cross-spectral methods
  publication-title: Econometrica
  doi: 10.2307/1912791
– volume: 92
  start-page: 46
  year: 2014
  ident: 10.1016/j.neuron.2015.12.018_bib30
  article-title: Inter- and intra-individual variability in alpha peak frequency
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.01.049
– volume: 30
  start-page: 1857
  year: 2009
  ident: 10.1016/j.neuron.2015.12.018_bib47
  article-title: Source connectivity analysis with MEG and EEG
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20745
– year: 2005
  ident: 10.1016/j.neuron.2015.12.018_bib16
– volume: 9
  start-page: 474
  year: 2005
  ident: 10.1016/j.neuron.2015.12.018_bib23
  article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2005.08.011
– volume: 88
  start-page: 220
  year: 2015
  ident: 10.1016/j.neuron.2015.12.018_bib24
  article-title: Rhythms for cognition: Communication through coherence
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.09.034
– volume: 85
  start-page: 390
  year: 2015
  ident: 10.1016/j.neuron.2015.12.018_bib6
  article-title: Visual areas exert feedforward and feedback influences through distinct frequency channels
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.12.018
– volume: 75
  start-page: 107
  year: 1995
  ident: 10.1016/j.neuron.2015.12.018_bib46
  article-title: Corticocortical connections in the visual system: structure and function
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1995.75.1.107
– volume: 75
  start-page: 875
  year: 2012
  ident: 10.1016/j.neuron.2015.12.018_bib9
  article-title: Attentional stimulus selection through selective synchronization between monkey visual areas
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.06.037
– volume: 164
  start-page: 177
  year: 2007
  ident: 10.1016/j.neuron.2015.12.018_bib35
  article-title: Nonparametric statistical testing of EEG- and MEG-data
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.03.024
– volume: 48
  start-page: 3637
  year: 2003
  ident: 10.1016/j.neuron.2015.12.018_bib39
  article-title: The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/48/22/002
– volume: 107
  start-page: 361
  year: 2010
  ident: 10.1016/j.neuron.2015.12.018_bib11
  article-title: A backward progression of attentional effects in the ventral stream
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0907658106
– volume: 324
  start-page: 1207
  year: 2009
  ident: 10.1016/j.neuron.2015.12.018_bib28
  article-title: High-frequency, long-range coupling between prefrontal and visual cortex during attention
  publication-title: Science
  doi: 10.1126/science.1171402
– volume: 149
  start-page: 173
  year: 2005
  ident: 10.1016/j.neuron.2015.12.018_bib50
  article-title: Corticocortical and thalamocortical information flow in the primate visual system
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(05)49013-5
– volume: 1
  start-page: 1
  year: 1991
  ident: 10.1016/j.neuron.2015.12.018_bib20
  article-title: Distributed hierarchical processing in the primate cerebral cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/1.1.1
– volume: 17
  start-page: 1031
  year: 2014
  ident: 10.1016/j.neuron.2015.12.018_bib57
  article-title: Dynamic circuit motifs underlying rhythmic gain control, gating and integration
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3764
– volume: 21
  start-page: 665
  year: 1984
  ident: 10.1016/j.neuron.2015.12.018_bib32
  article-title: Spectral analysis of the visual evoked potential (VEP): effects of stimulus luminance
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1984.tb00254.x
– year: 1999
  ident: 10.1016/j.neuron.2015.12.018_bib49
– volume: 32
  start-page: 3388
  year: 2012
  ident: 10.1016/j.neuron.2015.12.018_bib53
  article-title: Magnetoencephalography in twins reveals a strong genetic determination of the peak frequency of visually induced γ-band synchronization
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5592-11.2012
– year: 2000
  ident: 10.1016/j.neuron.2015.12.018_bib42
– volume: 61
  start-page: 1402
  year: 2012
  ident: 10.1016/j.neuron.2015.12.018_bib44
  article-title: Within-subject template estimation for unbiased longitudinal image analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.084
– volume: 75
  start-page: 2467
  year: 1996
  ident: 10.1016/j.neuron.2015.12.018_bib34
  article-title: Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1996.75.6.2467
– volume: 9
  start-page: e1003164
  year: 2013
  ident: 10.1016/j.neuron.2015.12.018_bib33
  article-title: Top-down beta rhythms support selective attention via interlaminar interaction: a model
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003164
– volume: 97
  start-page: 14748
  year: 2000
  ident: 10.1016/j.neuron.2015.12.018_bib54
  article-title: Top-down processing mediated by interareal synchronization
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.97.26.14748
– volume: 25
  start-page: 2690
  year: 2015
  ident: 10.1016/j.neuron.2015.12.018_bib38
  article-title: Contextual Feedback to Superficial Layers of V1
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.08.057
– volume: 40
  start-page: 3215
  year: 2014
  ident: 10.1016/j.neuron.2015.12.018_bib43
  article-title: Dynamic connectivity among cortical layers in local and large-scale sensory processing
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.12687
– volume: 84
  start-page: 470
  year: 2014
  ident: 10.1016/j.neuron.2015.12.018_bib48
  article-title: Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.08.051
– volume: 76
  start-page: 695
  year: 2012
  ident: 10.1016/j.neuron.2015.12.018_bib5
  article-title: Canonical microcircuits for predictive coding
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.10.038
– volume: 100
  start-page: 018701
  year: 2008
  ident: 10.1016/j.neuron.2015.12.018_bib19
  article-title: Estimating Granger causality from Fourier and wavelet transforms of time series data
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.018701
– volume: 14
  start-page: 11
  year: 2004
  ident: 10.1016/j.neuron.2015.12.018_bib21
  article-title: Automatically parcellating the human cerebral cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhg087
– volume: 315
  start-page: 1860
  year: 2007
  ident: 10.1016/j.neuron.2015.12.018_bib13
  article-title: Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices
  publication-title: Science
  doi: 10.1126/science.1138071
– volume: 99
  start-page: 509
  year: 2014
  ident: 10.1016/j.neuron.2015.12.018_bib1
  article-title: Correspondences between retinotopic areas and myelin maps in human visual cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.06.042
– volume: 522
  start-page: 225
  year: 2014
  ident: 10.1016/j.neuron.2015.12.018_bib36
  article-title: Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.23458
– volume: 344
  start-page: 424
  year: 2014
  ident: 10.1016/j.neuron.2015.12.018_bib3
  article-title: Neural mechanisms of object-based attention
  publication-title: Science
  doi: 10.1126/science.1247003
– volume: 108
  start-page: 11262
  year: 2011
  ident: 10.1016/j.neuron.2015.12.018_bib12
  article-title: Laminar differences in gamma and alpha coherence in the ventral stream
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1011284108
– volume: 20
  start-page: 3263
  year: 2000
  ident: 10.1016/j.neuron.2015.12.018_bib4
  article-title: Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-09-03263.2000
– volume: 109
  start-page: 13871
  year: 2012
  ident: 10.1016/j.neuron.2015.12.018_bib58
  article-title: Laminar analysis of visually evoked activity in the primary visual cortex
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1201478109
– volume: 31
  start-page: 11597
  year: 2011
  ident: 10.1016/j.neuron.2015.12.018_bib26
  article-title: Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2180-11.2011
– volume: 74
  start-page: 12
  year: 2012
  ident: 10.1016/j.neuron.2015.12.018_bib45
  article-title: Toward a unified theory of visual area V4
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.03.011
– volume: 41
  start-page: 767
  year: 2008
  ident: 10.1016/j.neuron.2015.12.018_bib56
  article-title: Estimating Granger causality after stimulus onset: a cautionary note
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.03.025
– volume: 22
  start-page: 2241
  year: 2012
  ident: 10.1016/j.neuron.2015.12.018_bib51
  article-title: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr291
– volume: 53
  start-page: 1
  year: 2010
  ident: 10.1016/j.neuron.2015.12.018_bib18
  article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.010
– volume: 5
  year: 2014
  ident: 10.1016/j.neuron.2015.12.018_bib22
  article-title: The contribution of frequency-specific activity to hierarchical information processing in the human auditory cortex
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5694
– volume: 28
  start-page: 9976
  year: 2008
  ident: 10.1016/j.neuron.2015.12.018_bib7
  article-title: Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2699-08.2008
– volume: 31
  start-page: 4935
  year: 2011
  ident: 10.1016/j.neuron.2015.12.018_bib8
  article-title: Neuronal mechanisms and attentional modulation of corticothalamic α oscillations
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5580-10.2011
– volume: 111
  start-page: 14332
  year: 2014
  ident: 10.1016/j.neuron.2015.12.018_bib52
  article-title: Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1402773111
– volume: 31
  start-page: 968
  year: 2006
  ident: 10.1016/j.neuron.2015.12.018_bib17
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– reference: 19235884 - Hum Brain Mapp. 2009 Jun;30(6):1857-65
– reference: 17517438 - J Neurosci Methods. 2007 Aug 15;164(1):177-90
– reference: 22500626 - Neuron. 2012 Apr 12;74(1):12-29
– reference: 16150631 - Trends Cogn Sci. 2005 Oct;9(10):474-80
– reference: 20664082 - Physiol Rev. 2010 Jul;90(3):1195-268
– reference: 17395832 - Science. 2007 Mar 30;315(5820):1860-2
– reference: 23950699 - PLoS Comput Biol. 2013;9(8):e1003164
– reference: 22968092 - Brain Lang. 2013 Nov;127(2):251-63
– reference: 14654453 - Cereb Cortex. 2004 Jan;14(1):11-22
– reference: 16216533 - Neuroimage. 2006 Feb 1;29(3):764-73
– reference: 10777791 - J Neurosci. 2000 May 1;20(9):3263-81
– reference: 7831395 - Physiol Rev. 1995 Jan;75(1):107-54
– reference: 18829955 - J Neurosci. 2008 Oct 1;28(40):9976-88
– reference: 24971513 - Neuroimage. 2014 Oct 1;99:509-24
– reference: 21253357 - Comput Intell Neurosci. 2011;2011:156869
– reference: 25712615 - Brain Res. 2015 Nov 11;1626:165-82
– reference: 25205811 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14332-41
– reference: 19924214 - Nature. 2009 Nov 19;462(7271):353-7
– reference: 23177956 - Neuron. 2012 Nov 21;76(4):695-711
– reference: 22047963 - Cereb Cortex. 2012 Oct;22(10):2241-62
– reference: 26447583 - Neuron. 2015 Oct 7;88(1):220-35
– reference: 22430496 - Neuroimage. 2012 Jul 16;61(4):1402-18
– reference: 16226584 - Prog Brain Res. 2005;149:173-85
– reference: 26796688 - Neuron. 2016 Jan 20;89(2):244-7
– reference: 18232831 - Phys Rev Lett. 2008 Jan 11;100(1):018701
– reference: 14680264 - Phys Med Biol. 2003 Nov 21;48(22):3637-52
– reference: 25217807 - Curr Opin Neurobiol. 2015 Apr;31:62-6
– reference: 25556836 - Neuron. 2015 Jan 21;85(2):390-401
– reference: 25178489 - Nat Commun. 2014;5:4694
– reference: 25263753 - Neuron. 2014 Oct 22;84(2):470-85
– reference: 21832190 - J Neurosci. 2011 Aug 10;31(32):11597-616
– reference: 21552273 - Nat Neurosci. 2011 Jun;14(6):797-801
– reference: 26441356 - Curr Biol. 2015 Oct 19;25(20):2690-5
– reference: 1822724 - Cereb Cortex. 1991 Jan-Feb;1(1):1-47
– reference: 22399760 - J Neurosci. 2012 Mar 7;32(10):3388-92
– reference: 6514943 - Psychophysiology. 1984 Nov;21(6):665-72
– reference: 16530430 - Neuroimage. 2006 Jul 1;31(3):968-80
– reference: 21690410 - Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11262-7
– reference: 23983048 - J Comp Neurol. 2014 Jan 1;522(1):225-59
– reference: 24508648 - Neuroimage. 2014 May 15;92:46-55
– reference: 25145779 - Eur J Neurosci. 2014 Oct;40(8):3215-23
– reference: 22872866 - Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13871-6
– reference: 22448223 - PLoS One. 2012;7(3):e32536
– reference: 19478185 - Science. 2009 May 29;324(5931):1207-10
– reference: 24763592 - Science. 2014 Apr 25;344(6182):424-7
– reference: 20547229 - Neuroimage. 2010 Oct 15;53(1):1-15
– reference: 25065440 - Nat Neurosci. 2014 Aug;17(8):1031-9
– reference: 11121074 - Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14748-53
– reference: 18455441 - Neuroimage. 2008 Jul 1;41(3):767-76
– reference: 8793757 - J Neurophysiol. 1996 Jun;75(6):2467-85
– reference: 9929474 - Biophys J. 1999 Feb;76(2):691-708
– reference: 21451032 - J Neurosci. 2011 Mar 30;31(13):4935-43
– reference: 20007766 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):361-5
– reference: 22958827 - Neuron. 2012 Sep 6;75(5):875-88
SSID ssj0014591
Score 2.6504567
Snippet Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 384
SubjectTerms Alpha Rhythm - physiology
Animals
Beta Rhythm - physiology
Bias
Feedback
Feedback, Physiological - physiology
Female
Gamma Rhythm - physiology
Human subjects
Humans
Investigations
Macaca
Male
Sensors
Visual Cortex - physiology
Visual Pathways - physiology
Visual Perception - physiology
Title Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas
URI https://dx.doi.org/10.1016/j.neuron.2015.12.018
https://www.ncbi.nlm.nih.gov/pubmed/26777277
https://www.proquest.com/docview/1759011009
https://www.proquest.com/docview/1790022922
https://pubmed.ncbi.nlm.nih.gov/PMC4871751
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelMNjLWNt9ZG2HBmNvIpFsSfZjGpa1g-1hW0fehGRLJOvilNp5yH_fO_mDZSsU9mRsn_HZJ939TroPQt4rq3UpJyXLbWlZKnzOshAEQ1NcZIDIy5ge_eWrurxOPy_k4oDM-lwYDKvsdH-r06O27q6Mu785vl2txt8nWY7VyxOANAAaYk1QzCrFJL7FxbCTkMq2ax4QM6Tu0-dijFesGYlVULmMi4LY-uNh8_Qv_Pw7ivIPszR_Tp51eJJOW5aPyIGvjsnJtAJfer2jH2iM8IxL58fkSdt4cndCbqaYYssufGOprUr6ya7Xln5b7prluqaoTDAQks7BtDlb3EQaPAGEi1G29KpvbVLT2K2Ixr0A-nNVb4GZ2eYurpADV97WL8j1_OOP2SXr2i6wAsBUw6woRGpTWSY6U3CQTqSZ4EG5LHBdyMKFxAkf0PPhrlTgcAFMUInyCQ8ONOhLclhtKv-aUKn1JHppLmSpl0WeqcCD5GWROi1dMiJJ_7dN0dUkx9YYv00ffPbLtDIyKCPDhQEZjQgbnrpta3I8Qq97QZq9sWXAbDzy5Fkvd9PN7doA4Mpjpb18RN4Nt2FW4laLrfxmizQ5oqNciBF51Q6TgVWhNLg0WgNbewNoIMCK3_t3qtUyVv4G7xLezt_89wedkqdwFteQxOSMHDZ3W38OqKpxb-O0uQeEkyCL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIQQvCDY-CmMYCfFmNXHiOHnsKroWtj3Ahvpm2YmtltF0WtKH_vfcOR9aYdIknqLEF-Xis-9-Z5_vCPmUaCkLERQs04VmMbcZS53jDE1xngIiL_zx6POLZHoVf52L-R4Zd2dhMKyy1f2NTvfaun0ybHtzeLNcDn8EaYbZyyOANAAaMCfoI0ADAQ7t2fyk30qIRVM2D6gZknfn53yQl08aiWlQQ-FXBbH2x_326V_8-XcY5R27NHlOnrWAko4anl-QPVsekMNRCc70aks_Ux_i6dfOD8jjpvLk9pBcj_CMLTuxtaa6LOipXq00_b7Y1otVRVGbYCQknYBtMzq_9jR4AxAXw2zprKttUlFfroj6zQD6c1ltgJnx-tYvkQNXVlcvydXky-V4ytq6CywHNFUzzXMe61gUkUwTuAjD45SHLjGpC2UucuMiw61D1yc0RQIeF-CEJEpsFDoDKvQV2S_XpX1DqJAy8G6acWlsRZ6liQudCIs8NlKYaECirrdV3iYlx9oYv1UXffZLNTJSKCMVcgUyGhDWv3XTJOV4gF52glQ7g0uB3XjgzaNO7qqd3JUCxJX5VHvZgHzsm2Fa4l6LLu16gzQZwqOM8wF53QyTnlWeSPBppAS2dgZQT4Apv3dbyuXCp_4G9xK-Hr797x_6QJ5ML8_P1Nns4ts78hRa_IISD47Ifn27se8BYtXm2E-hPwtbI64
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alpha-Beta+and+Gamma+Rhythms+Subserve+Feedback+and+Feedforward+Influences+among+Human+Visual+Cortical+Areas&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Michalareas%2C+Georgios&rft.au=Vezoli%2C+Julien&rft.au=van%C2%A0Pelt%2C+Stan&rft.au=Schoffelen%2C+Jan-Mathijs&rft.date=2016-01-20&rft.pub=Elsevier+Inc&rft.issn=0896-6273&rft.eissn=1097-4199&rft.volume=89&rft.issue=2&rft.spage=384&rft.epage=397&rft_id=info:doi/10.1016%2Fj.neuron.2015.12.018&rft.externalDocID=S0896627315011204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon