Innate immune cell activation and epigenetic remodeling in symptomatic and asymptomatic atherosclerosis in humans in vivo

We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief in vitro exposure to atherogenic stimuli such as oxidized LDL. This process is termed ‘trained immunity’, and is mediated by epigenetic remodel...

Full description

Saved in:
Bibliographic Details
Published inAtherosclerosis Vol. 254; pp. 228 - 236
Main Authors Bekkering, Siroon, van den Munckhof, Inge, Nielen, Tim, Lamfers, Evert, Dinarello, Charles, Rutten, Joost, de Graaf, Jacqueline, Joosten, Leo A.B., Netea, Mihai G., Gomes, Marc E.R., Riksen, Niels P.
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.11.2016
Subjects
Online AccessGet full text
ISSN0021-9150
1879-1484
1879-1484
DOI10.1016/j.atherosclerosis.2016.10.019

Cover

Abstract We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief in vitro exposure to atherogenic stimuli such as oxidized LDL. This process is termed ‘trained immunity’, and is mediated by epigenetic remodeling and a metabolic switch towards increased aerobic glycolysis. We hypothesize that trained immunity contributes to atherogenesis. Therefore, we investigated the inflammatory phenotype and epigenetic remodeling of monocytes from patients with and without established atherosclerosis. Monocytes were isolated from 20 patients with severe symptomatic coronary atherosclerosis (total plaque score >4 on coronary computed tomography angiography) and 17 patients with asymptomatic carotid atherosclerosis and matched controls for both groups. Ex vivo stimulation, RNA analysis and chromatin immunoprecipitation were performed. Monocytes from patients with symptomatic atherosclerosis have a higher production of pro-inflammatory cytokines upon LPS stimulation than healthy controls (TNFα 499 ± 102 vs. 267 ± 45 pg/ml, p = 0.01). This was associated with lower histone 3 lysine 4 trimethylation (H3K4me3) (19% vs. 33%, p = 0.002), and lower H3K27me3 (0.005% vs. 0.8%, p < 0.0001) on the TNFα promoter. Furthermore, relative mRNA expression of the glycolytic rate limiting enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 was higher in patients (0.7 ± 0.2 vs. 0.3 ± 0.1 resp. 1.7 ± 0.2 vs. 1.0 ± 0.1, p = 0.007 resp. 0.003) compared to control individuals. Interestingly, this pro-inflammatory phenotype was only present in patients with symptomatic atherosclerosis, and not in patients with asymptomatic carotid atherosclerosis. Circulating monocytes of patients with symptomatic, but not asymptomatic, atherosclerosis have a pro-inflammatory phenotype and increased expression of glycolytic enzymes, associated with epigenetic remodeling at the level of histone methylation. [Display omitted] •Monocytes from patients with symptomatic coronary atherosclerosis have a pro-inflammatory phenotype.•This is associated with metabolic reprogramming towards increased glycolysis on RNA expression level.•And this is associated with epigenetic remodeling at the level of histone methylation.•These differences were not observed in subjects with asymptomatic atherosclerotic plaques in the carotid artery.•Trained innate immunity could play a role in the progression of atherosclerosis.
AbstractList Abstract Background and aims We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief in vitro exposure to atherogenic stimuli such as oxidized LDL. This process is termed ‘trained immunity’, and is mediated by epigenetic remodeling and a metabolic switch towards increased aerobic glycolysis. We hypothesize that trained immunity contributes to atherogenesis. Therefore, we investigated the inflammatory phenotype and epigenetic remodeling of monocytes from patients with and without established atherosclerosis. Methods Monocytes were isolated from 20 patients with severe symptomatic coronary atherosclerosis (total plaque score >4 on coronary computed tomography angiography) and 17 patients with asymptomatic carotid atherosclerosis and matched controls for both groups. Ex vivo stimulation, RNA analysis and chromatin immunprecipitation were performed. Results Monocytes from patients with symptomatic atherosclerosis have a higher production of pro-inflammatory cytokines upon LPS stimulation than healthy controls (TNFα 499 ± 102 vs. 267 ± 45 pg/ml, p  = 0.01). This was associated with lower histone 3 lysine 4 trimethylation (H3K4me3) (19% vs. 33%, p  = 0.002), and lower H3K27me3 (0.005% vs. 0.8%, p  < 0.0001) on the TNFα promoter. Furthermore, relative mRNA expression of the glycolytic rate limiting enzymes hexofructokinase 2 and phospho-fructokinase was higher in patients (0.7 ± 0.2 vs. 0.3 ± 0.1 resp. 1.7 ± 0.2 vs. 1.0 ± 0.1, p  = 0.007 resp. 0.003) compared to control individuals. Interestingly, this pro-inflammatory phenotype was only present in patients with symptomatic atherosclerosis, and not in patients with asymptomatic carotid atherosclerosis. Conclusions Circulating monocytes of patients with symptomatic, but not asymptomatic, atherosclerosis have a pro-inflammatory phenotype and increased expression of glycolytic enzymes, associated with epigenetic remodeling at the level of histone methylation.
We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief in vitro exposure to atherogenic stimuli such as oxidized LDL. This process is termed ‘trained immunity’, and is mediated by epigenetic remodeling and a metabolic switch towards increased aerobic glycolysis. We hypothesize that trained immunity contributes to atherogenesis. Therefore, we investigated the inflammatory phenotype and epigenetic remodeling of monocytes from patients with and without established atherosclerosis. Monocytes were isolated from 20 patients with severe symptomatic coronary atherosclerosis (total plaque score >4 on coronary computed tomography angiography) and 17 patients with asymptomatic carotid atherosclerosis and matched controls for both groups. Ex vivo stimulation, RNA analysis and chromatin immunoprecipitation were performed. Monocytes from patients with symptomatic atherosclerosis have a higher production of pro-inflammatory cytokines upon LPS stimulation than healthy controls (TNFα 499 ± 102 vs. 267 ± 45 pg/ml, p = 0.01). This was associated with lower histone 3 lysine 4 trimethylation (H3K4me3) (19% vs. 33%, p = 0.002), and lower H3K27me3 (0.005% vs. 0.8%, p < 0.0001) on the TNFα promoter. Furthermore, relative mRNA expression of the glycolytic rate limiting enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 was higher in patients (0.7 ± 0.2 vs. 0.3 ± 0.1 resp. 1.7 ± 0.2 vs. 1.0 ± 0.1, p = 0.007 resp. 0.003) compared to control individuals. Interestingly, this pro-inflammatory phenotype was only present in patients with symptomatic atherosclerosis, and not in patients with asymptomatic carotid atherosclerosis. Circulating monocytes of patients with symptomatic, but not asymptomatic, atherosclerosis have a pro-inflammatory phenotype and increased expression of glycolytic enzymes, associated with epigenetic remodeling at the level of histone methylation. [Display omitted] •Monocytes from patients with symptomatic coronary atherosclerosis have a pro-inflammatory phenotype.•This is associated with metabolic reprogramming towards increased glycolysis on RNA expression level.•And this is associated with epigenetic remodeling at the level of histone methylation.•These differences were not observed in subjects with asymptomatic atherosclerotic plaques in the carotid artery.•Trained innate immunity could play a role in the progression of atherosclerosis.
We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief in vitro exposure to atherogenic stimuli such as oxidized LDL. This process is termed 'trained immunity', and is mediated by epigenetic remodeling and a metabolic switch towards increased aerobic glycolysis. We hypothesize that trained immunity contributes to atherogenesis. Therefore, we investigated the inflammatory phenotype and epigenetic remodeling of monocytes from patients with and without established atherosclerosis. Monocytes were isolated from 20 patients with severe symptomatic coronary atherosclerosis (total plaque score >4 on coronary computed tomography angiography) and 17 patients with asymptomatic carotid atherosclerosis and matched controls for both groups. Ex vivo stimulation, RNA analysis and chromatin immunoprecipitation were performed. Monocytes from patients with symptomatic atherosclerosis have a higher production of pro-inflammatory cytokines upon LPS stimulation than healthy controls (TNFα 499 ± 102 vs. 267 ± 45 pg/ml, p = 0.01). This was associated with lower histone 3 lysine 4 trimethylation (H3K4me3) (19% vs. 33%, p = 0.002), and lower H3K27me3 (0.005% vs. 0.8%, p < 0.0001) on the TNFα promoter. Furthermore, relative mRNA expression of the glycolytic rate limiting enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 was higher in patients (0.7 ± 0.2 vs. 0.3 ± 0.1 resp. 1.7 ± 0.2 vs. 1.0 ± 0.1, p = 0.007 resp. 0.003) compared to control individuals. Interestingly, this pro-inflammatory phenotype was only present in patients with symptomatic atherosclerosis, and not in patients with asymptomatic carotid atherosclerosis. Circulating monocytes of patients with symptomatic, but not asymptomatic, atherosclerosis have a pro-inflammatory phenotype and increased expression of glycolytic enzymes, associated with epigenetic remodeling at the level of histone methylation.
We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief in vitro exposure to atherogenic stimuli such as oxidized LDL. This process is termed 'trained immunity', and is mediated by epigenetic remodeling and a metabolic switch towards increased aerobic glycolysis. We hypothesize that trained immunity contributes to atherogenesis. Therefore, we investigated the inflammatory phenotype and epigenetic remodeling of monocytes from patients with and without established atherosclerosis.BACKGROUND AND AIMSWe have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief in vitro exposure to atherogenic stimuli such as oxidized LDL. This process is termed 'trained immunity', and is mediated by epigenetic remodeling and a metabolic switch towards increased aerobic glycolysis. We hypothesize that trained immunity contributes to atherogenesis. Therefore, we investigated the inflammatory phenotype and epigenetic remodeling of monocytes from patients with and without established atherosclerosis.Monocytes were isolated from 20 patients with severe symptomatic coronary atherosclerosis (total plaque score >4 on coronary computed tomography angiography) and 17 patients with asymptomatic carotid atherosclerosis and matched controls for both groups. Ex vivo stimulation, RNA analysis and chromatin immunoprecipitation were performed.METHODSMonocytes were isolated from 20 patients with severe symptomatic coronary atherosclerosis (total plaque score >4 on coronary computed tomography angiography) and 17 patients with asymptomatic carotid atherosclerosis and matched controls for both groups. Ex vivo stimulation, RNA analysis and chromatin immunoprecipitation were performed.Monocytes from patients with symptomatic atherosclerosis have a higher production of pro-inflammatory cytokines upon LPS stimulation than healthy controls (TNFα 499 ± 102 vs. 267 ± 45 pg/ml, p = 0.01). This was associated with lower histone 3 lysine 4 trimethylation (H3K4me3) (19% vs. 33%, p = 0.002), and lower H3K27me3 (0.005% vs. 0.8%, p < 0.0001) on the TNFα promoter. Furthermore, relative mRNA expression of the glycolytic rate limiting enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 was higher in patients (0.7 ± 0.2 vs. 0.3 ± 0.1 resp. 1.7 ± 0.2 vs. 1.0 ± 0.1, p = 0.007 resp. 0.003) compared to control individuals. Interestingly, this pro-inflammatory phenotype was only present in patients with symptomatic atherosclerosis, and not in patients with asymptomatic carotid atherosclerosis.RESULTSMonocytes from patients with symptomatic atherosclerosis have a higher production of pro-inflammatory cytokines upon LPS stimulation than healthy controls (TNFα 499 ± 102 vs. 267 ± 45 pg/ml, p = 0.01). This was associated with lower histone 3 lysine 4 trimethylation (H3K4me3) (19% vs. 33%, p = 0.002), and lower H3K27me3 (0.005% vs. 0.8%, p < 0.0001) on the TNFα promoter. Furthermore, relative mRNA expression of the glycolytic rate limiting enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 was higher in patients (0.7 ± 0.2 vs. 0.3 ± 0.1 resp. 1.7 ± 0.2 vs. 1.0 ± 0.1, p = 0.007 resp. 0.003) compared to control individuals. Interestingly, this pro-inflammatory phenotype was only present in patients with symptomatic atherosclerosis, and not in patients with asymptomatic carotid atherosclerosis.Circulating monocytes of patients with symptomatic, but not asymptomatic, atherosclerosis have a pro-inflammatory phenotype and increased expression of glycolytic enzymes, associated with epigenetic remodeling at the level of histone methylation.CONCLUSIONSCirculating monocytes of patients with symptomatic, but not asymptomatic, atherosclerosis have a pro-inflammatory phenotype and increased expression of glycolytic enzymes, associated with epigenetic remodeling at the level of histone methylation.
Author Lamfers, Evert
Riksen, Niels P.
Bekkering, Siroon
Joosten, Leo A.B.
van den Munckhof, Inge
Dinarello, Charles
Nielen, Tim
Gomes, Marc E.R.
Rutten, Joost
de Graaf, Jacqueline
Netea, Mihai G.
Author_xml – sequence: 1
  givenname: Siroon
  surname: Bekkering
  fullname: Bekkering, Siroon
  organization: Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
– sequence: 2
  givenname: Inge
  orcidid: 0000-0001-8259-5578
  surname: van den Munckhof
  fullname: van den Munckhof, Inge
  organization: Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
– sequence: 3
  givenname: Tim
  surname: Nielen
  fullname: Nielen, Tim
  organization: Department of Cardiology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
– sequence: 4
  givenname: Evert
  surname: Lamfers
  fullname: Lamfers, Evert
  organization: Department of Cardiology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
– sequence: 5
  givenname: Charles
  surname: Dinarello
  fullname: Dinarello, Charles
  organization: Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
– sequence: 6
  givenname: Joost
  surname: Rutten
  fullname: Rutten, Joost
  organization: Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
– sequence: 7
  givenname: Jacqueline
  surname: de Graaf
  fullname: de Graaf, Jacqueline
  organization: Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
– sequence: 8
  givenname: Leo A.B.
  surname: Joosten
  fullname: Joosten, Leo A.B.
  organization: Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
– sequence: 9
  givenname: Mihai G.
  surname: Netea
  fullname: Netea, Mihai G.
  organization: Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
– sequence: 10
  givenname: Marc E.R.
  surname: Gomes
  fullname: Gomes, Marc E.R.
  organization: Department of Cardiology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
– sequence: 11
  givenname: Niels P.
  surname: Riksen
  fullname: Riksen, Niels P.
  email: Niels.Riksen@Radboudumc.nl
  organization: Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27764724$$D View this record in MEDLINE/PubMed
BookMark eNqVksFu1DAQhi1URLeFV0C5IHHJ4vEmtnOgElqVUqkSB-BseZ3Z1kviBNtZtDwNz9Inq80WpK6E1F5sa-b3N-Pfc0KO3OCQkDdA50CBv9vMdbxBPwTT5dWGOUvhlJtTaJ6RGUjRlFDJ6ojMKGVQNlDTY3ISwoZSWgmQL8gxE4JXglUz8uvSOR2xsH0_OSwMdl2hTbRbHe3gCu3aAkd7jQ6jNYXHfmixs-66sK4Iu36MQ69zJgv1g8DDLrP-Zuq1y6fb31u7HV6S52vdBXx1v5-Sbx_Pvy4_lVefLy6XH65KU3OIZSMawbhBwY3RwDUTXGrZYM05q6SBpmJsJQVyU-GKtlRWBtpWL5CtDaxXdHFKzvbcyY1691N3nRq97bXfKaAqm6o26qBdlU3N6WRqArzdA0Y__JgwRNXbkJ3SDocpKJCLumYN8Fzr9b10WvXY_iv01_AkWO4FJtUJHtfK2PjH6-i17R7d0fsDylNfdLG_j8n3rUWvgrHoDLbWo4mqHeyjSWcHJJPGwxrdfccdhs0weZc-V4EKTFH1JY9knkjgC0gfJxPg_P-AJzRyB6EOAJw
CitedBy_id crossref_primary_10_1016_j_isci_2024_111103
crossref_primary_10_1093_cvr_cvz137
crossref_primary_10_3389_fcell_2020_581641
crossref_primary_10_1093_cvr_cvy043
crossref_primary_10_1007_s00395_022_00935_6
crossref_primary_10_1016_j_cmet_2017_06_001
crossref_primary_10_1093_cvr_cvac058
crossref_primary_10_1097_MOL_0000000000000628
crossref_primary_10_3389_fimmu_2022_827250
crossref_primary_10_3892_mmr_2024_13269
crossref_primary_10_1111_imr_12617
crossref_primary_10_1038_s41591_018_0064_0
crossref_primary_10_1161_JAHA_119_013764
crossref_primary_10_1146_annurev_immunol_102119_073855
crossref_primary_10_1016_j_jaci_2024_09_005
crossref_primary_10_1016_j_ijcard_2024_131780
crossref_primary_10_1161_ATVBAHA_120_314212
crossref_primary_10_1016_j_ejmech_2023_115986
crossref_primary_10_1089_ars_2017_7310
crossref_primary_10_1161_ATVBAHA_120_314216
crossref_primary_10_3389_fimmu_2020_00513
crossref_primary_10_3389_fgene_2019_00950
crossref_primary_10_7554_eLife_60939
crossref_primary_10_1002_bies_201800191
crossref_primary_10_1016_j_smim_2018_06_002
crossref_primary_10_1038_s41590_018_0113_3
crossref_primary_10_1155_2020_8748934
crossref_primary_10_3390_nu16091321
crossref_primary_10_1038_s41366_023_01444_9
crossref_primary_10_1161_STROKEAHA_118_023192
crossref_primary_10_12997_jla_2021_10_3_251
crossref_primary_10_1016_j_it_2024_10_003
crossref_primary_10_3389_fphar_2017_00335
crossref_primary_10_1161_ATVBAHA_119_312802
crossref_primary_10_1007_s12265_022_10311_3
crossref_primary_10_3389_fcvm_2022_870144
crossref_primary_10_1111_imr_13142
crossref_primary_10_1007_s13365_024_01239_2
crossref_primary_10_1007_s00395_023_01023_z
crossref_primary_10_1212_NXI_0000000000200312
crossref_primary_10_3390_ijms24119338
crossref_primary_10_1002_jcp_25998
crossref_primary_10_1161_CIRCRESAHA_117_312465
crossref_primary_10_1194_jlr_RA119000382
crossref_primary_10_3389_fcvm_2022_756734
crossref_primary_10_1016_j_immuni_2021_05_011
crossref_primary_10_1016_j_jaut_2022_102956
crossref_primary_10_1161_CIRCRESAHA_124_323778
crossref_primary_10_3389_fimmu_2019_02035
crossref_primary_10_3389_fimmu_2019_00013
crossref_primary_10_3389_fimmu_2023_1052925
crossref_primary_10_1016_j_atherosclerosis_2018_10_006
crossref_primary_10_1093_eurheartj_ehae024
crossref_primary_10_1016_j_mam_2020_100897
crossref_primary_10_1042_BST20210857
crossref_primary_10_1002_cpt_3394
crossref_primary_10_3390_cells11244072
crossref_primary_10_3389_fimmu_2024_1452410
crossref_primary_10_1161_ATVBAHA_120_314037
crossref_primary_10_1172_jci_insight_158183
crossref_primary_10_1007_s11154_020_09560_x
crossref_primary_10_1007_s40119_023_00342_5
crossref_primary_10_1016_j_molimm_2019_02_012
crossref_primary_10_1038_s41569_023_00894_y
crossref_primary_10_20900_immunometab20210023
crossref_primary_10_1161_ATVBAHA_120_315886
crossref_primary_10_1186_s13148_020_00943_0
crossref_primary_10_1097_MOL_0000000000000550
crossref_primary_10_1111_joim_12844
crossref_primary_10_1016_j_jvs_2019_04_488
crossref_primary_10_1136_bmjdrc_2022_003282
crossref_primary_10_3389_fimmu_2020_02114
crossref_primary_10_1093_eurheartj_ehaa171
crossref_primary_10_1038_s41578_021_00413_w
crossref_primary_10_1093_cvr_cvad030
crossref_primary_10_12997_jla_2019_8_1_15
crossref_primary_10_3389_fphys_2022_1056466
crossref_primary_10_3390_ijms22179119
crossref_primary_10_1172_JCI133935
crossref_primary_10_3389_fimmu_2021_745332
crossref_primary_10_1038_s41467_022_28531_1
crossref_primary_10_3390_cells12192359
crossref_primary_10_1007_s00109_020_01915_w
crossref_primary_10_1016_j_athplu_2021_10_001
crossref_primary_10_1158_0008_5472_CAN_21_3503
crossref_primary_10_1016_j_biocel_2020_105883
crossref_primary_10_3389_fphar_2022_973612
crossref_primary_10_3390_biomedicines11030766
crossref_primary_10_1093_eurheartj_ehx581
crossref_primary_10_1111_imm_13571
crossref_primary_10_1152_ajpcell_00218_2022
crossref_primary_10_1016_j_jtha_2023_02_021
crossref_primary_10_3389_fcvm_2022_853967
crossref_primary_10_1002_cph4_70008
crossref_primary_10_1111_raq_12863
crossref_primary_10_1165_rcmb_2020_0512OC
crossref_primary_10_3389_fcvm_2022_854421
crossref_primary_10_3389_fphar_2023_1109576
crossref_primary_10_1111_imm_13697
crossref_primary_10_3389_fcvm_2018_00097
crossref_primary_10_1016_j_isci_2024_109472
crossref_primary_10_1177_2396987318776088
crossref_primary_10_1186_s41824_022_00138_1
crossref_primary_10_1096_fj_202301078R
crossref_primary_10_1016_j_immuni_2017_09_008
crossref_primary_10_3390_ijms23116166
crossref_primary_10_1080_1744666X_2022_2120470
crossref_primary_10_3892_mmr_2018_9142
crossref_primary_10_1097_MOL_0000000000000539
crossref_primary_10_3390_ijms20102565
crossref_primary_10_1016_j_trecan_2023_08_007
crossref_primary_10_1007_s12026_021_09170_y
crossref_primary_10_1002_JLB_3AB1220_846R
crossref_primary_10_3389_fimmu_2020_00284
crossref_primary_10_3389_fcvm_2021_639361
crossref_primary_10_1016_j_jlr_2024_100699
crossref_primary_10_1016_j_isci_2023_107183
crossref_primary_10_1016_j_tice_2017_04_002
crossref_primary_10_1016_j_clicom_2022_08_004
crossref_primary_10_1111_acel_13127
crossref_primary_10_3390_antiox10111849
crossref_primary_10_1111_sji_12981
crossref_primary_10_3390_biom14121547
crossref_primary_10_3389_fcvm_2021_797046
crossref_primary_10_1038_d41586_021_01454_5
crossref_primary_10_1152_ajpregu_00201_2021
crossref_primary_10_1161_JAHA_123_031665
crossref_primary_10_3389_fphar_2019_00725
crossref_primary_10_1038_s41577_020_0285_6
crossref_primary_10_1161_ATVBAHA_120_314508
crossref_primary_10_1097_MOL_0000000000000405
crossref_primary_10_1210_clinem_dgz306
crossref_primary_10_1111_prd_12429
crossref_primary_10_3389_fcvm_2022_949778
crossref_primary_10_3390_biomedicines9111596
crossref_primary_10_1016_j_cmet_2019_05_014
crossref_primary_10_1016_j_jlr_2023_100380
crossref_primary_10_1007_s00281_017_0656_7
crossref_primary_10_1016_j_ijcha_2018_09_006
crossref_primary_10_1161_JAHA_117_008342
crossref_primary_10_3389_fimmu_2023_1165683
crossref_primary_10_1016_j_jaci_2020_08_013
crossref_primary_10_3389_fragi_2022_1069415
crossref_primary_10_1093_cvr_cvz107
crossref_primary_10_1016_j_jcyt_2024_10_011
crossref_primary_10_1002_mco2_121
crossref_primary_10_1097_MOL_0000000000000634
crossref_primary_10_1161_ATVBAHA_120_314513
crossref_primary_10_1007_s00281_022_00914_y
crossref_primary_10_1016_j_jaci_2023_06_014
crossref_primary_10_1161_ATVBAHA_120_315448
crossref_primary_10_1172_jci_insight_145928
crossref_primary_10_3389_fcvm_2021_664044
crossref_primary_10_1016_j_yjmcc_2019_05_024
crossref_primary_10_1159_000512280
crossref_primary_10_1042_CS20210496
crossref_primary_10_1093_cid_ciac182
crossref_primary_10_1096_fj_201902024
crossref_primary_10_1007_s11010_024_05099_6
crossref_primary_10_3390_life14121581
crossref_primary_10_1016_j_clim_2023_109776
crossref_primary_10_3389_fimmu_2024_1286382
crossref_primary_10_3390_cells11233935
crossref_primary_10_1016_j_ejim_2023_12_020
crossref_primary_10_1016_j_tem_2020_01_008
crossref_primary_10_3390_life13112128
crossref_primary_10_1161_ATVBAHA_120_315452
Cites_doi 10.1161/ATVBAHA.115.305551
10.1007/s10238-006-0092-9
10.1111/j.1365-2249.2004.02602.x
10.1016/j.cell.2011.04.005
10.4049/jimmunol.165.2.618
10.1126/science.1250684
10.1254/jphs.14077FP
10.1161/ATVBAHA.114.303887
10.1038/nature11262
10.1016/S0021-9150(98)00074-4
10.1038/nm.3258
10.1016/j.atherosclerosis.2015.07.024
10.1093/ije/dyq205
10.1097/MOL.0000000000000023
10.1016/S0021-9150(99)00061-1
10.1016/j.lfs.2014.10.010
10.1073/pnas.1202870109
10.1016/j.chom.2012.06.006
10.1161/CIRCULATIONAHA.116.020838
10.1126/science.1251086
10.1084/jem.20150900
10.1016/j.carpath.2015.11.001
10.1177/1741826711423216
10.1016/j.coph.2013.06.002
10.1038/nature11260
10.1038/cr.2016.1
ContentType Journal Article
Copyright 2016 The Authors
Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Copyright_xml – notice: 2016 The Authors
– notice: Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.atherosclerosis.2016.10.019
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-1484
EndPage 236
ExternalDocumentID 10.1016/j.atherosclerosis.2016.10.019
27764724
10_1016_j_atherosclerosis_2016_10_019
S0021915016314228
1_s2_0_S0021915016314228
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEXQZ
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEB
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M27
M41
MO0
N9A
O-L
O9-
OAUVE
OA~
OK1
OL0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
WUQ
X7M
Z5R
ZGI
ZXP
~G-
~KM
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
NCXOZ
RIG
0SF
6I.
AAFTH
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
ZA5
AAYXX
ACLOT
CITATION
~HD
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c561t-979726ce76cca16a2768a89e566248c19422b87e6c4eb0d084c1dda3e2fc1fb03
IEDL.DBID UNPAY
ISSN 0021-9150
1879-1484
IngestDate Wed Oct 01 16:40:06 EDT 2025
Sun Sep 28 07:08:54 EDT 2025
Mon Jul 21 06:04:51 EDT 2025
Thu Apr 24 23:04:17 EDT 2025
Wed Oct 01 04:46:45 EDT 2025
Fri Feb 23 02:24:02 EST 2024
Tue Feb 25 19:57:36 EST 2025
Tue Aug 26 16:36:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Epigenetics
Monocytes
Inflammation
Metabolism
Atherosclerosis
Language English
License This is an open access article under the CC BY license.
Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c561t-979726ce76cca16a2768a89e566248c19422b87e6c4eb0d084c1dda3e2fc1fb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8259-5578
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.atherosclerosis-journal.com/article/S0021915016314228/pdf
PMID 27764724
PQID 1835529160
PQPubID 23479
PageCount 9
ParticipantIDs unpaywall_primary_10_1016_j_atherosclerosis_2016_10_019
proquest_miscellaneous_1835529160
pubmed_primary_27764724
crossref_citationtrail_10_1016_j_atherosclerosis_2016_10_019
crossref_primary_10_1016_j_atherosclerosis_2016_10_019
elsevier_sciencedirect_doi_10_1016_j_atherosclerosis_2016_10_019
elsevier_clinicalkeyesjournals_1_s2_0_S0021915016314228
elsevier_clinicalkey_doi_10_1016_j_atherosclerosis_2016_10_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Atherosclerosis
PublicationTitleAlternate Atherosclerosis
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Saeed (bib6) 2014; 345
Calmarza, Trejo, Lapresta, Lopez (bib24) 2012; 19
Rothe (bib27) 1999; 144
Alwan, Armstrong, Bettcher (bib1) 2011
de Bont (bib15) 1998; 139
Robbins (bib3) 2013; 19
Wang (bib11) 2014; 126
Hirschfeld, Ma, Weis, Vogel, Weis (bib7) 2000; 165
van Haelst (bib14) 2004; 138
Shirai (bib21) 2016; 213
Stender, Glass (bib13) 2013; 13
Cheng (bib10) 2014; 345
Schmidt (bib19) 2016; 26
Greisel (bib18) 2016; 25
Bekkering, Joosten, van der Meer, Netea, Riksen (bib4) 2013; 24
Wierda (bib17) 2015; 129
van der Valk (bib23) 2016; 134
Kivimäki (bib25) 2011; 40
Bekkering (bib5) 2014; 34
Kleinnijenhuis (bib8) 2012; 109
Pasqui (bib16) 2006; 6
Bos (bib26) 2015; 242
Tawakol (bib20) 2015; 35
Quintin (bib9) 2012; 12
Dutta (bib22) 2012; 487
Kruidenier (bib12) 2012; 488
Moore, Tabas (bib2) 2011; 145
Quintin (10.1016/j.atherosclerosis.2016.10.019_bib9) 2012; 12
Bekkering (10.1016/j.atherosclerosis.2016.10.019_bib4) 2013; 24
Shirai (10.1016/j.atherosclerosis.2016.10.019_bib21) 2016; 213
Pasqui (10.1016/j.atherosclerosis.2016.10.019_bib16) 2006; 6
Kleinnijenhuis (10.1016/j.atherosclerosis.2016.10.019_bib8) 2012; 109
Schmidt (10.1016/j.atherosclerosis.2016.10.019_bib19) 2016; 26
van Haelst (10.1016/j.atherosclerosis.2016.10.019_bib14) 2004; 138
Cheng (10.1016/j.atherosclerosis.2016.10.019_bib10) 2014; 345
Bekkering (10.1016/j.atherosclerosis.2016.10.019_bib5) 2014; 34
Dutta (10.1016/j.atherosclerosis.2016.10.019_bib22) 2012; 487
Rothe (10.1016/j.atherosclerosis.2016.10.019_bib27) 1999; 144
Saeed (10.1016/j.atherosclerosis.2016.10.019_bib6) 2014; 345
Alwan (10.1016/j.atherosclerosis.2016.10.019_bib1) 2011
Hirschfeld (10.1016/j.atherosclerosis.2016.10.019_bib7) 2000; 165
Wierda (10.1016/j.atherosclerosis.2016.10.019_bib17) 2015; 129
Kivimäki (10.1016/j.atherosclerosis.2016.10.019_bib25) 2011; 40
Stender (10.1016/j.atherosclerosis.2016.10.019_bib13) 2013; 13
van der Valk (10.1016/j.atherosclerosis.2016.10.019_bib23) 2016; 134
Robbins (10.1016/j.atherosclerosis.2016.10.019_bib3) 2013; 19
Tawakol (10.1016/j.atherosclerosis.2016.10.019_bib20) 2015; 35
Greisel (10.1016/j.atherosclerosis.2016.10.019_bib18) 2016; 25
Moore (10.1016/j.atherosclerosis.2016.10.019_bib2) 2011; 145
Kruidenier (10.1016/j.atherosclerosis.2016.10.019_bib12) 2012; 488
de Bont (10.1016/j.atherosclerosis.2016.10.019_bib15) 1998; 139
Bos (10.1016/j.atherosclerosis.2016.10.019_bib26) 2015; 242
Calmarza (10.1016/j.atherosclerosis.2016.10.019_bib24) 2012; 19
Wang (10.1016/j.atherosclerosis.2016.10.019_bib11) 2014; 126
References_xml – volume: 213
  start-page: 337
  year: 2016
  end-page: 354
  ident: bib21
  article-title: The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease
  publication-title: J. Exp. Med.
– volume: 126
  start-page: 198
  year: 2014
  end-page: 207
  ident: bib11
  article-title: SKLB-M8 induces apoptosis through the AKT/mTOR signaling pathway in melanoma models and inhibits angiogenesis with decrease of ERK1/2 phosphorylation
  publication-title: J. Pharmacol. Sci.
– volume: 26
  start-page: 151
  year: 2016
  end-page: 170
  ident: bib19
  article-title: The transcriptional regulator network of human inflammatory macrophages is defined by open chromatin
  publication-title: Cell Res.
– volume: 13
  start-page: 582
  year: 2013
  end-page: 587
  ident: bib13
  article-title: Epigenomic control of the innate immune response
  publication-title: Curr. Opin. Pharmacol.
– year: 2011
  ident: bib1
  article-title: Global Status Report on Noncommunicable Diseases
– volume: 34
  start-page: 1731
  year: 2014
  end-page: 1738
  ident: bib5
  article-title: Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 19
  start-page: 1166
  year: 2013
  end-page: 1172
  ident: bib3
  article-title: Local proliferation dominates lesional macrophage accumulation in atherosclerosis
  publication-title: Nat. Med.
– volume: 6
  start-page: 38
  year: 2006
  end-page: 44
  ident: bib16
  article-title: Pro-inflammatory/anti-inflammatory cytokine imbalance in acute coronary syndromes
  publication-title: Clin. Exp. Med.
– volume: 109
  start-page: 17537
  year: 2012
  end-page: 17542
  ident: bib8
  article-title: Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 129
  start-page: 3
  year: 2015
  end-page: 9
  ident: bib17
  article-title: Global histone H3 lysine 27 triple methylation levels are reduced in vessels with advanced atherosclerotic plaques
  publication-title: Life Sci.
– volume: 25
  start-page: 79
  year: 2016
  end-page: 86
  ident: bib18
  article-title: Histone acetylation and methylation significantly change with severity of atherosclerosis in human carotid plaques
  publication-title: Cardiovasc Pathol.
– volume: 242
  start-page: 226
  year: 2015
  end-page: 229
  ident: bib26
  article-title: Lipoprotein (a) levels are not associated with carotid plaques and carotid intima media thickness in statin-treated patients with familial hypercholesterolemia
  publication-title: Atherosclerosis
– volume: 138
  start-page: 364
  year: 2004
  end-page: 368
  ident: bib14
  article-title: Circulating monocytes in patients with acute coronary syndromes lack sufficient interleukin-10 production after lipopolysaccharide stimulation
  publication-title: Clin. Exp. Immunol.
– volume: 165
  start-page: 618
  year: 2000
  end-page: 622
  ident: bib7
  article-title: Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2
  publication-title: J. Immunol.
– volume: 24
  start-page: 487
  year: 2013
  end-page: 492
  ident: bib4
  article-title: Trained innate immunity and atherosclerosis
  publication-title: Curr. Opin. Lipidol.
– volume: 139
  start-page: 147
  year: 1998
  end-page: 152
  ident: bib15
  article-title: LPS-induced cytokine production and expression of LPS-receptors by peripheral blood mononuclear cells of patients with familial hypercholesterolemia and the effect of HMG-CoA reductase inhibitors
  publication-title: Atherosclerosis
– volume: 134
  start-page: 611
  year: 2016
  end-page: 624
  ident: bib23
  article-title: Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans
  publication-title: Circulation
– volume: 345
  year: 2014
  ident: bib10
  article-title: mTOR- and HIF-1 -mediated aerobic glycolysis as metabolic basis for trained immunity
  publication-title: Science
– volume: 144
  start-page: 251
  year: 1999
  end-page: 261
  ident: bib27
  article-title: A more mature phenotype of blood mononuclear phagocytes is induced by fluvastatin treatment in hypercholesterolemic patients with coronary heart disease
  publication-title: Atherosclerosis
– volume: 12
  start-page: 223
  year: 2012
  end-page: 232
  ident: bib9
  article-title: Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes
  publication-title: Cell Host Microbe
– volume: 40
  start-page: 470
  year: 2011
  end-page: 478
  ident: bib25
  article-title: Conventional and Mendelian randomization analyses suggest no association between lipoprotein(a) and early atherosclerosis: the Young Finns Study
  publication-title: Int. J. Epidemiol.
– volume: 345
  year: 2014
  ident: bib6
  article-title: Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity
  publication-title: Science
– volume: 488
  start-page: 404
  year: 2012
  end-page: 408
  ident: bib12
  article-title: A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response
  publication-title: Nature
– volume: 35
  start-page: 1463
  year: 2015
  end-page: 1471
  ident: bib20
  article-title: HIF-1α and PFKFB3 mediate a tight relationship between proinflammatory activation and anerobic metabolism in atherosclerotic macrophages
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 487
  start-page: 325
  year: 2012
  end-page: 329
  ident: bib22
  article-title: Myocardial infarction accelerates atherosclerosis
  publication-title: Nature
– volume: 145
  start-page: 341
  year: 2011
  end-page: 355
  ident: bib2
  article-title: Macrophages in the pathogenesis of atherosclerosis
  publication-title: Cell
– volume: 19
  start-page: 1290
  year: 2012
  end-page: 1295
  ident: bib24
  article-title: Relationship between lipoprotein(a) concentrations and intima-media thickness: a healthy population study
  publication-title: Eur. J. Prev. Cardiol.
– volume: 35
  start-page: 1463
  year: 2015
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib20
  article-title: HIF-1α and PFKFB3 mediate a tight relationship between proinflammatory activation and anerobic metabolism in atherosclerotic macrophages
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.115.305551
– volume: 6
  start-page: 38
  year: 2006
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib16
  article-title: Pro-inflammatory/anti-inflammatory cytokine imbalance in acute coronary syndromes
  publication-title: Clin. Exp. Med.
  doi: 10.1007/s10238-006-0092-9
– volume: 138
  start-page: 364
  year: 2004
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib14
  article-title: Circulating monocytes in patients with acute coronary syndromes lack sufficient interleukin-10 production after lipopolysaccharide stimulation
  publication-title: Clin. Exp. Immunol.
  doi: 10.1111/j.1365-2249.2004.02602.x
– year: 2011
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib1
– volume: 145
  start-page: 341
  year: 2011
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib2
  article-title: Macrophages in the pathogenesis of atherosclerosis
  publication-title: Cell
  doi: 10.1016/j.cell.2011.04.005
– volume: 165
  start-page: 618
  year: 2000
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib7
  article-title: Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.165.2.618
– volume: 345
  year: 2014
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib10
  article-title: mTOR- and HIF-1 -mediated aerobic glycolysis as metabolic basis for trained immunity
  publication-title: Science
  doi: 10.1126/science.1250684
– volume: 126
  start-page: 198
  year: 2014
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib11
  article-title: SKLB-M8 induces apoptosis through the AKT/mTOR signaling pathway in melanoma models and inhibits angiogenesis with decrease of ERK1/2 phosphorylation
  publication-title: J. Pharmacol. Sci.
  doi: 10.1254/jphs.14077FP
– volume: 34
  start-page: 1731
  year: 2014
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib5
  article-title: Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.114.303887
– volume: 488
  start-page: 404
  year: 2012
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib12
  article-title: A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response
  publication-title: Nature
  doi: 10.1038/nature11262
– volume: 139
  start-page: 147
  year: 1998
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib15
  article-title: LPS-induced cytokine production and expression of LPS-receptors by peripheral blood mononuclear cells of patients with familial hypercholesterolemia and the effect of HMG-CoA reductase inhibitors
  publication-title: Atherosclerosis
  doi: 10.1016/S0021-9150(98)00074-4
– volume: 19
  start-page: 1166
  year: 2013
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib3
  article-title: Local proliferation dominates lesional macrophage accumulation in atherosclerosis
  publication-title: Nat. Med.
  doi: 10.1038/nm.3258
– volume: 242
  start-page: 226
  year: 2015
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib26
  article-title: Lipoprotein (a) levels are not associated with carotid plaques and carotid intima media thickness in statin-treated patients with familial hypercholesterolemia
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2015.07.024
– volume: 40
  start-page: 470
  year: 2011
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib25
  article-title: Conventional and Mendelian randomization analyses suggest no association between lipoprotein(a) and early atherosclerosis: the Young Finns Study
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyq205
– volume: 24
  start-page: 487
  year: 2013
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib4
  article-title: Trained innate immunity and atherosclerosis
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/MOL.0000000000000023
– volume: 144
  start-page: 251
  year: 1999
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib27
  article-title: A more mature phenotype of blood mononuclear phagocytes is induced by fluvastatin treatment in hypercholesterolemic patients with coronary heart disease
  publication-title: Atherosclerosis
  doi: 10.1016/S0021-9150(99)00061-1
– volume: 129
  start-page: 3
  year: 2015
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib17
  article-title: Global histone H3 lysine 27 triple methylation levels are reduced in vessels with advanced atherosclerotic plaques
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2014.10.010
– volume: 109
  start-page: 17537
  year: 2012
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib8
  article-title: Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1202870109
– volume: 12
  start-page: 223
  year: 2012
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib9
  article-title: Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.06.006
– volume: 134
  start-page: 611
  year: 2016
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib23
  article-title: Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.116.020838
– volume: 345
  year: 2014
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib6
  article-title: Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity
  publication-title: Science
  doi: 10.1126/science.1251086
– volume: 213
  start-page: 337
  year: 2016
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib21
  article-title: The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20150900
– volume: 25
  start-page: 79
  year: 2016
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib18
  article-title: Histone acetylation and methylation significantly change with severity of atherosclerosis in human carotid plaques
  publication-title: Cardiovasc Pathol.
  doi: 10.1016/j.carpath.2015.11.001
– volume: 19
  start-page: 1290
  year: 2012
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib24
  article-title: Relationship between lipoprotein(a) concentrations and intima-media thickness: a healthy population study
  publication-title: Eur. J. Prev. Cardiol.
  doi: 10.1177/1741826711423216
– volume: 13
  start-page: 582
  year: 2013
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib13
  article-title: Epigenomic control of the innate immune response
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2013.06.002
– volume: 487
  start-page: 325
  year: 2012
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib22
  article-title: Myocardial infarction accelerates atherosclerosis
  publication-title: Nature
  doi: 10.1038/nature11260
– volume: 26
  start-page: 151
  year: 2016
  ident: 10.1016/j.atherosclerosis.2016.10.019_bib19
  article-title: The transcriptional regulator network of human inflammatory macrophages is defined by open chromatin
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.1
SSID ssj0004718
Score 2.5827413
Snippet We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief...
Abstract Background and aims We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term...
We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief in...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 228
SubjectTerms Aged
Atherosclerosis
Atherosclerosis - pathology
Cardiovascular
Carotid Arteries - pathology
Coronary Artery Disease - immunology
Cytokines - metabolism
Epigenesis, Genetic
Epigenetics
Female
Glycolysis
Histones - metabolism
Humans
Immunity, Innate
Inflammation
Lipoproteins, LDL - chemistry
Macrophages - metabolism
Male
Metabolism
Methylation
Middle Aged
Monocytes
Monocytes - cytology
Phenotype
Plaque, Atherosclerotic - metabolism
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VPRQ4VPyzLSAjwTFt7HidREIIVFEVpHKiUm-W7ThS0OJEzW6r9sCz8Cx9Mmbys2VpD624RJus7Tjj8fiLM98MwFuhytI6JxG52TiSpfVRbrmLXGKsMVI627HeD7-pgyP59Xh6vAZ7IxeG3CoH29_b9M5aD1d2B2nuNlVFHF-cbYhnEFHQRgYRfin6F-r0zq8rNw8yvr2bB4-o9Aa8u_Lx6kBW3WKTeKwoejdXO-TsRYF3bl6nruPQB3BvERpzfmZms7_Wpv2HsDmASvap7_cjWPPhMWwcDp_Nn8DFlxAQU7KKyCCe0WY9I0JDvx3LTCiYbygsJzEa2Ynv0uPgmsaqwNrzn8287gK7dgXNyoXVJ6PyXdI_-nX5-7Q6rZ_C0f7n73sH0ZB0IXIIpeZRnuapUM6nCseWKyPwfcRkuUfYJ2TmeI6itlnqlZPexkWcSceLwiRelI6XNk6ewXqog38BzCWJUbzgJY8TmarScJ_hC1k-dYKCI9sJvB9FrN0QkZwSY8z06Hr2Q__zHJpGiP7GEZqAWlZv-tAct634YRxPPfJP0WJqXERu20B6UwO-HeZ_q7luhY71NR2dwMdlzRU1v8vN34wqqNEUkMqY4OsF3hTR9FQg3o8n8LzXzaVgRJpSogCJXV8q692ktvX_Xd-G-3TWUzlfwvr8ZOFfIaab29fdpP0DxRFSmw
  priority: 102
  providerName: Elsevier
Title Innate immune cell activation and epigenetic remodeling in symptomatic and asymptomatic atherosclerosis in humans in vivo
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021915016314228
https://www.clinicalkey.es/playcontent/1-s2.0-S0021915016314228
https://dx.doi.org/10.1016/j.atherosclerosis.2016.10.019
https://www.ncbi.nlm.nih.gov/pubmed/27764724
https://www.proquest.com/docview/1835529160
http://www.atherosclerosis-journal.com/article/S0021915016314228/pdf
UnpaywallVersion publishedVersion
Volume 254
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1484
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004718
  issn: 1879-1484
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-1484
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004718
  issn: 1879-1484
  databaseCode: AIKHN
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-1484
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004718
  issn: 1879-1484
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-1484
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004718
  issn: 1879-1484
  databaseCode: ACRLP
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1484
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004718
  issn: 1879-1484
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9NAFH5qE6nAgX0JS2QkODr12JOxLSFEhKhSUCMORCqn0cx4LAWCbdVOUXvgt_Bb-GW85yXQpocWLpaXWZ_fvPlm5i0AL3yRptoYjshNey5PtXVjzYxrAqWV4tzo2ur9YCamc_7-cHy4BV20TdKqrJFPXiLV8Loo3ZaotdhuyUkGvjjUEMwgnKBdjGi3SNJt6As6ZupBfz77OPncaHcwl9LRuisKYxfRP9-Bl3_UvM7VRspeYkT6XuR75-KpahOK3oBrq6xQJ9_VcvnX9LR3C2xn5NNopXwdrSo9MqebPh__q-e34WaLX51Jk-4ObNnsLuwctCf09-B0P8sQvjoLsjuxDp0LOGQ70ez8OipLHFuQB1AynnSObB2JB6dPZ5E55cm3osprH7J1QnXmxdlWU_o6viDd_fp5vDjO78N8792nt1O3je_gGkRtlRuHcegLY0OBbMSE8nHpo6LYIsL0eWRYjN3TUWiF4VZ7iRdxw5JEBdZPDUu1FzyAXpZn9hE4JgiUYAlLmRfwUKSK2QjXfvHY-OSHWQ_gVfcrpWmdn1MMjqXstNy-yHP9kMQJ9Bk5YQBinb1ovIBcNuPrjm9kZ-qKwlnifHXZAsKLCrBlyxulZLL0pSc3-GIAb9Y5WzTVoKSrVP68Y3WJUodYRmU2X2GlCNzHPi4tvAE8bMbAmjB-GFJMAo5NXw-Kq1Ht8T_nfALX6akxFn0KvepoZZ8haqz0ELZHP9gQ-pP9D9PZsBURvwG2n3bI
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrdTCAfEqLE8jwTE0TrxOIiFEVVHt0u6eWqk3y3YcKWhJoma3qPwafgu_jJk8tiztoRWXKEriR8aT8WdnvhmAd4HMMmOtQORmfE9kxnmJ4dazoTZaC2FNw3qfzuT4RHw9HZ1uwH7PhSG3ys72tza9sdbdld1OmrtVnhPHF782xDOIKGgjI74Dm2KENnkAm3uTw_Hskh4Z8dYgkzcCFtiC95duXg3OKmusFY85BfDm8gP5e1HsneunqqtQ9B5sL4tKX_zQ8_lf09PBA7jf4Uq213b9IWy44hFsTbs_54_h56QoEFaynPggjtF-PSNOQ7sjy3SRMldRZE4iNbIz12TIwWmN5QWrL75Xi7KJ7do8qNcurL8ZPd_k_aOz37_O8_PyCZwcfDneH3td3gXPIppaeEmURIG0LpI4vFzqAJckOk4cIr9AxJYnKG0TR05a4Yyf-rGwPE116ILM8sz44Q4MirJwz4DZMNSSpzzjfigimWnuYlyTJSMbUHxkM4SPvYiV7YKSU26Mueq9z76pf95D0QjRbRyhIchV8aqNznHTgp_68VQ9BRWNpsJ55KYVRNdV4OrOBNSKqzpQvrqipkP4vCq5pum3afxtr4IKrQGpjC5cucRGEVCPAoT8_hCetrq5EkwQRZQrQGDXV8p6O6k9__-uv4Ht8fH0SB1NZocv4C7daZmdL2GwOFu6VwjxFuZ19wn_AbNLVtQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB6VrVTggftYLhkJHrPEjtdJJISoEFVBasUDK5Uny3YcaWFJoiZb1P4afgu_jJkcC-32oYWXKIfPyXj82Z4D4IVQeW6dk4jcbBjI3PogtdwFLjLWGCmdba3e9_bV7kx-PJgebMAQbZO0KlvkU9ZINbzO66Anaiu2e3KSgS8ONQQzCCdoFyN5VWX5FdhUdMw0gs3Z_qftL512Bw8oHa27kjgNEP3LLXj5R83rTG2k7KUmpO9FvnfOn6rWoeh1uLosKnP8wywWf01POzfBD0Y-nVbKt8mysRN3su7z8b96fgtu9PiVbXfpbsOGL-7A1l5_Qn8XTj4UBcJXNie7E8_oXICR7US388tMkTFfkQdQMp5kh76NxIPTJ5sXrD7-XjVl60O2TWhOvTjdakrfxheku18_j-ZH5T2Y7bz__G436OM7BA5RWxOkcRoL5XyskI24MgKXPiZJPSJMIRPHU-yeTWKvnPQ2zMJEOp5lJvIidzy3YXQfRkVZ-IfAXBQZxTOe8zCSscoN9wmu_dKpE-SH2Y7h9fArteudn1MMjoUetNy-6jP90MQJ9Bk5YQxqlb3qvIBcNOObgW_0YOqKwlnjfHXRAuLzCvB1zxu15roWOtRrfDGGt6ucPZrqUNJlKn8-sLpGqUMsYwpfLrFSBO5TgUuLcAwPujGwIoyIY4pJILHpq0FxOao9-uecj-EaPXXGok9g1Bwu_VNEjY191guF306gdDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innate+immune+cell+activation+and+epigenetic+remodeling+in+symptomatic+and+asymptomatic+atherosclerosis+in+humans+in+vivo&rft.jtitle=Atherosclerosis&rft.au=Bekkering%2C+Siroon&rft.au=van+den+Munckhof%2C+Inge&rft.au=Nielen%2C+Tim&rft.au=Lamfers%2C+Evert&rft.date=2016-11-01&rft.issn=0021-9150&rft_id=info:doi/10.1016%2Fj.atherosclerosis.2016.10.019&rft.externalDBID=ECK1-s2.0-S0021915016314228&rft.externalDocID=1_s2_0_S0021915016314228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9150&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9150&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9150&client=summon