Innate immune cell activation and epigenetic remodeling in symptomatic and asymptomatic atherosclerosis in humans in vivo
We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief in vitro exposure to atherogenic stimuli such as oxidized LDL. This process is termed ‘trained immunity’, and is mediated by epigenetic remodel...
Saved in:
Published in | Atherosclerosis Vol. 254; pp. 228 - 236 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.11.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9150 1879-1484 1879-1484 |
DOI | 10.1016/j.atherosclerosis.2016.10.019 |
Cover
Abstract | We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief in vitro exposure to atherogenic stimuli such as oxidized LDL. This process is termed ‘trained immunity’, and is mediated by epigenetic remodeling and a metabolic switch towards increased aerobic glycolysis. We hypothesize that trained immunity contributes to atherogenesis. Therefore, we investigated the inflammatory phenotype and epigenetic remodeling of monocytes from patients with and without established atherosclerosis.
Monocytes were isolated from 20 patients with severe symptomatic coronary atherosclerosis (total plaque score >4 on coronary computed tomography angiography) and 17 patients with asymptomatic carotid atherosclerosis and matched controls for both groups. Ex vivo stimulation, RNA analysis and chromatin immunoprecipitation were performed.
Monocytes from patients with symptomatic atherosclerosis have a higher production of pro-inflammatory cytokines upon LPS stimulation than healthy controls (TNFα 499 ± 102 vs. 267 ± 45 pg/ml, p = 0.01). This was associated with lower histone 3 lysine 4 trimethylation (H3K4me3) (19% vs. 33%, p = 0.002), and lower H3K27me3 (0.005% vs. 0.8%, p < 0.0001) on the TNFα promoter. Furthermore, relative mRNA expression of the glycolytic rate limiting enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 was higher in patients (0.7 ± 0.2 vs. 0.3 ± 0.1 resp. 1.7 ± 0.2 vs. 1.0 ± 0.1, p = 0.007 resp. 0.003) compared to control individuals. Interestingly, this pro-inflammatory phenotype was only present in patients with symptomatic atherosclerosis, and not in patients with asymptomatic carotid atherosclerosis.
Circulating monocytes of patients with symptomatic, but not asymptomatic, atherosclerosis have a pro-inflammatory phenotype and increased expression of glycolytic enzymes, associated with epigenetic remodeling at the level of histone methylation.
[Display omitted]
•Monocytes from patients with symptomatic coronary atherosclerosis have a pro-inflammatory phenotype.•This is associated with metabolic reprogramming towards increased glycolysis on RNA expression level.•And this is associated with epigenetic remodeling at the level of histone methylation.•These differences were not observed in subjects with asymptomatic atherosclerotic plaques in the carotid artery.•Trained innate immunity could play a role in the progression of atherosclerosis. |
---|---|
AbstractList | Abstract Background and aims We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief in vitro exposure to atherogenic stimuli such as oxidized LDL. This process is termed ‘trained immunity’, and is mediated by epigenetic remodeling and a metabolic switch towards increased aerobic glycolysis. We hypothesize that trained immunity contributes to atherogenesis. Therefore, we investigated the inflammatory phenotype and epigenetic remodeling of monocytes from patients with and without established atherosclerosis. Methods Monocytes were isolated from 20 patients with severe symptomatic coronary atherosclerosis (total plaque score >4 on coronary computed tomography angiography) and 17 patients with asymptomatic carotid atherosclerosis and matched controls for both groups. Ex vivo stimulation, RNA analysis and chromatin immunprecipitation were performed. Results Monocytes from patients with symptomatic atherosclerosis have a higher production of pro-inflammatory cytokines upon LPS stimulation than healthy controls (TNFα 499 ± 102 vs. 267 ± 45 pg/ml, p = 0.01). This was associated with lower histone 3 lysine 4 trimethylation (H3K4me3) (19% vs. 33%, p = 0.002), and lower H3K27me3 (0.005% vs. 0.8%, p < 0.0001) on the TNFα promoter. Furthermore, relative mRNA expression of the glycolytic rate limiting enzymes hexofructokinase 2 and phospho-fructokinase was higher in patients (0.7 ± 0.2 vs. 0.3 ± 0.1 resp. 1.7 ± 0.2 vs. 1.0 ± 0.1, p = 0.007 resp. 0.003) compared to control individuals. Interestingly, this pro-inflammatory phenotype was only present in patients with symptomatic atherosclerosis, and not in patients with asymptomatic carotid atherosclerosis. Conclusions Circulating monocytes of patients with symptomatic, but not asymptomatic, atherosclerosis have a pro-inflammatory phenotype and increased expression of glycolytic enzymes, associated with epigenetic remodeling at the level of histone methylation. We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief in vitro exposure to atherogenic stimuli such as oxidized LDL. This process is termed ‘trained immunity’, and is mediated by epigenetic remodeling and a metabolic switch towards increased aerobic glycolysis. We hypothesize that trained immunity contributes to atherogenesis. Therefore, we investigated the inflammatory phenotype and epigenetic remodeling of monocytes from patients with and without established atherosclerosis. Monocytes were isolated from 20 patients with severe symptomatic coronary atherosclerosis (total plaque score >4 on coronary computed tomography angiography) and 17 patients with asymptomatic carotid atherosclerosis and matched controls for both groups. Ex vivo stimulation, RNA analysis and chromatin immunoprecipitation were performed. Monocytes from patients with symptomatic atherosclerosis have a higher production of pro-inflammatory cytokines upon LPS stimulation than healthy controls (TNFα 499 ± 102 vs. 267 ± 45 pg/ml, p = 0.01). This was associated with lower histone 3 lysine 4 trimethylation (H3K4me3) (19% vs. 33%, p = 0.002), and lower H3K27me3 (0.005% vs. 0.8%, p < 0.0001) on the TNFα promoter. Furthermore, relative mRNA expression of the glycolytic rate limiting enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 was higher in patients (0.7 ± 0.2 vs. 0.3 ± 0.1 resp. 1.7 ± 0.2 vs. 1.0 ± 0.1, p = 0.007 resp. 0.003) compared to control individuals. Interestingly, this pro-inflammatory phenotype was only present in patients with symptomatic atherosclerosis, and not in patients with asymptomatic carotid atherosclerosis. Circulating monocytes of patients with symptomatic, but not asymptomatic, atherosclerosis have a pro-inflammatory phenotype and increased expression of glycolytic enzymes, associated with epigenetic remodeling at the level of histone methylation. [Display omitted] •Monocytes from patients with symptomatic coronary atherosclerosis have a pro-inflammatory phenotype.•This is associated with metabolic reprogramming towards increased glycolysis on RNA expression level.•And this is associated with epigenetic remodeling at the level of histone methylation.•These differences were not observed in subjects with asymptomatic atherosclerotic plaques in the carotid artery.•Trained innate immunity could play a role in the progression of atherosclerosis. We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief in vitro exposure to atherogenic stimuli such as oxidized LDL. This process is termed 'trained immunity', and is mediated by epigenetic remodeling and a metabolic switch towards increased aerobic glycolysis. We hypothesize that trained immunity contributes to atherogenesis. Therefore, we investigated the inflammatory phenotype and epigenetic remodeling of monocytes from patients with and without established atherosclerosis. Monocytes were isolated from 20 patients with severe symptomatic coronary atherosclerosis (total plaque score >4 on coronary computed tomography angiography) and 17 patients with asymptomatic carotid atherosclerosis and matched controls for both groups. Ex vivo stimulation, RNA analysis and chromatin immunoprecipitation were performed. Monocytes from patients with symptomatic atherosclerosis have a higher production of pro-inflammatory cytokines upon LPS stimulation than healthy controls (TNFα 499 ± 102 vs. 267 ± 45 pg/ml, p = 0.01). This was associated with lower histone 3 lysine 4 trimethylation (H3K4me3) (19% vs. 33%, p = 0.002), and lower H3K27me3 (0.005% vs. 0.8%, p < 0.0001) on the TNFα promoter. Furthermore, relative mRNA expression of the glycolytic rate limiting enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 was higher in patients (0.7 ± 0.2 vs. 0.3 ± 0.1 resp. 1.7 ± 0.2 vs. 1.0 ± 0.1, p = 0.007 resp. 0.003) compared to control individuals. Interestingly, this pro-inflammatory phenotype was only present in patients with symptomatic atherosclerosis, and not in patients with asymptomatic carotid atherosclerosis. Circulating monocytes of patients with symptomatic, but not asymptomatic, atherosclerosis have a pro-inflammatory phenotype and increased expression of glycolytic enzymes, associated with epigenetic remodeling at the level of histone methylation. We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief in vitro exposure to atherogenic stimuli such as oxidized LDL. This process is termed 'trained immunity', and is mediated by epigenetic remodeling and a metabolic switch towards increased aerobic glycolysis. We hypothesize that trained immunity contributes to atherogenesis. Therefore, we investigated the inflammatory phenotype and epigenetic remodeling of monocytes from patients with and without established atherosclerosis.BACKGROUND AND AIMSWe have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief in vitro exposure to atherogenic stimuli such as oxidized LDL. This process is termed 'trained immunity', and is mediated by epigenetic remodeling and a metabolic switch towards increased aerobic glycolysis. We hypothesize that trained immunity contributes to atherogenesis. Therefore, we investigated the inflammatory phenotype and epigenetic remodeling of monocytes from patients with and without established atherosclerosis.Monocytes were isolated from 20 patients with severe symptomatic coronary atherosclerosis (total plaque score >4 on coronary computed tomography angiography) and 17 patients with asymptomatic carotid atherosclerosis and matched controls for both groups. Ex vivo stimulation, RNA analysis and chromatin immunoprecipitation were performed.METHODSMonocytes were isolated from 20 patients with severe symptomatic coronary atherosclerosis (total plaque score >4 on coronary computed tomography angiography) and 17 patients with asymptomatic carotid atherosclerosis and matched controls for both groups. Ex vivo stimulation, RNA analysis and chromatin immunoprecipitation were performed.Monocytes from patients with symptomatic atherosclerosis have a higher production of pro-inflammatory cytokines upon LPS stimulation than healthy controls (TNFα 499 ± 102 vs. 267 ± 45 pg/ml, p = 0.01). This was associated with lower histone 3 lysine 4 trimethylation (H3K4me3) (19% vs. 33%, p = 0.002), and lower H3K27me3 (0.005% vs. 0.8%, p < 0.0001) on the TNFα promoter. Furthermore, relative mRNA expression of the glycolytic rate limiting enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 was higher in patients (0.7 ± 0.2 vs. 0.3 ± 0.1 resp. 1.7 ± 0.2 vs. 1.0 ± 0.1, p = 0.007 resp. 0.003) compared to control individuals. Interestingly, this pro-inflammatory phenotype was only present in patients with symptomatic atherosclerosis, and not in patients with asymptomatic carotid atherosclerosis.RESULTSMonocytes from patients with symptomatic atherosclerosis have a higher production of pro-inflammatory cytokines upon LPS stimulation than healthy controls (TNFα 499 ± 102 vs. 267 ± 45 pg/ml, p = 0.01). This was associated with lower histone 3 lysine 4 trimethylation (H3K4me3) (19% vs. 33%, p = 0.002), and lower H3K27me3 (0.005% vs. 0.8%, p < 0.0001) on the TNFα promoter. Furthermore, relative mRNA expression of the glycolytic rate limiting enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 was higher in patients (0.7 ± 0.2 vs. 0.3 ± 0.1 resp. 1.7 ± 0.2 vs. 1.0 ± 0.1, p = 0.007 resp. 0.003) compared to control individuals. Interestingly, this pro-inflammatory phenotype was only present in patients with symptomatic atherosclerosis, and not in patients with asymptomatic carotid atherosclerosis.Circulating monocytes of patients with symptomatic, but not asymptomatic, atherosclerosis have a pro-inflammatory phenotype and increased expression of glycolytic enzymes, associated with epigenetic remodeling at the level of histone methylation.CONCLUSIONSCirculating monocytes of patients with symptomatic, but not asymptomatic, atherosclerosis have a pro-inflammatory phenotype and increased expression of glycolytic enzymes, associated with epigenetic remodeling at the level of histone methylation. |
Author | Lamfers, Evert Riksen, Niels P. Bekkering, Siroon Joosten, Leo A.B. van den Munckhof, Inge Dinarello, Charles Nielen, Tim Gomes, Marc E.R. Rutten, Joost de Graaf, Jacqueline Netea, Mihai G. |
Author_xml | – sequence: 1 givenname: Siroon surname: Bekkering fullname: Bekkering, Siroon organization: Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands – sequence: 2 givenname: Inge orcidid: 0000-0001-8259-5578 surname: van den Munckhof fullname: van den Munckhof, Inge organization: Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands – sequence: 3 givenname: Tim surname: Nielen fullname: Nielen, Tim organization: Department of Cardiology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands – sequence: 4 givenname: Evert surname: Lamfers fullname: Lamfers, Evert organization: Department of Cardiology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands – sequence: 5 givenname: Charles surname: Dinarello fullname: Dinarello, Charles organization: Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands – sequence: 6 givenname: Joost surname: Rutten fullname: Rutten, Joost organization: Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands – sequence: 7 givenname: Jacqueline surname: de Graaf fullname: de Graaf, Jacqueline organization: Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands – sequence: 8 givenname: Leo A.B. surname: Joosten fullname: Joosten, Leo A.B. organization: Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands – sequence: 9 givenname: Mihai G. surname: Netea fullname: Netea, Mihai G. organization: Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands – sequence: 10 givenname: Marc E.R. surname: Gomes fullname: Gomes, Marc E.R. organization: Department of Cardiology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands – sequence: 11 givenname: Niels P. surname: Riksen fullname: Riksen, Niels P. email: Niels.Riksen@Radboudumc.nl organization: Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27764724$$D View this record in MEDLINE/PubMed |
BookMark | eNqVksFu1DAQhi1URLeFV0C5IHHJ4vEmtnOgElqVUqkSB-BseZ3Z1kviBNtZtDwNz9Inq80WpK6E1F5sa-b3N-Pfc0KO3OCQkDdA50CBv9vMdbxBPwTT5dWGOUvhlJtTaJ6RGUjRlFDJ6ojMKGVQNlDTY3ISwoZSWgmQL8gxE4JXglUz8uvSOR2xsH0_OSwMdl2hTbRbHe3gCu3aAkd7jQ6jNYXHfmixs-66sK4Iu36MQ69zJgv1g8DDLrP-Zuq1y6fb31u7HV6S52vdBXx1v5-Sbx_Pvy4_lVefLy6XH65KU3OIZSMawbhBwY3RwDUTXGrZYM05q6SBpmJsJQVyU-GKtlRWBtpWL5CtDaxXdHFKzvbcyY1691N3nRq97bXfKaAqm6o26qBdlU3N6WRqArzdA0Y__JgwRNXbkJ3SDocpKJCLumYN8Fzr9b10WvXY_iv01_AkWO4FJtUJHtfK2PjH6-i17R7d0fsDylNfdLG_j8n3rUWvgrHoDLbWo4mqHeyjSWcHJJPGwxrdfccdhs0weZc-V4EKTFH1JY9knkjgC0gfJxPg_P-AJzRyB6EOAJw |
CitedBy_id | crossref_primary_10_1016_j_isci_2024_111103 crossref_primary_10_1093_cvr_cvz137 crossref_primary_10_3389_fcell_2020_581641 crossref_primary_10_1093_cvr_cvy043 crossref_primary_10_1007_s00395_022_00935_6 crossref_primary_10_1016_j_cmet_2017_06_001 crossref_primary_10_1093_cvr_cvac058 crossref_primary_10_1097_MOL_0000000000000628 crossref_primary_10_3389_fimmu_2022_827250 crossref_primary_10_3892_mmr_2024_13269 crossref_primary_10_1111_imr_12617 crossref_primary_10_1038_s41591_018_0064_0 crossref_primary_10_1161_JAHA_119_013764 crossref_primary_10_1146_annurev_immunol_102119_073855 crossref_primary_10_1016_j_jaci_2024_09_005 crossref_primary_10_1016_j_ijcard_2024_131780 crossref_primary_10_1161_ATVBAHA_120_314212 crossref_primary_10_1016_j_ejmech_2023_115986 crossref_primary_10_1089_ars_2017_7310 crossref_primary_10_1161_ATVBAHA_120_314216 crossref_primary_10_3389_fimmu_2020_00513 crossref_primary_10_3389_fgene_2019_00950 crossref_primary_10_7554_eLife_60939 crossref_primary_10_1002_bies_201800191 crossref_primary_10_1016_j_smim_2018_06_002 crossref_primary_10_1038_s41590_018_0113_3 crossref_primary_10_1155_2020_8748934 crossref_primary_10_3390_nu16091321 crossref_primary_10_1038_s41366_023_01444_9 crossref_primary_10_1161_STROKEAHA_118_023192 crossref_primary_10_12997_jla_2021_10_3_251 crossref_primary_10_1016_j_it_2024_10_003 crossref_primary_10_3389_fphar_2017_00335 crossref_primary_10_1161_ATVBAHA_119_312802 crossref_primary_10_1007_s12265_022_10311_3 crossref_primary_10_3389_fcvm_2022_870144 crossref_primary_10_1111_imr_13142 crossref_primary_10_1007_s13365_024_01239_2 crossref_primary_10_1007_s00395_023_01023_z crossref_primary_10_1212_NXI_0000000000200312 crossref_primary_10_3390_ijms24119338 crossref_primary_10_1002_jcp_25998 crossref_primary_10_1161_CIRCRESAHA_117_312465 crossref_primary_10_1194_jlr_RA119000382 crossref_primary_10_3389_fcvm_2022_756734 crossref_primary_10_1016_j_immuni_2021_05_011 crossref_primary_10_1016_j_jaut_2022_102956 crossref_primary_10_1161_CIRCRESAHA_124_323778 crossref_primary_10_3389_fimmu_2019_02035 crossref_primary_10_3389_fimmu_2019_00013 crossref_primary_10_3389_fimmu_2023_1052925 crossref_primary_10_1016_j_atherosclerosis_2018_10_006 crossref_primary_10_1093_eurheartj_ehae024 crossref_primary_10_1016_j_mam_2020_100897 crossref_primary_10_1042_BST20210857 crossref_primary_10_1002_cpt_3394 crossref_primary_10_3390_cells11244072 crossref_primary_10_3389_fimmu_2024_1452410 crossref_primary_10_1161_ATVBAHA_120_314037 crossref_primary_10_1172_jci_insight_158183 crossref_primary_10_1007_s11154_020_09560_x crossref_primary_10_1007_s40119_023_00342_5 crossref_primary_10_1016_j_molimm_2019_02_012 crossref_primary_10_1038_s41569_023_00894_y crossref_primary_10_20900_immunometab20210023 crossref_primary_10_1161_ATVBAHA_120_315886 crossref_primary_10_1186_s13148_020_00943_0 crossref_primary_10_1097_MOL_0000000000000550 crossref_primary_10_1111_joim_12844 crossref_primary_10_1016_j_jvs_2019_04_488 crossref_primary_10_1136_bmjdrc_2022_003282 crossref_primary_10_3389_fimmu_2020_02114 crossref_primary_10_1093_eurheartj_ehaa171 crossref_primary_10_1038_s41578_021_00413_w crossref_primary_10_1093_cvr_cvad030 crossref_primary_10_12997_jla_2019_8_1_15 crossref_primary_10_3389_fphys_2022_1056466 crossref_primary_10_3390_ijms22179119 crossref_primary_10_1172_JCI133935 crossref_primary_10_3389_fimmu_2021_745332 crossref_primary_10_1038_s41467_022_28531_1 crossref_primary_10_3390_cells12192359 crossref_primary_10_1007_s00109_020_01915_w crossref_primary_10_1016_j_athplu_2021_10_001 crossref_primary_10_1158_0008_5472_CAN_21_3503 crossref_primary_10_1016_j_biocel_2020_105883 crossref_primary_10_3389_fphar_2022_973612 crossref_primary_10_3390_biomedicines11030766 crossref_primary_10_1093_eurheartj_ehx581 crossref_primary_10_1111_imm_13571 crossref_primary_10_1152_ajpcell_00218_2022 crossref_primary_10_1016_j_jtha_2023_02_021 crossref_primary_10_3389_fcvm_2022_853967 crossref_primary_10_1002_cph4_70008 crossref_primary_10_1111_raq_12863 crossref_primary_10_1165_rcmb_2020_0512OC crossref_primary_10_3389_fcvm_2022_854421 crossref_primary_10_3389_fphar_2023_1109576 crossref_primary_10_1111_imm_13697 crossref_primary_10_3389_fcvm_2018_00097 crossref_primary_10_1016_j_isci_2024_109472 crossref_primary_10_1177_2396987318776088 crossref_primary_10_1186_s41824_022_00138_1 crossref_primary_10_1096_fj_202301078R crossref_primary_10_1016_j_immuni_2017_09_008 crossref_primary_10_3390_ijms23116166 crossref_primary_10_1080_1744666X_2022_2120470 crossref_primary_10_3892_mmr_2018_9142 crossref_primary_10_1097_MOL_0000000000000539 crossref_primary_10_3390_ijms20102565 crossref_primary_10_1016_j_trecan_2023_08_007 crossref_primary_10_1007_s12026_021_09170_y crossref_primary_10_1002_JLB_3AB1220_846R crossref_primary_10_3389_fimmu_2020_00284 crossref_primary_10_3389_fcvm_2021_639361 crossref_primary_10_1016_j_jlr_2024_100699 crossref_primary_10_1016_j_isci_2023_107183 crossref_primary_10_1016_j_tice_2017_04_002 crossref_primary_10_1016_j_clicom_2022_08_004 crossref_primary_10_1111_acel_13127 crossref_primary_10_3390_antiox10111849 crossref_primary_10_1111_sji_12981 crossref_primary_10_3390_biom14121547 crossref_primary_10_3389_fcvm_2021_797046 crossref_primary_10_1038_d41586_021_01454_5 crossref_primary_10_1152_ajpregu_00201_2021 crossref_primary_10_1161_JAHA_123_031665 crossref_primary_10_3389_fphar_2019_00725 crossref_primary_10_1038_s41577_020_0285_6 crossref_primary_10_1161_ATVBAHA_120_314508 crossref_primary_10_1097_MOL_0000000000000405 crossref_primary_10_1210_clinem_dgz306 crossref_primary_10_1111_prd_12429 crossref_primary_10_3389_fcvm_2022_949778 crossref_primary_10_3390_biomedicines9111596 crossref_primary_10_1016_j_cmet_2019_05_014 crossref_primary_10_1016_j_jlr_2023_100380 crossref_primary_10_1007_s00281_017_0656_7 crossref_primary_10_1016_j_ijcha_2018_09_006 crossref_primary_10_1161_JAHA_117_008342 crossref_primary_10_3389_fimmu_2023_1165683 crossref_primary_10_1016_j_jaci_2020_08_013 crossref_primary_10_3389_fragi_2022_1069415 crossref_primary_10_1093_cvr_cvz107 crossref_primary_10_1016_j_jcyt_2024_10_011 crossref_primary_10_1002_mco2_121 crossref_primary_10_1097_MOL_0000000000000634 crossref_primary_10_1161_ATVBAHA_120_314513 crossref_primary_10_1007_s00281_022_00914_y crossref_primary_10_1016_j_jaci_2023_06_014 crossref_primary_10_1161_ATVBAHA_120_315448 crossref_primary_10_1172_jci_insight_145928 crossref_primary_10_3389_fcvm_2021_664044 crossref_primary_10_1016_j_yjmcc_2019_05_024 crossref_primary_10_1159_000512280 crossref_primary_10_1042_CS20210496 crossref_primary_10_1093_cid_ciac182 crossref_primary_10_1096_fj_201902024 crossref_primary_10_1007_s11010_024_05099_6 crossref_primary_10_3390_life14121581 crossref_primary_10_1016_j_clim_2023_109776 crossref_primary_10_3389_fimmu_2024_1286382 crossref_primary_10_3390_cells11233935 crossref_primary_10_1016_j_ejim_2023_12_020 crossref_primary_10_1016_j_tem_2020_01_008 crossref_primary_10_3390_life13112128 crossref_primary_10_1161_ATVBAHA_120_315452 |
Cites_doi | 10.1161/ATVBAHA.115.305551 10.1007/s10238-006-0092-9 10.1111/j.1365-2249.2004.02602.x 10.1016/j.cell.2011.04.005 10.4049/jimmunol.165.2.618 10.1126/science.1250684 10.1254/jphs.14077FP 10.1161/ATVBAHA.114.303887 10.1038/nature11262 10.1016/S0021-9150(98)00074-4 10.1038/nm.3258 10.1016/j.atherosclerosis.2015.07.024 10.1093/ije/dyq205 10.1097/MOL.0000000000000023 10.1016/S0021-9150(99)00061-1 10.1016/j.lfs.2014.10.010 10.1073/pnas.1202870109 10.1016/j.chom.2012.06.006 10.1161/CIRCULATIONAHA.116.020838 10.1126/science.1251086 10.1084/jem.20150900 10.1016/j.carpath.2015.11.001 10.1177/1741826711423216 10.1016/j.coph.2013.06.002 10.1038/nature11260 10.1038/cr.2016.1 |
ContentType | Journal Article |
Copyright | 2016 The Authors Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved. |
Copyright_xml | – notice: 2016 The Authors – notice: Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
DOI | 10.1016/j.atherosclerosis.2016.10.019 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-1484 |
EndPage | 236 |
ExternalDocumentID | 10.1016/j.atherosclerosis.2016.10.019 27764724 10_1016_j_atherosclerosis_2016_10_019 S0021915016314228 1_s2_0_S0021915016314228 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABLJU ABMAC ABMZM ABOCM ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AEXQZ AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEB HMK HMO HVGLF HZ~ IHE J1W J5H K-O KOM L7B M27 M41 MO0 N9A O-L O9- OAUVE OA~ OK1 OL0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K WUQ X7M Z5R ZGI ZXP ~G- ~KM AACTN AFCTW AFKWA AJOXV AMFUW NCXOZ RIG 0SF 6I. AAFTH AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR ZA5 AAYXX ACLOT CITATION ~HD AGRNS CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
ID | FETCH-LOGICAL-c561t-979726ce76cca16a2768a89e566248c19422b87e6c4eb0d084c1dda3e2fc1fb03 |
IEDL.DBID | UNPAY |
ISSN | 0021-9150 1879-1484 |
IngestDate | Wed Oct 01 16:40:06 EDT 2025 Sun Sep 28 07:08:54 EDT 2025 Mon Jul 21 06:04:51 EDT 2025 Thu Apr 24 23:04:17 EDT 2025 Wed Oct 01 04:46:45 EDT 2025 Fri Feb 23 02:24:02 EST 2024 Tue Feb 25 19:57:36 EST 2025 Tue Aug 26 16:36:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Epigenetics Monocytes Inflammation Metabolism Atherosclerosis |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c561t-979726ce76cca16a2768a89e566248c19422b87e6c4eb0d084c1dda3e2fc1fb03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8259-5578 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=http://www.atherosclerosis-journal.com/article/S0021915016314228/pdf |
PMID | 27764724 |
PQID | 1835529160 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | unpaywall_primary_10_1016_j_atherosclerosis_2016_10_019 proquest_miscellaneous_1835529160 pubmed_primary_27764724 crossref_citationtrail_10_1016_j_atherosclerosis_2016_10_019 crossref_primary_10_1016_j_atherosclerosis_2016_10_019 elsevier_sciencedirect_doi_10_1016_j_atherosclerosis_2016_10_019 elsevier_clinicalkeyesjournals_1_s2_0_S0021915016314228 elsevier_clinicalkey_doi_10_1016_j_atherosclerosis_2016_10_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-01 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Atherosclerosis |
PublicationTitleAlternate | Atherosclerosis |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Saeed (bib6) 2014; 345 Calmarza, Trejo, Lapresta, Lopez (bib24) 2012; 19 Rothe (bib27) 1999; 144 Alwan, Armstrong, Bettcher (bib1) 2011 de Bont (bib15) 1998; 139 Robbins (bib3) 2013; 19 Wang (bib11) 2014; 126 Hirschfeld, Ma, Weis, Vogel, Weis (bib7) 2000; 165 van Haelst (bib14) 2004; 138 Shirai (bib21) 2016; 213 Stender, Glass (bib13) 2013; 13 Cheng (bib10) 2014; 345 Schmidt (bib19) 2016; 26 Greisel (bib18) 2016; 25 Bekkering, Joosten, van der Meer, Netea, Riksen (bib4) 2013; 24 Wierda (bib17) 2015; 129 van der Valk (bib23) 2016; 134 Kivimäki (bib25) 2011; 40 Bekkering (bib5) 2014; 34 Kleinnijenhuis (bib8) 2012; 109 Pasqui (bib16) 2006; 6 Bos (bib26) 2015; 242 Tawakol (bib20) 2015; 35 Quintin (bib9) 2012; 12 Dutta (bib22) 2012; 487 Kruidenier (bib12) 2012; 488 Moore, Tabas (bib2) 2011; 145 Quintin (10.1016/j.atherosclerosis.2016.10.019_bib9) 2012; 12 Bekkering (10.1016/j.atherosclerosis.2016.10.019_bib4) 2013; 24 Shirai (10.1016/j.atherosclerosis.2016.10.019_bib21) 2016; 213 Pasqui (10.1016/j.atherosclerosis.2016.10.019_bib16) 2006; 6 Kleinnijenhuis (10.1016/j.atherosclerosis.2016.10.019_bib8) 2012; 109 Schmidt (10.1016/j.atherosclerosis.2016.10.019_bib19) 2016; 26 van Haelst (10.1016/j.atherosclerosis.2016.10.019_bib14) 2004; 138 Cheng (10.1016/j.atherosclerosis.2016.10.019_bib10) 2014; 345 Bekkering (10.1016/j.atherosclerosis.2016.10.019_bib5) 2014; 34 Dutta (10.1016/j.atherosclerosis.2016.10.019_bib22) 2012; 487 Rothe (10.1016/j.atherosclerosis.2016.10.019_bib27) 1999; 144 Saeed (10.1016/j.atherosclerosis.2016.10.019_bib6) 2014; 345 Alwan (10.1016/j.atherosclerosis.2016.10.019_bib1) 2011 Hirschfeld (10.1016/j.atherosclerosis.2016.10.019_bib7) 2000; 165 Wierda (10.1016/j.atherosclerosis.2016.10.019_bib17) 2015; 129 Kivimäki (10.1016/j.atherosclerosis.2016.10.019_bib25) 2011; 40 Stender (10.1016/j.atherosclerosis.2016.10.019_bib13) 2013; 13 van der Valk (10.1016/j.atherosclerosis.2016.10.019_bib23) 2016; 134 Robbins (10.1016/j.atherosclerosis.2016.10.019_bib3) 2013; 19 Tawakol (10.1016/j.atherosclerosis.2016.10.019_bib20) 2015; 35 Greisel (10.1016/j.atherosclerosis.2016.10.019_bib18) 2016; 25 Moore (10.1016/j.atherosclerosis.2016.10.019_bib2) 2011; 145 Kruidenier (10.1016/j.atherosclerosis.2016.10.019_bib12) 2012; 488 de Bont (10.1016/j.atherosclerosis.2016.10.019_bib15) 1998; 139 Bos (10.1016/j.atherosclerosis.2016.10.019_bib26) 2015; 242 Calmarza (10.1016/j.atherosclerosis.2016.10.019_bib24) 2012; 19 Wang (10.1016/j.atherosclerosis.2016.10.019_bib11) 2014; 126 |
References_xml | – volume: 213 start-page: 337 year: 2016 end-page: 354 ident: bib21 article-title: The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease publication-title: J. Exp. Med. – volume: 126 start-page: 198 year: 2014 end-page: 207 ident: bib11 article-title: SKLB-M8 induces apoptosis through the AKT/mTOR signaling pathway in melanoma models and inhibits angiogenesis with decrease of ERK1/2 phosphorylation publication-title: J. Pharmacol. Sci. – volume: 26 start-page: 151 year: 2016 end-page: 170 ident: bib19 article-title: The transcriptional regulator network of human inflammatory macrophages is defined by open chromatin publication-title: Cell Res. – volume: 13 start-page: 582 year: 2013 end-page: 587 ident: bib13 article-title: Epigenomic control of the innate immune response publication-title: Curr. Opin. Pharmacol. – year: 2011 ident: bib1 article-title: Global Status Report on Noncommunicable Diseases – volume: 34 start-page: 1731 year: 2014 end-page: 1738 ident: bib5 article-title: Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 19 start-page: 1166 year: 2013 end-page: 1172 ident: bib3 article-title: Local proliferation dominates lesional macrophage accumulation in atherosclerosis publication-title: Nat. Med. – volume: 6 start-page: 38 year: 2006 end-page: 44 ident: bib16 article-title: Pro-inflammatory/anti-inflammatory cytokine imbalance in acute coronary syndromes publication-title: Clin. Exp. Med. – volume: 109 start-page: 17537 year: 2012 end-page: 17542 ident: bib8 article-title: Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 129 start-page: 3 year: 2015 end-page: 9 ident: bib17 article-title: Global histone H3 lysine 27 triple methylation levels are reduced in vessels with advanced atherosclerotic plaques publication-title: Life Sci. – volume: 25 start-page: 79 year: 2016 end-page: 86 ident: bib18 article-title: Histone acetylation and methylation significantly change with severity of atherosclerosis in human carotid plaques publication-title: Cardiovasc Pathol. – volume: 242 start-page: 226 year: 2015 end-page: 229 ident: bib26 article-title: Lipoprotein (a) levels are not associated with carotid plaques and carotid intima media thickness in statin-treated patients with familial hypercholesterolemia publication-title: Atherosclerosis – volume: 138 start-page: 364 year: 2004 end-page: 368 ident: bib14 article-title: Circulating monocytes in patients with acute coronary syndromes lack sufficient interleukin-10 production after lipopolysaccharide stimulation publication-title: Clin. Exp. Immunol. – volume: 165 start-page: 618 year: 2000 end-page: 622 ident: bib7 article-title: Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2 publication-title: J. Immunol. – volume: 24 start-page: 487 year: 2013 end-page: 492 ident: bib4 article-title: Trained innate immunity and atherosclerosis publication-title: Curr. Opin. Lipidol. – volume: 139 start-page: 147 year: 1998 end-page: 152 ident: bib15 article-title: LPS-induced cytokine production and expression of LPS-receptors by peripheral blood mononuclear cells of patients with familial hypercholesterolemia and the effect of HMG-CoA reductase inhibitors publication-title: Atherosclerosis – volume: 134 start-page: 611 year: 2016 end-page: 624 ident: bib23 article-title: Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans publication-title: Circulation – volume: 345 year: 2014 ident: bib10 article-title: mTOR- and HIF-1 -mediated aerobic glycolysis as metabolic basis for trained immunity publication-title: Science – volume: 144 start-page: 251 year: 1999 end-page: 261 ident: bib27 article-title: A more mature phenotype of blood mononuclear phagocytes is induced by fluvastatin treatment in hypercholesterolemic patients with coronary heart disease publication-title: Atherosclerosis – volume: 12 start-page: 223 year: 2012 end-page: 232 ident: bib9 article-title: Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes publication-title: Cell Host Microbe – volume: 40 start-page: 470 year: 2011 end-page: 478 ident: bib25 article-title: Conventional and Mendelian randomization analyses suggest no association between lipoprotein(a) and early atherosclerosis: the Young Finns Study publication-title: Int. J. Epidemiol. – volume: 345 year: 2014 ident: bib6 article-title: Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity publication-title: Science – volume: 488 start-page: 404 year: 2012 end-page: 408 ident: bib12 article-title: A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response publication-title: Nature – volume: 35 start-page: 1463 year: 2015 end-page: 1471 ident: bib20 article-title: HIF-1α and PFKFB3 mediate a tight relationship between proinflammatory activation and anerobic metabolism in atherosclerotic macrophages publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 487 start-page: 325 year: 2012 end-page: 329 ident: bib22 article-title: Myocardial infarction accelerates atherosclerosis publication-title: Nature – volume: 145 start-page: 341 year: 2011 end-page: 355 ident: bib2 article-title: Macrophages in the pathogenesis of atherosclerosis publication-title: Cell – volume: 19 start-page: 1290 year: 2012 end-page: 1295 ident: bib24 article-title: Relationship between lipoprotein(a) concentrations and intima-media thickness: a healthy population study publication-title: Eur. J. Prev. Cardiol. – volume: 35 start-page: 1463 year: 2015 ident: 10.1016/j.atherosclerosis.2016.10.019_bib20 article-title: HIF-1α and PFKFB3 mediate a tight relationship between proinflammatory activation and anerobic metabolism in atherosclerotic macrophages publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.115.305551 – volume: 6 start-page: 38 year: 2006 ident: 10.1016/j.atherosclerosis.2016.10.019_bib16 article-title: Pro-inflammatory/anti-inflammatory cytokine imbalance in acute coronary syndromes publication-title: Clin. Exp. Med. doi: 10.1007/s10238-006-0092-9 – volume: 138 start-page: 364 year: 2004 ident: 10.1016/j.atherosclerosis.2016.10.019_bib14 article-title: Circulating monocytes in patients with acute coronary syndromes lack sufficient interleukin-10 production after lipopolysaccharide stimulation publication-title: Clin. Exp. Immunol. doi: 10.1111/j.1365-2249.2004.02602.x – year: 2011 ident: 10.1016/j.atherosclerosis.2016.10.019_bib1 – volume: 145 start-page: 341 year: 2011 ident: 10.1016/j.atherosclerosis.2016.10.019_bib2 article-title: Macrophages in the pathogenesis of atherosclerosis publication-title: Cell doi: 10.1016/j.cell.2011.04.005 – volume: 165 start-page: 618 year: 2000 ident: 10.1016/j.atherosclerosis.2016.10.019_bib7 article-title: Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2 publication-title: J. Immunol. doi: 10.4049/jimmunol.165.2.618 – volume: 345 year: 2014 ident: 10.1016/j.atherosclerosis.2016.10.019_bib10 article-title: mTOR- and HIF-1 -mediated aerobic glycolysis as metabolic basis for trained immunity publication-title: Science doi: 10.1126/science.1250684 – volume: 126 start-page: 198 year: 2014 ident: 10.1016/j.atherosclerosis.2016.10.019_bib11 article-title: SKLB-M8 induces apoptosis through the AKT/mTOR signaling pathway in melanoma models and inhibits angiogenesis with decrease of ERK1/2 phosphorylation publication-title: J. Pharmacol. Sci. doi: 10.1254/jphs.14077FP – volume: 34 start-page: 1731 year: 2014 ident: 10.1016/j.atherosclerosis.2016.10.019_bib5 article-title: Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.114.303887 – volume: 488 start-page: 404 year: 2012 ident: 10.1016/j.atherosclerosis.2016.10.019_bib12 article-title: A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response publication-title: Nature doi: 10.1038/nature11262 – volume: 139 start-page: 147 year: 1998 ident: 10.1016/j.atherosclerosis.2016.10.019_bib15 article-title: LPS-induced cytokine production and expression of LPS-receptors by peripheral blood mononuclear cells of patients with familial hypercholesterolemia and the effect of HMG-CoA reductase inhibitors publication-title: Atherosclerosis doi: 10.1016/S0021-9150(98)00074-4 – volume: 19 start-page: 1166 year: 2013 ident: 10.1016/j.atherosclerosis.2016.10.019_bib3 article-title: Local proliferation dominates lesional macrophage accumulation in atherosclerosis publication-title: Nat. Med. doi: 10.1038/nm.3258 – volume: 242 start-page: 226 year: 2015 ident: 10.1016/j.atherosclerosis.2016.10.019_bib26 article-title: Lipoprotein (a) levels are not associated with carotid plaques and carotid intima media thickness in statin-treated patients with familial hypercholesterolemia publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2015.07.024 – volume: 40 start-page: 470 year: 2011 ident: 10.1016/j.atherosclerosis.2016.10.019_bib25 article-title: Conventional and Mendelian randomization analyses suggest no association between lipoprotein(a) and early atherosclerosis: the Young Finns Study publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyq205 – volume: 24 start-page: 487 year: 2013 ident: 10.1016/j.atherosclerosis.2016.10.019_bib4 article-title: Trained innate immunity and atherosclerosis publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0000000000000023 – volume: 144 start-page: 251 year: 1999 ident: 10.1016/j.atherosclerosis.2016.10.019_bib27 article-title: A more mature phenotype of blood mononuclear phagocytes is induced by fluvastatin treatment in hypercholesterolemic patients with coronary heart disease publication-title: Atherosclerosis doi: 10.1016/S0021-9150(99)00061-1 – volume: 129 start-page: 3 year: 2015 ident: 10.1016/j.atherosclerosis.2016.10.019_bib17 article-title: Global histone H3 lysine 27 triple methylation levels are reduced in vessels with advanced atherosclerotic plaques publication-title: Life Sci. doi: 10.1016/j.lfs.2014.10.010 – volume: 109 start-page: 17537 year: 2012 ident: 10.1016/j.atherosclerosis.2016.10.019_bib8 article-title: Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1202870109 – volume: 12 start-page: 223 year: 2012 ident: 10.1016/j.atherosclerosis.2016.10.019_bib9 article-title: Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.06.006 – volume: 134 start-page: 611 year: 2016 ident: 10.1016/j.atherosclerosis.2016.10.019_bib23 article-title: Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.116.020838 – volume: 345 year: 2014 ident: 10.1016/j.atherosclerosis.2016.10.019_bib6 article-title: Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity publication-title: Science doi: 10.1126/science.1251086 – volume: 213 start-page: 337 year: 2016 ident: 10.1016/j.atherosclerosis.2016.10.019_bib21 article-title: The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease publication-title: J. Exp. Med. doi: 10.1084/jem.20150900 – volume: 25 start-page: 79 year: 2016 ident: 10.1016/j.atherosclerosis.2016.10.019_bib18 article-title: Histone acetylation and methylation significantly change with severity of atherosclerosis in human carotid plaques publication-title: Cardiovasc Pathol. doi: 10.1016/j.carpath.2015.11.001 – volume: 19 start-page: 1290 year: 2012 ident: 10.1016/j.atherosclerosis.2016.10.019_bib24 article-title: Relationship between lipoprotein(a) concentrations and intima-media thickness: a healthy population study publication-title: Eur. J. Prev. Cardiol. doi: 10.1177/1741826711423216 – volume: 13 start-page: 582 year: 2013 ident: 10.1016/j.atherosclerosis.2016.10.019_bib13 article-title: Epigenomic control of the innate immune response publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2013.06.002 – volume: 487 start-page: 325 year: 2012 ident: 10.1016/j.atherosclerosis.2016.10.019_bib22 article-title: Myocardial infarction accelerates atherosclerosis publication-title: Nature doi: 10.1038/nature11260 – volume: 26 start-page: 151 year: 2016 ident: 10.1016/j.atherosclerosis.2016.10.019_bib19 article-title: The transcriptional regulator network of human inflammatory macrophages is defined by open chromatin publication-title: Cell Res. doi: 10.1038/cr.2016.1 |
SSID | ssj0004718 |
Score | 2.5827413 |
Snippet | We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief... Abstract Background and aims We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term... We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief in... |
SourceID | unpaywall proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 228 |
SubjectTerms | Aged Atherosclerosis Atherosclerosis - pathology Cardiovascular Carotid Arteries - pathology Coronary Artery Disease - immunology Cytokines - metabolism Epigenesis, Genetic Epigenetics Female Glycolysis Histones - metabolism Humans Immunity, Innate Inflammation Lipoproteins, LDL - chemistry Macrophages - metabolism Male Metabolism Methylation Middle Aged Monocytes Monocytes - cytology Phenotype Plaque, Atherosclerotic - metabolism |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VPRQ4VPyzLSAjwTFt7HidREIIVFEVpHKiUm-W7ThS0OJEzW6r9sCz8Cx9Mmbys2VpD624RJus7Tjj8fiLM98MwFuhytI6JxG52TiSpfVRbrmLXGKsMVI627HeD7-pgyP59Xh6vAZ7IxeG3CoH29_b9M5aD1d2B2nuNlVFHF-cbYhnEFHQRgYRfin6F-r0zq8rNw8yvr2bB4-o9Aa8u_Lx6kBW3WKTeKwoejdXO-TsRYF3bl6nruPQB3BvERpzfmZms7_Wpv2HsDmASvap7_cjWPPhMWwcDp_Nn8DFlxAQU7KKyCCe0WY9I0JDvx3LTCiYbygsJzEa2Ynv0uPgmsaqwNrzn8287gK7dgXNyoXVJ6PyXdI_-nX5-7Q6rZ_C0f7n73sH0ZB0IXIIpeZRnuapUM6nCseWKyPwfcRkuUfYJ2TmeI6itlnqlZPexkWcSceLwiRelI6XNk6ewXqog38BzCWJUbzgJY8TmarScJ_hC1k-dYKCI9sJvB9FrN0QkZwSY8z06Hr2Q__zHJpGiP7GEZqAWlZv-tAct634YRxPPfJP0WJqXERu20B6UwO-HeZ_q7luhY71NR2dwMdlzRU1v8vN34wqqNEUkMqY4OsF3hTR9FQg3o8n8LzXzaVgRJpSogCJXV8q692ktvX_Xd-G-3TWUzlfwvr8ZOFfIaab29fdpP0DxRFSmw priority: 102 providerName: Elsevier |
Title | Innate immune cell activation and epigenetic remodeling in symptomatic and asymptomatic atherosclerosis in humans in vivo |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021915016314228 https://www.clinicalkey.es/playcontent/1-s2.0-S0021915016314228 https://dx.doi.org/10.1016/j.atherosclerosis.2016.10.019 https://www.ncbi.nlm.nih.gov/pubmed/27764724 https://www.proquest.com/docview/1835529160 http://www.atherosclerosis-journal.com/article/S0021915016314228/pdf |
UnpaywallVersion | publishedVersion |
Volume | 254 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1484 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004718 issn: 1879-1484 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-1484 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004718 issn: 1879-1484 databaseCode: AIKHN dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-1484 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004718 issn: 1879-1484 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-1484 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004718 issn: 1879-1484 databaseCode: ACRLP dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1484 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004718 issn: 1879-1484 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9NAFH5qE6nAgX0JS2QkODr12JOxLSFEhKhSUCMORCqn0cx4LAWCbdVOUXvgt_Bb-GW85yXQpocWLpaXWZ_fvPlm5i0AL3yRptoYjshNey5PtXVjzYxrAqWV4tzo2ur9YCamc_7-cHy4BV20TdKqrJFPXiLV8Loo3ZaotdhuyUkGvjjUEMwgnKBdjGi3SNJt6As6ZupBfz77OPncaHcwl9LRuisKYxfRP9-Bl3_UvM7VRspeYkT6XuR75-KpahOK3oBrq6xQJ9_VcvnX9LR3C2xn5NNopXwdrSo9MqebPh__q-e34WaLX51Jk-4ObNnsLuwctCf09-B0P8sQvjoLsjuxDp0LOGQ70ez8OipLHFuQB1AynnSObB2JB6dPZ5E55cm3osprH7J1QnXmxdlWU_o6viDd_fp5vDjO78N8792nt1O3je_gGkRtlRuHcegLY0OBbMSE8nHpo6LYIsL0eWRYjN3TUWiF4VZ7iRdxw5JEBdZPDUu1FzyAXpZn9hE4JgiUYAlLmRfwUKSK2QjXfvHY-OSHWQ_gVfcrpWmdn1MMjqXstNy-yHP9kMQJ9Bk5YQBinb1ovIBcNuPrjm9kZ-qKwlnifHXZAsKLCrBlyxulZLL0pSc3-GIAb9Y5WzTVoKSrVP68Y3WJUodYRmU2X2GlCNzHPi4tvAE8bMbAmjB-GFJMAo5NXw-Kq1Ht8T_nfALX6akxFn0KvepoZZ8haqz0ELZHP9gQ-pP9D9PZsBURvwG2n3bI |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrdTCAfEqLE8jwTE0TrxOIiFEVVHt0u6eWqk3y3YcKWhJoma3qPwafgu_jJk8tiztoRWXKEriR8aT8WdnvhmAd4HMMmOtQORmfE9kxnmJ4dazoTZaC2FNw3qfzuT4RHw9HZ1uwH7PhSG3ys72tza9sdbdld1OmrtVnhPHF782xDOIKGgjI74Dm2KENnkAm3uTw_Hskh4Z8dYgkzcCFtiC95duXg3OKmusFY85BfDm8gP5e1HsneunqqtQ9B5sL4tKX_zQ8_lf09PBA7jf4Uq213b9IWy44hFsTbs_54_h56QoEFaynPggjtF-PSNOQ7sjy3SRMldRZE4iNbIz12TIwWmN5QWrL75Xi7KJ7do8qNcurL8ZPd_k_aOz37_O8_PyCZwcfDneH3td3gXPIppaeEmURIG0LpI4vFzqAJckOk4cIr9AxJYnKG0TR05a4Yyf-rGwPE116ILM8sz44Q4MirJwz4DZMNSSpzzjfigimWnuYlyTJSMbUHxkM4SPvYiV7YKSU26Mueq9z76pf95D0QjRbRyhIchV8aqNznHTgp_68VQ9BRWNpsJ55KYVRNdV4OrOBNSKqzpQvrqipkP4vCq5pum3afxtr4IKrQGpjC5cucRGEVCPAoT8_hCetrq5EkwQRZQrQGDXV8p6O6k9__-uv4Ht8fH0SB1NZocv4C7daZmdL2GwOFu6VwjxFuZ19wn_AbNLVtQ |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB6VrVTggftYLhkJHrPEjtdJJISoEFVBasUDK5Uny3YcaWFJoiZb1P4afgu_jJkcC-32oYWXKIfPyXj82Z4D4IVQeW6dk4jcbBjI3PogtdwFLjLWGCmdba3e9_bV7kx-PJgebMAQbZO0KlvkU9ZINbzO66Anaiu2e3KSgS8ONQQzCCdoFyN5VWX5FdhUdMw0gs3Z_qftL512Bw8oHa27kjgNEP3LLXj5R83rTG2k7KUmpO9FvnfOn6rWoeh1uLosKnP8wywWf01POzfBD0Y-nVbKt8mysRN3su7z8b96fgtu9PiVbXfpbsOGL-7A1l5_Qn8XTj4UBcJXNie7E8_oXICR7US388tMkTFfkQdQMp5kh76NxIPTJ5sXrD7-XjVl60O2TWhOvTjdakrfxheku18_j-ZH5T2Y7bz__G436OM7BA5RWxOkcRoL5XyskI24MgKXPiZJPSJMIRPHU-yeTWKvnPQ2zMJEOp5lJvIidzy3YXQfRkVZ-IfAXBQZxTOe8zCSscoN9wmu_dKpE-SH2Y7h9fArteudn1MMjoUetNy-6jP90MQJ9Bk5YQxqlb3qvIBcNOObgW_0YOqKwlnjfHXRAuLzCvB1zxu15roWOtRrfDGGt6ucPZrqUNJlKn8-sLpGqUMsYwpfLrFSBO5TgUuLcAwPujGwIoyIY4pJILHpq0FxOao9-uecj-EaPXXGok9g1Bwu_VNEjY191guF306gdDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innate+immune+cell+activation+and+epigenetic+remodeling+in+symptomatic+and+asymptomatic+atherosclerosis+in+humans+in+vivo&rft.jtitle=Atherosclerosis&rft.au=Bekkering%2C+Siroon&rft.au=van+den+Munckhof%2C+Inge&rft.au=Nielen%2C+Tim&rft.au=Lamfers%2C+Evert&rft.date=2016-11-01&rft.issn=0021-9150&rft_id=info:doi/10.1016%2Fj.atherosclerosis.2016.10.019&rft.externalDBID=ECK1-s2.0-S0021915016314228&rft.externalDocID=1_s2_0_S0021915016314228 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9150&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9150&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9150&client=summon |