Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas
Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtaine...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 89; no. 2; pp. 384 - 397 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
20.01.2016
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0896-6273 1097-4199 1097-4199 |
DOI | 10.1016/j.neuron.2015.12.018 |
Cover
Abstract | Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and we correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral- and dorsal-stream visual areas are differentially affected by inter-areal influences in the alpha-beta band.
•Gamma mediates forward and alpha-beta feedback influences among human visual areas•Human inter-areal directed influences correlate with macaque laminar connectivity•Rhythmic inter-areal influences establish a hierarchy of 26 human visual areas•Alpha-beta influences differentially affect ventral- and dorsal-stream visual areas
Michalareas et al. show that in human visual cortex influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. These influences constrain a functional hierarchy in agreement with macaque anatomical hierarchy. |
---|---|
AbstractList | Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and we correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral- and dorsal-stream visual areas are differentially affected by inter-areal influences in the alpha-beta band.Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and we correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral- and dorsal-stream visual areas are differentially affected by inter-areal influences in the alpha-beta band. Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral and dorsal stream visual areas are differentially affected by inter-areal influences in the alpha-beta band. Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and we correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral- and dorsal-stream visual areas are differentially affected by inter-areal influences in the alpha-beta band. •Gamma mediates forward and alpha-beta feedback influences among human visual areas•Human inter-areal directed influences correlate with macaque laminar connectivity•Rhythmic inter-areal influences establish a hierarchy of 26 human visual areas•Alpha-beta influences differentially affect ventral- and dorsal-stream visual areas Michalareas et al. show that in human visual cortex influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. These influences constrain a functional hierarchy in agreement with macaque anatomical hierarchy. Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and we correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral- and dorsal-stream visual areas are differentially affected by inter-areal influences in the alpha-beta band. |
Author | Schoffelen, Jan-Mathijs Kennedy, Henry Michalareas, Georgios Fries, Pascal van Pelt, Stan Vezoli, Julien |
AuthorAffiliation | 2 Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN Nijmegen, Netherlands 1 Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany 3 Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, Netherlands 4 Stem Cell and Brain Research Institute, INSERM U846, 18 avenue Doyen Lépine, 69675 Bron, France 5 Université de Lyon, 37 rue du Repos, 69361 Lyon, France |
AuthorAffiliation_xml | – name: 3 Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, Netherlands – name: 2 Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN Nijmegen, Netherlands – name: 1 Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany – name: 5 Université de Lyon, 37 rue du Repos, 69361 Lyon, France – name: 4 Stem Cell and Brain Research Institute, INSERM U846, 18 avenue Doyen Lépine, 69675 Bron, France |
Author_xml | – sequence: 1 givenname: Georgios surname: Michalareas fullname: Michalareas, Georgios email: giorgos.michalareas@esi-frankfurt.de organization: Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany – sequence: 2 givenname: Julien surname: Vezoli fullname: Vezoli, Julien organization: Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany – sequence: 3 givenname: Stan surname: van Pelt fullname: van Pelt, Stan organization: Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany – sequence: 4 givenname: Jan-Mathijs surname: Schoffelen fullname: Schoffelen, Jan-Mathijs organization: Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands – sequence: 5 givenname: Henry surname: Kennedy fullname: Kennedy, Henry organization: Stem Cell and Brain Research Institute, INSERM U846, 18 Avenue Doyen Lépine, 69675 Bron, France – sequence: 6 givenname: Pascal surname: Fries fullname: Fries, Pascal email: pascal.fries@esi-frankfurt.de organization: Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26777277$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URLeFf4BQJC5cEjxOYicckJYV_ZAqIfF1tRxn0vU2sbd2sqj_vk53qaAHOI0tP_Nqxs8JObLOIiGvgWZAgb_fZBYn72zGKJQZsIxC9YwsgNYiLaCuj8iCVjVPORP5MTkJYUMpFGUNL8gx40IIJsSC3Cz77Vqln3BUibJtcq6GQSVf13fjegjJt6kJ6HeYnCG2jdI3D8x86Zz_pXybXNqun9BqDIkanL1OLqZB2eSnCZPqk5Xzo9HxsPSowkvyvFN9wFeHekp-nH3-vrpIr76cX66WV6kuOYypYpoVqijbXFQ8lrJhRcWg403VgdClbrq8YdhRzjk0LQdeQAU855hD10CZn5KP-9zt1AzYarSjV73cejMofyedMvLvF2vW8trtZFEJECXEgHeHAO9uJwyjHEzQ2PfKopuCBFFTyljNWETfPkE3bvI2rhepsqYAlNaRevPnRI-j_PYQgWIPaO9C8Ng9IkDlrFtu5F63nHVLYDLqjm0fnrRpM6rRuHkv0_-v-fBNGF3sDHoZtJlVtsajHmXrzL8D7gEiHMh6 |
CitedBy_id | crossref_primary_10_1523_JNEUROSCI_2639_17_2018 crossref_primary_10_1016_j_neuron_2019_09_039 crossref_primary_10_1016_j_neuroimage_2017_11_068 crossref_primary_10_1016_j_neuron_2018_07_025 crossref_primary_10_1162_jocn_a_01280 crossref_primary_10_1016_j_bpsc_2017_09_009 crossref_primary_10_1371_journal_pbio_3000685 crossref_primary_10_3389_fncir_2023_1073537 crossref_primary_10_1109_JSEN_2024_3363045 crossref_primary_10_1038_s41398_021_01678_z crossref_primary_10_1016_j_neuropsychologia_2019_04_017 crossref_primary_10_1016_j_pneurobio_2022_102367 crossref_primary_10_1002_hbm_24216 crossref_primary_10_1002_hbm_24458 crossref_primary_10_3389_fnins_2017_00487 crossref_primary_10_1152_jn_00450_2023 crossref_primary_10_1038_s41467_024_48576_8 crossref_primary_10_1016_j_celrep_2021_109083 crossref_primary_10_1038_s41598_019_47503_y crossref_primary_10_1523_JNEUROSCI_1103_20_2020 crossref_primary_10_1152_jn_00281_2023 crossref_primary_10_7554_eLife_75897 crossref_primary_10_3389_fpsyg_2023_1234955 crossref_primary_10_1016_j_neunet_2020_06_008 crossref_primary_10_1371_journal_pone_0271659 crossref_primary_10_1016_j_neuroimage_2021_117757 crossref_primary_10_1016_j_nbd_2019_02_006 crossref_primary_10_3389_fnhum_2016_00371 crossref_primary_10_1016_j_brs_2023_09_019 crossref_primary_10_1038_s42003_024_06677_6 crossref_primary_10_1016_j_cub_2023_10_042 crossref_primary_10_1016_j_isci_2023_107064 crossref_primary_10_1016_j_neubiorev_2021_11_006 crossref_primary_10_1016_j_neuroimage_2023_120375 crossref_primary_10_1177_1545968319893286 crossref_primary_10_1016_j_cub_2023_02_018 crossref_primary_10_1016_j_neuroimage_2018_05_054 crossref_primary_10_1162_jocn_a_02118 crossref_primary_10_1016_j_tics_2016_12_001 crossref_primary_10_1093_cercor_bhaa218 crossref_primary_10_1523_ENEURO_0030_21_2021 crossref_primary_10_1002_hbm_26779 crossref_primary_10_7554_eLife_53715 crossref_primary_10_1016_j_biopsych_2018_05_015 crossref_primary_10_1038_s41593_022_01107_4 crossref_primary_10_3389_fnbeh_2019_00220 crossref_primary_10_1002_hbm_25322 crossref_primary_10_1016_j_nicl_2019_101752 crossref_primary_10_1140_epjs_s11734_024_01348_3 crossref_primary_10_1016_j_physrep_2021_03_002 crossref_primary_10_1162_jocn_a_01397 crossref_primary_10_1088_1741_2552_ac9c96 crossref_primary_10_1016_j_neuroimage_2021_117726 crossref_primary_10_1038_s42003_018_0110_y crossref_primary_10_1109_ACCESS_2020_2982198 crossref_primary_10_1016_j_nicl_2020_102484 crossref_primary_10_1016_j_celrep_2020_03_050 crossref_primary_10_1038_s41598_018_32385_3 crossref_primary_10_1167_19_14_15 crossref_primary_10_1002_hbm_24784 crossref_primary_10_3389_fncom_2017_00006 crossref_primary_10_1016_j_neuroimage_2022_119047 crossref_primary_10_1016_j_bandc_2023_106121 crossref_primary_10_1016_j_neuroimage_2017_01_011 crossref_primary_10_1016_j_biopsych_2022_02_961 crossref_primary_10_1371_journal_pbio_3000487 crossref_primary_10_1523_JNEUROSCI_2363_17_2017 crossref_primary_10_7554_eLife_61679 crossref_primary_10_1113_JP287372 crossref_primary_10_1098_rsif_2021_0486 crossref_primary_10_1016_j_cobme_2021_100298 crossref_primary_10_1038_s41467_022_32378_x crossref_primary_10_7554_eLife_37321 crossref_primary_10_1523_JNEUROSCI_0156_23_2023 crossref_primary_10_7554_eLife_68066 crossref_primary_10_1007_s12035_017_0737_6 crossref_primary_10_1016_j_biopsych_2016_09_018 crossref_primary_10_1002_hbm_24418 crossref_primary_10_1016_j_neuron_2019_10_019 crossref_primary_10_1038_s41598_019_42821_7 crossref_primary_10_1523_ENEURO_0170_17_2017 crossref_primary_10_1016_j_nicl_2024_103671 crossref_primary_10_1016_j_bpsc_2017_01_005 crossref_primary_10_1162_jocn_a_01250 crossref_primary_10_3389_fpsyt_2024_1483433 crossref_primary_10_1016_j_neuroimage_2016_10_044 crossref_primary_10_1162_jocn_a_01376 crossref_primary_10_3390_bs13110918 crossref_primary_10_1016_j_cobeha_2019_08_003 crossref_primary_10_2139_ssrn_4149960 crossref_primary_10_1016_j_neuroimage_2017_11_001 crossref_primary_10_3389_fnhum_2022_905837 crossref_primary_10_3389_fncom_2023_1253234 crossref_primary_10_1016_j_neuroimage_2017_11_002 crossref_primary_10_1016_j_neuroimage_2019_04_001 crossref_primary_10_1016_j_neuroimage_2023_120208 crossref_primary_10_1523_JNEUROSCI_2270_17_2017 crossref_primary_10_1016_j_neuron_2018_01_012 crossref_primary_10_1038_s41598_019_51747_z crossref_primary_10_3389_fnsys_2021_598383 crossref_primary_10_1371_journal_pbio_3001466 crossref_primary_10_1016_j_neuron_2019_07_001 crossref_primary_10_7554_eLife_85035 crossref_primary_10_1146_annurev_vision_121219_081716 crossref_primary_10_7554_eLife_70907 crossref_primary_10_1016_j_biopsych_2024_11_014 crossref_primary_10_1523_ENEURO_0329_17_2018 crossref_primary_10_1097_WCO_0000000000000512 crossref_primary_10_1016_j_neuron_2021_09_052 crossref_primary_10_1016_j_neuroimage_2019_05_079 crossref_primary_10_1038_s42003_021_02010_7 crossref_primary_10_1016_j_neuron_2016_01_001 crossref_primary_10_1016_j_biopsych_2021_02_009 crossref_primary_10_3390_brainsci11010035 crossref_primary_10_1016_j_pneurobio_2023_102491 crossref_primary_10_1371_journal_pcbi_1007091 crossref_primary_10_1371_journal_pone_0222420 crossref_primary_10_1016_j_dcn_2022_101069 crossref_primary_10_1038_s41598_020_64243_6 crossref_primary_10_1016_j_cortex_2017_08_025 crossref_primary_10_1111_ejn_13747 crossref_primary_10_1016_j_schres_2023_08_033 crossref_primary_10_1177_17456916231185343 crossref_primary_10_1007_s12264_017_0181_7 crossref_primary_10_1038_s41467_021_26713_x crossref_primary_10_1523_ENEURO_0362_20_2021 crossref_primary_10_1093_cercor_bhab016 crossref_primary_10_1093_cercor_bhad318 crossref_primary_10_1093_cercor_bhaa165 crossref_primary_10_1371_journal_pcbi_1012429 crossref_primary_10_1523_JNEUROSCI_0630_21_2022 crossref_primary_10_1007_s11571_020_09580_y crossref_primary_10_1073_pnas_1701672114 crossref_primary_10_1098_rspb_2020_0115 crossref_primary_10_1073_pnas_2300558120 crossref_primary_10_1371_journal_pbio_3002365 crossref_primary_10_1371_journal_pone_0219107 crossref_primary_10_3389_fnana_2017_00071 crossref_primary_10_1038_s41467_022_34018_w crossref_primary_10_1051_medsci_20163210011 crossref_primary_10_1523_ENEURO_0430_17_2018 crossref_primary_10_1093_braincomms_fcab296 crossref_primary_10_1016_j_cortex_2021_05_017 crossref_primary_10_1016_j_cub_2024_06_072 crossref_primary_10_7554_eLife_68240 crossref_primary_10_1093_scan_nsz096 crossref_primary_10_1016_j_neuroimage_2019_03_018 crossref_primary_10_3389_fneur_2023_1241481 crossref_primary_10_1016_j_neulet_2023_137409 crossref_primary_10_3390_info11050238 crossref_primary_10_1007_s11071_018_4668_1 crossref_primary_10_1111_ejn_13767 crossref_primary_10_1371_journal_pbio_3002239 crossref_primary_10_1007_s00429_017_1554_4 crossref_primary_10_1016_j_neuroimage_2017_07_032 crossref_primary_10_1016_j_neuroimage_2021_118307 crossref_primary_10_1016_j_pneurobio_2021_102033 crossref_primary_10_1016_j_neuroimage_2021_118788 crossref_primary_10_1371_journal_pcbi_1011595 crossref_primary_10_1093_brain_awy175 crossref_primary_10_1038_s41562_024_01838_3 crossref_primary_10_3389_fnhum_2019_00033 crossref_primary_10_3389_fpsyg_2018_01475 crossref_primary_10_1523_JNEUROSCI_1728_22_2023 crossref_primary_10_1016_j_neuron_2020_07_001 crossref_primary_10_1093_cercor_bhz038 crossref_primary_10_1016_j_neuroimage_2023_120036 crossref_primary_10_1111_ncn3_12508 crossref_primary_10_1093_cercor_bhx092 crossref_primary_10_7554_eLife_60988 crossref_primary_10_1093_cercor_bhy065 crossref_primary_10_1016_j_neuroimage_2021_118637 crossref_primary_10_1089_brain_2018_0624 crossref_primary_10_1038_s41583_018_0094_0 crossref_primary_10_1016_j_neuroimage_2020_117266 crossref_primary_10_1016_j_pneurobio_2023_102563 crossref_primary_10_1093_brain_awy120 crossref_primary_10_1016_j_neuron_2023_02_032 crossref_primary_10_1016_j_bandc_2020_105677 crossref_primary_10_1093_brain_awz214 crossref_primary_10_3389_fnsys_2016_00035 crossref_primary_10_1016_j_biopsycho_2023_108729 crossref_primary_10_1016_j_pneurobio_2017_06_002 crossref_primary_10_1093_cercor_bhac540 crossref_primary_10_1111_ejn_15605 crossref_primary_10_1038_s41598_018_25093_5 crossref_primary_10_3389_fnsys_2019_00031 crossref_primary_10_1152_jn_00807_2017 crossref_primary_10_1371_journal_pcbi_1008129 crossref_primary_10_1007_s13295_016_0028_0 crossref_primary_10_1038_srep28092 crossref_primary_10_1371_journal_pbio_2005346 crossref_primary_10_1016_j_heliyon_2022_e12287 crossref_primary_10_1016_j_neuron_2018_10_004 crossref_primary_10_1038_s41467_021_21979_7 crossref_primary_10_1146_annurev_neuro_110920_035434 crossref_primary_10_1093_cercor_bhaa370 crossref_primary_10_3389_fnsys_2018_00030 crossref_primary_10_1111_ejn_15739 crossref_primary_10_1016_j_cortex_2018_08_009 crossref_primary_10_1038_s41598_020_70448_6 crossref_primary_10_1016_j_neuroimage_2023_120298 crossref_primary_10_1162_neco_a_01115 crossref_primary_10_3389_fnins_2018_00949 crossref_primary_10_1093_cercor_bhz294 crossref_primary_10_1073_pnas_1710323115 crossref_primary_10_3389_fnhum_2024_1339728 crossref_primary_10_1016_j_neuroimage_2023_120171 crossref_primary_10_1162_netn_a_00100 crossref_primary_10_1016_j_cub_2018_03_044 crossref_primary_10_1016_j_tics_2025_01_012 crossref_primary_10_1016_j_neuroimage_2021_118613 crossref_primary_10_1186_s12868_017_0349_0 crossref_primary_10_1016_j_tics_2024_09_013 crossref_primary_10_1523_JNEUROSCI_1689_19_2019 crossref_primary_10_3389_fncom_2020_00074 crossref_primary_10_1016_j_brs_2022_07_056 crossref_primary_10_1002_hbm_24830 crossref_primary_10_1016_j_cnsns_2019_105093 crossref_primary_10_1523_JNEUROSCI_1568_18_2018 crossref_primary_10_7554_eLife_78108 crossref_primary_10_1162_NETN_a_00011 crossref_primary_10_3389_fncir_2023_1254009 crossref_primary_10_1038_nn_4386 crossref_primary_10_1038_s41467_020_18826_6 crossref_primary_10_1007_s11571_017_9470_0 crossref_primary_10_1371_journal_pone_0235744 crossref_primary_10_1016_j_neuron_2016_09_003 crossref_primary_10_1038_s41598_018_36353_9 crossref_primary_10_1016_j_neuroimage_2020_117479 crossref_primary_10_1371_journal_pbio_2003143 crossref_primary_10_1126_sciadv_1601335 crossref_primary_10_1162_jocn_a_01511 crossref_primary_10_1016_j_neuroimage_2020_117351 crossref_primary_10_1093_cercor_bhad412 crossref_primary_10_1523_ENEURO_0153_16_2017 crossref_primary_10_1523_JNEUROSCI_2359_19_2020 crossref_primary_10_3389_fncom_2022_883065 crossref_primary_10_3389_fncel_2024_1440834 crossref_primary_10_1523_JNEUROSCI_1660_19_2019 crossref_primary_10_1080_23273798_2020_1764990 crossref_primary_10_1016_j_neuroimage_2020_116927 crossref_primary_10_3389_fpsyt_2020_561973 crossref_primary_10_1016_j_biosystems_2022_104652 crossref_primary_10_3389_fnsys_2020_00008 crossref_primary_10_1371_journal_pone_0229334 crossref_primary_10_1371_journal_pone_0228365 crossref_primary_10_1016_j_crneur_2022_100053 crossref_primary_10_1016_j_neuroimage_2016_04_017 crossref_primary_10_1371_journal_pbio_3002178 crossref_primary_10_1038_s41467_022_28552_w crossref_primary_10_1016_j_jneuroling_2021_101019 crossref_primary_10_1038_s41583_020_0262_x crossref_primary_10_1111_psyp_14051 crossref_primary_10_1016_j_bpsc_2018_07_004 crossref_primary_10_1038_s41598_023_45308_8 crossref_primary_10_3389_fncom_2018_00023 crossref_primary_10_1109_TBME_2019_2913928 crossref_primary_10_1016_j_neuroimage_2017_06_023 crossref_primary_10_1038_s41598_019_42380_x crossref_primary_10_1016_j_tins_2024_12_005 crossref_primary_10_1016_j_conb_2017_08_012 crossref_primary_10_1016_j_neuroimage_2016_11_001 crossref_primary_10_1016_j_neuroimage_2022_119307 crossref_primary_10_1007_s40750_023_00230_1 crossref_primary_10_1016_j_neuropsychologia_2024_108900 crossref_primary_10_1016_j_isci_2022_104068 crossref_primary_10_1162_jocn_a_01708 crossref_primary_10_1007_s00422_021_00859_9 crossref_primary_10_1038_s41598_021_96849_9 crossref_primary_10_1088_2053_1583_ab7976 crossref_primary_10_1073_pnas_2315160121 crossref_primary_10_1162_neco_a_01301 crossref_primary_10_2174_0929867331666230707123345 crossref_primary_10_1016_j_neuron_2020_01_026 crossref_primary_10_1038_s41467_023_42088_7 crossref_primary_10_1016_j_neuron_2018_11_020 crossref_primary_10_1007_s11571_021_09767_x crossref_primary_10_1016_j_jneumeth_2021_109217 crossref_primary_10_1016_j_compbiomed_2022_106480 crossref_primary_10_1016_j_heliyon_2024_e30752 crossref_primary_10_1016_j_neuroimage_2019_116313 crossref_primary_10_1103_PhysRevE_97_052405 crossref_primary_10_1002_hbm_25196 crossref_primary_10_1093_cercor_bhac374 crossref_primary_10_1016_j_physd_2017_12_011 crossref_primary_10_1073_pnas_1904160116 crossref_primary_10_1111_ejn_15314 crossref_primary_10_1002_hbm_26284 crossref_primary_10_1016_j_biosystems_2021_104452 crossref_primary_10_1038_s42003_022_04049_6 crossref_primary_10_1155_2021_8874516 crossref_primary_10_1016_j_neubiorev_2016_10_002 crossref_primary_10_1093_cercor_bhy333 crossref_primary_10_1016_j_neuroimage_2019_116323 crossref_primary_10_1016_j_tins_2018_06_003 crossref_primary_10_1111_nyas_13664 crossref_primary_10_1016_j_neuroimage_2018_06_005 crossref_primary_10_1038_s42003_023_04628_1 crossref_primary_10_1103_PhysRevE_110_024403 crossref_primary_10_1016_j_clinph_2018_03_042 crossref_primary_10_1371_journal_pcbi_1007566 crossref_primary_10_1038_s41398_025_03225_6 crossref_primary_10_1038_s41598_022_23720_w crossref_primary_10_1038_s41467_021_25895_8 crossref_primary_10_1152_jn_00061_2017 crossref_primary_10_1152_jn_00936_2017 crossref_primary_10_1038_s41598_022_10647_5 crossref_primary_10_3389_frai_2020_00030 crossref_primary_10_1093_cercor_bhac154 crossref_primary_10_1093_cercor_bhy125 crossref_primary_10_1007_s40750_025_00257_6 crossref_primary_10_1007_s11427_023_2436_x crossref_primary_10_1016_j_concog_2020_103034 crossref_primary_10_1007_s11554_020_00960_5 crossref_primary_10_1103_PhysRevE_104_054404 crossref_primary_10_53765_20512201_29_3_078 crossref_primary_10_1073_pnas_2116616119 crossref_primary_10_1523_JNEUROSCI_1337_20_2021 crossref_primary_10_1162_netn_a_00062 crossref_primary_10_1523_ENEURO_0338_17_2017 crossref_primary_10_1523_ENEURO_0137_21_2022 crossref_primary_10_1177_1073858418755352 crossref_primary_10_3389_fnagi_2025_1488811 crossref_primary_10_3389_fnins_2018_00433 crossref_primary_10_1140_epjst_e2019_900077_7 crossref_primary_10_1016_j_schres_2016_06_003 crossref_primary_10_1093_cercor_bhad127 crossref_primary_10_1152_jn_00224_2018 crossref_primary_10_1016_j_celrep_2023_113249 crossref_primary_10_7554_eLife_53588 crossref_primary_10_3390_brainsci11111443 crossref_primary_10_1038_s41562_023_01529_5 crossref_primary_10_1093_pnasnexus_pgae288 crossref_primary_10_1016_j_neuroimage_2023_119914 crossref_primary_10_1152_jn_00444_2019 crossref_primary_10_7554_eLife_22749 crossref_primary_10_3758_s13423_024_02511_6 crossref_primary_10_7554_eLife_42101 crossref_primary_10_3389_fnsys_2021_669256 crossref_primary_10_1016_j_celrep_2023_113242 crossref_primary_10_1523_ENEURO_0030_23_2024 crossref_primary_10_3389_fpsyg_2024_1386370 crossref_primary_10_1088_1741_2552_ab92b2 crossref_primary_10_3389_fnins_2022_910443 crossref_primary_10_1073_pnas_1817317116 crossref_primary_10_3389_fneur_2022_814940 crossref_primary_10_1111_nyas_14321 crossref_primary_10_1016_j_brs_2022_02_018 crossref_primary_10_1523_JNEUROSCI_0900_19_2019 crossref_primary_10_1038_s41598_020_78172_x crossref_primary_10_1016_j_cub_2017_06_033 crossref_primary_10_1523_JNEUROSCI_1889_18_2018 crossref_primary_10_7554_eLife_33977 crossref_primary_10_1016_j_isci_2024_110489 crossref_primary_10_1016_j_neuroimage_2025_121058 crossref_primary_10_1016_j_jneumeth_2019_108443 crossref_primary_10_1016_j_neuron_2018_09_023 crossref_primary_10_1016_j_neuroimage_2025_121172 crossref_primary_10_1038_s41598_018_37912_w crossref_primary_10_1111_ejn_16212 crossref_primary_10_1093_texcom_tgab032 crossref_primary_10_1016_j_neuroimage_2020_116882 crossref_primary_10_1007_s11571_022_09914_y crossref_primary_10_2139_ssrn_3188377 crossref_primary_10_7554_eLife_31670 crossref_primary_10_1073_pnas_1703155114 crossref_primary_10_1162_imag_a_00499 crossref_primary_10_1126_sciadv_add7572 crossref_primary_10_1038_s41467_020_19828_0 crossref_primary_10_1016_j_isci_2024_109140 crossref_primary_10_1038_s41593_023_01554_7 crossref_primary_10_1038_srep30932 crossref_primary_10_1016_j_neuron_2018_09_019 crossref_primary_10_1111_pcn_13300 crossref_primary_10_3389_fnhum_2021_630813 crossref_primary_10_1016_j_neuroimage_2018_07_067 crossref_primary_10_1073_pnas_2407457121 crossref_primary_10_1038_nn_4504 crossref_primary_10_1038_s41598_018_25267_1 crossref_primary_10_7554_eLife_43620 crossref_primary_10_1016_j_biopsych_2023_09_011 crossref_primary_10_1016_j_neunet_2018_06_013 crossref_primary_10_1371_journal_pone_0303959 crossref_primary_10_1523_JNEUROSCI_0689_20_2020 crossref_primary_10_1001_jamapsychiatry_2020_0284 crossref_primary_10_1016_j_tins_2018_01_002 crossref_primary_10_1016_j_celrep_2018_10_029 crossref_primary_10_3389_fnins_2020_625721 crossref_primary_10_1073_pnas_1917156117 crossref_primary_10_3390_e21050500 crossref_primary_10_3389_fncom_2021_632730 crossref_primary_10_1038_nrn_2016_163 crossref_primary_10_1038_s41598_019_53270_7 crossref_primary_10_1002_hbm_70045 crossref_primary_10_1523_JNEUROSCI_3015_16_2017 crossref_primary_10_1016_j_jpain_2019_08_017 crossref_primary_10_1111_psyp_13314 crossref_primary_10_1111_psyp_14403 crossref_primary_10_1016_j_concog_2022_103375 crossref_primary_10_1126_sciadv_adi2321 crossref_primary_10_1002_pcn5_68 crossref_primary_10_1111_ejn_15393 crossref_primary_10_3390_brainsci13020211 crossref_primary_10_1016_j_cognition_2017_03_012 crossref_primary_10_1016_j_neurot_2024_e00384 crossref_primary_10_1016_j_nicl_2021_102876 crossref_primary_10_3389_fncel_2022_785199 crossref_primary_10_3758_s13423_021_01894_0 crossref_primary_10_1016_j_neuroimage_2018_06_083 crossref_primary_10_1038_s41583_024_00845_7 crossref_primary_10_1016_j_tins_2023_07_003 crossref_primary_10_1016_j_neuroimage_2017_10_069 crossref_primary_10_1371_journal_pone_0249317 crossref_primary_10_1146_annurev_bioeng_062117_120853 crossref_primary_10_1523_ENEURO_0467_18_2019 crossref_primary_10_1038_s41598_022_06570_4 crossref_primary_10_3724_SP_J_1042_2021_00031 crossref_primary_10_1016_j_conb_2020_11_002 crossref_primary_10_7554_eLife_74653 crossref_primary_10_1016_j_concog_2021_103155 crossref_primary_10_1371_journal_pbio_3001750 crossref_primary_10_1073_pnas_2313304121 crossref_primary_10_1371_journal_pone_0253813 crossref_primary_10_1371_journal_pcbi_1007991 crossref_primary_10_1089_brain_2020_0885 crossref_primary_10_1371_journal_pcbi_1005574 crossref_primary_10_1016_j_cophys_2020_08_008 crossref_primary_10_1016_j_neuroimage_2021_118299 crossref_primary_10_1007_s00701_020_04276_y crossref_primary_10_1016_j_neuroimage_2017_03_008 crossref_primary_10_1523_ENEURO_0244_21_2022 crossref_primary_10_1016_j_nicl_2020_102318 crossref_primary_10_1016_j_celrep_2021_109585 crossref_primary_10_1016_j_neubiorev_2023_105373 crossref_primary_10_1093_cercor_bhae063 crossref_primary_10_1016_j_neuroimage_2023_119998 crossref_primary_10_1111_psyp_13462 crossref_primary_10_1016_j_tics_2016_09_007 crossref_primary_10_1162_jocn_a_02169 crossref_primary_10_1016_j_tics_2021_08_008 |
Cites_doi | 10.1016/j.brainres.2015.02.004 10.1016/S0006-3495(99)77236-X 10.1038/nn.2810 10.1016/j.bandl.2012.08.003 10.1080/01621459.1982.10477803 10.1152/physrev.00035.2008 10.1038/nature08573 10.1155/2011/156869 10.1016/j.neuroimage.2005.08.043 10.1016/j.conb.2014.08.010 10.1371/journal.pone.0032536 10.2307/1912791 10.1016/j.neuroimage.2014.01.049 10.1002/hbm.20745 10.1016/j.tics.2005.08.011 10.1016/j.neuron.2015.09.034 10.1016/j.neuron.2014.12.018 10.1152/physrev.1995.75.1.107 10.1016/j.neuron.2012.06.037 10.1016/j.jneumeth.2007.03.024 10.1088/0031-9155/48/22/002 10.1073/pnas.0907658106 10.1126/science.1171402 10.1016/S0079-6123(05)49013-5 10.1093/cercor/1.1.1 10.1038/nn.3764 10.1111/j.1469-8986.1984.tb00254.x 10.1523/JNEUROSCI.5592-11.2012 10.1016/j.neuroimage.2012.02.084 10.1152/jn.1996.75.6.2467 10.1371/journal.pcbi.1003164 10.1073/pnas.97.26.14748 10.1016/j.cub.2015.08.057 10.1111/ejn.12687 10.1016/j.neuron.2014.08.051 10.1016/j.neuron.2012.10.038 10.1103/PhysRevLett.100.018701 10.1093/cercor/bhg087 10.1126/science.1138071 10.1016/j.neuroimage.2014.06.042 10.1002/cne.23458 10.1126/science.1247003 10.1073/pnas.1011284108 10.1523/JNEUROSCI.20-09-03263.2000 10.1073/pnas.1201478109 10.1523/JNEUROSCI.2180-11.2011 10.1016/j.neuron.2012.03.011 10.1016/j.neuroimage.2008.03.025 10.1093/cercor/bhr291 10.1016/j.neuroimage.2010.06.010 10.1038/ncomms5694 10.1523/JNEUROSCI.2699-08.2008 10.1523/JNEUROSCI.5580-10.2011 10.1073/pnas.1402773111 10.1016/j.neuroimage.2006.01.021 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright Elsevier Limited Jan 20, 2016 |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright Elsevier Limited Jan 20, 2016 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.neuron.2015.12.018 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Nursing & Allied Health Premium MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4199 |
EndPage | 397 |
ExternalDocumentID | PMC4871751 3929446191 26777277 10_1016_j_neuron_2015_12_018 S0896627315011204 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: NIMH NIH HHS grantid: 1U54MH091657 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 3V. 4.4 457 4G. 53G 5RE 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFTJW AGKMS AHHHB AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HCIFZ HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 P2P P6G PQQKQ PROAC RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW WQ6 ZA5 .55 .GJ 29N 3O- 5VS AAFWJ AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB G-2 HZ~ ITC MVM OZT R2- X7M ZGI ZKB CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD EFKBS FR3 K9. NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c561t-a2c24a45d378645d5b24821f6b8f17c5cbf3b2ef06661bd6164181636e31fb153 |
IEDL.DBID | IXB |
ISSN | 0896-6273 1097-4199 |
IngestDate | Thu Aug 21 14:00:22 EDT 2025 Sun Sep 28 01:37:01 EDT 2025 Sun Jul 13 04:12:38 EDT 2025 Thu Apr 03 07:11:15 EDT 2025 Tue Jul 01 01:16:12 EDT 2025 Thu Apr 24 22:53:10 EDT 2025 Fri Feb 23 02:11:26 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c561t-a2c24a45d378645d5b24821f6b8f17c5cbf3b2ef06661bd6164181636e31fb153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0896627315011204 |
PMID | 26777277 |
PQID | 1759011009 |
PQPubID | 2031076 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4871751 proquest_miscellaneous_1790022922 proquest_journals_1759011009 pubmed_primary_26777277 crossref_primary_10_1016_j_neuron_2015_12_018 crossref_citationtrail_10_1016_j_neuron_2015_12_018 elsevier_sciencedirect_doi_10_1016_j_neuron_2015_12_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-20 |
PublicationDateYYYYMMDD | 2016-01-20 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Neuron (Cambridge, Mass.) |
PublicationTitleAlternate | Neuron |
PublicationYear | 2016 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Buffalo, Fries, Landman, Buschman, Desimone (bib12) 2011; 108 Sethian (bib49) 1999 Nolte (bib39) 2003; 48 Reuter, Schmansky, Rosas, Fischl (bib44) 2012; 61 Jutai, Gruzelier, Connolly (bib32) 1984; 21 Haegens, Cousijn, Wallis, Harrison, Nobre (bib30) 2014; 92 Barone, Batardiere, Knoblauch, Kennedy (bib4) 2000; 20 Colgin, Denninger, Fyhn, Hafting, Bonnevie, Jensen, Moser, Moser (bib15) 2009; 462 Oostenveld, Fries, Maris, Schoffelen (bib41) 2011; 2011 Van Essen (bib50) 2005; 149 Arnal, Wyart, Giraud (bib2) 2011; 14 Fries (bib24) 2015; 88 Bollimunta, Chen, Schroeder, Ding (bib7) 2008; 28 Fries (bib23) 2005; 9 Bosman, Schoffelen, Brunet, Oostenveld, Bastos, Womelsdorf, Rubehn, Stieglitz, De Weerd, Fries (bib9) 2012; 75 Bastos, Usrey, Adams, Mangun, Fries, Friston (bib5) 2012; 76 Abdollahi, Kolster, Glasser, Robinson, Coalson, Dierker, Jenkinson, Van Essen, Orban (bib1) 2014; 99 Geweke (bib25) 1982; 77 Bollimunta, Mo, Schroeder, Ding (bib8) 2011; 31 Dhamala, Rangarajan, Ding (bib19) 2008; 100 Hoogenboom, Schoffelen, Oostenveld, Parkes, Fries (bib31) 2006; 29 Cloutman (bib14) 2013; 127 Wang (bib55) 2010; 90 Schoffelen, Gross (bib47) 2009; 30 von Stein, Chiang, König (bib54) 2000; 97 Granger (bib27) 1969; 37 Percival, Walden (bib42) 2000 Muckli, De Martino, Vizioli, Petro, Smith, Ugurbil, Goebel, Yacoub (bib38) 2015; 25 Bastos, Vezoli, Bosman, Schoffelen, Oostenveld, Dowdall, De Weerd, Kennedy, Fries (bib6) 2015; 85 Olman, Harel, Feinberg, He, Zhang, Ugurbil, Yacoub (bib40) 2012; 7 Buffalo, Fries, Landman, Liang, Desimone (bib11) 2010; 107 Felleman, Van Essen (bib20) 1991; 1 Livingstone (bib34) 1996; 75 Womelsdorf, Valiante, Sahin, Miller, Tiesinga (bib57) 2014; 17 Xing, Yeh, Burns, Shapley (bib58) 2012; 109 Gregoriou, Paneri, Sapountzis (bib29) 2015; 1626 Maris, Oostenveld (bib35) 2007; 164 Markov, Vezoli, Chameau, Falchier, Quilodran, Huissoud, Lamy, Misery, Giroud, Ullman (bib36) 2014; 522 Plomp, Quairiaux, Kiss, Astolfi, Michel (bib43) 2014; 40 Mitra, Pesaran (bib37) 1999; 76 Roe, Chelazzi, Connor, Conway, Fujita, Gallant, Lu, Vanduffel (bib45) 2012; 74 Gregoriou, Gotts, Zhou, Desimone (bib28) 2009; 324 Wang, Chen, Ding (bib56) 2008; 41 Lee, Whittington, Kopell (bib33) 2013; 9 Baldauf, Desimone (bib3) 2014; 344 Dehaene, Duhamel, Hauser, Rizzolatti (bib16) 2005 Bressler, Richter (bib10) 2015; 31 Fischl, van der Kouwe, Destrieux, Halgren, Ségonne, Salat, Busa, Seidman, Goldstein, Kennedy (bib21) 2004; 14 Buschman, Miller (bib13) 2007; 315 Destrieux, Fischl, Dale, Halgren (bib18) 2010; 53 Salin, Bullier (bib46) 1995; 75 Fontolan, Morillon, Liegeois-Chauvel, Giraud (bib22) 2014; 5 van Kerkoerle, Self, Dagnino, Gariel-Mathis, Poort, van der Togt, Roelfsema (bib52) 2014; 111 van Pelt, Boomsma, Fries (bib53) 2012; 32 Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman (bib17) 2006; 31 Glasser, Van Essen (bib26) 2011; 31 Schomburg, Fernández-Ruiz, Mizuseki, Berényi, Anastassiou, Koch, Buzsáki (bib48) 2014; 84 Van Essen, Glasser, Dierker, Harwell, Coalson (bib51) 2012; 22 Livingstone (10.1016/j.neuron.2015.12.018_bib34) 1996; 75 Felleman (10.1016/j.neuron.2015.12.018_bib20) 1991; 1 Schomburg (10.1016/j.neuron.2015.12.018_bib48) 2014; 84 Abdollahi (10.1016/j.neuron.2015.12.018_bib1) 2014; 99 Geweke (10.1016/j.neuron.2015.12.018_bib25) 1982; 77 Womelsdorf (10.1016/j.neuron.2015.12.018_bib57) 2014; 17 Bollimunta (10.1016/j.neuron.2015.12.018_bib8) 2011; 31 Markov (10.1016/j.neuron.2015.12.018_bib36) 2014; 522 Fries (10.1016/j.neuron.2015.12.018_bib24) 2015; 88 Bastos (10.1016/j.neuron.2015.12.018_bib6) 2015; 85 Glasser (10.1016/j.neuron.2015.12.018_bib26) 2011; 31 Bollimunta (10.1016/j.neuron.2015.12.018_bib7) 2008; 28 Dhamala (10.1016/j.neuron.2015.12.018_bib19) 2008; 100 Percival (10.1016/j.neuron.2015.12.018_bib42) 2000 van Pelt (10.1016/j.neuron.2015.12.018_bib53) 2012; 32 Bastos (10.1016/j.neuron.2015.12.018_bib5) 2012; 76 Olman (10.1016/j.neuron.2015.12.018_bib40) 2012; 7 Van Essen (10.1016/j.neuron.2015.12.018_bib51) 2012; 22 Gregoriou (10.1016/j.neuron.2015.12.018_bib29) 2015; 1626 Plomp (10.1016/j.neuron.2015.12.018_bib43) 2014; 40 Barone (10.1016/j.neuron.2015.12.018_bib4) 2000; 20 Hoogenboom (10.1016/j.neuron.2015.12.018_bib31) 2006; 29 Wang (10.1016/j.neuron.2015.12.018_bib55) 2010; 90 Fries (10.1016/j.neuron.2015.12.018_bib23) 2005; 9 Schoffelen (10.1016/j.neuron.2015.12.018_bib47) 2009; 30 Gregoriou (10.1016/j.neuron.2015.12.018_bib28) 2009; 324 Maris (10.1016/j.neuron.2015.12.018_bib35) 2007; 164 Buffalo (10.1016/j.neuron.2015.12.018_bib11) 2010; 107 Baldauf (10.1016/j.neuron.2015.12.018_bib3) 2014; 344 Fontolan (10.1016/j.neuron.2015.12.018_bib22) 2014; 5 Desikan (10.1016/j.neuron.2015.12.018_bib17) 2006; 31 Xing (10.1016/j.neuron.2015.12.018_bib58) 2012; 109 Jutai (10.1016/j.neuron.2015.12.018_bib32) 1984; 21 Dehaene (10.1016/j.neuron.2015.12.018_bib16) 2005 Sethian (10.1016/j.neuron.2015.12.018_bib49) 1999 van Kerkoerle (10.1016/j.neuron.2015.12.018_bib52) 2014; 111 Buschman (10.1016/j.neuron.2015.12.018_bib13) 2007; 315 Van Essen (10.1016/j.neuron.2015.12.018_bib50) 2005; 149 Fischl (10.1016/j.neuron.2015.12.018_bib21) 2004; 14 Granger (10.1016/j.neuron.2015.12.018_bib27) 1969; 37 Arnal (10.1016/j.neuron.2015.12.018_bib2) 2011; 14 Buffalo (10.1016/j.neuron.2015.12.018_bib12) 2011; 108 Bressler (10.1016/j.neuron.2015.12.018_bib10) 2015; 31 Destrieux (10.1016/j.neuron.2015.12.018_bib18) 2010; 53 Lee (10.1016/j.neuron.2015.12.018_bib33) 2013; 9 Salin (10.1016/j.neuron.2015.12.018_bib46) 1995; 75 Wang (10.1016/j.neuron.2015.12.018_bib56) 2008; 41 Nolte (10.1016/j.neuron.2015.12.018_bib39) 2003; 48 Oostenveld (10.1016/j.neuron.2015.12.018_bib41) 2011; 2011 Cloutman (10.1016/j.neuron.2015.12.018_bib14) 2013; 127 Mitra (10.1016/j.neuron.2015.12.018_bib37) 1999; 76 Roe (10.1016/j.neuron.2015.12.018_bib45) 2012; 74 von Stein (10.1016/j.neuron.2015.12.018_bib54) 2000; 97 Muckli (10.1016/j.neuron.2015.12.018_bib38) 2015; 25 Reuter (10.1016/j.neuron.2015.12.018_bib44) 2012; 61 Haegens (10.1016/j.neuron.2015.12.018_bib30) 2014; 92 Bosman (10.1016/j.neuron.2015.12.018_bib9) 2012; 75 Colgin (10.1016/j.neuron.2015.12.018_bib15) 2009; 462 16530430 - Neuroimage. 2006 Jul 1;31(3):968-80 22448223 - PLoS One. 2012;7(3):e32536 26447583 - Neuron. 2015 Oct 7;88(1):220-35 23950699 - PLoS Comput Biol. 2013;9(8):e1003164 19924214 - Nature. 2009 Nov 19;462(7271):353-7 11121074 - Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14748-53 9929474 - Biophys J. 1999 Feb;76(2):691-708 23983048 - J Comp Neurol. 2014 Jan 1;522(1):225-59 24971513 - Neuroimage. 2014 Oct 1;99:509-24 22399760 - J Neurosci. 2012 Mar 7;32(10):3388-92 20007766 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):361-5 24763592 - Science. 2014 Apr 25;344(6182):424-7 25178489 - Nat Commun. 2014;5:4694 26441356 - Curr Biol. 2015 Oct 19;25(20):2690-5 6514943 - Psychophysiology. 1984 Nov;21(6):665-72 25065440 - Nat Neurosci. 2014 Aug;17(8):1031-9 7831395 - Physiol Rev. 1995 Jan;75(1):107-54 10777791 - J Neurosci. 2000 May 1;20(9):3263-81 17517438 - J Neurosci Methods. 2007 Aug 15;164(1):177-90 25217807 - Curr Opin Neurobiol. 2015 Apr;31:62-6 14680264 - Phys Med Biol. 2003 Nov 21;48(22):3637-52 18829955 - J Neurosci. 2008 Oct 1;28(40):9976-88 25263753 - Neuron. 2014 Oct 22;84(2):470-85 22872866 - Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13871-6 22958827 - Neuron. 2012 Sep 6;75(5):875-88 22968092 - Brain Lang. 2013 Nov;127(2):251-63 21552273 - Nat Neurosci. 2011 Jun;14(6):797-801 1822724 - Cereb Cortex. 1991 Jan-Feb;1(1):1-47 16216533 - Neuroimage. 2006 Feb 1;29(3):764-73 21253357 - Comput Intell Neurosci. 2011;2011:156869 18455441 - Neuroimage. 2008 Jul 1;41(3):767-76 22500626 - Neuron. 2012 Apr 12;74(1):12-29 22430496 - Neuroimage. 2012 Jul 16;61(4):1402-18 25712615 - Brain Res. 2015 Nov 11;1626:165-82 20547229 - Neuroimage. 2010 Oct 15;53(1):1-15 21690410 - Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11262-7 24508648 - Neuroimage. 2014 May 15;92:46-55 18232831 - Phys Rev Lett. 2008 Jan 11;100(1):018701 25556836 - Neuron. 2015 Jan 21;85(2):390-401 20664082 - Physiol Rev. 2010 Jul;90(3):1195-268 19235884 - Hum Brain Mapp. 2009 Jun;30(6):1857-65 25145779 - Eur J Neurosci. 2014 Oct;40(8):3215-23 8793757 - J Neurophysiol. 1996 Jun;75(6):2467-85 25205811 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14332-41 23177956 - Neuron. 2012 Nov 21;76(4):695-711 16150631 - Trends Cogn Sci. 2005 Oct;9(10):474-80 16226584 - Prog Brain Res. 2005;149:173-85 19478185 - Science. 2009 May 29;324(5931):1207-10 22047963 - Cereb Cortex. 2012 Oct;22(10):2241-62 21832190 - J Neurosci. 2011 Aug 10;31(32):11597-616 21451032 - J Neurosci. 2011 Mar 30;31(13):4935-43 17395832 - Science. 2007 Mar 30;315(5820):1860-2 26796688 - Neuron. 2016 Jan 20;89(2):244-7 14654453 - Cereb Cortex. 2004 Jan;14(1):11-22 |
References_xml | – volume: 108 start-page: 11262 year: 2011 end-page: 11267 ident: bib12 article-title: Laminar differences in gamma and alpha coherence in the ventral stream publication-title: Proc. Natl. Acad. Sci. USA – volume: 315 start-page: 1860 year: 2007 end-page: 1862 ident: bib13 article-title: Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices publication-title: Science – volume: 76 start-page: 695 year: 2012 end-page: 711 ident: bib5 article-title: Canonical microcircuits for predictive coding publication-title: Neuron – volume: 462 start-page: 353 year: 2009 end-page: 357 ident: bib15 article-title: Frequency of gamma oscillations routes flow of information in the hippocampus publication-title: Nature – volume: 9 start-page: e1003164 year: 2013 ident: bib33 article-title: Top-down beta rhythms support selective attention via interlaminar interaction: a model publication-title: PLoS Comput. Biol. – volume: 32 start-page: 3388 year: 2012 end-page: 3392 ident: bib53 article-title: Magnetoencephalography in twins reveals a strong genetic determination of the peak frequency of visually induced γ-band synchronization publication-title: J. Neurosci. – volume: 53 start-page: 1 year: 2010 end-page: 15 ident: bib18 article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature publication-title: Neuroimage – volume: 324 start-page: 1207 year: 2009 end-page: 1210 ident: bib28 article-title: High-frequency, long-range coupling between prefrontal and visual cortex during attention publication-title: Science – volume: 164 start-page: 177 year: 2007 end-page: 190 ident: bib35 article-title: Nonparametric statistical testing of EEG- and MEG-data publication-title: J. Neurosci. Methods – volume: 84 start-page: 470 year: 2014 end-page: 485 ident: bib48 article-title: Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks publication-title: Neuron – volume: 111 start-page: 14332 year: 2014 end-page: 14341 ident: bib52 article-title: Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex publication-title: Proc. Natl. Acad. Sci. USA – volume: 1626 start-page: 165 year: 2015 end-page: 182 ident: bib29 article-title: Oscillatory synchrony as a mechanism of attentional processing publication-title: Brain Res. – volume: 37 start-page: 424 year: 1969 end-page: 438 ident: bib27 article-title: Investigating causal relations by econometric models and cross-spectral methods publication-title: Econometrica – volume: 97 start-page: 14748 year: 2000 end-page: 14753 ident: bib54 article-title: Top-down processing mediated by interareal synchronization publication-title: Proc. Natl. Acad. Sci. USA – volume: 76 start-page: 691 year: 1999 end-page: 708 ident: bib37 article-title: Analysis of dynamic brain imaging data publication-title: Biophys. J. – volume: 75 start-page: 107 year: 1995 end-page: 154 ident: bib46 article-title: Corticocortical connections in the visual system: structure and function publication-title: Physiol. Rev. – volume: 14 start-page: 11 year: 2004 end-page: 22 ident: bib21 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb. Cortex – volume: 85 start-page: 390 year: 2015 end-page: 401 ident: bib6 article-title: Visual areas exert feedforward and feedback influences through distinct frequency channels publication-title: Neuron – year: 2005 ident: bib16 article-title: From Monkey Brain to Human Brain: A Fyssen Foundation Symposium – volume: 22 start-page: 2241 year: 2012 end-page: 2262 ident: bib51 article-title: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases publication-title: Cereb. Cortex – volume: 25 start-page: 2690 year: 2015 end-page: 2695 ident: bib38 article-title: Contextual Feedback to Superficial Layers of V1 publication-title: Curr. Biol. – volume: 21 start-page: 665 year: 1984 end-page: 672 ident: bib32 article-title: Spectral analysis of the visual evoked potential (VEP): effects of stimulus luminance publication-title: Psychophysiology – volume: 2011 start-page: 156869 year: 2011 ident: bib41 article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Comput. Intell. Neurosci. – volume: 522 start-page: 225 year: 2014 end-page: 259 ident: bib36 article-title: Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex publication-title: J. Comp. Neurol. – volume: 61 start-page: 1402 year: 2012 end-page: 1418 ident: bib44 article-title: Within-subject template estimation for unbiased longitudinal image analysis publication-title: Neuroimage – volume: 9 start-page: 474 year: 2005 end-page: 480 ident: bib23 article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence publication-title: Trends Cogn. Sci. – volume: 31 start-page: 968 year: 2006 end-page: 980 ident: bib17 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage – volume: 99 start-page: 509 year: 2014 end-page: 524 ident: bib1 article-title: Correspondences between retinotopic areas and myelin maps in human visual cortex publication-title: Neuroimage – volume: 48 start-page: 3637 year: 2003 ident: bib39 article-title: The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors publication-title: Phys. Med. Biol. – volume: 344 start-page: 424 year: 2014 end-page: 427 ident: bib3 article-title: Neural mechanisms of object-based attention publication-title: Science – volume: 77 start-page: 304 year: 1982 end-page: 313 ident: bib25 article-title: Measurement of linear dependence and feedback between multiple time series publication-title: J. Am. Stat. Assoc. – volume: 31 start-page: 4935 year: 2011 end-page: 4943 ident: bib8 article-title: Neuronal mechanisms and attentional modulation of corticothalamic α oscillations publication-title: J. Neurosci. – volume: 74 start-page: 12 year: 2012 end-page: 29 ident: bib45 article-title: Toward a unified theory of visual area V4 publication-title: Neuron – volume: 7 start-page: e32536 year: 2012 ident: bib40 article-title: Layer-specific fMRI reflects different neuronal computations at different depths in human V1 publication-title: PLoS ONE – volume: 100 start-page: 018701 year: 2008 ident: bib19 article-title: Estimating Granger causality from Fourier and wavelet transforms of time series data publication-title: Phys. Rev. Lett. – volume: 149 start-page: 173 year: 2005 end-page: 185 ident: bib50 article-title: Corticocortical and thalamocortical information flow in the primate visual system publication-title: Prog. Brain Res. – volume: 17 start-page: 1031 year: 2014 end-page: 1039 ident: bib57 article-title: Dynamic circuit motifs underlying rhythmic gain control, gating and integration publication-title: Nat. Neurosci. – volume: 31 start-page: 11597 year: 2011 end-page: 11616 ident: bib26 article-title: Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI publication-title: J. Neurosci. – year: 1999 ident: bib49 article-title: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science – volume: 30 start-page: 1857 year: 2009 end-page: 1865 ident: bib47 article-title: Source connectivity analysis with MEG and EEG publication-title: Hum. Brain Mapp. – year: 2000 ident: bib42 article-title: Wavelet Methods for Time Series Analysis (Cambridge Series in Statistical and Probabilistic Mathematics) – volume: 41 start-page: 767 year: 2008 end-page: 776 ident: bib56 article-title: Estimating Granger causality after stimulus onset: a cautionary note publication-title: Neuroimage – volume: 1 start-page: 1 year: 1991 end-page: 47 ident: bib20 article-title: Distributed hierarchical processing in the primate cerebral cortex publication-title: Cereb. Cortex – volume: 109 start-page: 13871 year: 2012 end-page: 13876 ident: bib58 article-title: Laminar analysis of visually evoked activity in the primary visual cortex publication-title: Proc. Natl. Acad. Sci. USA – volume: 75 start-page: 2467 year: 1996 end-page: 2485 ident: bib34 article-title: Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex publication-title: J. Neurophysiol. – volume: 92 start-page: 46 year: 2014 end-page: 55 ident: bib30 article-title: Inter- and intra-individual variability in alpha peak frequency publication-title: Neuroimage – volume: 14 start-page: 797 year: 2011 end-page: 801 ident: bib2 article-title: Transitions in neural oscillations reflect prediction errors generated in audiovisual speech publication-title: Nat. Neurosci. – volume: 75 start-page: 875 year: 2012 end-page: 888 ident: bib9 article-title: Attentional stimulus selection through selective synchronization between monkey visual areas publication-title: Neuron – volume: 90 start-page: 1195 year: 2010 end-page: 1268 ident: bib55 article-title: Neurophysiological and computational principles of cortical rhythms in cognition publication-title: Physiol. Rev. – volume: 88 start-page: 220 year: 2015 end-page: 235 ident: bib24 article-title: Rhythms for cognition: Communication through coherence publication-title: Neuron – volume: 20 start-page: 3263 year: 2000 end-page: 3281 ident: bib4 article-title: Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule publication-title: J. Neurosci. – volume: 127 start-page: 251 year: 2013 end-page: 263 ident: bib14 article-title: Interaction between dorsal and ventral processing streams: where, when and how? publication-title: Brain Lang. – volume: 5 year: 2014 ident: bib22 article-title: The contribution of frequency-specific activity to hierarchical information processing in the human auditory cortex publication-title: Nat. Commun. – volume: 29 start-page: 764 year: 2006 end-page: 773 ident: bib31 article-title: Localizing human visual gamma-band activity in frequency, time and space publication-title: Neuroimage – volume: 31 start-page: 62 year: 2015 end-page: 66 ident: bib10 article-title: Interareal oscillatory synchronization in top-down neocortical processing publication-title: Curr. Opin. Neurobiol. – volume: 28 start-page: 9976 year: 2008 end-page: 9988 ident: bib7 article-title: Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques publication-title: J. Neurosci. – volume: 40 start-page: 3215 year: 2014 end-page: 3223 ident: bib43 article-title: Dynamic connectivity among cortical layers in local and large-scale sensory processing publication-title: Eur. J. Neurosci. – volume: 107 start-page: 361 year: 2010 end-page: 365 ident: bib11 article-title: A backward progression of attentional effects in the ventral stream publication-title: Proc. Natl. Acad. Sci. USA – volume: 1626 start-page: 165 year: 2015 ident: 10.1016/j.neuron.2015.12.018_bib29 article-title: Oscillatory synchrony as a mechanism of attentional processing publication-title: Brain Res. doi: 10.1016/j.brainres.2015.02.004 – volume: 76 start-page: 691 year: 1999 ident: 10.1016/j.neuron.2015.12.018_bib37 article-title: Analysis of dynamic brain imaging data publication-title: Biophys. J. doi: 10.1016/S0006-3495(99)77236-X – volume: 14 start-page: 797 year: 2011 ident: 10.1016/j.neuron.2015.12.018_bib2 article-title: Transitions in neural oscillations reflect prediction errors generated in audiovisual speech publication-title: Nat. Neurosci. doi: 10.1038/nn.2810 – volume: 127 start-page: 251 year: 2013 ident: 10.1016/j.neuron.2015.12.018_bib14 article-title: Interaction between dorsal and ventral processing streams: where, when and how? publication-title: Brain Lang. doi: 10.1016/j.bandl.2012.08.003 – volume: 77 start-page: 304 year: 1982 ident: 10.1016/j.neuron.2015.12.018_bib25 article-title: Measurement of linear dependence and feedback between multiple time series publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1982.10477803 – volume: 90 start-page: 1195 year: 2010 ident: 10.1016/j.neuron.2015.12.018_bib55 article-title: Neurophysiological and computational principles of cortical rhythms in cognition publication-title: Physiol. Rev. doi: 10.1152/physrev.00035.2008 – volume: 462 start-page: 353 year: 2009 ident: 10.1016/j.neuron.2015.12.018_bib15 article-title: Frequency of gamma oscillations routes flow of information in the hippocampus publication-title: Nature doi: 10.1038/nature08573 – volume: 2011 start-page: 156869 year: 2011 ident: 10.1016/j.neuron.2015.12.018_bib41 article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/156869 – volume: 29 start-page: 764 year: 2006 ident: 10.1016/j.neuron.2015.12.018_bib31 article-title: Localizing human visual gamma-band activity in frequency, time and space publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.08.043 – volume: 31 start-page: 62 year: 2015 ident: 10.1016/j.neuron.2015.12.018_bib10 article-title: Interareal oscillatory synchronization in top-down neocortical processing publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2014.08.010 – volume: 7 start-page: e32536 year: 2012 ident: 10.1016/j.neuron.2015.12.018_bib40 article-title: Layer-specific fMRI reflects different neuronal computations at different depths in human V1 publication-title: PLoS ONE doi: 10.1371/journal.pone.0032536 – volume: 37 start-page: 424 year: 1969 ident: 10.1016/j.neuron.2015.12.018_bib27 article-title: Investigating causal relations by econometric models and cross-spectral methods publication-title: Econometrica doi: 10.2307/1912791 – volume: 92 start-page: 46 year: 2014 ident: 10.1016/j.neuron.2015.12.018_bib30 article-title: Inter- and intra-individual variability in alpha peak frequency publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.01.049 – volume: 30 start-page: 1857 year: 2009 ident: 10.1016/j.neuron.2015.12.018_bib47 article-title: Source connectivity analysis with MEG and EEG publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20745 – year: 2005 ident: 10.1016/j.neuron.2015.12.018_bib16 – volume: 9 start-page: 474 year: 2005 ident: 10.1016/j.neuron.2015.12.018_bib23 article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2005.08.011 – volume: 88 start-page: 220 year: 2015 ident: 10.1016/j.neuron.2015.12.018_bib24 article-title: Rhythms for cognition: Communication through coherence publication-title: Neuron doi: 10.1016/j.neuron.2015.09.034 – volume: 85 start-page: 390 year: 2015 ident: 10.1016/j.neuron.2015.12.018_bib6 article-title: Visual areas exert feedforward and feedback influences through distinct frequency channels publication-title: Neuron doi: 10.1016/j.neuron.2014.12.018 – volume: 75 start-page: 107 year: 1995 ident: 10.1016/j.neuron.2015.12.018_bib46 article-title: Corticocortical connections in the visual system: structure and function publication-title: Physiol. Rev. doi: 10.1152/physrev.1995.75.1.107 – volume: 75 start-page: 875 year: 2012 ident: 10.1016/j.neuron.2015.12.018_bib9 article-title: Attentional stimulus selection through selective synchronization between monkey visual areas publication-title: Neuron doi: 10.1016/j.neuron.2012.06.037 – volume: 164 start-page: 177 year: 2007 ident: 10.1016/j.neuron.2015.12.018_bib35 article-title: Nonparametric statistical testing of EEG- and MEG-data publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.03.024 – volume: 48 start-page: 3637 year: 2003 ident: 10.1016/j.neuron.2015.12.018_bib39 article-title: The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/48/22/002 – volume: 107 start-page: 361 year: 2010 ident: 10.1016/j.neuron.2015.12.018_bib11 article-title: A backward progression of attentional effects in the ventral stream publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0907658106 – volume: 324 start-page: 1207 year: 2009 ident: 10.1016/j.neuron.2015.12.018_bib28 article-title: High-frequency, long-range coupling between prefrontal and visual cortex during attention publication-title: Science doi: 10.1126/science.1171402 – volume: 149 start-page: 173 year: 2005 ident: 10.1016/j.neuron.2015.12.018_bib50 article-title: Corticocortical and thalamocortical information flow in the primate visual system publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(05)49013-5 – volume: 1 start-page: 1 year: 1991 ident: 10.1016/j.neuron.2015.12.018_bib20 article-title: Distributed hierarchical processing in the primate cerebral cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/1.1.1 – volume: 17 start-page: 1031 year: 2014 ident: 10.1016/j.neuron.2015.12.018_bib57 article-title: Dynamic circuit motifs underlying rhythmic gain control, gating and integration publication-title: Nat. Neurosci. doi: 10.1038/nn.3764 – volume: 21 start-page: 665 year: 1984 ident: 10.1016/j.neuron.2015.12.018_bib32 article-title: Spectral analysis of the visual evoked potential (VEP): effects of stimulus luminance publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1984.tb00254.x – year: 1999 ident: 10.1016/j.neuron.2015.12.018_bib49 – volume: 32 start-page: 3388 year: 2012 ident: 10.1016/j.neuron.2015.12.018_bib53 article-title: Magnetoencephalography in twins reveals a strong genetic determination of the peak frequency of visually induced γ-band synchronization publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5592-11.2012 – year: 2000 ident: 10.1016/j.neuron.2015.12.018_bib42 – volume: 61 start-page: 1402 year: 2012 ident: 10.1016/j.neuron.2015.12.018_bib44 article-title: Within-subject template estimation for unbiased longitudinal image analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.084 – volume: 75 start-page: 2467 year: 1996 ident: 10.1016/j.neuron.2015.12.018_bib34 article-title: Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.1996.75.6.2467 – volume: 9 start-page: e1003164 year: 2013 ident: 10.1016/j.neuron.2015.12.018_bib33 article-title: Top-down beta rhythms support selective attention via interlaminar interaction: a model publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003164 – volume: 97 start-page: 14748 year: 2000 ident: 10.1016/j.neuron.2015.12.018_bib54 article-title: Top-down processing mediated by interareal synchronization publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.26.14748 – volume: 25 start-page: 2690 year: 2015 ident: 10.1016/j.neuron.2015.12.018_bib38 article-title: Contextual Feedback to Superficial Layers of V1 publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.08.057 – volume: 40 start-page: 3215 year: 2014 ident: 10.1016/j.neuron.2015.12.018_bib43 article-title: Dynamic connectivity among cortical layers in local and large-scale sensory processing publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.12687 – volume: 84 start-page: 470 year: 2014 ident: 10.1016/j.neuron.2015.12.018_bib48 article-title: Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks publication-title: Neuron doi: 10.1016/j.neuron.2014.08.051 – volume: 76 start-page: 695 year: 2012 ident: 10.1016/j.neuron.2015.12.018_bib5 article-title: Canonical microcircuits for predictive coding publication-title: Neuron doi: 10.1016/j.neuron.2012.10.038 – volume: 100 start-page: 018701 year: 2008 ident: 10.1016/j.neuron.2015.12.018_bib19 article-title: Estimating Granger causality from Fourier and wavelet transforms of time series data publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.018701 – volume: 14 start-page: 11 year: 2004 ident: 10.1016/j.neuron.2015.12.018_bib21 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bhg087 – volume: 315 start-page: 1860 year: 2007 ident: 10.1016/j.neuron.2015.12.018_bib13 article-title: Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices publication-title: Science doi: 10.1126/science.1138071 – volume: 99 start-page: 509 year: 2014 ident: 10.1016/j.neuron.2015.12.018_bib1 article-title: Correspondences between retinotopic areas and myelin maps in human visual cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.06.042 – volume: 522 start-page: 225 year: 2014 ident: 10.1016/j.neuron.2015.12.018_bib36 article-title: Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex publication-title: J. Comp. Neurol. doi: 10.1002/cne.23458 – volume: 344 start-page: 424 year: 2014 ident: 10.1016/j.neuron.2015.12.018_bib3 article-title: Neural mechanisms of object-based attention publication-title: Science doi: 10.1126/science.1247003 – volume: 108 start-page: 11262 year: 2011 ident: 10.1016/j.neuron.2015.12.018_bib12 article-title: Laminar differences in gamma and alpha coherence in the ventral stream publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1011284108 – volume: 20 start-page: 3263 year: 2000 ident: 10.1016/j.neuron.2015.12.018_bib4 article-title: Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-09-03263.2000 – volume: 109 start-page: 13871 year: 2012 ident: 10.1016/j.neuron.2015.12.018_bib58 article-title: Laminar analysis of visually evoked activity in the primary visual cortex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1201478109 – volume: 31 start-page: 11597 year: 2011 ident: 10.1016/j.neuron.2015.12.018_bib26 article-title: Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2180-11.2011 – volume: 74 start-page: 12 year: 2012 ident: 10.1016/j.neuron.2015.12.018_bib45 article-title: Toward a unified theory of visual area V4 publication-title: Neuron doi: 10.1016/j.neuron.2012.03.011 – volume: 41 start-page: 767 year: 2008 ident: 10.1016/j.neuron.2015.12.018_bib56 article-title: Estimating Granger causality after stimulus onset: a cautionary note publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.03.025 – volume: 22 start-page: 2241 year: 2012 ident: 10.1016/j.neuron.2015.12.018_bib51 article-title: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr291 – volume: 53 start-page: 1 year: 2010 ident: 10.1016/j.neuron.2015.12.018_bib18 article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.010 – volume: 5 year: 2014 ident: 10.1016/j.neuron.2015.12.018_bib22 article-title: The contribution of frequency-specific activity to hierarchical information processing in the human auditory cortex publication-title: Nat. Commun. doi: 10.1038/ncomms5694 – volume: 28 start-page: 9976 year: 2008 ident: 10.1016/j.neuron.2015.12.018_bib7 article-title: Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2699-08.2008 – volume: 31 start-page: 4935 year: 2011 ident: 10.1016/j.neuron.2015.12.018_bib8 article-title: Neuronal mechanisms and attentional modulation of corticothalamic α oscillations publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5580-10.2011 – volume: 111 start-page: 14332 year: 2014 ident: 10.1016/j.neuron.2015.12.018_bib52 article-title: Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1402773111 – volume: 31 start-page: 968 year: 2006 ident: 10.1016/j.neuron.2015.12.018_bib17 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – reference: 19235884 - Hum Brain Mapp. 2009 Jun;30(6):1857-65 – reference: 17517438 - J Neurosci Methods. 2007 Aug 15;164(1):177-90 – reference: 22500626 - Neuron. 2012 Apr 12;74(1):12-29 – reference: 16150631 - Trends Cogn Sci. 2005 Oct;9(10):474-80 – reference: 20664082 - Physiol Rev. 2010 Jul;90(3):1195-268 – reference: 17395832 - Science. 2007 Mar 30;315(5820):1860-2 – reference: 23950699 - PLoS Comput Biol. 2013;9(8):e1003164 – reference: 22968092 - Brain Lang. 2013 Nov;127(2):251-63 – reference: 14654453 - Cereb Cortex. 2004 Jan;14(1):11-22 – reference: 16216533 - Neuroimage. 2006 Feb 1;29(3):764-73 – reference: 10777791 - J Neurosci. 2000 May 1;20(9):3263-81 – reference: 7831395 - Physiol Rev. 1995 Jan;75(1):107-54 – reference: 18829955 - J Neurosci. 2008 Oct 1;28(40):9976-88 – reference: 24971513 - Neuroimage. 2014 Oct 1;99:509-24 – reference: 21253357 - Comput Intell Neurosci. 2011;2011:156869 – reference: 25712615 - Brain Res. 2015 Nov 11;1626:165-82 – reference: 25205811 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14332-41 – reference: 19924214 - Nature. 2009 Nov 19;462(7271):353-7 – reference: 23177956 - Neuron. 2012 Nov 21;76(4):695-711 – reference: 22047963 - Cereb Cortex. 2012 Oct;22(10):2241-62 – reference: 26447583 - Neuron. 2015 Oct 7;88(1):220-35 – reference: 22430496 - Neuroimage. 2012 Jul 16;61(4):1402-18 – reference: 16226584 - Prog Brain Res. 2005;149:173-85 – reference: 26796688 - Neuron. 2016 Jan 20;89(2):244-7 – reference: 18232831 - Phys Rev Lett. 2008 Jan 11;100(1):018701 – reference: 14680264 - Phys Med Biol. 2003 Nov 21;48(22):3637-52 – reference: 25217807 - Curr Opin Neurobiol. 2015 Apr;31:62-6 – reference: 25556836 - Neuron. 2015 Jan 21;85(2):390-401 – reference: 25178489 - Nat Commun. 2014;5:4694 – reference: 25263753 - Neuron. 2014 Oct 22;84(2):470-85 – reference: 21832190 - J Neurosci. 2011 Aug 10;31(32):11597-616 – reference: 21552273 - Nat Neurosci. 2011 Jun;14(6):797-801 – reference: 26441356 - Curr Biol. 2015 Oct 19;25(20):2690-5 – reference: 1822724 - Cereb Cortex. 1991 Jan-Feb;1(1):1-47 – reference: 22399760 - J Neurosci. 2012 Mar 7;32(10):3388-92 – reference: 6514943 - Psychophysiology. 1984 Nov;21(6):665-72 – reference: 16530430 - Neuroimage. 2006 Jul 1;31(3):968-80 – reference: 21690410 - Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11262-7 – reference: 23983048 - J Comp Neurol. 2014 Jan 1;522(1):225-59 – reference: 24508648 - Neuroimage. 2014 May 15;92:46-55 – reference: 25145779 - Eur J Neurosci. 2014 Oct;40(8):3215-23 – reference: 22872866 - Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13871-6 – reference: 22448223 - PLoS One. 2012;7(3):e32536 – reference: 19478185 - Science. 2009 May 29;324(5931):1207-10 – reference: 24763592 - Science. 2014 Apr 25;344(6182):424-7 – reference: 20547229 - Neuroimage. 2010 Oct 15;53(1):1-15 – reference: 25065440 - Nat Neurosci. 2014 Aug;17(8):1031-9 – reference: 11121074 - Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14748-53 – reference: 18455441 - Neuroimage. 2008 Jul 1;41(3):767-76 – reference: 8793757 - J Neurophysiol. 1996 Jun;75(6):2467-85 – reference: 9929474 - Biophys J. 1999 Feb;76(2):691-708 – reference: 21451032 - J Neurosci. 2011 Mar 30;31(13):4935-43 – reference: 20007766 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):361-5 – reference: 22958827 - Neuron. 2012 Sep 6;75(5):875-88 |
SSID | ssj0014591 |
Score | 2.6504567 |
Snippet | Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 384 |
SubjectTerms | Alpha Rhythm - physiology Animals Beta Rhythm - physiology Bias Feedback Feedback, Physiological - physiology Female Gamma Rhythm - physiology Human subjects Humans Investigations Macaca Male Sensors Visual Cortex - physiology Visual Pathways - physiology Visual Perception - physiology |
Title | Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas |
URI | https://dx.doi.org/10.1016/j.neuron.2015.12.018 https://www.ncbi.nlm.nih.gov/pubmed/26777277 https://www.proquest.com/docview/1759011009 https://www.proquest.com/docview/1790022922 https://pubmed.ncbi.nlm.nih.gov/PMC4871751 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelMNjLWNt9ZG2HBmNvIpFsSfZjGpa1g-1hW0fehGRLJOvilNp5yH_fO_mDZSsU9mRsn_HZJ939TroPQt4rq3UpJyXLbWlZKnzOshAEQ1NcZIDIy5ge_eWrurxOPy_k4oDM-lwYDKvsdH-r06O27q6Mu785vl2txt8nWY7VyxOANAAaYk1QzCrFJL7FxbCTkMq2ax4QM6Tu0-dijFesGYlVULmMi4LY-uNh8_Qv_Pw7ivIPszR_Tp51eJJOW5aPyIGvjsnJtAJfer2jH2iM8IxL58fkSdt4cndCbqaYYssufGOprUr6ya7Xln5b7prluqaoTDAQks7BtDlb3EQaPAGEi1G29KpvbVLT2K2Ixr0A-nNVb4GZ2eYurpADV97WL8j1_OOP2SXr2i6wAsBUw6woRGpTWSY6U3CQTqSZ4EG5LHBdyMKFxAkf0PPhrlTgcAFMUInyCQ8ONOhLclhtKv-aUKn1JHppLmSpl0WeqcCD5GWROi1dMiJJ_7dN0dUkx9YYv00ffPbLtDIyKCPDhQEZjQgbnrpta3I8Qq97QZq9sWXAbDzy5Fkvd9PN7doA4Mpjpb18RN4Nt2FW4laLrfxmizQ5oqNciBF51Q6TgVWhNLg0WgNbewNoIMCK3_t3qtUyVv4G7xLezt_89wedkqdwFteQxOSMHDZ3W38OqKpxb-O0uQeEkyCL |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIQQvCDY-CmMYCfFmNXHiOHnsKroWtj3Ahvpm2YmtltF0WtKH_vfcOR9aYdIknqLEF-Xis-9-Z5_vCPmUaCkLERQs04VmMbcZS53jDE1xngIiL_zx6POLZHoVf52L-R4Zd2dhMKyy1f2NTvfaun0ybHtzeLNcDn8EaYbZyyOANAAaMCfoI0ADAQ7t2fyk30qIRVM2D6gZknfn53yQl08aiWlQQ-FXBbH2x_326V_8-XcY5R27NHlOnrWAko4anl-QPVsekMNRCc70aks_Ux_i6dfOD8jjpvLk9pBcj_CMLTuxtaa6LOipXq00_b7Y1otVRVGbYCQknYBtMzq_9jR4AxAXw2zprKttUlFfroj6zQD6c1ltgJnx-tYvkQNXVlcvydXky-V4ytq6CywHNFUzzXMe61gUkUwTuAjD45SHLjGpC2UucuMiw61D1yc0RQIeF-CEJEpsFDoDKvQV2S_XpX1DqJAy8G6acWlsRZ6liQudCIs8NlKYaECirrdV3iYlx9oYv1UXffZLNTJSKCMVcgUyGhDWv3XTJOV4gF52glQ7g0uB3XjgzaNO7qqd3JUCxJX5VHvZgHzsm2Fa4l6LLu16gzQZwqOM8wF53QyTnlWeSPBppAS2dgZQT4Apv3dbyuXCp_4G9xK-Hr797x_6QJ5ML8_P1Nns4ts78hRa_IISD47Ifn27se8BYtXm2E-hPwtbI64 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alpha-Beta+and+Gamma+Rhythms+Subserve+Feedback+and+Feedforward+Influences+among+Human+Visual+Cortical+Areas&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Michalareas%2C+Georgios&rft.au=Vezoli%2C+Julien&rft.au=van%C2%A0Pelt%2C+Stan&rft.au=Schoffelen%2C+Jan-Mathijs&rft.date=2016-01-20&rft.pub=Elsevier+Inc&rft.issn=0896-6273&rft.eissn=1097-4199&rft.volume=89&rft.issue=2&rft.spage=384&rft.epage=397&rft_id=info:doi/10.1016%2Fj.neuron.2015.12.018&rft.externalDocID=S0896627315011204 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |