Bipartite Promoter Element Required for Auxin Response

Multiple mechanisms have been described for coordination of responses to the plant hormones auxin and brassinosteroids (Zhang et al., 2009). One unexplained phenomenon is the reliance of the auxin transcriptional response on a functional brassinosteroid pathway. In this study, we used luciferase rep...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 158; no. 1; pp. 273 - 282
Main Authors Walcher, Cristina L, Nemhauser, Jennifer L
Format Journal Article
LanguageEnglish
Published Rockville, MD American Society of Plant Biologists 01.01.2012
Subjects
Online AccessGet full text
ISSN0032-0889
1532-2548
1532-2548
DOI10.1104/pp.111.187559

Cover

Abstract Multiple mechanisms have been described for coordination of responses to the plant hormones auxin and brassinosteroids (Zhang et al., 2009). One unexplained phenomenon is the reliance of the auxin transcriptional response on a functional brassinosteroid pathway. In this study, we used luciferase reporters to interrogate the promoter of SMALL AUXIN-UP RNA15 (SAUR15), a well-characterized auxin and brassinosteroid early response gene in Arabidopsis (Arabidopsis thaliana). After identifying a minimal region sufficient for auxin response, we targeted predicted cis-regulatory elements contained within this sequence and found a critical subset required for hormone response. Specifically, reporter sensitivity to auxin treatment required two elements: a Hormone Up at Dawn (HUD)-type E-box and an AuxRE-related TGTCT element. Reporter response to brassinosteroid treatment relied on the same two elements. Consistent with these findings, the transcription factors BRASSINOSTEROID INSENSITIVE1-EMS SUPPESSOR1 and MONOPTEROS (MP)/ AUXIN RESPONSE FACTOR5 (ARF5) showed enhanced binding to the critical promoter region containing these elements. Treatment with auxin or brassinosteroids could enhance binding of either transcription factor, and brassinosteroid enhancement of MP/ARF5 binding required an intact HUD element. Conservation of clustered HUD elements and AuxRE-related sequences in promoters of putative SAUR15 orthologs in a number of flowering plant species, in combination with evidence for statistically significant clustering of these elements across all Arabidopsis promoters, provided further evidence of the functional importance of coordinated transcription factor binding.
AbstractList Multiple mechanisms have been described for coordination of responses to the plant hormones auxin and brassinosteroids (Zhang et al., 2009). One unexplained phenomenon is the reliance of the auxin transcriptional response on a functional brassinosteroid pathway. In this study, we used luciferase reporters to interrogate the promoter of SMALL AUXIN-UP RNA15 (SAUR15), a well-characterized auxin and brassinosteroid early response gene in Arabidopsis (Arabidopsis thaliana). After identifying a minimal region sufficient for auxin response, we targeted predicted cis-regulatory elements contained within this sequence and found a critical subset required for hormone response. Specifically, reporter sensitivity to auxin treatment required two elements: a Hormone Up at Dawn (HUD)-type E-box and an AuxRE-related TGTCT element. Reporter response to brassinosteroid treatment relied on the same two elements. Consistent with these findings, the transcription factors BRASSINOSTEROID INSENSITIVE1-EMS SUPPESSOR1 and MONOPTEROS (MP)/ AUXIN RESPONSE FACTOR5 (ARF5) showed enhanced binding to the critical promoter region containing these elements. Treatment with auxin or brassinosteroids could enhance binding of either transcription factor, and brassinosteroid enhancement of MP/ARF5 binding required an intact HUD element. Conservation of clustered HUD elements and AuxRE-related sequences in promoters of putative SAUR15 orthologs in a number of flowering plant species, in combination with evidence for statistically significant clustering of these elements across all Arabidopsis promoters, provided further evidence of the functional importance of coordinated transcription factor binding.
Multiple mechanisms have been described for coordination of responses to the plant hormones auxin and brassinosteroids (Zhang et al., 2009). One unexplained phenomenon is the reliance of the auxin transcriptional response on a functional brassinosteroid pathway. In this study, we used luciferase reporters to interrogate the promoter of SMALL AUXIN-UP RNA15 (SAUR15), a well-characterized auxin and brassinosteroid early response gene in Arabidopsis (Arabidopsis thaliana). After identifying a minimal region sufficient for auxin response, we targeted predicted cis-regulatory elements contained within this sequence and found a critical subset required for hormone response. Specifically, reporter sensitivity to auxin treatment required two elements: a Hormone Up at Dawn (HUD)-type E-box and an AuxRE-related TGTCT element. Reporter response to brassinosteroid treatment relied on the same two elements. Consistent with these findings, the transcription factors BRASSINOSTEROID INSENSITIVE 1-EMS SUPPESSOR1 and MONOPTEROS (MP)/AUXIN RESPONSE FACTOR5 (ARF5) showed enhanced binding to the critical promoter region containing these elements. Treatment with auxin or brassinosteroids could enhance binding of either transcription factor, and brassinosteroid enhancement of MP/ARF5 binding required an intact HUD element. Conservation of clustered HUD elements and AuxRE-related sequences in promoters of putative SAUR15 orthologs in a number of flowering plant species, in combination with evidence for statistically significant clustering of these elements across all Arabidopsis promoters, provided further evidence of the functional importance of coordinated transcription factor binding.
Multiple mechanisms have been described for coordination of responses to the plant hormones auxin and brassinosteroids (Zhang et al., 2009). One unexplained phenomenon is the reliance of the auxin transcriptional response on a functional brassinosteroid pathway. In this study, we used luciferase reporters to interrogate the promoter of SMALL AUXIN-UP RNA15 (SAUR15), a well-characterized auxin and brassinosteroid early response gene in Arabidopsis (Arabidopsis thaliana). After identifying a minimal region sufficient for auxin response, we targeted predicted cis-regulatory elements contained within this sequence and found a critical subset required for hormone response. Specifically, reporter sensitivity to auxin treatment required two elements: a Hormone Up at Dawn (HUD)-type E-box and an AuxRE-related TGTCT element. Reporter response to brassinosteroid treatment relied on the same two elements. Consistent with these findings, the transcription factors BRASSINOSTEROID INSENSITIVE1-EMS SUPPESSOR1 and MONOPTEROS (MP)/ AUXIN RESPONSE FACTOR5 (ARF5) showed enhanced binding to the critical promoter region containing these elements. Treatment with auxin or brassinosteroids could enhance binding of either transcription factor, and brassinosteroid enhancement of MP/ARF5 binding required an intact HUD element. Conservation of clustered HUD elements and AuxRE-related sequences in promoters of putative SAUR15 orthologs in a number of flowering plant species, in combination with evidence for statistically significant clustering of these elements across all Arabidopsis promoters, provided further evidence of the functional importance of coordinated transcription factor binding.Multiple mechanisms have been described for coordination of responses to the plant hormones auxin and brassinosteroids (Zhang et al., 2009). One unexplained phenomenon is the reliance of the auxin transcriptional response on a functional brassinosteroid pathway. In this study, we used luciferase reporters to interrogate the promoter of SMALL AUXIN-UP RNA15 (SAUR15), a well-characterized auxin and brassinosteroid early response gene in Arabidopsis (Arabidopsis thaliana). After identifying a minimal region sufficient for auxin response, we targeted predicted cis-regulatory elements contained within this sequence and found a critical subset required for hormone response. Specifically, reporter sensitivity to auxin treatment required two elements: a Hormone Up at Dawn (HUD)-type E-box and an AuxRE-related TGTCT element. Reporter response to brassinosteroid treatment relied on the same two elements. Consistent with these findings, the transcription factors BRASSINOSTEROID INSENSITIVE1-EMS SUPPESSOR1 and MONOPTEROS (MP)/ AUXIN RESPONSE FACTOR5 (ARF5) showed enhanced binding to the critical promoter region containing these elements. Treatment with auxin or brassinosteroids could enhance binding of either transcription factor, and brassinosteroid enhancement of MP/ARF5 binding required an intact HUD element. Conservation of clustered HUD elements and AuxRE-related sequences in promoters of putative SAUR15 orthologs in a number of flowering plant species, in combination with evidence for statistically significant clustering of these elements across all Arabidopsis promoters, provided further evidence of the functional importance of coordinated transcription factor binding.
Author Nemhauser, Jennifer L
Walcher, Cristina L
AuthorAffiliation Department of Biology, University of Washington, Seattle, Washington 98195–1800
AuthorAffiliation_xml – name: Department of Biology, University of Washington, Seattle, Washington 98195–1800
Author_xml – sequence: 1
  fullname: Walcher, Cristina L
– sequence: 2
  fullname: Nemhauser, Jennifer L
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25493845$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22100645$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1TAQhS1URG8LS5ZANgg2KTN-JdkgtVWhSJVAQNfWJHGKqyRO7QSVf49LbgtFgtVYnm-Ozvh4j-2MfrSMPUU4QAT5ZppSxQMsC6WqB2yDSvCcK1nusA1AOkNZVrtsL8ZLAECB8hHb5RwBtFQbpo_cRGF2s80-BT_42YbspLeDHefss71aXLBt1vmQHS7XbkxXcfJjtI_Zw476aJ9s6z47f3fy9fg0P_v4_sPx4VneKI1zXkmrkLQuuk4UWBXUtESWmgKF0pXqgGpqK1G2IhkSYEsLpeDU1VjUAG0t9tnbVXda6sG2TbIVqDdTcAOFH8aTM_c7o_tmLvx3I7jiUGISeLUVCP5qsXE2g4uN7XsarV-iqTAZK5RWiXz9XxJ5wblGjSKhz_90dWfn9lkT8HILUGyo7wKNjYu_OSXT0r84sXJN8DEG25nGzTQ7f7OM6w2CuQnZTFOqaNaQ01T-19St8L_4Zyt_GWcf7mCJUiipIfVfrP2OvKGLkJyef-HprwBWGmRK5if63roe
CODEN PPHYA5
CitedBy_id crossref_primary_10_1016_j_tplants_2015_10_019
crossref_primary_10_7554_eLife_03031
crossref_primary_10_1093_plphys_kiae487
crossref_primary_10_1186_s12870_017_1210_4
crossref_primary_10_1007_s00299_019_02410_4
crossref_primary_10_3389_fpls_2018_01215
crossref_primary_10_3390_ijms24065940
crossref_primary_10_1111_pbi_13231
crossref_primary_10_1186_1471_2164_14_806
crossref_primary_10_1104_pp_112_205575
crossref_primary_10_1016_j_plantsci_2016_06_007
crossref_primary_10_1007_s00425_020_03432_z
crossref_primary_10_1016_j_tplants_2021_12_011
crossref_primary_10_1371_journal_pone_0219413
crossref_primary_10_7554_eLife_02252
crossref_primary_10_1093_jxb_ery332
crossref_primary_10_5010_JPB_2018_45_3_183
crossref_primary_10_1093_jxb_erv026
crossref_primary_10_1093_jxb_erad259
crossref_primary_10_4161_psb_24526
crossref_primary_10_1146_annurev_cellbio_101011_155741
crossref_primary_10_1093_plcell_koae088
crossref_primary_10_1111_pce_12662
crossref_primary_10_1038_ncomms4617
crossref_primary_10_1016_j_plgene_2021_100300
crossref_primary_10_1002_pld3_166
crossref_primary_10_1155_2018_3837060
crossref_primary_10_1186_s12870_016_0815_3
crossref_primary_10_1038_ncb2898
crossref_primary_10_1093_jxb_erv273
crossref_primary_10_1016_j_plantsci_2013_04_002
crossref_primary_10_1016_j_gene_2017_12_053
crossref_primary_10_1111_tpj_12096
crossref_primary_10_1016_j_plantsci_2016_12_008
crossref_primary_10_1007_s00709_015_0787_4
crossref_primary_10_1093_jxb_erx254
crossref_primary_10_1186_s12284_018_0239_9
crossref_primary_10_3389_fpls_2016_00766
crossref_primary_10_3390_ijms232415718
crossref_primary_10_1146_annurev_genet_102209_163450
crossref_primary_10_1016_j_cj_2024_06_003
crossref_primary_10_1142_S0219720016410092
crossref_primary_10_3390_genes10020164
crossref_primary_10_3390_plants13202928
crossref_primary_10_1016_j_molp_2015_05_003
crossref_primary_10_1016_j_pbi_2020_04_008
crossref_primary_10_1038_srep18256
crossref_primary_10_1071_FP19291
crossref_primary_10_1016_j_pbi_2013_08_002
crossref_primary_10_1111_pce_12397
crossref_primary_10_1186_1471_2164_15_S12_S4
crossref_primary_10_1093_jxb_erx184
crossref_primary_10_1016_j_scienta_2022_111408
crossref_primary_10_1186_s12864_018_4744_4
crossref_primary_10_1093_jxb_erw457
crossref_primary_10_1093_plphys_kiac194
crossref_primary_10_1073_pnas_1604379113
crossref_primary_10_1016_j_algal_2018_12_002
crossref_primary_10_3390_ijms21051561
crossref_primary_10_1016_j_pbi_2014_06_006
crossref_primary_10_1042_bse0580001
crossref_primary_10_3389_fpls_2017_02256
crossref_primary_10_3390_ijms23147574
crossref_primary_10_1111_tpj_13764
crossref_primary_10_1186_s12870_023_04216_9
crossref_primary_10_1016_j_molp_2016_12_013
crossref_primary_10_3390_ijms20020331
crossref_primary_10_1038_s41467_022_33318_5
crossref_primary_10_1111_ppl_12130
crossref_primary_10_1111_tpj_17083
crossref_primary_10_1242_dev_060590
Cites_doi 10.1016/j.pbi.2007.08.014
10.1104/pp.106.079145
10.1105/tpc.010289
10.1016/j.pbi.2009.07.016
10.1016/S0168-9452(97)00110-6
10.1073/pnas.0900349106
10.1371/journal.pbio.0020258
10.1104/pp.103.036897
10.1093/nar/29.9.e45
10.1111/j.1365-313X.2011.04513.x
10.1016/j.cell.2010.03.030
10.1093/nar/27.1.297
10.1146/annurev.arplant.043008.092057
10.1111/j.1469-8137.2010.03387.x
10.1038/ncb1970
10.1104/pp.011003
10.1016/S0092-8674(02)00721-3
10.1023/A:1006496308160
10.1093/nar/gkr179
10.1105/tpc.105.034397
10.1023/A:1005875300606
10.1111/j.1365-313X.2008.03778.x
10.1126/science.1107580
10.1038/nature04681
10.1038/nature05130
10.1038/nature08836
10.1146/annurev-genet-102108-134148
10.1371/journal.pbio.0050222
10.1104/pp.103.034736
10.1271/bbb.70.768
10.1046/j.1365-313X.2003.01801.x
10.1101/gad.13.13.1678
10.1038/35104500
10.1101/cshperspect.a001420
10.1002/bies.20653
10.1046/j.1365-313x.1998.00343.x
10.1242/dev.037028
10.1073/pnas.0811633106
10.1073/pnas.0803996105
10.1111/j.1365-313X.2010.04449.x
10.1016/j.cell.2004.11.044
10.1016/j.tcb.2007.08.003
10.1242/dev.032177
10.1105/tpc.107.050963
10.1371/journal.pgen.0040014
10.1111/j.1365-313X.2005.02582.x
10.1073/pnas.0909198107
10.1105/tpc.105.031096
10.1371/journal.pcbi.1001070
10.1016/j.cell.2006.05.050
10.1046/j.1365-313x.1999.00594.x
10.1016/S1534-5807(02)00153-3
10.1016/j.devcel.2010.10.010
10.1104/pp.104.2.777
10.1002/j.1460-2075.1996.tb00513.x
10.1104/pp.011254
10.1126/science.1151461
10.1105/tpc.109.071506
10.1186/1471-2229-11-39
10.1016/S0014-5793(03)00945-1
10.1104/pp.103.030031
10.1007/s11103-008-9405-6
ContentType Journal Article
Copyright 2012 American Society of Plant Biologists
2015 INIST-CNRS
2012 American Society of Plant Biologists. All rights reserved. 2012
Copyright_xml – notice: 2012 American Society of Plant Biologists
– notice: 2015 INIST-CNRS
– notice: 2012 American Society of Plant Biologists. All rights reserved. 2012
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
5PM
DOI 10.1104/pp.111.187559
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList CrossRef
AGRICOLA

MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1532-2548
EndPage 282
ExternalDocumentID PMC3252081
22100645
25493845
10_1104_pp_111_187559
41435460
US201301960410
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: T32 HD007183
GroupedDBID ---
-DZ
-~X
123
29O
2AX
2WC
2~F
3V.
4.4
53G
5VS
5WD
7X2
7X7
85S
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
AAHKG
AAPXW
AAVAP
AAWDT
AAXTN
AAYJJ
ABBHK
ABJNI
ABPLY
ABPPZ
ABPTD
ABPTK
ABTLG
ABUWG
ABXZS
ACBTR
ACFRR
ACGOD
ACIPB
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADIPN
ADIYS
ADULT
ADVEK
ADYHW
ADZLD
AEEJZ
AENEX
AESBF
AEUPB
AFAZZ
AFDAS
AFFDN
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGUYK
AHMBA
AICQM
AIDAL
AIDBO
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
AQDSO
AS~
ATCPS
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
BYORX
C1A
CBGCD
CCPQU
CS3
CWIXF
D1J
DATOO
DFEDG
DIK
DOOOF
DU5
DWIUU
DWQXO
E3Z
EBS
ECGQY
EJD
F20
F5P
FBQ
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GUQSH
HCIFZ
HMCUK
HTVGU
ISR
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KOP
KQ8
KSI
KSN
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M7P
MV1
MVM
NOMLY
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PQQKQ
PROAC
PSQYO
Q2X
QZG
RHF
RHI
ROX
RPB
RPM
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
UBC
UKHRP
UKR
VQA
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCG
ZCN
~02
~KM
0R~
AAHBH
AARHZ
AAUAY
ABDFA
ABEJV
ABGNP
ABMNT
ABVGC
ABXSQ
ABXVV
ACHIC
ADGKP
ADQBN
ADXHL
AEUYN
AGORE
AHXOZ
AJBYB
AJNCP
ALIPV
AQVQM
ATGXG
BEYMZ
H13
IPSME
JXSIZ
NU-
PHGZM
PHGZT
AAYXX
CITATION
PJZUB
PPXIY
PQGLB
PUEGO
ABIME
ABPIB
ABZEO
ACVCV
ACZBC
AGMDO
AHGBF
AJDVS
APJGH
IQODW
LU7
ADYWZ
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c561t-94e51a667ff37197acdaaeac7135695f0abad938d321030e8e0832afb17b00db3
ISSN 0032-0889
1532-2548
IngestDate Tue Sep 30 16:41:58 EDT 2025
Sun Sep 28 00:16:11 EDT 2025
Sat Sep 27 16:50:23 EDT 2025
Thu Apr 03 07:14:01 EDT 2025
Mon Jul 21 09:12:53 EDT 2025
Thu Apr 24 22:58:31 EDT 2025
Wed Oct 01 03:45:27 EDT 2025
Fri Jun 20 02:19:34 EDT 2025
Wed Dec 27 18:49:23 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Promoter
Plant physiology
Auxin
Language English
License https://creativecommons.org/licenses/by/4.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c561t-94e51a667ff37197acdaaeac7135695f0abad938d321030e8e0832afb17b00db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Some figures in this article are displayed in color online but in black and white in the print edition.
This work was supported by the National Science Foundation (grant no. IOS–0919021) and the University of Washington. C.L.W. was supported by the Developmental Biology Predoctoral Training Grant (T32HD007183) from the National Institute of Child Health and Human Development.
The online version of this article contains Web-only data.
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiology.org) is: Jennifer L. Nemhauser (jn7@uw.edu).
www.plantphysiol.org/cgi/doi/10.1104/pp.111.187559
Open Access articles can be viewed online without a subscription.
OpenAccessLink http://www.plantphysiol.org/content/plantphysiol/158/1/273.full.pdf
PMID 22100645
PQID 1272261613
PQPubID 24069
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3252081
proquest_miscellaneous_913717565
proquest_miscellaneous_1272261613
pubmed_primary_22100645
pascalfrancis_primary_25493845
crossref_citationtrail_10_1104_pp_111_187559
crossref_primary_10_1104_pp_111_187559
jstor_primary_41435460
fao_agris_US201301960410
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Rockville, MD
PublicationPlace_xml – name: Rockville, MD
– name: United States
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2012
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References Li (2021041909235532300_b31) 2009; 58
Pfaffl (2021041909235532300_b41) 2001; 29
Li (2021041909235532300_b30) 2010; 107
Goda (2021041909235532300_b14) 2004; 134
Nemhauser (2021041909235532300_b39) 2006; 126
Proost (2021041909235532300_b43) 2009; 21
Gray (2021041909235532300_b17) 2001; 414
Gray (2021041909235532300_b16) 1999; 13
Yin (2021041909235532300_b60) 2005; 120
Higo (2021041909235532300_b23) 1999; 27
Clough (2021041909235532300_b7) 1998; 16
Cole (2021041909235532300_b8) 2009; 136
Chapman (2021041909235532300_b5) 2009; 43
Priest (2021041909235532300_b42) 2009; 12
Kim (2021041909235532300_b27) 2010; 61
Reineke (2021041909235532300_b45) 2011; 39
Hellens (2021041909235532300_b22) 2000; 42
Gil (2021041909235532300_b11) 1996; 15
Hardtke (2021041909235532300_b19) 2007; 29
Kuppusamy (2021041909235532300_b28) 2009; 106
Chandler (2021041909235532300_b4) 2009; 69
Wang (2021041909235532300_b56) 2005; 17
Yu (2021041909235532300_b62) 2011; 65
Zenser (2021041909235532300_b63) 2003; 35
Keilwagen (2021041909235532300_b24) 2011; 7
Hardtke (2021041909235532300_b20) 2007; 17
Szemenyei (2021041909235532300_b51) 2008; 319
Gil (2021041909235532300_b12) 1997; 34
Vert (2021041909235532300_b54) 2006; 441
Sun (2021041909235532300_b50) 2010; 19
Michael (2021041909235532300_b33) 2008; 4
Shin (2021041909235532300_b48) 2007; 19
Vert (2021041909235532300_b55) 2008; 105
Bao (2021041909235532300_b2) 2004; 134
Tiwari (2021041909235532300_b52) 2001; 13
Guilfoyle (2021041909235532300_b18) 2007; 10
Wang (2021041909235532300_b57) 2002; 2
Schlereth (2021041909235532300_b46) 2010; 464
Covington (2021041909235532300_b9) 2007; 5
Müssig (2021041909235532300_b35) 2002; 129
Yin (2021041909235532300_b61) 2002; 109
Yamamoto (2021041909235532300_b59) 2011; 11
Zhang (2021041909235532300_b64) 2009; 106
Bancos (2021041909235532300_b1) 2006; 141
Ulmasov (2021041909235532300_b53) 1995; 7
He (2021041909235532300_b21) 2005; 307
Sessions (2021041909235532300_b47) 1999; 20
Nakamura (2021041909235532300_b37) 2003; 553
Xu (2021041909235532300_b58) 1997; 126
Stewart (2021041909235532300_b49) 2010; 2
Gil (2021041909235532300_b13) 1994; 104
McClure (2021041909235532300_b32) 1989; 1
Donner (2021041909235532300_b10) 2009; 136
Rahl (2021041909235532300_b44) 2010; 141
Kim (2021041909235532300_b25) 2006; 70
Beuchat (2021041909235532300_b3) 2010; 188
Nakamura (2021041909235532300_b36) 2003; 133
Kim (2021041909235532300_b26) 2009; 11
Nakamura (2021041909235532300_b38) 2006; 45
Li (2021041909235532300_b29) 2005; 17
Goda (2021041909235532300_b15) 2002; 130
Mouchel (2021041909235532300_b34) 2006; 443
Chung (2021041909235532300_b6) 2011; 66
Nemhauser (2021041909235532300_b40) 2004; 2
8159792 - Plant Physiol. 1994 Feb;104(2):777-84
21284753 - Plant J. 2011 May;66(4):564-78
21074725 - Dev Cell. 2010 Nov 16;19(5):765-77
16672972 - Nature. 2006 May 4;441(7089):96-100
20040540 - Plant Cell. 2009 Dec;21(12):3718-31
11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45
17006513 - Nature. 2006 Sep 28;443(7110):458-61
18258861 - Science. 2008 Mar 7;319(5868):1384-6
19717332 - Curr Opin Plant Biol. 2009 Oct;12(5):643-9
18248097 - PLoS Genet. 2008 Feb;4(2):e14
20182619 - Cold Spring Harb Perspect Biol. 2010 Feb;2(2):a001420
10069079 - Plant J. 1998 Dec;16(6):735-43
10398681 - Genes Dev. 1999 Jul 1;13(13):1678-91
16141452 - Plant Cell. 2005 Oct;17(10):2738-53
20434984 - Cell. 2010 Apr 30;141(3):432-45
9847208 - Nucleic Acids Res. 1999 Jan 1;27(1):297-300
18599455 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9829-34
15328536 - PLoS Biol. 2004 Sep;2(9):E258
16636440 - Biosci Biotechnol Biochem. 2006 Apr;70(4):768-73
17900969 - Curr Opin Plant Biol. 2007 Oct;10(5):453-60
21349196 - BMC Plant Biol. 2011;11:39
19416891 - Proc Natl Acad Sci U S A. 2009 May 12;106(19):8073-6
19369397 - Development. 2009 May;136(10):1643-51
12007405 - Cell. 2002 Apr 19;109(2):181-91
11752389 - Plant Cell. 2001 Dec;13(12):2809-22
21214652 - Plant J. 2011 Feb;65(4):634-46
21347314 - PLoS Comput Biol. 2011;7(2):e1001070
10571886 - Plant J. 1999 Oct;20(2):259-63
20649916 - New Phytol. 2010 Oct;188(1):23-9
10890530 - Plant Mol Biol. 2000 Apr;42(6):819-32
11713520 - Nature. 2001 Nov 15;414(6861):271-6
19170933 - Plant J. 2009 Apr;58(2):275-86
11970900 - Dev Cell. 2002 Apr;2(4):505-13
15047895 - Plant Physiol. 2004 Apr;134(4):1624-31
14605219 - Plant Physiol. 2003 Dec;133(4):1843-53
17904848 - Trends Cell Biol. 2007 Oct;17(10):485-92
19710171 - Development. 2009 Oct;136(19):3235-46
15047898 - Plant Physiol. 2004 Apr;134(4):1555-73
19240210 - Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4543-8
20220754 - Nature. 2010 Apr 8;464(7290):913-6
15680330 - Cell. 2005 Jan 28;120(2):249-59
14550541 - FEBS Lett. 2003 Oct 9;553(1-2):28-32
2485235 - Plant Cell. 1989 Feb;1(2):229-39
15681342 - Science. 2005 Mar 11;307(5715):1634-8
17675404 - Plant Cell. 2007 Aug;19(8):2440-53
12887580 - Plant J. 2003 Aug;35(3):285-94
21470961 - Nucleic Acids Res. 2011 Aug;39(14):6029-43
12114578 - Plant Physiol. 2002 Jul;129(3):1241-51
12427998 - Plant Physiol. 2002 Nov;130(3):1319-34
15923351 - Plant Cell. 2005 Jul;17(7):1979-93
9278170 - Plant Mol Biol. 1997 Jul;34(5):803-8
18830673 - Plant Mol Biol. 2009 Jan;69(1-2):57-68
7580254 - Plant Cell. 1995 Oct;7(10):1611-23
16531479 - Plant Physiol. 2006 May;141(1):299-309
19734888 - Nat Cell Biol. 2009 Oct;11(10):1254-60
8612592 - EMBO J. 1996 Apr 1;15(7):1678-86
20192752 - Annu Rev Plant Biol. 2010;61:681-704
16367964 - Plant J. 2006 Jan;45(2):193-205
20139304 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3918-23
17935219 - Bioessays. 2007 Nov;29(11):1115-23
19686081 - Annu Rev Genet. 2009;43:265-85
17683202 - PLoS Biol. 2007 Aug;5(8):e222
16901781 - Cell. 2006 Aug 11;126(3):467-75
References_xml – volume: 10
  start-page: 453
  year: 2007
  ident: 2021041909235532300_b18
  article-title: Auxin response factors
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2007.08.014
– volume: 141
  start-page: 299
  year: 2006
  ident: 2021041909235532300_b1
  article-title: Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.079145
– volume: 13
  start-page: 2809
  year: 2001
  ident: 2021041909235532300_b52
  article-title: AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin
  publication-title: Plant Cell
  doi: 10.1105/tpc.010289
– volume: 12
  start-page: 643
  year: 2009
  ident: 2021041909235532300_b42
  article-title: Cis-regulatory elements in plant cell signaling
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2009.07.016
– volume: 126
  start-page: 193
  year: 1997
  ident: 2021041909235532300_b58
  article-title: Multiple auxin response modules in the soybean SAUR 15A promoter
  publication-title: Plant Sci
  doi: 10.1016/S0168-9452(97)00110-6
– volume: 106
  start-page: 4543
  year: 2009
  ident: 2021041909235532300_b64
  article-title: The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0900349106
– volume: 2
  start-page: E258
  year: 2004
  ident: 2021041909235532300_b40
  article-title: Interdependency of brassinosteroid and auxin signaling in Arabidopsis
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0020258
– volume: 134
  start-page: 1624
  year: 2004
  ident: 2021041909235532300_b2
  article-title: Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.036897
– volume: 29
  start-page: e45
  year: 2001
  ident: 2021041909235532300_b41
  article-title: A new mathematical model for relative quantification in real-time RT-PCR
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.9.e45
– volume: 66
  start-page: 564
  year: 2011
  ident: 2021041909235532300_b6
  article-title: Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2011.04513.x
– volume: 141
  start-page: 432
  year: 2010
  ident: 2021041909235532300_b44
  article-title: c-Myc regulates transcriptional pause release
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.030
– volume: 27
  start-page: 297
  year: 1999
  ident: 2021041909235532300_b23
  article-title: Plant cis-acting regulatory DNA elements (PLACE) database: 1999
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/27.1.297
– volume: 61
  start-page: 681
  year: 2010
  ident: 2021041909235532300_b27
  article-title: Brassinosteroid signal transduction from receptor kinases to transcription factors
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.043008.092057
– volume: 188
  start-page: 23
  year: 2010
  ident: 2021041909235532300_b3
  article-title: BRX promotes Arabidopsis shoot growth
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2010.03387.x
– volume: 11
  start-page: 1254
  year: 2009
  ident: 2021041909235532300_b26
  article-title: Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1970
– volume: 129
  start-page: 1241
  year: 2002
  ident: 2021041909235532300_b35
  article-title: Brassinosteroid-regulated gene expression
  publication-title: Plant Physiol
  doi: 10.1104/pp.011003
– volume: 109
  start-page: 181
  year: 2002
  ident: 2021041909235532300_b61
  article-title: BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00721-3
– volume: 42
  start-page: 819
  year: 2000
  ident: 2021041909235532300_b22
  article-title: pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1006496308160
– volume: 39
  start-page: 6029
  year: 2011
  ident: 2021041909235532300_b45
  article-title: Evolutionary divergence and limits of conserved non-coding sequence detection in plant genomes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr179
– volume: 17
  start-page: 2738
  year: 2005
  ident: 2021041909235532300_b29
  article-title: Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.034397
– volume: 34
  start-page: 803
  year: 1997
  ident: 2021041909235532300_b12
  article-title: Regulatory activity exerted by the SAUR-AC1 promoter region in transgenic plants
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1005875300606
– volume: 58
  start-page: 275
  year: 2009
  ident: 2021041909235532300_b31
  article-title: Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03778.x
– volume: 307
  start-page: 1634
  year: 2005
  ident: 2021041909235532300_b21
  article-title: BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses
  publication-title: Science
  doi: 10.1126/science.1107580
– volume: 441
  start-page: 96
  year: 2006
  ident: 2021041909235532300_b54
  article-title: Downstream nuclear events in brassinosteroid signalling
  publication-title: Nature
  doi: 10.1038/nature04681
– volume: 443
  start-page: 458
  year: 2006
  ident: 2021041909235532300_b34
  article-title: BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth
  publication-title: Nature
  doi: 10.1038/nature05130
– volume: 7
  start-page: 1611
  year: 1995
  ident: 2021041909235532300_b53
  article-title: Composite structure of auxin response elements
  publication-title: Plant Cell
– volume: 464
  start-page: 913
  year: 2010
  ident: 2021041909235532300_b46
  article-title: MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor
  publication-title: Nature
  doi: 10.1038/nature08836
– volume: 43
  start-page: 265
  year: 2009
  ident: 2021041909235532300_b5
  article-title: Mechanism of auxin-regulated gene expression in plants
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev-genet-102108-134148
– volume: 5
  start-page: e222
  year: 2007
  ident: 2021041909235532300_b9
  article-title: The circadian clock regulates auxin signaling and responses in Arabidopsis
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050222
– volume: 134
  start-page: 1555
  year: 2004
  ident: 2021041909235532300_b14
  article-title: Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.034736
– volume: 1
  start-page: 229
  year: 1989
  ident: 2021041909235532300_b32
  article-title: Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean
  publication-title: Plant Cell
– volume: 70
  start-page: 768
  year: 2006
  ident: 2021041909235532300_b25
  article-title: Brassinosteroid signals control expression of the AXR3/IAA17 gene in the cross-talk point with auxin in root development
  publication-title: Biosci Biotechnol Biochem
  doi: 10.1271/bbb.70.768
– volume: 35
  start-page: 285
  year: 2003
  ident: 2021041909235532300_b63
  article-title: Acceleration of Aux/IAA proteolysis is specific for auxin and independent of AXR1
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.2003.01801.x
– volume: 13
  start-page: 1678
  year: 1999
  ident: 2021041909235532300_b16
  article-title: Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana
  publication-title: Genes Dev
  doi: 10.1101/gad.13.13.1678
– volume: 414
  start-page: 271
  year: 2001
  ident: 2021041909235532300_b17
  article-title: Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins
  publication-title: Nature
  doi: 10.1038/35104500
– volume: 2
  start-page: a001420
  year: 2010
  ident: 2021041909235532300_b49
  article-title: Do trees grow on money? Auxin as the currency of the cellular economy
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a001420
– volume: 29
  start-page: 1115
  year: 2007
  ident: 2021041909235532300_b19
  article-title: Transcriptional auxin-brassinosteroid crosstalk: who’s talking?
  publication-title: Bioessays
  doi: 10.1002/bies.20653
– volume: 16
  start-page: 735
  year: 1998
  ident: 2021041909235532300_b7
  article-title: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.1998.00343.x
– volume: 136
  start-page: 3235
  year: 2009
  ident: 2021041909235532300_b10
  article-title: Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves
  publication-title: Development
  doi: 10.1242/dev.037028
– volume: 106
  start-page: 8073
  year: 2009
  ident: 2021041909235532300_b28
  article-title: Steroids are required for epidermal cell fate establishment in Arabidopsis roots
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0811633106
– volume: 105
  start-page: 9829
  year: 2008
  ident: 2021041909235532300_b55
  article-title: Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0803996105
– volume: 65
  start-page: 634
  year: 2011
  ident: 2021041909235532300_b62
  article-title: A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04449.x
– volume: 120
  start-page: 249
  year: 2005
  ident: 2021041909235532300_b60
  article-title: A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis
  publication-title: Cell
  doi: 10.1016/j.cell.2004.11.044
– volume: 17
  start-page: 485
  year: 2007
  ident: 2021041909235532300_b20
  article-title: Phytohormone collaboration: zooming in on auxin-brassinosteroid interactions
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2007.08.003
– volume: 136
  start-page: 1643
  year: 2009
  ident: 2021041909235532300_b8
  article-title: DORNROSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo
  publication-title: Development
  doi: 10.1242/dev.032177
– volume: 19
  start-page: 2440
  year: 2007
  ident: 2021041909235532300_b48
  article-title: The Arabidopsis transcription factor MYB77 modulates auxin signal transduction
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.050963
– volume: 4
  start-page: e14
  year: 2008
  ident: 2021041909235532300_b33
  article-title: Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0040014
– volume: 45
  start-page: 193
  year: 2006
  ident: 2021041909235532300_b38
  article-title: Arabidopsis Aux/IAA genes are involved in brassinosteroid-mediated growth responses in a manner dependent on organ type
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2005.02582.x
– volume: 107
  start-page: 3918
  year: 2010
  ident: 2021041909235532300_b30
  article-title: Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0909198107
– volume: 17
  start-page: 1979
  year: 2005
  ident: 2021041909235532300_b56
  article-title: AUXIN RESPONSE FACTOR7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.031096
– volume: 7
  start-page: e1001070
  year: 2011
  ident: 2021041909235532300_b24
  article-title: De-novo discovery of differentially abundant transcription factor binding sites including their positional preference
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1001070
– volume: 126
  start-page: 467
  year: 2006
  ident: 2021041909235532300_b39
  article-title: Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses
  publication-title: Cell
  doi: 10.1016/j.cell.2006.05.050
– volume: 20
  start-page: 259
  year: 1999
  ident: 2021041909235532300_b47
  article-title: The Arabidopsis thaliana MERISTEM LAYER 1 promoter specifies epidermal expression in meristems and young primordia
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.1999.00594.x
– volume: 2
  start-page: 505
  year: 2002
  ident: 2021041909235532300_b57
  article-title: Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis
  publication-title: Dev Cell
  doi: 10.1016/S1534-5807(02)00153-3
– volume: 19
  start-page: 765
  year: 2010
  ident: 2021041909235532300_b50
  article-title: Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2010.10.010
– volume: 104
  start-page: 777
  year: 1994
  ident: 2021041909235532300_b13
  article-title: Characterization of the auxin-inducible SAUR-AC1 gene for use as a molecular genetic tool in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.104.2.777
– volume: 15
  start-page: 1678
  year: 1996
  ident: 2021041909235532300_b11
  article-title: Multiple regions of the Arabidopsis SAUR-AC1 gene control transcript abundance: the 3′ untranslated region functions as an mRNA instability determinant
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1996.tb00513.x
– volume: 130
  start-page: 1319
  year: 2002
  ident: 2021041909235532300_b15
  article-title: Microarray analysis of brassinosteroid-regulated genes in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.011254
– volume: 319
  start-page: 1384
  year: 2008
  ident: 2021041909235532300_b51
  article-title: TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis
  publication-title: Science
  doi: 10.1126/science.1151461
– volume: 21
  start-page: 3718
  year: 2009
  ident: 2021041909235532300_b43
  article-title: PLAZA: a comparative genomics resource to study gene and genome evolution in plants
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.071506
– volume: 11
  start-page: 39
  year: 2011
  ident: 2021041909235532300_b59
  article-title: Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-11-39
– volume: 553
  start-page: 28
  year: 2003
  ident: 2021041909235532300_b37
  article-title: AXR1 is involved in BR-mediated elongation and SAUR-AC1 gene expression in Arabidopsis
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(03)00945-1
– volume: 133
  start-page: 1843
  year: 2003
  ident: 2021041909235532300_b36
  article-title: Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.030031
– volume: 69
  start-page: 57
  year: 2009
  ident: 2021041909235532300_b4
  article-title: BIM1, a bHLH protein involved in brassinosteroid signalling, controls Arabidopsis embryonic patterning via interaction with DORNROSCHEN and DORNROSCHEN-LIKE
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-008-9405-6
– reference: 16531479 - Plant Physiol. 2006 May;141(1):299-309
– reference: 15923351 - Plant Cell. 2005 Jul;17(7):1979-93
– reference: 20139304 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3918-23
– reference: 16901781 - Cell. 2006 Aug 11;126(3):467-75
– reference: 11970900 - Dev Cell. 2002 Apr;2(4):505-13
– reference: 11752389 - Plant Cell. 2001 Dec;13(12):2809-22
– reference: 17006513 - Nature. 2006 Sep 28;443(7110):458-61
– reference: 17935219 - Bioessays. 2007 Nov;29(11):1115-23
– reference: 19369397 - Development. 2009 May;136(10):1643-51
– reference: 15047895 - Plant Physiol. 2004 Apr;134(4):1624-31
– reference: 21074725 - Dev Cell. 2010 Nov 16;19(5):765-77
– reference: 10398681 - Genes Dev. 1999 Jul 1;13(13):1678-91
– reference: 18258861 - Science. 2008 Mar 7;319(5868):1384-6
– reference: 14605219 - Plant Physiol. 2003 Dec;133(4):1843-53
– reference: 19717332 - Curr Opin Plant Biol. 2009 Oct;12(5):643-9
– reference: 19240210 - Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4543-8
– reference: 15328536 - PLoS Biol. 2004 Sep;2(9):E258
– reference: 9847208 - Nucleic Acids Res. 1999 Jan 1;27(1):297-300
– reference: 19710171 - Development. 2009 Oct;136(19):3235-46
– reference: 19686081 - Annu Rev Genet. 2009;43:265-85
– reference: 10571886 - Plant J. 1999 Oct;20(2):259-63
– reference: 15681342 - Science. 2005 Mar 11;307(5715):1634-8
– reference: 16367964 - Plant J. 2006 Jan;45(2):193-205
– reference: 21347314 - PLoS Comput Biol. 2011;7(2):e1001070
– reference: 16636440 - Biosci Biotechnol Biochem. 2006 Apr;70(4):768-73
– reference: 19170933 - Plant J. 2009 Apr;58(2):275-86
– reference: 14550541 - FEBS Lett. 2003 Oct 9;553(1-2):28-32
– reference: 17900969 - Curr Opin Plant Biol. 2007 Oct;10(5):453-60
– reference: 12427998 - Plant Physiol. 2002 Nov;130(3):1319-34
– reference: 20182619 - Cold Spring Harb Perspect Biol. 2010 Feb;2(2):a001420
– reference: 10890530 - Plant Mol Biol. 2000 Apr;42(6):819-32
– reference: 18830673 - Plant Mol Biol. 2009 Jan;69(1-2):57-68
– reference: 17904848 - Trends Cell Biol. 2007 Oct;17(10):485-92
– reference: 20220754 - Nature. 2010 Apr 8;464(7290):913-6
– reference: 12007405 - Cell. 2002 Apr 19;109(2):181-91
– reference: 19416891 - Proc Natl Acad Sci U S A. 2009 May 12;106(19):8073-6
– reference: 8159792 - Plant Physiol. 1994 Feb;104(2):777-84
– reference: 9278170 - Plant Mol Biol. 1997 Jul;34(5):803-8
– reference: 18599455 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9829-34
– reference: 21284753 - Plant J. 2011 May;66(4):564-78
– reference: 12887580 - Plant J. 2003 Aug;35(3):285-94
– reference: 20434984 - Cell. 2010 Apr 30;141(3):432-45
– reference: 20192752 - Annu Rev Plant Biol. 2010;61:681-704
– reference: 16141452 - Plant Cell. 2005 Oct;17(10):2738-53
– reference: 17683202 - PLoS Biol. 2007 Aug;5(8):e222
– reference: 16672972 - Nature. 2006 May 4;441(7089):96-100
– reference: 12114578 - Plant Physiol. 2002 Jul;129(3):1241-51
– reference: 15047898 - Plant Physiol. 2004 Apr;134(4):1555-73
– reference: 15680330 - Cell. 2005 Jan 28;120(2):249-59
– reference: 21214652 - Plant J. 2011 Feb;65(4):634-46
– reference: 18248097 - PLoS Genet. 2008 Feb;4(2):e14
– reference: 11713520 - Nature. 2001 Nov 15;414(6861):271-6
– reference: 2485235 - Plant Cell. 1989 Feb;1(2):229-39
– reference: 20649916 - New Phytol. 2010 Oct;188(1):23-9
– reference: 17675404 - Plant Cell. 2007 Aug;19(8):2440-53
– reference: 20040540 - Plant Cell. 2009 Dec;21(12):3718-31
– reference: 7580254 - Plant Cell. 1995 Oct;7(10):1611-23
– reference: 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45
– reference: 19734888 - Nat Cell Biol. 2009 Oct;11(10):1254-60
– reference: 21470961 - Nucleic Acids Res. 2011 Aug;39(14):6029-43
– reference: 10069079 - Plant J. 1998 Dec;16(6):735-43
– reference: 8612592 - EMBO J. 1996 Apr 1;15(7):1678-86
– reference: 21349196 - BMC Plant Biol. 2011;11:39
SSID ssj0001314
Score 2.3459978
Snippet Multiple mechanisms have been described for coordination of responses to the plant hormones auxin and brassinosteroids (Zhang et al., 2009). One unexplained...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 273
SubjectTerms Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Auxins
Base Sequence
Biological and medical sciences
Brassinosteroids
Brassinosteroids - metabolism
Conserved Sequence
DEVELOPMENT AND HORMONE ACTION
DNA-Binding Proteins
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
functional response
Fundamental and applied biological sciences. Psychology
Gene expression regulation
Gene Expression Regulation, Plant
Genes
genetics
Hormones
Indoleacetic Acids
Indoleacetic Acids - metabolism
luciferase
metabolism
Nuclear Proteins
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Plant cells
plant hormones
Plant physiology and development
plant response
Plants
Promoter regions
Promoter Regions, Genetic
Regulatory Sequences, Nucleic Acid
reporter genes
Response Elements
Response Elements - genetics
Seedlings
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
Title Bipartite Promoter Element Required for Auxin Response
URI https://www.jstor.org/stable/41435460
https://www.ncbi.nlm.nih.gov/pubmed/22100645
https://www.proquest.com/docview/1272261613
https://www.proquest.com/docview/913717565
https://pubmed.ncbi.nlm.nih.gov/PMC3252081
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1532-2548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001314
  issn: 0032-0889
  databaseCode: KQ8
  dateStart: 19260101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1532-2548
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0001314
  issn: 0032-0889
  databaseCode: DIK
  dateStart: 19260101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1532-2548
  dateEnd: 20120831
  omitProxy: true
  ssIdentifier: ssj0001314
  issn: 0032-0889
  databaseCode: 7X7
  dateStart: 19981001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1532-2548
  dateEnd: 20120831
  omitProxy: true
  ssIdentifier: ssj0001314
  issn: 0032-0889
  databaseCode: BENPR
  dateStart: 19981001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_RjgdeEF9j4aMKEuIFUhLbiZPHdRqaEEwIVtG3yGmcrdJII5pKwF_PXRynzdZJg5cost1EvTuf7y6_uwN4XaBRkCjc31ksmSfoToki8pj2tZJBrnRCCc6fT6OTqfg4C2ebZpxNdkmdjed_duaV_A9XcQz5Slmy_8DZ7qE4gPfIX7wih_F6Kx5PFhWN1prw_khzAmwYODiSjSC-aE0SjPBw_WvRROoJDtvD_lDPotqEN0wxJjQ4J5QDvMrVVpDgu7q0zD1qtEKp3n4abwLJPy4URTu24TJ2vo0oNNAMG1GwSpB56Dgavah3jFnNGcbXRKTVg6Y_SXukMtNf6Lq29gW1GK5Ib48D9Jza4uC9qthXTqsOQ9h4L75Iq4q8mNT8fAB7TEYRG8Le5Pj0y9fuUA54U-a9-xtduVXxvvf-nnkyKNTS4lQJNKtWuG8K0_Bkl0dyFVi7ZamcPYD7rYvhHhp5eQh3dPkI7k6W6Ab8fgxRJzSuFRq3FRrXCo2LQuM2QuNaoXkC0w_HZ0cnXts8w5ujSVx7idBhoKJIFgWXQSLVPFcKT1lqyRglYeGrTOUJj3NK4uK-jjUa40wVWSBRE-cZ34dhuSz1AbgsygQXieR6XoiEFwkuRmrhHs9wo2vmwDtLs3TeVpanBieX6U4eOfCmW16Zkio3LTxABqTqHAU7nX5j9JE9oGJCge_AfsOV7gGC7H4R4cSox6ZuAQVCeCxCB15ZvqWoSenzmCr1cr1KAybRF0EPiDvg3rAmCZCYEp0gB54aVm9egHSk4o8OyJ4QdAuokHt_plxcNAXdOQsZmubPbkuY53Bvs29fwLD-udYv0TausxEM5EyOWun_C817tV0
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bipartite+Promoter+Element+Required+for+Auxin+Response&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Walcher%2C+Cristina+L.&rft.au=Nemhauser%2C+Jennifer+L.&rft.date=2012-01-01&rft.issn=1532-2548&rft.eissn=1532-2548&rft.volume=158&rft.issue=1&rft.spage=273&rft.epage=282&rft_id=info:doi/10.1104%2Fpp.111.187559&rft.externalDBID=n%2Fa&rft.externalDocID=10_1104_pp_111_187559
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon