Bipartite Promoter Element Required for Auxin Response
Multiple mechanisms have been described for coordination of responses to the plant hormones auxin and brassinosteroids (Zhang et al., 2009). One unexplained phenomenon is the reliance of the auxin transcriptional response on a functional brassinosteroid pathway. In this study, we used luciferase rep...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 158; no. 1; pp. 273 - 282 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Rockville, MD
American Society of Plant Biologists
01.01.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0032-0889 1532-2548 1532-2548 |
DOI | 10.1104/pp.111.187559 |
Cover
Abstract | Multiple mechanisms have been described for coordination of responses to the plant hormones auxin and brassinosteroids (Zhang et al., 2009). One unexplained phenomenon is the reliance of the auxin transcriptional response on a functional brassinosteroid pathway. In this study, we used luciferase reporters to interrogate the promoter of SMALL AUXIN-UP RNA15 (SAUR15), a well-characterized auxin and brassinosteroid early response gene in Arabidopsis (Arabidopsis thaliana). After identifying a minimal region sufficient for auxin response, we targeted predicted cis-regulatory elements contained within this sequence and found a critical subset required for hormone response. Specifically, reporter sensitivity to auxin treatment required two elements: a Hormone Up at Dawn (HUD)-type E-box and an AuxRE-related TGTCT element. Reporter response to brassinosteroid treatment relied on the same two elements. Consistent with these findings, the transcription factors BRASSINOSTEROID INSENSITIVE1-EMS SUPPESSOR1 and MONOPTEROS (MP)/ AUXIN RESPONSE FACTOR5 (ARF5) showed enhanced binding to the critical promoter region containing these elements. Treatment with auxin or brassinosteroids could enhance binding of either transcription factor, and brassinosteroid enhancement of MP/ARF5 binding required an intact HUD element. Conservation of clustered HUD elements and AuxRE-related sequences in promoters of putative SAUR15 orthologs in a number of flowering plant species, in combination with evidence for statistically significant clustering of these elements across all Arabidopsis promoters, provided further evidence of the functional importance of coordinated transcription factor binding. |
---|---|
AbstractList | Multiple mechanisms have been described for coordination of responses to the plant hormones auxin and brassinosteroids (Zhang et al., 2009). One unexplained phenomenon is the reliance of the auxin transcriptional response on a functional brassinosteroid pathway. In this study, we used luciferase reporters to interrogate the promoter of SMALL AUXIN-UP RNA15 (SAUR15), a well-characterized auxin and brassinosteroid early response gene in Arabidopsis (Arabidopsis thaliana). After identifying a minimal region sufficient for auxin response, we targeted predicted cis-regulatory elements contained within this sequence and found a critical subset required for hormone response. Specifically, reporter sensitivity to auxin treatment required two elements: a Hormone Up at Dawn (HUD)-type E-box and an AuxRE-related TGTCT element. Reporter response to brassinosteroid treatment relied on the same two elements. Consistent with these findings, the transcription factors BRASSINOSTEROID INSENSITIVE1-EMS SUPPESSOR1 and MONOPTEROS (MP)/ AUXIN RESPONSE FACTOR5 (ARF5) showed enhanced binding to the critical promoter region containing these elements. Treatment with auxin or brassinosteroids could enhance binding of either transcription factor, and brassinosteroid enhancement of MP/ARF5 binding required an intact HUD element. Conservation of clustered HUD elements and AuxRE-related sequences in promoters of putative SAUR15 orthologs in a number of flowering plant species, in combination with evidence for statistically significant clustering of these elements across all Arabidopsis promoters, provided further evidence of the functional importance of coordinated transcription factor binding. Multiple mechanisms have been described for coordination of responses to the plant hormones auxin and brassinosteroids (Zhang et al., 2009). One unexplained phenomenon is the reliance of the auxin transcriptional response on a functional brassinosteroid pathway. In this study, we used luciferase reporters to interrogate the promoter of SMALL AUXIN-UP RNA15 (SAUR15), a well-characterized auxin and brassinosteroid early response gene in Arabidopsis (Arabidopsis thaliana). After identifying a minimal region sufficient for auxin response, we targeted predicted cis-regulatory elements contained within this sequence and found a critical subset required for hormone response. Specifically, reporter sensitivity to auxin treatment required two elements: a Hormone Up at Dawn (HUD)-type E-box and an AuxRE-related TGTCT element. Reporter response to brassinosteroid treatment relied on the same two elements. Consistent with these findings, the transcription factors BRASSINOSTEROID INSENSITIVE 1-EMS SUPPESSOR1 and MONOPTEROS (MP)/AUXIN RESPONSE FACTOR5 (ARF5) showed enhanced binding to the critical promoter region containing these elements. Treatment with auxin or brassinosteroids could enhance binding of either transcription factor, and brassinosteroid enhancement of MP/ARF5 binding required an intact HUD element. Conservation of clustered HUD elements and AuxRE-related sequences in promoters of putative SAUR15 orthologs in a number of flowering plant species, in combination with evidence for statistically significant clustering of these elements across all Arabidopsis promoters, provided further evidence of the functional importance of coordinated transcription factor binding. Multiple mechanisms have been described for coordination of responses to the plant hormones auxin and brassinosteroids (Zhang et al., 2009). One unexplained phenomenon is the reliance of the auxin transcriptional response on a functional brassinosteroid pathway. In this study, we used luciferase reporters to interrogate the promoter of SMALL AUXIN-UP RNA15 (SAUR15), a well-characterized auxin and brassinosteroid early response gene in Arabidopsis (Arabidopsis thaliana). After identifying a minimal region sufficient for auxin response, we targeted predicted cis-regulatory elements contained within this sequence and found a critical subset required for hormone response. Specifically, reporter sensitivity to auxin treatment required two elements: a Hormone Up at Dawn (HUD)-type E-box and an AuxRE-related TGTCT element. Reporter response to brassinosteroid treatment relied on the same two elements. Consistent with these findings, the transcription factors BRASSINOSTEROID INSENSITIVE1-EMS SUPPESSOR1 and MONOPTEROS (MP)/ AUXIN RESPONSE FACTOR5 (ARF5) showed enhanced binding to the critical promoter region containing these elements. Treatment with auxin or brassinosteroids could enhance binding of either transcription factor, and brassinosteroid enhancement of MP/ARF5 binding required an intact HUD element. Conservation of clustered HUD elements and AuxRE-related sequences in promoters of putative SAUR15 orthologs in a number of flowering plant species, in combination with evidence for statistically significant clustering of these elements across all Arabidopsis promoters, provided further evidence of the functional importance of coordinated transcription factor binding.Multiple mechanisms have been described for coordination of responses to the plant hormones auxin and brassinosteroids (Zhang et al., 2009). One unexplained phenomenon is the reliance of the auxin transcriptional response on a functional brassinosteroid pathway. In this study, we used luciferase reporters to interrogate the promoter of SMALL AUXIN-UP RNA15 (SAUR15), a well-characterized auxin and brassinosteroid early response gene in Arabidopsis (Arabidopsis thaliana). After identifying a minimal region sufficient for auxin response, we targeted predicted cis-regulatory elements contained within this sequence and found a critical subset required for hormone response. Specifically, reporter sensitivity to auxin treatment required two elements: a Hormone Up at Dawn (HUD)-type E-box and an AuxRE-related TGTCT element. Reporter response to brassinosteroid treatment relied on the same two elements. Consistent with these findings, the transcription factors BRASSINOSTEROID INSENSITIVE1-EMS SUPPESSOR1 and MONOPTEROS (MP)/ AUXIN RESPONSE FACTOR5 (ARF5) showed enhanced binding to the critical promoter region containing these elements. Treatment with auxin or brassinosteroids could enhance binding of either transcription factor, and brassinosteroid enhancement of MP/ARF5 binding required an intact HUD element. Conservation of clustered HUD elements and AuxRE-related sequences in promoters of putative SAUR15 orthologs in a number of flowering plant species, in combination with evidence for statistically significant clustering of these elements across all Arabidopsis promoters, provided further evidence of the functional importance of coordinated transcription factor binding. |
Author | Nemhauser, Jennifer L Walcher, Cristina L |
AuthorAffiliation | Department of Biology, University of Washington, Seattle, Washington 98195–1800 |
AuthorAffiliation_xml | – name: Department of Biology, University of Washington, Seattle, Washington 98195–1800 |
Author_xml | – sequence: 1 fullname: Walcher, Cristina L – sequence: 2 fullname: Nemhauser, Jennifer L |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25493845$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22100645$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1TAQhS1URG8LS5ZANgg2KTN-JdkgtVWhSJVAQNfWJHGKqyRO7QSVf49LbgtFgtVYnm-Ozvh4j-2MfrSMPUU4QAT5ZppSxQMsC6WqB2yDSvCcK1nusA1AOkNZVrtsL8ZLAECB8hHb5RwBtFQbpo_cRGF2s80-BT_42YbspLeDHefss71aXLBt1vmQHS7XbkxXcfJjtI_Zw476aJ9s6z47f3fy9fg0P_v4_sPx4VneKI1zXkmrkLQuuk4UWBXUtESWmgKF0pXqgGpqK1G2IhkSYEsLpeDU1VjUAG0t9tnbVXda6sG2TbIVqDdTcAOFH8aTM_c7o_tmLvx3I7jiUGISeLUVCP5qsXE2g4uN7XsarV-iqTAZK5RWiXz9XxJ5wblGjSKhz_90dWfn9lkT8HILUGyo7wKNjYu_OSXT0r84sXJN8DEG25nGzTQ7f7OM6w2CuQnZTFOqaNaQ01T-19St8L_4Zyt_GWcf7mCJUiipIfVfrP2OvKGLkJyef-HprwBWGmRK5if63roe |
CODEN | PPHYA5 |
CitedBy_id | crossref_primary_10_1016_j_tplants_2015_10_019 crossref_primary_10_7554_eLife_03031 crossref_primary_10_1093_plphys_kiae487 crossref_primary_10_1186_s12870_017_1210_4 crossref_primary_10_1007_s00299_019_02410_4 crossref_primary_10_3389_fpls_2018_01215 crossref_primary_10_3390_ijms24065940 crossref_primary_10_1111_pbi_13231 crossref_primary_10_1186_1471_2164_14_806 crossref_primary_10_1104_pp_112_205575 crossref_primary_10_1016_j_plantsci_2016_06_007 crossref_primary_10_1007_s00425_020_03432_z crossref_primary_10_1016_j_tplants_2021_12_011 crossref_primary_10_1371_journal_pone_0219413 crossref_primary_10_7554_eLife_02252 crossref_primary_10_1093_jxb_ery332 crossref_primary_10_5010_JPB_2018_45_3_183 crossref_primary_10_1093_jxb_erv026 crossref_primary_10_1093_jxb_erad259 crossref_primary_10_4161_psb_24526 crossref_primary_10_1146_annurev_cellbio_101011_155741 crossref_primary_10_1093_plcell_koae088 crossref_primary_10_1111_pce_12662 crossref_primary_10_1038_ncomms4617 crossref_primary_10_1016_j_plgene_2021_100300 crossref_primary_10_1002_pld3_166 crossref_primary_10_1155_2018_3837060 crossref_primary_10_1186_s12870_016_0815_3 crossref_primary_10_1038_ncb2898 crossref_primary_10_1093_jxb_erv273 crossref_primary_10_1016_j_plantsci_2013_04_002 crossref_primary_10_1016_j_gene_2017_12_053 crossref_primary_10_1111_tpj_12096 crossref_primary_10_1016_j_plantsci_2016_12_008 crossref_primary_10_1007_s00709_015_0787_4 crossref_primary_10_1093_jxb_erx254 crossref_primary_10_1186_s12284_018_0239_9 crossref_primary_10_3389_fpls_2016_00766 crossref_primary_10_3390_ijms232415718 crossref_primary_10_1146_annurev_genet_102209_163450 crossref_primary_10_1016_j_cj_2024_06_003 crossref_primary_10_1142_S0219720016410092 crossref_primary_10_3390_genes10020164 crossref_primary_10_3390_plants13202928 crossref_primary_10_1016_j_molp_2015_05_003 crossref_primary_10_1016_j_pbi_2020_04_008 crossref_primary_10_1038_srep18256 crossref_primary_10_1071_FP19291 crossref_primary_10_1016_j_pbi_2013_08_002 crossref_primary_10_1111_pce_12397 crossref_primary_10_1186_1471_2164_15_S12_S4 crossref_primary_10_1093_jxb_erx184 crossref_primary_10_1016_j_scienta_2022_111408 crossref_primary_10_1186_s12864_018_4744_4 crossref_primary_10_1093_jxb_erw457 crossref_primary_10_1093_plphys_kiac194 crossref_primary_10_1073_pnas_1604379113 crossref_primary_10_1016_j_algal_2018_12_002 crossref_primary_10_3390_ijms21051561 crossref_primary_10_1016_j_pbi_2014_06_006 crossref_primary_10_1042_bse0580001 crossref_primary_10_3389_fpls_2017_02256 crossref_primary_10_3390_ijms23147574 crossref_primary_10_1111_tpj_13764 crossref_primary_10_1186_s12870_023_04216_9 crossref_primary_10_1016_j_molp_2016_12_013 crossref_primary_10_3390_ijms20020331 crossref_primary_10_1038_s41467_022_33318_5 crossref_primary_10_1111_ppl_12130 crossref_primary_10_1111_tpj_17083 crossref_primary_10_1242_dev_060590 |
Cites_doi | 10.1016/j.pbi.2007.08.014 10.1104/pp.106.079145 10.1105/tpc.010289 10.1016/j.pbi.2009.07.016 10.1016/S0168-9452(97)00110-6 10.1073/pnas.0900349106 10.1371/journal.pbio.0020258 10.1104/pp.103.036897 10.1093/nar/29.9.e45 10.1111/j.1365-313X.2011.04513.x 10.1016/j.cell.2010.03.030 10.1093/nar/27.1.297 10.1146/annurev.arplant.043008.092057 10.1111/j.1469-8137.2010.03387.x 10.1038/ncb1970 10.1104/pp.011003 10.1016/S0092-8674(02)00721-3 10.1023/A:1006496308160 10.1093/nar/gkr179 10.1105/tpc.105.034397 10.1023/A:1005875300606 10.1111/j.1365-313X.2008.03778.x 10.1126/science.1107580 10.1038/nature04681 10.1038/nature05130 10.1038/nature08836 10.1146/annurev-genet-102108-134148 10.1371/journal.pbio.0050222 10.1104/pp.103.034736 10.1271/bbb.70.768 10.1046/j.1365-313X.2003.01801.x 10.1101/gad.13.13.1678 10.1038/35104500 10.1101/cshperspect.a001420 10.1002/bies.20653 10.1046/j.1365-313x.1998.00343.x 10.1242/dev.037028 10.1073/pnas.0811633106 10.1073/pnas.0803996105 10.1111/j.1365-313X.2010.04449.x 10.1016/j.cell.2004.11.044 10.1016/j.tcb.2007.08.003 10.1242/dev.032177 10.1105/tpc.107.050963 10.1371/journal.pgen.0040014 10.1111/j.1365-313X.2005.02582.x 10.1073/pnas.0909198107 10.1105/tpc.105.031096 10.1371/journal.pcbi.1001070 10.1016/j.cell.2006.05.050 10.1046/j.1365-313x.1999.00594.x 10.1016/S1534-5807(02)00153-3 10.1016/j.devcel.2010.10.010 10.1104/pp.104.2.777 10.1002/j.1460-2075.1996.tb00513.x 10.1104/pp.011254 10.1126/science.1151461 10.1105/tpc.109.071506 10.1186/1471-2229-11-39 10.1016/S0014-5793(03)00945-1 10.1104/pp.103.030031 10.1007/s11103-008-9405-6 |
ContentType | Journal Article |
Copyright | 2012 American Society of Plant Biologists 2015 INIST-CNRS 2012 American Society of Plant Biologists. All rights reserved. 2012 |
Copyright_xml | – notice: 2012 American Society of Plant Biologists – notice: 2015 INIST-CNRS – notice: 2012 American Society of Plant Biologists. All rights reserved. 2012 |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 5PM |
DOI | 10.1104/pp.111.187559 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1532-2548 |
EndPage | 282 |
ExternalDocumentID | PMC3252081 22100645 25493845 10_1104_pp_111_187559 41435460 US201301960410 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: T32 HD007183 |
GroupedDBID | --- -DZ -~X 123 29O 2AX 2WC 2~F 3V. 4.4 53G 5VS 5WD 7X2 7X7 85S 88A 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 8R4 8R5 AAHKG AAPXW AAVAP AAWDT AAXTN AAYJJ ABBHK ABJNI ABPLY ABPPZ ABPTD ABPTK ABTLG ABUWG ABXZS ACBTR ACFRR ACGOD ACIPB ACNCT ACPRK ACUFI ACUTJ ADBBV ADIPN ADIYS ADULT ADVEK ADYHW ADZLD AEEJZ AENEX AESBF AEUPB AFAZZ AFDAS AFFDN AFFZL AFGWE AFKRA AFRAH AFYAG AGUYK AHMBA AICQM AIDAL AIDBO AJEEA ALMA_UNASSIGNED_HOLDINGS ALXQX ANFBD AQDSO AS~ ATCPS AZQEC BAWUL BBNVY BCRHZ BENPR BHPHI BPHCQ BTFSW BVXVI BYORX C1A CBGCD CCPQU CS3 CWIXF D1J DATOO DFEDG DIK DOOOF DU5 DWIUU DWQXO E3Z EBS ECGQY EJD F20 F5P FBQ FLUFQ FOEOM FYUFA GNUQQ GTFYD GUQSH HCIFZ HMCUK HTVGU ISR JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KOP KQ8 KSI KSN LK8 M0K M0L M1P M2O M2P M2Q M7P MV1 MVM NOMLY OBOKY OJZSN OK1 OWPYF P0- P2P PQQKQ PROAC PSQYO Q2X QZG RHF RHI ROX RPB RPM RWL RXW S0X SA0 TAE TCN TN5 TR2 UBC UKHRP UKR VQA W8F WH7 WHG WOQ XOL XSW Y6R YBU YKV YNT YSK YZZ ZCA ZCG ZCN ~02 ~KM 0R~ AAHBH AARHZ AAUAY ABDFA ABEJV ABGNP ABMNT ABVGC ABXSQ ABXVV ACHIC ADGKP ADQBN ADXHL AEUYN AGORE AHXOZ AJBYB AJNCP ALIPV AQVQM ATGXG BEYMZ H13 IPSME JXSIZ NU- PHGZM PHGZT AAYXX CITATION PJZUB PPXIY PQGLB PUEGO ABIME ABPIB ABZEO ACVCV ACZBC AGMDO AHGBF AJDVS APJGH IQODW LU7 ADYWZ CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c561t-94e51a667ff37197acdaaeac7135695f0abad938d321030e8e0832afb17b00db3 |
ISSN | 0032-0889 1532-2548 |
IngestDate | Tue Sep 30 16:41:58 EDT 2025 Sun Sep 28 00:16:11 EDT 2025 Sat Sep 27 16:50:23 EDT 2025 Thu Apr 03 07:14:01 EDT 2025 Mon Jul 21 09:12:53 EDT 2025 Thu Apr 24 22:58:31 EDT 2025 Wed Oct 01 03:45:27 EDT 2025 Fri Jun 20 02:19:34 EDT 2025 Wed Dec 27 18:49:23 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Promoter Plant physiology Auxin |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c561t-94e51a667ff37197acdaaeac7135695f0abad938d321030e8e0832afb17b00db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Some figures in this article are displayed in color online but in black and white in the print edition. This work was supported by the National Science Foundation (grant no. IOS–0919021) and the University of Washington. C.L.W. was supported by the Developmental Biology Predoctoral Training Grant (T32HD007183) from the National Institute of Child Health and Human Development. The online version of this article contains Web-only data. The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiology.org) is: Jennifer L. Nemhauser (jn7@uw.edu). www.plantphysiol.org/cgi/doi/10.1104/pp.111.187559 Open Access articles can be viewed online without a subscription. |
OpenAccessLink | http://www.plantphysiol.org/content/plantphysiol/158/1/273.full.pdf |
PMID | 22100645 |
PQID | 1272261613 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3252081 proquest_miscellaneous_913717565 proquest_miscellaneous_1272261613 pubmed_primary_22100645 pascalfrancis_primary_25493845 crossref_citationtrail_10_1104_pp_111_187559 crossref_primary_10_1104_pp_111_187559 jstor_primary_41435460 fao_agris_US201301960410 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-01 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Rockville, MD |
PublicationPlace_xml | – name: Rockville, MD – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2012 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
References | Li (2021041909235532300_b31) 2009; 58 Pfaffl (2021041909235532300_b41) 2001; 29 Li (2021041909235532300_b30) 2010; 107 Goda (2021041909235532300_b14) 2004; 134 Nemhauser (2021041909235532300_b39) 2006; 126 Proost (2021041909235532300_b43) 2009; 21 Gray (2021041909235532300_b17) 2001; 414 Gray (2021041909235532300_b16) 1999; 13 Yin (2021041909235532300_b60) 2005; 120 Higo (2021041909235532300_b23) 1999; 27 Clough (2021041909235532300_b7) 1998; 16 Cole (2021041909235532300_b8) 2009; 136 Chapman (2021041909235532300_b5) 2009; 43 Priest (2021041909235532300_b42) 2009; 12 Kim (2021041909235532300_b27) 2010; 61 Reineke (2021041909235532300_b45) 2011; 39 Hellens (2021041909235532300_b22) 2000; 42 Gil (2021041909235532300_b11) 1996; 15 Hardtke (2021041909235532300_b19) 2007; 29 Kuppusamy (2021041909235532300_b28) 2009; 106 Chandler (2021041909235532300_b4) 2009; 69 Wang (2021041909235532300_b56) 2005; 17 Yu (2021041909235532300_b62) 2011; 65 Zenser (2021041909235532300_b63) 2003; 35 Keilwagen (2021041909235532300_b24) 2011; 7 Hardtke (2021041909235532300_b20) 2007; 17 Szemenyei (2021041909235532300_b51) 2008; 319 Gil (2021041909235532300_b12) 1997; 34 Vert (2021041909235532300_b54) 2006; 441 Sun (2021041909235532300_b50) 2010; 19 Michael (2021041909235532300_b33) 2008; 4 Shin (2021041909235532300_b48) 2007; 19 Vert (2021041909235532300_b55) 2008; 105 Bao (2021041909235532300_b2) 2004; 134 Tiwari (2021041909235532300_b52) 2001; 13 Guilfoyle (2021041909235532300_b18) 2007; 10 Wang (2021041909235532300_b57) 2002; 2 Schlereth (2021041909235532300_b46) 2010; 464 Covington (2021041909235532300_b9) 2007; 5 Müssig (2021041909235532300_b35) 2002; 129 Yin (2021041909235532300_b61) 2002; 109 Yamamoto (2021041909235532300_b59) 2011; 11 Zhang (2021041909235532300_b64) 2009; 106 Bancos (2021041909235532300_b1) 2006; 141 Ulmasov (2021041909235532300_b53) 1995; 7 He (2021041909235532300_b21) 2005; 307 Sessions (2021041909235532300_b47) 1999; 20 Nakamura (2021041909235532300_b37) 2003; 553 Xu (2021041909235532300_b58) 1997; 126 Stewart (2021041909235532300_b49) 2010; 2 Gil (2021041909235532300_b13) 1994; 104 McClure (2021041909235532300_b32) 1989; 1 Donner (2021041909235532300_b10) 2009; 136 Rahl (2021041909235532300_b44) 2010; 141 Kim (2021041909235532300_b25) 2006; 70 Beuchat (2021041909235532300_b3) 2010; 188 Nakamura (2021041909235532300_b36) 2003; 133 Kim (2021041909235532300_b26) 2009; 11 Nakamura (2021041909235532300_b38) 2006; 45 Li (2021041909235532300_b29) 2005; 17 Goda (2021041909235532300_b15) 2002; 130 Mouchel (2021041909235532300_b34) 2006; 443 Chung (2021041909235532300_b6) 2011; 66 Nemhauser (2021041909235532300_b40) 2004; 2 8159792 - Plant Physiol. 1994 Feb;104(2):777-84 21284753 - Plant J. 2011 May;66(4):564-78 21074725 - Dev Cell. 2010 Nov 16;19(5):765-77 16672972 - Nature. 2006 May 4;441(7089):96-100 20040540 - Plant Cell. 2009 Dec;21(12):3718-31 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45 17006513 - Nature. 2006 Sep 28;443(7110):458-61 18258861 - Science. 2008 Mar 7;319(5868):1384-6 19717332 - Curr Opin Plant Biol. 2009 Oct;12(5):643-9 18248097 - PLoS Genet. 2008 Feb;4(2):e14 20182619 - Cold Spring Harb Perspect Biol. 2010 Feb;2(2):a001420 10069079 - Plant J. 1998 Dec;16(6):735-43 10398681 - Genes Dev. 1999 Jul 1;13(13):1678-91 16141452 - Plant Cell. 2005 Oct;17(10):2738-53 20434984 - Cell. 2010 Apr 30;141(3):432-45 9847208 - Nucleic Acids Res. 1999 Jan 1;27(1):297-300 18599455 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9829-34 15328536 - PLoS Biol. 2004 Sep;2(9):E258 16636440 - Biosci Biotechnol Biochem. 2006 Apr;70(4):768-73 17900969 - Curr Opin Plant Biol. 2007 Oct;10(5):453-60 21349196 - BMC Plant Biol. 2011;11:39 19416891 - Proc Natl Acad Sci U S A. 2009 May 12;106(19):8073-6 19369397 - Development. 2009 May;136(10):1643-51 12007405 - Cell. 2002 Apr 19;109(2):181-91 11752389 - Plant Cell. 2001 Dec;13(12):2809-22 21214652 - Plant J. 2011 Feb;65(4):634-46 21347314 - PLoS Comput Biol. 2011;7(2):e1001070 10571886 - Plant J. 1999 Oct;20(2):259-63 20649916 - New Phytol. 2010 Oct;188(1):23-9 10890530 - Plant Mol Biol. 2000 Apr;42(6):819-32 11713520 - Nature. 2001 Nov 15;414(6861):271-6 19170933 - Plant J. 2009 Apr;58(2):275-86 11970900 - Dev Cell. 2002 Apr;2(4):505-13 15047895 - Plant Physiol. 2004 Apr;134(4):1624-31 14605219 - Plant Physiol. 2003 Dec;133(4):1843-53 17904848 - Trends Cell Biol. 2007 Oct;17(10):485-92 19710171 - Development. 2009 Oct;136(19):3235-46 15047898 - Plant Physiol. 2004 Apr;134(4):1555-73 19240210 - Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4543-8 20220754 - Nature. 2010 Apr 8;464(7290):913-6 15680330 - Cell. 2005 Jan 28;120(2):249-59 14550541 - FEBS Lett. 2003 Oct 9;553(1-2):28-32 2485235 - Plant Cell. 1989 Feb;1(2):229-39 15681342 - Science. 2005 Mar 11;307(5715):1634-8 17675404 - Plant Cell. 2007 Aug;19(8):2440-53 12887580 - Plant J. 2003 Aug;35(3):285-94 21470961 - Nucleic Acids Res. 2011 Aug;39(14):6029-43 12114578 - Plant Physiol. 2002 Jul;129(3):1241-51 12427998 - Plant Physiol. 2002 Nov;130(3):1319-34 15923351 - Plant Cell. 2005 Jul;17(7):1979-93 9278170 - Plant Mol Biol. 1997 Jul;34(5):803-8 18830673 - Plant Mol Biol. 2009 Jan;69(1-2):57-68 7580254 - Plant Cell. 1995 Oct;7(10):1611-23 16531479 - Plant Physiol. 2006 May;141(1):299-309 19734888 - Nat Cell Biol. 2009 Oct;11(10):1254-60 8612592 - EMBO J. 1996 Apr 1;15(7):1678-86 20192752 - Annu Rev Plant Biol. 2010;61:681-704 16367964 - Plant J. 2006 Jan;45(2):193-205 20139304 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3918-23 17935219 - Bioessays. 2007 Nov;29(11):1115-23 19686081 - Annu Rev Genet. 2009;43:265-85 17683202 - PLoS Biol. 2007 Aug;5(8):e222 16901781 - Cell. 2006 Aug 11;126(3):467-75 |
References_xml | – volume: 10 start-page: 453 year: 2007 ident: 2021041909235532300_b18 article-title: Auxin response factors publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2007.08.014 – volume: 141 start-page: 299 year: 2006 ident: 2021041909235532300_b1 article-title: Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.106.079145 – volume: 13 start-page: 2809 year: 2001 ident: 2021041909235532300_b52 article-title: AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin publication-title: Plant Cell doi: 10.1105/tpc.010289 – volume: 12 start-page: 643 year: 2009 ident: 2021041909235532300_b42 article-title: Cis-regulatory elements in plant cell signaling publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2009.07.016 – volume: 126 start-page: 193 year: 1997 ident: 2021041909235532300_b58 article-title: Multiple auxin response modules in the soybean SAUR 15A promoter publication-title: Plant Sci doi: 10.1016/S0168-9452(97)00110-6 – volume: 106 start-page: 4543 year: 2009 ident: 2021041909235532300_b64 article-title: The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0900349106 – volume: 2 start-page: E258 year: 2004 ident: 2021041909235532300_b40 article-title: Interdependency of brassinosteroid and auxin signaling in Arabidopsis publication-title: PLoS Biol doi: 10.1371/journal.pbio.0020258 – volume: 134 start-page: 1624 year: 2004 ident: 2021041909235532300_b2 article-title: Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.103.036897 – volume: 29 start-page: e45 year: 2001 ident: 2021041909235532300_b41 article-title: A new mathematical model for relative quantification in real-time RT-PCR publication-title: Nucleic Acids Res doi: 10.1093/nar/29.9.e45 – volume: 66 start-page: 564 year: 2011 ident: 2021041909235532300_b6 article-title: Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis publication-title: Plant J doi: 10.1111/j.1365-313X.2011.04513.x – volume: 141 start-page: 432 year: 2010 ident: 2021041909235532300_b44 article-title: c-Myc regulates transcriptional pause release publication-title: Cell doi: 10.1016/j.cell.2010.03.030 – volume: 27 start-page: 297 year: 1999 ident: 2021041909235532300_b23 article-title: Plant cis-acting regulatory DNA elements (PLACE) database: 1999 publication-title: Nucleic Acids Res doi: 10.1093/nar/27.1.297 – volume: 61 start-page: 681 year: 2010 ident: 2021041909235532300_b27 article-title: Brassinosteroid signal transduction from receptor kinases to transcription factors publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.043008.092057 – volume: 188 start-page: 23 year: 2010 ident: 2021041909235532300_b3 article-title: BRX promotes Arabidopsis shoot growth publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03387.x – volume: 11 start-page: 1254 year: 2009 ident: 2021041909235532300_b26 article-title: Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors publication-title: Nat Cell Biol doi: 10.1038/ncb1970 – volume: 129 start-page: 1241 year: 2002 ident: 2021041909235532300_b35 article-title: Brassinosteroid-regulated gene expression publication-title: Plant Physiol doi: 10.1104/pp.011003 – volume: 109 start-page: 181 year: 2002 ident: 2021041909235532300_b61 article-title: BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation publication-title: Cell doi: 10.1016/S0092-8674(02)00721-3 – volume: 42 start-page: 819 year: 2000 ident: 2021041909235532300_b22 article-title: pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation publication-title: Plant Mol Biol doi: 10.1023/A:1006496308160 – volume: 39 start-page: 6029 year: 2011 ident: 2021041909235532300_b45 article-title: Evolutionary divergence and limits of conserved non-coding sequence detection in plant genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr179 – volume: 17 start-page: 2738 year: 2005 ident: 2021041909235532300_b29 article-title: Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.105.034397 – volume: 34 start-page: 803 year: 1997 ident: 2021041909235532300_b12 article-title: Regulatory activity exerted by the SAUR-AC1 promoter region in transgenic plants publication-title: Plant Mol Biol doi: 10.1023/A:1005875300606 – volume: 58 start-page: 275 year: 2009 ident: 2021041909235532300_b31 article-title: Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03778.x – volume: 307 start-page: 1634 year: 2005 ident: 2021041909235532300_b21 article-title: BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses publication-title: Science doi: 10.1126/science.1107580 – volume: 441 start-page: 96 year: 2006 ident: 2021041909235532300_b54 article-title: Downstream nuclear events in brassinosteroid signalling publication-title: Nature doi: 10.1038/nature04681 – volume: 443 start-page: 458 year: 2006 ident: 2021041909235532300_b34 article-title: BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth publication-title: Nature doi: 10.1038/nature05130 – volume: 7 start-page: 1611 year: 1995 ident: 2021041909235532300_b53 article-title: Composite structure of auxin response elements publication-title: Plant Cell – volume: 464 start-page: 913 year: 2010 ident: 2021041909235532300_b46 article-title: MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor publication-title: Nature doi: 10.1038/nature08836 – volume: 43 start-page: 265 year: 2009 ident: 2021041909235532300_b5 article-title: Mechanism of auxin-regulated gene expression in plants publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-102108-134148 – volume: 5 start-page: e222 year: 2007 ident: 2021041909235532300_b9 article-title: The circadian clock regulates auxin signaling and responses in Arabidopsis publication-title: PLoS Biol doi: 10.1371/journal.pbio.0050222 – volume: 134 start-page: 1555 year: 2004 ident: 2021041909235532300_b14 article-title: Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.103.034736 – volume: 1 start-page: 229 year: 1989 ident: 2021041909235532300_b32 article-title: Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean publication-title: Plant Cell – volume: 70 start-page: 768 year: 2006 ident: 2021041909235532300_b25 article-title: Brassinosteroid signals control expression of the AXR3/IAA17 gene in the cross-talk point with auxin in root development publication-title: Biosci Biotechnol Biochem doi: 10.1271/bbb.70.768 – volume: 35 start-page: 285 year: 2003 ident: 2021041909235532300_b63 article-title: Acceleration of Aux/IAA proteolysis is specific for auxin and independent of AXR1 publication-title: Plant J doi: 10.1046/j.1365-313X.2003.01801.x – volume: 13 start-page: 1678 year: 1999 ident: 2021041909235532300_b16 article-title: Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana publication-title: Genes Dev doi: 10.1101/gad.13.13.1678 – volume: 414 start-page: 271 year: 2001 ident: 2021041909235532300_b17 article-title: Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins publication-title: Nature doi: 10.1038/35104500 – volume: 2 start-page: a001420 year: 2010 ident: 2021041909235532300_b49 article-title: Do trees grow on money? Auxin as the currency of the cellular economy publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a001420 – volume: 29 start-page: 1115 year: 2007 ident: 2021041909235532300_b19 article-title: Transcriptional auxin-brassinosteroid crosstalk: who’s talking? publication-title: Bioessays doi: 10.1002/bies.20653 – volume: 16 start-page: 735 year: 1998 ident: 2021041909235532300_b7 article-title: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana publication-title: Plant J doi: 10.1046/j.1365-313x.1998.00343.x – volume: 136 start-page: 3235 year: 2009 ident: 2021041909235532300_b10 article-title: Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves publication-title: Development doi: 10.1242/dev.037028 – volume: 106 start-page: 8073 year: 2009 ident: 2021041909235532300_b28 article-title: Steroids are required for epidermal cell fate establishment in Arabidopsis roots publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0811633106 – volume: 105 start-page: 9829 year: 2008 ident: 2021041909235532300_b55 article-title: Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0803996105 – volume: 65 start-page: 634 year: 2011 ident: 2021041909235532300_b62 article-title: A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04449.x – volume: 120 start-page: 249 year: 2005 ident: 2021041909235532300_b60 article-title: A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis publication-title: Cell doi: 10.1016/j.cell.2004.11.044 – volume: 17 start-page: 485 year: 2007 ident: 2021041909235532300_b20 article-title: Phytohormone collaboration: zooming in on auxin-brassinosteroid interactions publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2007.08.003 – volume: 136 start-page: 1643 year: 2009 ident: 2021041909235532300_b8 article-title: DORNROSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo publication-title: Development doi: 10.1242/dev.032177 – volume: 19 start-page: 2440 year: 2007 ident: 2021041909235532300_b48 article-title: The Arabidopsis transcription factor MYB77 modulates auxin signal transduction publication-title: Plant Cell doi: 10.1105/tpc.107.050963 – volume: 4 start-page: e14 year: 2008 ident: 2021041909235532300_b33 article-title: Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules publication-title: PLoS Genet doi: 10.1371/journal.pgen.0040014 – volume: 45 start-page: 193 year: 2006 ident: 2021041909235532300_b38 article-title: Arabidopsis Aux/IAA genes are involved in brassinosteroid-mediated growth responses in a manner dependent on organ type publication-title: Plant J doi: 10.1111/j.1365-313X.2005.02582.x – volume: 107 start-page: 3918 year: 2010 ident: 2021041909235532300_b30 article-title: Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0909198107 – volume: 17 start-page: 1979 year: 2005 ident: 2021041909235532300_b56 article-title: AUXIN RESPONSE FACTOR7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts publication-title: Plant Cell doi: 10.1105/tpc.105.031096 – volume: 7 start-page: e1001070 year: 2011 ident: 2021041909235532300_b24 article-title: De-novo discovery of differentially abundant transcription factor binding sites including their positional preference publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1001070 – volume: 126 start-page: 467 year: 2006 ident: 2021041909235532300_b39 article-title: Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses publication-title: Cell doi: 10.1016/j.cell.2006.05.050 – volume: 20 start-page: 259 year: 1999 ident: 2021041909235532300_b47 article-title: The Arabidopsis thaliana MERISTEM LAYER 1 promoter specifies epidermal expression in meristems and young primordia publication-title: Plant J doi: 10.1046/j.1365-313x.1999.00594.x – volume: 2 start-page: 505 year: 2002 ident: 2021041909235532300_b57 article-title: Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis publication-title: Dev Cell doi: 10.1016/S1534-5807(02)00153-3 – volume: 19 start-page: 765 year: 2010 ident: 2021041909235532300_b50 article-title: Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis publication-title: Dev Cell doi: 10.1016/j.devcel.2010.10.010 – volume: 104 start-page: 777 year: 1994 ident: 2021041909235532300_b13 article-title: Characterization of the auxin-inducible SAUR-AC1 gene for use as a molecular genetic tool in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.104.2.777 – volume: 15 start-page: 1678 year: 1996 ident: 2021041909235532300_b11 article-title: Multiple regions of the Arabidopsis SAUR-AC1 gene control transcript abundance: the 3′ untranslated region functions as an mRNA instability determinant publication-title: EMBO J doi: 10.1002/j.1460-2075.1996.tb00513.x – volume: 130 start-page: 1319 year: 2002 ident: 2021041909235532300_b15 article-title: Microarray analysis of brassinosteroid-regulated genes in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.011254 – volume: 319 start-page: 1384 year: 2008 ident: 2021041909235532300_b51 article-title: TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis publication-title: Science doi: 10.1126/science.1151461 – volume: 21 start-page: 3718 year: 2009 ident: 2021041909235532300_b43 article-title: PLAZA: a comparative genomics resource to study gene and genome evolution in plants publication-title: Plant Cell doi: 10.1105/tpc.109.071506 – volume: 11 start-page: 39 year: 2011 ident: 2021041909235532300_b59 article-title: Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data publication-title: BMC Plant Biol doi: 10.1186/1471-2229-11-39 – volume: 553 start-page: 28 year: 2003 ident: 2021041909235532300_b37 article-title: AXR1 is involved in BR-mediated elongation and SAUR-AC1 gene expression in Arabidopsis publication-title: FEBS Lett doi: 10.1016/S0014-5793(03)00945-1 – volume: 133 start-page: 1843 year: 2003 ident: 2021041909235532300_b36 article-title: Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling publication-title: Plant Physiol doi: 10.1104/pp.103.030031 – volume: 69 start-page: 57 year: 2009 ident: 2021041909235532300_b4 article-title: BIM1, a bHLH protein involved in brassinosteroid signalling, controls Arabidopsis embryonic patterning via interaction with DORNROSCHEN and DORNROSCHEN-LIKE publication-title: Plant Mol Biol doi: 10.1007/s11103-008-9405-6 – reference: 16531479 - Plant Physiol. 2006 May;141(1):299-309 – reference: 15923351 - Plant Cell. 2005 Jul;17(7):1979-93 – reference: 20139304 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3918-23 – reference: 16901781 - Cell. 2006 Aug 11;126(3):467-75 – reference: 11970900 - Dev Cell. 2002 Apr;2(4):505-13 – reference: 11752389 - Plant Cell. 2001 Dec;13(12):2809-22 – reference: 17006513 - Nature. 2006 Sep 28;443(7110):458-61 – reference: 17935219 - Bioessays. 2007 Nov;29(11):1115-23 – reference: 19369397 - Development. 2009 May;136(10):1643-51 – reference: 15047895 - Plant Physiol. 2004 Apr;134(4):1624-31 – reference: 21074725 - Dev Cell. 2010 Nov 16;19(5):765-77 – reference: 10398681 - Genes Dev. 1999 Jul 1;13(13):1678-91 – reference: 18258861 - Science. 2008 Mar 7;319(5868):1384-6 – reference: 14605219 - Plant Physiol. 2003 Dec;133(4):1843-53 – reference: 19717332 - Curr Opin Plant Biol. 2009 Oct;12(5):643-9 – reference: 19240210 - Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4543-8 – reference: 15328536 - PLoS Biol. 2004 Sep;2(9):E258 – reference: 9847208 - Nucleic Acids Res. 1999 Jan 1;27(1):297-300 – reference: 19710171 - Development. 2009 Oct;136(19):3235-46 – reference: 19686081 - Annu Rev Genet. 2009;43:265-85 – reference: 10571886 - Plant J. 1999 Oct;20(2):259-63 – reference: 15681342 - Science. 2005 Mar 11;307(5715):1634-8 – reference: 16367964 - Plant J. 2006 Jan;45(2):193-205 – reference: 21347314 - PLoS Comput Biol. 2011;7(2):e1001070 – reference: 16636440 - Biosci Biotechnol Biochem. 2006 Apr;70(4):768-73 – reference: 19170933 - Plant J. 2009 Apr;58(2):275-86 – reference: 14550541 - FEBS Lett. 2003 Oct 9;553(1-2):28-32 – reference: 17900969 - Curr Opin Plant Biol. 2007 Oct;10(5):453-60 – reference: 12427998 - Plant Physiol. 2002 Nov;130(3):1319-34 – reference: 20182619 - Cold Spring Harb Perspect Biol. 2010 Feb;2(2):a001420 – reference: 10890530 - Plant Mol Biol. 2000 Apr;42(6):819-32 – reference: 18830673 - Plant Mol Biol. 2009 Jan;69(1-2):57-68 – reference: 17904848 - Trends Cell Biol. 2007 Oct;17(10):485-92 – reference: 20220754 - Nature. 2010 Apr 8;464(7290):913-6 – reference: 12007405 - Cell. 2002 Apr 19;109(2):181-91 – reference: 19416891 - Proc Natl Acad Sci U S A. 2009 May 12;106(19):8073-6 – reference: 8159792 - Plant Physiol. 1994 Feb;104(2):777-84 – reference: 9278170 - Plant Mol Biol. 1997 Jul;34(5):803-8 – reference: 18599455 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9829-34 – reference: 21284753 - Plant J. 2011 May;66(4):564-78 – reference: 12887580 - Plant J. 2003 Aug;35(3):285-94 – reference: 20434984 - Cell. 2010 Apr 30;141(3):432-45 – reference: 20192752 - Annu Rev Plant Biol. 2010;61:681-704 – reference: 16141452 - Plant Cell. 2005 Oct;17(10):2738-53 – reference: 17683202 - PLoS Biol. 2007 Aug;5(8):e222 – reference: 16672972 - Nature. 2006 May 4;441(7089):96-100 – reference: 12114578 - Plant Physiol. 2002 Jul;129(3):1241-51 – reference: 15047898 - Plant Physiol. 2004 Apr;134(4):1555-73 – reference: 15680330 - Cell. 2005 Jan 28;120(2):249-59 – reference: 21214652 - Plant J. 2011 Feb;65(4):634-46 – reference: 18248097 - PLoS Genet. 2008 Feb;4(2):e14 – reference: 11713520 - Nature. 2001 Nov 15;414(6861):271-6 – reference: 2485235 - Plant Cell. 1989 Feb;1(2):229-39 – reference: 20649916 - New Phytol. 2010 Oct;188(1):23-9 – reference: 17675404 - Plant Cell. 2007 Aug;19(8):2440-53 – reference: 20040540 - Plant Cell. 2009 Dec;21(12):3718-31 – reference: 7580254 - Plant Cell. 1995 Oct;7(10):1611-23 – reference: 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45 – reference: 19734888 - Nat Cell Biol. 2009 Oct;11(10):1254-60 – reference: 21470961 - Nucleic Acids Res. 2011 Aug;39(14):6029-43 – reference: 10069079 - Plant J. 1998 Dec;16(6):735-43 – reference: 8612592 - EMBO J. 1996 Apr 1;15(7):1678-86 – reference: 21349196 - BMC Plant Biol. 2011;11:39 |
SSID | ssj0001314 |
Score | 2.3459978 |
Snippet | Multiple mechanisms have been described for coordination of responses to the plant hormones auxin and brassinosteroids (Zhang et al., 2009). One unexplained... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 273 |
SubjectTerms | Arabidopsis Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Auxins Base Sequence Biological and medical sciences Brassinosteroids Brassinosteroids - metabolism Conserved Sequence DEVELOPMENT AND HORMONE ACTION DNA-Binding Proteins DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism functional response Fundamental and applied biological sciences. Psychology Gene expression regulation Gene Expression Regulation, Plant Genes genetics Hormones Indoleacetic Acids Indoleacetic Acids - metabolism luciferase metabolism Nuclear Proteins Nuclear Proteins - genetics Nuclear Proteins - metabolism Plant cells plant hormones Plant physiology and development plant response Plants Promoter regions Promoter Regions, Genetic Regulatory Sequences, Nucleic Acid reporter genes Response Elements Response Elements - genetics Seedlings Transcription factors Transcription Factors - genetics Transcription Factors - metabolism |
Title | Bipartite Promoter Element Required for Auxin Response |
URI | https://www.jstor.org/stable/41435460 https://www.ncbi.nlm.nih.gov/pubmed/22100645 https://www.proquest.com/docview/1272261613 https://www.proquest.com/docview/913717565 https://pubmed.ncbi.nlm.nih.gov/PMC3252081 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1532-2548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001314 issn: 0032-0889 databaseCode: KQ8 dateStart: 19260101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1532-2548 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0001314 issn: 0032-0889 databaseCode: DIK dateStart: 19260101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1532-2548 dateEnd: 20120831 omitProxy: true ssIdentifier: ssj0001314 issn: 0032-0889 databaseCode: 7X7 dateStart: 19981001 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1532-2548 dateEnd: 20120831 omitProxy: true ssIdentifier: ssj0001314 issn: 0032-0889 databaseCode: BENPR dateStart: 19981001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_RjgdeEF9j4aMKEuIFUhLbiZPHdRqaEEwIVtG3yGmcrdJII5pKwF_PXRynzdZJg5cost1EvTuf7y6_uwN4XaBRkCjc31ksmSfoToki8pj2tZJBrnRCCc6fT6OTqfg4C2ebZpxNdkmdjed_duaV_A9XcQz5Slmy_8DZ7qE4gPfIX7wih_F6Kx5PFhWN1prw_khzAmwYODiSjSC-aE0SjPBw_WvRROoJDtvD_lDPotqEN0wxJjQ4J5QDvMrVVpDgu7q0zD1qtEKp3n4abwLJPy4URTu24TJ2vo0oNNAMG1GwSpB56Dgavah3jFnNGcbXRKTVg6Y_SXukMtNf6Lq29gW1GK5Ib48D9Jza4uC9qthXTqsOQ9h4L75Iq4q8mNT8fAB7TEYRG8Le5Pj0y9fuUA54U-a9-xtduVXxvvf-nnkyKNTS4lQJNKtWuG8K0_Bkl0dyFVi7ZamcPYD7rYvhHhp5eQh3dPkI7k6W6Ab8fgxRJzSuFRq3FRrXCo2LQuM2QuNaoXkC0w_HZ0cnXts8w5ujSVx7idBhoKJIFgWXQSLVPFcKT1lqyRglYeGrTOUJj3NK4uK-jjUa40wVWSBRE-cZ34dhuSz1AbgsygQXieR6XoiEFwkuRmrhHs9wo2vmwDtLs3TeVpanBieX6U4eOfCmW16Zkio3LTxABqTqHAU7nX5j9JE9oGJCge_AfsOV7gGC7H4R4cSox6ZuAQVCeCxCB15ZvqWoSenzmCr1cr1KAybRF0EPiDvg3rAmCZCYEp0gB54aVm9egHSk4o8OyJ4QdAuokHt_plxcNAXdOQsZmubPbkuY53Bvs29fwLD-udYv0TausxEM5EyOWun_C817tV0 |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bipartite+Promoter+Element+Required+for+Auxin+Response&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Walcher%2C+Cristina+L.&rft.au=Nemhauser%2C+Jennifer+L.&rft.date=2012-01-01&rft.issn=1532-2548&rft.eissn=1532-2548&rft.volume=158&rft.issue=1&rft.spage=273&rft.epage=282&rft_id=info:doi/10.1104%2Fpp.111.187559&rft.externalDBID=n%2Fa&rft.externalDocID=10_1104_pp_111_187559 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |