Revolutionizing Molecular Design for Innovative Therapeutic Applications through Artificial Intelligence
The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computational methods now play a crucial role in enhancing...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 29; no. 19; p. 4626 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.10.2024
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1420-3049 1420-3049 |
DOI | 10.3390/molecules29194626 |
Cover
Abstract | The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computational methods now play a crucial role in enhancing the stability, activity, and specificity of proteins for diverse applications in biotechnology and medicine. Techniques such as deep learning, reinforcement learning, and transfer learning have dramatically improved protein structure prediction, optimization of binding affinities, and enzyme design. These innovations have streamlined the process of protein engineering by allowing the rapid generation of targeted libraries, reducing experimental sampling, and enabling the rational design of proteins with tailored properties. Furthermore, the integration of computational approaches with high-throughput experimental techniques has facilitated the development of multifunctional proteins and novel therapeutics. However, challenges remain in bridging the gap between computational predictions and experimental validation and in addressing ethical concerns related to AI-driven protein design. This review provides a comprehensive overview of the current state and future directions of computational methods in protein engineering, emphasizing their transformative potential in creating next-generation biologics and advancing synthetic biology. |
---|---|
AbstractList | The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computational methods now play a crucial role in enhancing the stability, activity, and specificity of proteins for diverse applications in biotechnology and medicine. Techniques such as deep learning, reinforcement learning, and transfer learning have dramatically improved protein structure prediction, optimization of binding affinities, and enzyme design. These innovations have streamlined the process of protein engineering by allowing the rapid generation of targeted libraries, reducing experimental sampling, and enabling the rational design of proteins with tailored properties. Furthermore, the integration of computational approaches with high-throughput experimental techniques has facilitated the development of multifunctional proteins and novel therapeutics. However, challenges remain in bridging the gap between computational predictions and experimental validation and in addressing ethical concerns related to AI-driven protein design. This review provides a comprehensive overview of the current state and future directions of computational methods in protein engineering, emphasizing their transformative potential in creating next-generation biologics and advancing synthetic biology. The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computational methods now play a crucial role in enhancing the stability, activity, and specificity of proteins for diverse applications in biotechnology and medicine. Techniques such as deep learning, reinforcement learning, and transfer learning have dramatically improved protein structure prediction, optimization of binding affinities, and enzyme design. These innovations have streamlined the process of protein engineering by allowing the rapid generation of targeted libraries, reducing experimental sampling, and enabling the rational design of proteins with tailored properties. Furthermore, the integration of computational approaches with high-throughput experimental techniques has facilitated the development of multifunctional proteins and novel therapeutics. However, challenges remain in bridging the gap between computational predictions and experimental validation and in addressing ethical concerns related to AI-driven protein design. This review provides a comprehensive overview of the current state and future directions of computational methods in protein engineering, emphasizing their transformative potential in creating next-generation biologics and advancing synthetic biology.The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computational methods now play a crucial role in enhancing the stability, activity, and specificity of proteins for diverse applications in biotechnology and medicine. Techniques such as deep learning, reinforcement learning, and transfer learning have dramatically improved protein structure prediction, optimization of binding affinities, and enzyme design. These innovations have streamlined the process of protein engineering by allowing the rapid generation of targeted libraries, reducing experimental sampling, and enabling the rational design of proteins with tailored properties. Furthermore, the integration of computational approaches with high-throughput experimental techniques has facilitated the development of multifunctional proteins and novel therapeutics. However, challenges remain in bridging the gap between computational predictions and experimental validation and in addressing ethical concerns related to AI-driven protein design. This review provides a comprehensive overview of the current state and future directions of computational methods in protein engineering, emphasizing their transformative potential in creating next-generation biologics and advancing synthetic biology. |
Audience | Academic |
Author | Park, Yongho Kim, Hyunsoo Park, Jongham Son, Ahrum Lee, Sangwoon Yoon, Yoonki Kim, Woojin |
AuthorAffiliation | 3 Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea 4 Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea 1 Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA; ahson@scripps.edu 5 SCICS, Prove beyond AI, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea 2 Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; 975pjh@gmail.com (J.P.); woojin1544@gmail.com (W.K.); dbsrl0218@gmail.com (Y.Y.); sanguni088@gmail.com (S.L.); kmalrpkr13@gmail.com (Y.P.) |
AuthorAffiliation_xml | – name: 5 SCICS, Prove beyond AI, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea – name: 1 Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA; ahson@scripps.edu – name: 3 Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea – name: 4 Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea – name: 2 Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; 975pjh@gmail.com (J.P.); woojin1544@gmail.com (W.K.); dbsrl0218@gmail.com (Y.Y.); sanguni088@gmail.com (S.L.); kmalrpkr13@gmail.com (Y.P.) |
Author_xml | – sequence: 1 givenname: Ahrum orcidid: 0000-0003-2706-1340 surname: Son fullname: Son, Ahrum – sequence: 2 givenname: Jongham orcidid: 0009-0001-5734-3800 surname: Park fullname: Park, Jongham – sequence: 3 givenname: Woojin orcidid: 0009-0001-2592-5486 surname: Kim fullname: Kim, Woojin – sequence: 4 givenname: Yoonki surname: Yoon fullname: Yoon, Yoonki – sequence: 5 givenname: Sangwoon surname: Lee fullname: Lee, Sangwoon – sequence: 6 givenname: Yongho surname: Park fullname: Park, Yongho – sequence: 7 givenname: Hyunsoo orcidid: 0000-0002-8441-3376 surname: Kim fullname: Kim, Hyunsoo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39407556$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1v1DAQhiNURD_gB3BBkbhw2eJx_JGc0Kq0sFIREipny3EmWa-89mInK5Vfj7fbQreAfLA1ft_HM-M5LY588FgUr4GcV1VD3q-DQzM5TLSBhgkqnhUnwCiZVYQ1R4_Ox8VpSitCKDDgL4rjqmFEci5OiuU33AY3jTZ4-9P6ofyyZ-pYfsRkB1_2IZYL78NWj3aL5c0So95gdphyvtk4a_TOnMpxGcM0LMt5HG1vjdUu20Z0zg7oDb4snvfaJXx1v58V368uby4-z66_flpczK9nhgsYZzk_AVh1neyplhx5T3IBjBOCTd2hpp0EwYEajnVDqRQtSGQtF7ymPWBdnRWLPbcLeqU20a51vFVBW3UXCHFQOmdoHCrJeM1qisI0kiFtWiZrlAI0aaHSXZtZH_aszdSusTPox6jdAfTwxtulGsJWATApJeyyeXdPiOHHhGlUa5tMbor2GKakKgBJZNUAydK3T6SrMEWfe7VTCQmENuKPatC5Auv7kB82O6ia18AYqWoms-r8H6q8Olxbk4eotzl-YHjzuNLfJT4MShbIvcDEkFLEXhk73v18JlungKjdSKq_RjI74YnzAf5_zy8lA-Ym |
CitedBy_id | crossref_primary_10_1016_j_arr_2025_102726 crossref_primary_10_1016_j_ijbiomac_2025_142136 crossref_primary_10_1016_j_compbiomed_2025_109833 |
Cites_doi | 10.3390/ijms25158320 10.5936/csbj.201209008 10.1093/bib/bbaa150 10.1186/s12911-024-02582-4 10.1038/s41467-023-38039-x 10.3390/ijms19123899 10.1002/cbic.202300754 10.3390/ijms11083016 10.1186/s12915-023-01791-z 10.3389/fbioe.2022.870083 10.3390/molecules29040832 10.1038/s41587-022-01432-w 10.1038/s41591-023-02483-5 10.1021/acs.jctc.4c00253 10.1021/acs.jpcb.4c01466 10.1186/s12864-024-10400-4 10.1038/s41580-024-00718-y 10.2174/0929867330666230602143700 10.1038/s41586-024-07487-w 10.1038/s41467-023-44528-w 10.3390/ijms131012428 10.1016/j.addr.2012.09.039 10.1038/s41467-024-47613-w 10.3389/fmicb.2017.02012 10.1038/s41467-021-23303-9 10.1002/prot.26398 10.1093/bioinformatics/btac353 10.1016/j.sbi.2022.102334 10.1093/bib/bbad289 10.3389/fmolb.2020.00136 10.1038/s41467-024-46574-4 10.1021/jacs.3c10941 10.1038/s43586-021-00044-z 10.1101/2024.04.11.589149 10.1021/acsphyschemau.4c00004 10.3390/ijms20184574 10.1186/s40537-021-00444-8 10.1186/1471-2105-4-16 10.1016/j.compbiomed.2024.108339 10.2196/47049 10.1021/acs.jctc.3c00254 10.1016/j.sbi.2022.102367 10.3389/fphar.2022.920747 10.1038/s41586-023-05905-z 10.1007/978-1-4939-7811-3_5 10.1038/s41586-023-06415-8 10.1021/acscentsci.3c00572 10.1186/s12859-023-05246-8 10.1007/s12551-022-01032-7 10.1038/s41467-021-27241-4 10.1017/qrd.2022.16 10.7554/eLife.81850 10.1038/s41586-023-05993-x 10.1016/j.compbiomed.2023.107068 10.1093/bioinformatics/btab253 10.1080/19420862.2024.2362775 10.1515/cclm-2023-1136 10.3390/bioengineering11050480 10.1016/j.patter.2020.100142 10.1093/nar/gkx285 10.1016/j.bbagen.2014.10.019 10.1021/acsomega.2c06653 10.1016/j.patter.2023.100830 10.1063/5.0022135 10.3390/biom12040546 10.3389/fmolb.2021.643752 10.1038/s41586-021-03258-z 10.1038/s41467-024-49798-6 10.3390/molecules28135169 10.3390/app14062433 10.1007/978-1-62703-017-5_20 10.1039/D3DD00216K 10.1016/j.drudis.2022.03.012 10.3389/fbioe.2023.1138596 10.3390/ijms22041676 10.3390/bios11090336 10.1002/wcms.1620 10.3389/fimmu.2022.858057 10.1016/j.ijhcs.2022.102792 10.3389/fbioe.2021.673005 10.1016/j.csbj.2024.05.002 10.1093/sysbio/syad036 10.1038/s42003-023-05610-7 10.3390/s24175513 10.1186/s12859-021-04540-7 10.1021/acsomega.2c07619 10.1049/enb2.12028 10.1021/acs.chemrev.2c00910 10.1016/j.chembiol.2017.06.013 10.1021/acs.jpcb.3c04843 10.3389/fsybi.2023.1255472 10.1038/s41598-023-47496-9 10.1093/protein/gzac001 10.1016/j.csbj.2023.04.027 10.1038/s41598-021-04590-0 10.1007/s43681-024-00493-8 10.1016/j.sbi.2022.102379 10.1002/ange.202309305 10.1007/s11042-024-18767-y 10.1016/j.csbj.2020.09.020 10.1038/s41467-021-21879-w 10.1093/bioinformatics/bts628 10.1016/j.sbi.2024.102814 10.1093/nar/gkad1131 10.1021/acs.jctc.2c01018 10.1093/nar/gkad356 10.1073/pnas.2307371120 10.3390/life14020233 10.1016/j.sbi.2021.11.008 10.1038/s41467-024-48198-0 10.1007/s10867-021-09593-6 10.1007/s40259-023-00641-2 10.1038/s41467-024-50698-y 10.1016/j.bbagen.2023.130534 10.1007/s11033-024-09332-9 10.1021/acs.jctc.3c00602 10.1021/acs.jcim.1c01361 10.1021/acs.jcim.3c00557 10.1039/D4CS00196F 10.1007/s12652-022-03868-z 10.3390/a17030104 10.1007/s11431-022-2133-1 10.1007/978-1-0716-3195-9 10.1186/s13321-024-00857-6 10.3390/technologies11020040 10.1038/s42004-022-00653-z 10.1039/D3SC05281H 10.1093/bib/bbae042 10.3389/fbinf.2023.1120370 10.1038/s41467-022-28865-w 10.1016/j.sbi.2023.102548 10.1021/acscatal.3c03417 10.1016/j.jbc.2021.100558 10.1038/s41467-024-46203-0 10.7554/eLife.82593 10.1093/bib/bbad425 10.3390/jpm14050443 10.1016/j.cels.2023.10.006 10.1021/acs.jctc.1c01214 10.1093/nar/gkad348 10.1016/j.celrep.2015.12.015 10.1146/annurev-biophys-102622-084607 10.1146/annurev-biophys-111622-091140 10.1016/j.mtbio.2023.100580 10.1016/j.trechm.2022.02.004 10.1038/s44271-024-00055-y 10.3390/molecules28010175 10.1016/j.heliyon.2023.e17575 10.1093/jamia/ocae114 10.3390/ijms21030847 10.1371/journal.pcbi.1010214 10.1016/j.jbc.2022.102435 10.1021/acscatal.3c02746 10.3389/fchem.2020.00093 10.1038/s41598-021-83626-x 10.1016/j.csbj.2023.11.056 10.1016/j.sbi.2024.102870 10.1002/pro.4861 10.1021/ct3000316 10.3390/molecules27144568 10.3390/synbio1030013 10.1055/s-0042-1742516 10.1021/acs.jpcb.2c01198 10.3390/biom11101416 10.1007/s10462-024-10731-4 10.1145/3422622 10.1016/j.csbj.2023.05.003 10.1002/biot.202300554 10.1021/acs.jcim.4c00247 10.1016/j.compbiomed.2023.107660 10.1016/j.sbi.2022.102517 10.1016/j.sbi.2024.102829 10.1016/j.neuron.2018.08.011 10.3390/s21041109 10.1039/D3RA06375E 10.1021/acs.jcim.3c00618 10.1186/s12859-023-05425-7 10.1016/j.cell.2023.12.028 10.1093/bib/bbx030 10.1007/978-1-4939-1465-4_3 10.1016/j.ymben.2022.09.001 10.1016/bs.mie.2020.05.005 10.1016/j.biotechadv.2024.108376 10.1038/s41598-019-41594-3 10.1016/j.sbi.2019.01.013 10.1016/j.tibs.2021.08.008 10.1038/s41467-023-38328-5 10.1038/s41467-023-41512-2 10.1039/D1CC04635G 10.1093/bib/bbz095 10.1042/BST20160155 10.3390/ph15050646 10.1016/j.nbt.2023.02.001 10.1080/00268976.2020.1788189 10.1021/acs.jctc.0c01343 10.1186/s13015-023-00247-x 10.1145/1862648.1862653 10.1016/j.bpj.2023.04.007 10.1021/acs.jcim.4c00704 10.1038/s41598-024-58122-7 10.1007/s00284-024-03750-5 10.1016/j.tips.2022.12.005 10.1016/j.envres.2023.117427 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/molecules29194626 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Engineering Biology |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_7458482e6c974e29b478e761a0b13adb PMC11477718 A814403847 39407556 10_3390_molecules29194626 |
Genre | Journal Article Review |
GeographicLocations | South Korea |
GeographicLocations_xml | – name: South Korea |
GrantInformation_xml | – fundername: Korea Basic Science Institute (National research Facilities and Equipment Center) grantid: RS-2024-00402298 – fundername: National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) grantid: RS-2023-00209456 – fundername: by Institute of Information & communications Technology Planning & Evaluation (IITP) grantid: RS-2022-00155857 – fundername: Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Korean government (MSIT) grantid: RS-2024-00402298 – fundername: Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) grantid: RS-2022-00155857 – fundername: National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) grantid: RS-2023-00209456 |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF HCIFZ KB. M7P M~E NPM PDBOC PMFND 7XB 8FK AZQEC COVID DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 ESTFP PUEGO 5PM |
ID | FETCH-LOGICAL-c561t-41561e3dd7f2a75e5f03044500e98dea2d716512c5e892276b17e4b56582f1e83 |
IEDL.DBID | DOA |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:27:53 EDT 2025 Thu Aug 21 18:31:31 EDT 2025 Sun Sep 28 08:18:01 EDT 2025 Sat Jul 26 00:43:37 EDT 2025 Tue Jun 17 22:03:33 EDT 2025 Tue Jun 10 21:04:30 EDT 2025 Wed Feb 19 02:06:50 EST 2025 Tue Jul 01 04:00:03 EDT 2025 Thu Apr 24 22:56:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | computational biology synthetic biology protein engineering de novo protein design molecular design artificial intelligence therapeutic proteins |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c561t-41561e3dd7f2a75e5f03044500e98dea2d716512c5e892276b17e4b56582f1e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2706-1340 0009-0001-5734-3800 0009-0001-2592-5486 0000-0002-8441-3376 |
OpenAccessLink | https://doaj.org/article/7458482e6c974e29b478e761a0b13adb |
PMID | 39407556 |
PQID | 3116710296 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7458482e6c974e29b478e761a0b13adb pubmedcentral_primary_oai_pubmedcentral_nih_gov_11477718 proquest_miscellaneous_3117073910 proquest_journals_3116710296 gale_infotracmisc_A814403847 gale_infotracacademiconefile_A814403847 pubmed_primary_39407556 crossref_citationtrail_10_3390_molecules29194626 crossref_primary_10_3390_molecules29194626 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_137 ref_136 ref_92 ref_139 Goudy (ref_84) 2023; 120 ref_90 Shi (ref_132) 2023; 51 Yamagata (ref_208) 2023; 1 Rizzi (ref_109) 2023; 19 ref_131 ref_133 Gligorijevic (ref_9) 2021; 12 ref_96 ref_135 Sidhom (ref_189) 2021; 12 Alzubaidi (ref_8) 2021; 8 ref_127 Vanella (ref_89) 2022; 58 ref_120 ref_122 ref_124 Abramson (ref_57) 2024; 630 ref_123 Chen (ref_166) 2013; 65 Lin (ref_22) 2022; 62 Kafri (ref_39) 2016; 14 ref_159 Gainza (ref_149) 2023; 617 Bernardi (ref_91) 2015; 1850 Wang (ref_34) 2023; 66 ref_150 ref_78 Bell (ref_181) 2021; 1 ref_76 Han (ref_117) 2020; 118 ref_75 ref_154 ref_74 ref_156 Kohyama (ref_205) 2024; 15 Qi (ref_93) 2018; 1777 Jung (ref_113) 2024; 3 ref_160 Ebrahimi (ref_162) 2023; 14 Ingolfsson (ref_192) 2023; 19 Hossack (ref_71) 2023; 13 ref_83 ref_82 MacCallum (ref_100) 2023; 122 Tsuchiya (ref_130) 2022; 14 Vymetal (ref_164) 2022; 90 Pham (ref_179) 2024; 23 ref_140 Huang (ref_121) 2010; 11 McLure (ref_85) 2022; 4 ref_88 Doerr (ref_110) 2021; 17 ref_144 Xue (ref_126) 2017; 18 Yeh (ref_175) 2021; 591 Gao (ref_10) 2020; 1 Milanetti (ref_148) 2020; 18 Kargl (ref_201) 2022; 31 Kucera (ref_23) 2022; 38 Bennett (ref_146) 2023; 14 Kortemme (ref_147) 2024; 187 Mustali (ref_116) 2023; 13 Pinto (ref_72) 2022; 47 Wang (ref_32) 2023; 29 Perdih (ref_118) 2024; 57 Kapli (ref_66) 2023; 72 ref_203 ref_204 ref_207 Jones (ref_107) 2022; 18 Qiu (ref_183) 2024; 240 Kaczmarski (ref_174) 2019; 57 Raghavan (ref_58) 2023; 63 Zhang (ref_77) 2024; 52 Powers (ref_134) 2023; 9 Leary (ref_191) 2024; 15 Sadybekov (ref_6) 2023; 616 Tang (ref_73) 2024; 64 Bryant (ref_128) 2022; 13 Huang (ref_119) 2018; 19 Musa (ref_51) 2023; 14 Ding (ref_81) 2024; 15 Kubar (ref_61) 2023; 52 Ferruz (ref_168) 2021; 37 Lehtonen (ref_138) 2024; 16 Lopes (ref_196) 2015; 1215 Bamezai (ref_197) 2023; 7 Carobene (ref_200) 2024; 62 Marrink (ref_97) 2022; 13 ref_105 Blumer (ref_94) 2024; 15 Kim (ref_45) 2024; 31 Holzinger (ref_202) 2023; 74 Leioatts (ref_103) 2012; 8 Madsen (ref_172) 2024; 23 Khakzad (ref_37) 2023; 14 ref_102 Kim (ref_171) 2023; 44 ref_101 Zhou (ref_35) 2024; 15 Sumida (ref_157) 2024; 146 Pelaez (ref_111) 2024; 20 Ni (ref_158) 2022; 27 Watson (ref_145) 2023; 620 Kulikova (ref_13) 2021; 47 ref_14 ref_12 ref_11 Malinverno (ref_46) 2023; 4 Kim (ref_69) 2022; 74 Orsi (ref_87) 2024; 15 ref_19 Musil (ref_153) 2017; 45 ref_18 ref_17 ref_16 ref_15 Thaler (ref_112) 2021; 12 Gantz (ref_80) 2023; 123 Atz (ref_26) 2024; 15 Dietrich (ref_31) 2017; 24 Periole (ref_99) 2013; 924 ref_21 Strokach (ref_24) 2022; 72 Kleiman (ref_95) 2023; 127 Kaptan (ref_115) 2022; 7 ref_28 Chiu (ref_106) 2010; 3 Yin (ref_188) 2023; 51 Zhang (ref_29) 2023; 8 Turon (ref_141) 2023; 14 Siedhoff (ref_79) 2020; 643 Derat (ref_3) 2022; 126 Illig (ref_42) 2024; 64 Shao (ref_86) 2023; 63 Gonzalez (ref_155) 2022; 35 Dikmen (ref_52) 2022; 162 Yang (ref_4) 2023; 19 Radley (ref_182) 2023; 135 Held (ref_25) 2024; 2 ref_56 ref_55 ref_54 ref_177 Yue (ref_206) 2023; 21 ref_176 Giese (ref_62) 2024; 128 ref_178 ref_59 Qureshi (ref_142) 2023; 9 Stone (ref_104) 2016; 9945 ref_60 ref_169 Duignan (ref_114) 2024; 4 ref_68 ref_161 Goodfellow (ref_20) 2020; 63 ref_67 ref_163 ref_65 ref_64 ref_165 ref_63 ref_167 Derry (ref_41) 2022; 27 Markus (ref_180) 2023; 13 Listov (ref_38) 2024; 25 Xie (ref_70) 2023; 12 ref_33 ref_199 Harris (ref_187) 2024; 38 ref_30 Norman (ref_170) 2020; 21 Wodak (ref_53) 2023; 52 MacDonald (ref_143) 2016; 44 Blaabjerg (ref_152) 2023; 12 Chen (ref_185) 2023; 21 Kamal (ref_125) 2023; 8 Hollingsworth (ref_108) 2018; 99 Hutchinson (ref_173) 2024; 16 Khlaif (ref_50) 2023; 9 ref_47 ref_184 Rossi (ref_129) 2012; 28 Chowdhury (ref_36) 2022; 40 ref_186 ref_44 ref_43 Kjolbye (ref_98) 2022; 3 ref_40 ref_1 Barrozo (ref_198) 2012; 13 Kim (ref_27) 2024; 15 Zheng (ref_151) 2024; 33 ref_190 ref_49 ref_193 ref_48 Kamenik (ref_195) 2020; 153 Poleto (ref_194) 2022; 5 Xu (ref_2) 2024; 31 ref_5 ref_7 |
References_xml | – ident: ref_76 doi: 10.3390/ijms25158320 – ident: ref_199 doi: 10.5936/csbj.201209008 – ident: ref_1 doi: 10.1093/bib/bbaa150 – ident: ref_48 doi: 10.1186/s12911-024-02582-4 – volume: 14 start-page: 2411 year: 2023 ident: ref_162 article-title: Engineering protein-based therapeutics through structural and chemical design publication-title: Nat. Commun. doi: 10.1038/s41467-023-38039-x – ident: ref_101 doi: 10.3390/ijms19123899 – ident: ref_40 doi: 10.1002/cbic.202300754 – volume: 11 start-page: 3016 year: 2010 ident: ref_121 article-title: Advances and challenges in protein-ligand docking publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms11083016 – ident: ref_105 doi: 10.1186/s12915-023-01791-z – ident: ref_184 doi: 10.3389/fbioe.2022.870083 – ident: ref_54 doi: 10.3390/molecules29040832 – volume: 40 start-page: 1617 year: 2022 ident: ref_36 article-title: Single-sequence protein structure prediction using a language model and deep learning publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01432-w – volume: 29 start-page: 2007 year: 2023 ident: ref_32 article-title: Deep-learning-enabled protein-protein interaction analysis for prediction of SARS-CoV-2 infectivity and variant evolution publication-title: Nat. Med. doi: 10.1038/s41591-023-02483-5 – volume: 20 start-page: 4076 year: 2024 ident: ref_111 article-title: TorchMD-Net 2.0: Fast Neural Network Potentials for Molecular Simulations publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.4c00253 – volume: 128 start-page: 6257 year: 2024 ident: ref_62 article-title: Software Infrastructure for Next-Generation QM/MM-DeltaMLP Force Fields publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.4c01466 – ident: ref_18 doi: 10.1186/s12864-024-10400-4 – volume: 25 start-page: 639 year: 2024 ident: ref_38 article-title: Opportunities and challenges in design and optimization of protein function publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-024-00718-y – volume: 31 start-page: 2841 year: 2024 ident: ref_2 article-title: Computational Protein Design—Where it goes? publication-title: Curr. Med. Chem. doi: 10.2174/0929867330666230602143700 – volume: 630 start-page: 493 year: 2024 ident: ref_57 article-title: Accurate structure prediction of biomolecular interactions with AlphaFold 3 publication-title: Nature doi: 10.1038/s41586-024-07487-w – volume: 15 start-page: 240 year: 2024 ident: ref_94 article-title: Combining stochastic resetting with Metadynamics to speed-up molecular dynamics simulations publication-title: Nat. Commun. doi: 10.1038/s41467-023-44528-w – volume: 13 start-page: 12428 year: 2012 ident: ref_198 article-title: Computational protein engineering: Bridging the gap between rational design and laboratory evolution publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms131012428 – volume: 65 start-page: 1357 year: 2013 ident: ref_166 article-title: Fusion protein linkers: Property, design and functionality publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.09.039 – volume: 15 start-page: 3408 year: 2024 ident: ref_26 article-title: Prospective de novo drug design with deep interactome learning publication-title: Nat. Commun. doi: 10.1038/s41467-024-47613-w – ident: ref_176 doi: 10.3389/fmicb.2017.02012 – volume: 12 start-page: 3168 year: 2021 ident: ref_9 article-title: Structure-based protein function prediction using graph convolutional networks publication-title: Nat. Commun. doi: 10.1038/s41467-021-23303-9 – volume: 90 start-page: 2067 year: 2022 ident: ref_164 article-title: Fusion of two unrelated protein domains in a chimera protein and its 3D prediction: Justification of the x-ray reference structures as a prediction benchmark publication-title: Proteins doi: 10.1002/prot.26398 – volume: 38 start-page: 3454 year: 2022 ident: ref_23 article-title: Conditional generative modeling for de novo protein design with hierarchical functions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac353 – ident: ref_161 doi: 10.1016/j.sbi.2022.102334 – ident: ref_193 doi: 10.1093/bib/bbad289 – ident: ref_159 doi: 10.3389/fmolb.2020.00136 – volume: 15 start-page: 3447 year: 2024 ident: ref_87 article-title: Automated in vivo enzyme engineering accelerates biocatalyst optimization publication-title: Nat. Commun. doi: 10.1038/s41467-024-46574-4 – volume: 146 start-page: 2054 year: 2024 ident: ref_157 article-title: Improving Protein Expression, Stability, and Function with ProteinMPNN publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c10941 – volume: 1 start-page: 46 year: 2021 ident: ref_181 article-title: Biocatalysis publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-021-00044-z – ident: ref_150 doi: 10.1101/2024.04.11.589149 – volume: 4 start-page: 232 year: 2024 ident: ref_114 article-title: The Potential of Neural Network Potentials publication-title: ACS Phys. Chem. Au doi: 10.1021/acsphyschemau.4c00004 – ident: ref_122 doi: 10.3390/ijms20184574 – volume: 8 start-page: 53 year: 2021 ident: ref_8 article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions publication-title: J. Big Data doi: 10.1186/s40537-021-00444-8 – ident: ref_165 doi: 10.1186/1471-2105-4-16 – ident: ref_12 doi: 10.1016/j.compbiomed.2024.108339 – volume: 9 start-page: e47049 year: 2023 ident: ref_50 article-title: The Potential and Concerns of Using AI in Scientific Research: ChatGPT Performance Evaluation publication-title: JMIR Med. Educ. doi: 10.2196/47049 – volume: 19 start-page: 5731 year: 2023 ident: ref_109 article-title: OneOPES, a Combined Enhanced Sampling Method to Rule Them All publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.3c00254 – ident: ref_5 doi: 10.1016/j.sbi.2022.102367 – ident: ref_135 doi: 10.3389/fphar.2022.920747 – volume: 616 start-page: 673 year: 2023 ident: ref_6 article-title: Computational approaches streamlining drug discovery publication-title: Nature doi: 10.1038/s41586-023-05905-z – volume: 18 start-page: 458 year: 2017 ident: ref_126 article-title: Template-based protein-protein docking exploiting pairwise interfacial residue restraints publication-title: Brief. Bioinform. – volume: 1777 start-page: 101 year: 2018 ident: ref_93 article-title: Replica Exchange Molecular Dynamics: A Practical Application Protocol with Solutions to Common Problems and a Peptide Aggregation and Self-Assembly Example publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7811-3_5 – volume: 620 start-page: 1089 year: 2023 ident: ref_145 article-title: De novo design of protein structure and function with RFdiffusion publication-title: Nature doi: 10.1038/s41586-023-06415-8 – volume: 9 start-page: 2257 year: 2023 ident: ref_134 article-title: Geometric Deep Learning for Structure-Based Ligand Design publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.3c00572 – ident: ref_17 doi: 10.1186/s12859-023-05246-8 – volume: 14 start-page: 1341 year: 2022 ident: ref_130 article-title: Protein-protein interaction prediction methods: From docking-based to AI-based approaches publication-title: Biophys. Rev. doi: 10.1007/s12551-022-01032-7 – volume: 12 start-page: 6884 year: 2021 ident: ref_112 article-title: Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting publication-title: Nat. Commun. doi: 10.1038/s41467-021-27241-4 – volume: 3 start-page: e19 year: 2022 ident: ref_98 article-title: Towards design of drugs and delivery systems with the Martini coarse-grained model publication-title: QRB Discov. doi: 10.1017/qrd.2022.16 – volume: 12 start-page: e81850 year: 2023 ident: ref_70 article-title: Coevolution-based prediction of key allosteric residues for protein function regulation publication-title: Elife doi: 10.7554/eLife.81850 – volume: 617 start-page: 176 year: 2023 ident: ref_149 article-title: De novo design of protein interactions with learned surface fingerprints publication-title: Nature doi: 10.1038/s41586-023-05993-x – ident: ref_102 doi: 10.1016/j.compbiomed.2023.107068 – volume: 37 start-page: 3182 year: 2021 ident: ref_168 article-title: Protlego: A Python package for the analysis and design of chimeric proteins publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab253 – volume: 16 start-page: 2362775 year: 2024 ident: ref_173 article-title: Toward enhancement of antibody thermostability and affinity by computational design in the absence of antigen publication-title: MAbs doi: 10.1080/19420862.2024.2362775 – volume: 62 start-page: 835 year: 2024 ident: ref_200 article-title: Rising adoption of artificial intelligence in scientific publishing: Evaluating the role, risks, and ethical implications in paper drafting and review process publication-title: Clin. Chem. Lab. Med. doi: 10.1515/cclm-2023-1136 – ident: ref_65 doi: 10.3390/bioengineering11050480 – volume: 1 start-page: 100142 year: 2020 ident: ref_10 article-title: Deep Learning in Protein Structural Modeling and Design publication-title: Patterns doi: 10.1016/j.patter.2020.100142 – volume: 45 start-page: W393 year: 2017 ident: ref_153 article-title: FireProt: Web server for automated design of thermostable proteins publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx285 – volume: 1850 start-page: 872 year: 2015 ident: ref_91 article-title: Enhanced sampling techniques in molecular dynamics simulations of biological systems publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2014.10.019 – volume: 8 start-page: 5464 year: 2023 ident: ref_29 article-title: Universal Approach to De Novo Drug Design for Target Proteins Using Deep Reinforcement Learning publication-title: ACS Omega doi: 10.1021/acsomega.2c06653 – volume: 4 start-page: 100830 year: 2023 ident: ref_46 article-title: A historical perspective of biomedical explainable AI research publication-title: Patterns doi: 10.1016/j.patter.2023.100830 – volume: 153 start-page: 185102 year: 2020 ident: ref_195 article-title: Polarizable and non-polarizable force fields: Protein folding, unfolding, and misfolding publication-title: J. Chem. Phys. doi: 10.1063/5.0022135 – ident: ref_68 doi: 10.3390/biom12040546 – ident: ref_56 doi: 10.3389/fmolb.2021.643752 – volume: 591 start-page: 482 year: 2021 ident: ref_175 article-title: De novo design of modular and tunable protein biosensors publication-title: Nature doi: 10.1038/s41586-021-03258-z – volume: 15 start-page: 5566 year: 2024 ident: ref_35 article-title: Enhancing efficiency of protein language models with minimal wet-lab data through few-shot learning publication-title: Nat. Commun. doi: 10.1038/s41467-024-49798-6 – ident: ref_44 doi: 10.3390/molecules28135169 – ident: ref_64 doi: 10.3390/app14062433 – volume: 924 start-page: 533 year: 2013 ident: ref_99 article-title: The Martini coarse-grained force field publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-017-5_20 – volume: 3 start-page: 514 year: 2024 ident: ref_113 article-title: Active learning of neural network potentials for rare events publication-title: Digit. Discov. doi: 10.1039/D3DD00216K – volume: 27 start-page: 2226 year: 2022 ident: ref_158 article-title: Computational elucidation of allosteric communication in proteins for allosteric drug design publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2022.03.012 – ident: ref_186 doi: 10.3389/fbioe.2023.1138596 – ident: ref_133 doi: 10.3390/ijms22041676 – ident: ref_177 doi: 10.3390/bios11090336 – volume: 13 start-page: e1620 year: 2022 ident: ref_97 article-title: Two decades of Martini: Better beads, broader scope publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.1620 – ident: ref_190 doi: 10.3389/fimmu.2022.858057 – volume: 162 start-page: 102792 year: 2022 ident: ref_52 article-title: The effects of domain knowledge on trust in explainable AI and task performance: A case of peer-to-peer lending publication-title: Int. J. Hum.-Comput. Stud. doi: 10.1016/j.ijhcs.2022.102792 – ident: ref_88 doi: 10.3389/fbioe.2021.673005 – volume: 23 start-page: 2211 year: 2024 ident: ref_179 article-title: Computation-guided transcription factor biosensor specificity engineering for adipic acid detection publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2024.05.002 – volume: 72 start-page: 1119 year: 2023 ident: ref_66 article-title: DNA Sequences Are as Useful as Protein Sequences for Inferring Deep Phylogenies publication-title: Syst. Biol. doi: 10.1093/sysbio/syad036 – ident: ref_167 doi: 10.1038/s42003-023-05610-7 – ident: ref_82 – ident: ref_7 doi: 10.3390/s24175513 – ident: ref_11 doi: 10.1186/s12859-021-04540-7 – volume: 8 start-page: 5850 year: 2023 ident: ref_125 article-title: MetaDOCK: A Combinatorial Molecular Docking Approach publication-title: ACS Omega doi: 10.1021/acsomega.2c07619 – volume: 7 start-page: 29 year: 2023 ident: ref_197 article-title: Protein engineering in the computational age: An open source framework for exploring mutational landscapes in silico publication-title: Eng. Biol. doi: 10.1049/enb2.12028 – volume: 123 start-page: 5571 year: 2023 ident: ref_80 article-title: Ultrahigh-Throughput Enzyme Engineering and Discovery in In Vitro Compartments publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00910 – volume: 24 start-page: 958 year: 2017 ident: ref_31 article-title: Cell Permeable Stapled Peptide Inhibitor of Wnt Signaling that Targets beta-Catenin Protein-Protein Interactions publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2017.06.013 – volume: 127 start-page: 10669 year: 2023 ident: ref_95 article-title: Adaptive Sampling Methods for Molecular Dynamics in the Era of Machine Learning publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.3c04843 – ident: ref_207 doi: 10.3389/fsybi.2023.1255472 – ident: ref_67 doi: 10.1038/s41598-023-47496-9 – volume: 9945 start-page: 188 year: 2016 ident: ref_104 article-title: Early Experiences Porting the NAMD and VMD Molecular Simulation and Analysis Software to GPU-Accelerated OpenPOWER Platforms publication-title: High Perform. Comput. – volume: 35 start-page: gzac001 year: 2022 ident: ref_155 article-title: The stability and dynamics of computationally designed proteins publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/gzac001 – volume: 21 start-page: 2909 year: 2023 ident: ref_185 article-title: Accelerating therapeutic protein design with computational approaches toward the clinical stage publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2023.04.027 – volume: 7 start-page: 2006080 year: 2022 ident: ref_115 article-title: Machine learning in the analysis of biomolecular simulations publication-title: Adv. Phys. X – ident: ref_47 doi: 10.1038/s41598-021-04590-0 – ident: ref_203 doi: 10.1007/s43681-024-00493-8 – ident: ref_78 doi: 10.1016/j.sbi.2022.102379 – volume: 135 start-page: e202309305 year: 2023 ident: ref_182 article-title: Engineering Enzymes for Environmental Sustainability publication-title: Angew. Chem. Weinheim Bergstr. Ger. doi: 10.1002/ange.202309305 – ident: ref_21 doi: 10.1007/s11042-024-18767-y – volume: 18 start-page: 2678 year: 2020 ident: ref_148 article-title: A novel strategy for molecular interfaces optimization: The case of Ferritin-Transferrin receptor interaction publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2020.09.020 – volume: 12 start-page: 1605 year: 2021 ident: ref_189 article-title: DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires publication-title: Nat. Commun. doi: 10.1038/s41467-021-21879-w – volume: 28 start-page: 3282 year: 2012 ident: ref_129 article-title: A method for integrative structure determination of protein-protein complexes publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts628 – ident: ref_59 doi: 10.1016/j.sbi.2024.102814 – volume: 52 start-page: e10 year: 2024 ident: ref_77 article-title: HybridDBRpred: Improved sequence-based prediction of DNA-binding amino acids using annotations from structured complexes and disordered proteins publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad1131 – volume: 19 start-page: 2658 year: 2023 ident: ref_192 article-title: Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.2c01018 – volume: 51 start-page: W569 year: 2023 ident: ref_188 article-title: TCRmodel2: High-resolution modeling of T cell receptor recognition using deep learning publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad356 – volume: 120 start-page: e2307371120 year: 2023 ident: ref_84 article-title: In silico evolution of autoinhibitory domains for a PD-L1 antagonist using deep learning models publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2307371120 – ident: ref_140 doi: 10.3390/life14020233 – volume: 72 start-page: 226 year: 2022 ident: ref_24 article-title: Deep generative modeling for protein design publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2021.11.008 – volume: 15 start-page: 4271 year: 2024 ident: ref_191 article-title: Designing meaningful continuous representations of T cell receptor sequences with deep generative models publication-title: Nat. Commun. doi: 10.1038/s41467-024-48198-0 – volume: 47 start-page: 435 year: 2021 ident: ref_13 article-title: Learning the local landscape of protein structures with convolutional neural networks publication-title: J. Biol. Phys. doi: 10.1007/s10867-021-09593-6 – volume: 38 start-page: 205 year: 2024 ident: ref_187 article-title: Reducing Immunogenicity by Design: Approaches to Minimize Immunogenicity of Monoclonal Antibodies publication-title: BioDrugs doi: 10.1007/s40259-023-00641-2 – volume: 15 start-page: 6392 year: 2024 ident: ref_81 article-title: Machine learning-guided co-optimization of fitness and diversity facilitates combinatorial library design in enzyme engineering publication-title: Nat. Commun. doi: 10.1038/s41467-024-50698-y – ident: ref_96 doi: 10.1016/j.bbagen.2023.130534 – ident: ref_169 doi: 10.1007/s11033-024-09332-9 – volume: 19 start-page: 7459 year: 2023 ident: ref_4 article-title: Mutexa: A Computational Ecosystem for Intelligent Protein Engineering publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.3c00602 – volume: 62 start-page: 761 year: 2022 ident: ref_22 article-title: De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.1c01361 – volume: 63 start-page: 3647 year: 2023 ident: ref_58 article-title: Drug Design in the Exascale Era: A Perspective from Massively Parallel QM/MM Simulations publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.3c00557 – ident: ref_28 doi: 10.1039/D4CS00196F – volume: 14 start-page: 9677 year: 2023 ident: ref_51 article-title: A systematic review and Meta-data analysis on the applications of Deep Learning in Electrocardiogram publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-022-03868-z – ident: ref_15 doi: 10.3390/a17030104 – volume: 66 start-page: 920 year: 2023 ident: ref_34 article-title: Recent advances of few-shot learning methods and applications publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-022-2133-1 – ident: ref_19 doi: 10.1007/978-1-0716-3195-9 – volume: 16 start-page: 97 year: 2024 ident: ref_138 article-title: Building shape-focused pharmacophore models for effective docking screening publication-title: J. Cheminform doi: 10.1186/s13321-024-00857-6 – ident: ref_33 doi: 10.3390/technologies11020040 – volume: 5 start-page: 38 year: 2022 ident: ref_194 article-title: Integration of Experimental Data and Use of Automated Fitting Methods in Developing Protein Force Fields publication-title: Commun. Chem. doi: 10.1038/s42004-022-00653-z – volume: 15 start-page: 7908 year: 2024 ident: ref_27 article-title: Materials discovery with extreme properties via reinforcement learning-guided combinatorial chemistry publication-title: Chem. Sci. doi: 10.1039/D3SC05281H – ident: ref_14 doi: 10.1093/bib/bbae042 – ident: ref_55 doi: 10.3389/fbinf.2023.1120370 – volume: 13 start-page: 1265 year: 2022 ident: ref_128 article-title: Improved prediction of protein-protein interactions using AlphaFold2 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28865-w – ident: ref_74 doi: 10.1016/j.sbi.2023.102548 – volume: 13 start-page: 14454 year: 2023 ident: ref_180 article-title: Accelerating Biocatalysis Discovery with Machine Learning: A Paradigm Shift in Enzyme Engineering, Discovery, and Design publication-title: ACS Catal. doi: 10.1021/acscatal.3c03417 – ident: ref_144 doi: 10.1016/j.jbc.2021.100558 – volume: 15 start-page: 2010 year: 2024 ident: ref_205 article-title: Machine learning-aided design and screening of an emergent protein function in synthetic cells publication-title: Nat. Commun. doi: 10.1038/s41467-024-46203-0 – volume: 12 start-page: e82593 year: 2023 ident: ref_152 article-title: Rapid protein stability prediction using deep learning representations publication-title: Elife doi: 10.7554/eLife.82593 – ident: ref_154 doi: 10.1093/bib/bbad425 – ident: ref_204 doi: 10.3390/jpm14050443 – volume: 14 start-page: 925 year: 2023 ident: ref_37 article-title: A new age in protein design empowered by deep learning publication-title: Cell Syst. doi: 10.1016/j.cels.2023.10.006 – volume: 18 start-page: 4047 year: 2022 ident: ref_107 article-title: Accelerators for Classical Molecular Dynamics Simulations of Biomolecules publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.1c01214 – volume: 51 start-page: W25 year: 2023 ident: ref_132 article-title: ACFIS 2.0: An improved web-server for fragment-based drug discovery via a dynamic screening strategy publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad348 – volume: 14 start-page: 22 year: 2016 ident: ref_39 article-title: The Cost of Protein Production publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.12.015 – volume: 52 start-page: 183 year: 2023 ident: ref_53 article-title: Critical Assessment of Methods for Predicting the 3D Structure of Proteins and Protein Complexes publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-102622-084607 – volume: 52 start-page: 525 year: 2023 ident: ref_61 article-title: Hybrid Quantum Mechanical/Molecular Mechanical Methods For Studying Energy Transduction in Biomolecular Machines publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-111622-091140 – ident: ref_163 doi: 10.1016/j.mtbio.2023.100580 – volume: 4 start-page: 378 year: 2022 ident: ref_85 article-title: High-throughput directed evolution: A golden era for protein science publication-title: Trends Chem. doi: 10.1016/j.trechm.2022.02.004 – volume: 2 start-page: 8 year: 2024 ident: ref_25 article-title: Reinforcement learning of adaptive control strategies publication-title: Commun. Psychol. doi: 10.1038/s44271-024-00055-y – ident: ref_124 doi: 10.3390/molecules28010175 – volume: 9 start-page: e17575 year: 2023 ident: ref_142 article-title: AI in drug discovery and its clinical relevance publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e17575 – volume: 31 start-page: 1540 year: 2024 ident: ref_45 article-title: Acute myocardial infarction prognosis prediction with reliable and interpretable artificial intelligence system publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocae114 – ident: ref_160 doi: 10.3390/ijms21030847 – ident: ref_16 doi: 10.1371/journal.pcbi.1010214 – ident: ref_156 doi: 10.1016/j.jbc.2022.102435 – volume: 27 start-page: 10 year: 2022 ident: ref_41 article-title: Training data composition affects performance of protein structure analysis algorithms publication-title: Pac. Symp. Biocomput. – volume: 13 start-page: 12436 year: 2023 ident: ref_71 article-title: Building Enzymes through Design and Evolution publication-title: ACS Catal. doi: 10.1021/acscatal.3c02746 – ident: ref_131 doi: 10.3389/fchem.2020.00093 – ident: ref_136 doi: 10.1038/s41598-021-83626-x – volume: 23 start-page: 199 year: 2024 ident: ref_172 article-title: Structural trends in antibody-antigen binding interfaces: A computational analysis of 1833 experimentally determined 3D structures publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2023.11.056 – ident: ref_60 doi: 10.1016/j.sbi.2024.102870 – volume: 33 start-page: e4861 year: 2024 ident: ref_151 article-title: Assessing computational tools for predicting protein stability changes upon missense mutations using a new dataset publication-title: Protein Sci. doi: 10.1002/pro.4861 – volume: 8 start-page: 2424 year: 2012 ident: ref_103 article-title: Elastic Network Models are Robust to Variations in Formalism publication-title: J. Chem. Theory Comput. doi: 10.1021/ct3000316 – ident: ref_120 doi: 10.3390/molecules27144568 – volume: 1 start-page: 190 year: 2023 ident: ref_208 article-title: SynBio: A Journal for Advancing Solutions to Global Challenges publication-title: SynBio doi: 10.3390/synbio1030013 – volume: 31 start-page: 152 year: 2022 ident: ref_201 article-title: A Literature Review on Ethics for AI in Biomedical Research and Biobanking publication-title: Yearb. Med. Inform. doi: 10.1055/s-0042-1742516 – volume: 126 start-page: 2449 year: 2022 ident: ref_3 article-title: Computational Advances in Protein Engineering and Enzyme Design publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.2c01198 – ident: ref_92 doi: 10.3390/biom11101416 – volume: 57 start-page: 102 year: 2024 ident: ref_118 article-title: Machine learning heralding a new development phase in molecular dynamics simulations publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-10731-4 – volume: 63 start-page: 139 year: 2020 ident: ref_20 article-title: Generative adversarial networks publication-title: Commun. ACM doi: 10.1145/3422622 – volume: 21 start-page: 2899 year: 2023 ident: ref_206 article-title: Advancing synthetic biology through cell-free protein synthesis publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2023.05.003 – ident: ref_43 doi: 10.1002/biot.202300554 – volume: 64 start-page: 1794 year: 2024 ident: ref_73 article-title: Recent Advances in Automated Structure-Based De Novo Drug Design publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.4c00247 – ident: ref_127 doi: 10.1016/j.compbiomed.2023.107660 – ident: ref_75 doi: 10.1016/j.sbi.2022.102517 – ident: ref_83 doi: 10.1016/j.sbi.2024.102829 – volume: 99 start-page: 1129 year: 2018 ident: ref_108 article-title: Molecular Dynamics Simulation for All publication-title: Neuron doi: 10.1016/j.neuron.2018.08.011 – ident: ref_178 doi: 10.3390/s21041109 – volume: 13 start-page: 34249 year: 2023 ident: ref_116 article-title: Unsupervised deep learning for molecular dynamics simulations: A novel analysis of protein-ligand interactions in SARS-CoV-2 M(pro) publication-title: RSC Adv. doi: 10.1039/D3RA06375E – volume: 63 start-page: 5650 year: 2023 ident: ref_86 article-title: EnzyHTP Computational Directed Evolution with Adaptive Resource Allocation publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.3c00618 – ident: ref_30 doi: 10.1186/s12859-023-05425-7 – volume: 187 start-page: 526 year: 2024 ident: ref_147 article-title: De novo protein design-From new structures to programmable functions publication-title: Cell doi: 10.1016/j.cell.2023.12.028 – volume: 19 start-page: 982 year: 2018 ident: ref_119 article-title: Comprehensive assessment of flexible-ligand docking algorithms: Current effectiveness and challenges publication-title: Brief. Bioinform. doi: 10.1093/bib/bbx030 – volume: 1215 start-page: 47 year: 2015 ident: ref_196 article-title: Current status of protein force fields for molecular dynamics simulations publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-1465-4_3 – volume: 74 start-page: 49 year: 2022 ident: ref_69 article-title: Enzyme activity engineering based on sequence co-evolution analysis publication-title: Metab. Eng. doi: 10.1016/j.ymben.2022.09.001 – volume: 643 start-page: 281 year: 2020 ident: ref_79 article-title: Machine learning-assisted enzyme engineering publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2020.05.005 – ident: ref_90 doi: 10.1016/j.biotechadv.2024.108376 – ident: ref_123 doi: 10.1038/s41598-019-41594-3 – volume: 57 start-page: 31 year: 2019 ident: ref_174 article-title: Structural and evolutionary approaches to the design and optimization of fluorescence-based small molecule biosensors publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2019.01.013 – volume: 47 start-page: 375 year: 2022 ident: ref_72 article-title: Exploiting enzyme evolution for computational protein design publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2021.08.008 – volume: 14 start-page: 2625 year: 2023 ident: ref_146 article-title: Improving de novo protein binder design with deep learning publication-title: Nat. Commun. doi: 10.1038/s41467-023-38328-5 – volume: 14 start-page: 5736 year: 2023 ident: ref_141 article-title: First fully-automated AI/ML virtual screening cascade implemented at a drug discovery centre in Africa publication-title: Nat. Commun. doi: 10.1038/s41467-023-41512-2 – volume: 58 start-page: 2455 year: 2022 ident: ref_89 article-title: High-throughput screening, next generation sequencing and machine learning: Advanced methods in enzyme engineering publication-title: Chem. Commun. doi: 10.1039/D1CC04635G – volume: 21 start-page: 1549 year: 2020 ident: ref_170 article-title: Computational approaches to therapeutic antibody design: Established methods and emerging trends publication-title: Brief. Bioinform. doi: 10.1093/bib/bbz095 – volume: 44 start-page: 1523 year: 2016 ident: ref_143 article-title: Computational protein design with backbone plasticity publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20160155 – ident: ref_137 doi: 10.3390/ph15050646 – volume: 74 start-page: 16 year: 2023 ident: ref_202 article-title: AI for life: Trends in artificial intelligence for biotechnology publication-title: N. Biotechnol. doi: 10.1016/j.nbt.2023.02.001 – volume: 118 start-page: e1788189 year: 2020 ident: ref_117 article-title: Trajectory-based machine learning method and its application to molecular dynamics publication-title: Mol. Phys. doi: 10.1080/00268976.2020.1788189 – volume: 17 start-page: 2355 year: 2021 ident: ref_110 article-title: TorchMD: A Deep Learning Framework for Molecular Simulations publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.0c01343 – ident: ref_63 doi: 10.1186/s13015-023-00247-x – volume: 3 start-page: 23 year: 2010 ident: ref_106 article-title: Molecular Dynamics Simulations on High-Performance Reconfigurable Computing Systems publication-title: ACM Trans. Reconfigurable Technol. Syst. doi: 10.1145/1862648.1862653 – volume: 122 start-page: 2864 year: 2023 ident: ref_100 article-title: An implementation of the Martini coarse-grained force field in OpenMM publication-title: Biophys. J. doi: 10.1016/j.bpj.2023.04.007 – volume: 64 start-page: 6350 year: 2024 ident: ref_42 article-title: Evolutionary Probability and Stacked Regressions Enable Data-Driven Protein Engineering with Minimized Experimental Effort publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.4c00704 – ident: ref_139 doi: 10.1038/s41598-024-58122-7 – ident: ref_49 doi: 10.1007/s00284-024-03750-5 – volume: 44 start-page: 175 year: 2023 ident: ref_171 article-title: Computational and artificial intelligence-based methods for antibody development publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2022.12.005 – volume: 240 start-page: 117427 year: 2024 ident: ref_183 article-title: A comprehensive review on enzymatic biodegradation of polyethylene terephthalate publication-title: Environ. Res. doi: 10.1016/j.envres.2023.117427 |
SSID | ssj0021415 |
Score | 2.4654431 |
SecondaryResourceType | review_article |
Snippet | The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4626 |
SubjectTerms | Accuracy Artificial Intelligence Bioinformatics Biology computational biology Computational Biology - methods Computational linguistics de novo protein design Deep learning Drug Design Drug development Engineering Enzymes Health aspects Humans Innovations Language processing Machine Learning Models, Molecular molecular design Natural language interfaces Network topologies Neural networks Optimization techniques Protein binding protein engineering Protein Engineering - methods Protein structure prediction Proteins Proteins - chemistry Review therapeutic proteins |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3_a9UwED90IuoPos9v1SkRBEEoa5K2SX-S5_S5CfMH2WC_lTa5uoH2zb23gf713rXpW8tgvzYJJL1L7nO5y30A3lUKyahLH2uGb6nBPK51lsQEhr3GojFa8wPng-_53lH67Tg7Dhduq5BWOZyJ3UHtl47vyHc0BwzIGhb5x7M_MbNGcXQ1UGjchjtSkSbxS_HF143DJck69ZFMTa79zu-ecBZXqiDXPed6CiNb1JXsv34wjyzTNGtyZIYWj-BhwI9i3gv8MdzCdgZ3e0bJvzO4tzsQuM3gwajW4BM4-YGXQc1O_9EXcTAQ44rPXRaHIPgq9gNJ6iWKw6uXWWI-CnOLQO3TzaGvPyH2R4U9n8LR4svh7l4caBZiR-BpHbMLJ1F7bxpVmQyzhsOlaZYkWFiPlfLkUxEucBnaQimT19JgWhMStKqRaPUz2GqXLb4AUVvnnLLk5DWEVKrUFkjnSepSryQWzkeQDD-8dKEGOVNh_CrJF2EZlddkFMGHzZCzvgDHTZ0_sRQ3Hbl2dvdhef6zDFuxNBwatgpzR74UqqJOjUWTyyqppa58HcF71oGSdzhNzlXhoQItkWtllXPLAXFNZj2C7UlPkq-bNg9aVIaTYVVe6XEEbzfNPJKz3VpcXnR9DEdQZRLB817pNktiJnuTZTTaTtRxsuZpS3t60tUNJ9fXGMIiL2-e1yu4rwi59RmL27C1Pr_A14S81vWbbnv9B_7XL5I priority: 102 providerName: ProQuest |
Title | Revolutionizing Molecular Design for Innovative Therapeutic Applications through Artificial Intelligence |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39407556 https://www.proquest.com/docview/3116710296 https://www.proquest.com/docview/3117073910 https://pubmed.ncbi.nlm.nih.gov/PMC11477718 https://doaj.org/article/7458482e6c974e29b478e761a0b13adb |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: HH5 dateStart: 19970101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: KQ8 dateStart: 19970101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: ABDBF dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals Online customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: DIK dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: GX1 dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: RPM dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3a9NBeSvrtJl1UKBQKJrZkW_Jxk2aTFBJKSGBvxpbGJJA6pdnk0F_fGUve2gTaSy57sCRW0ow07zGjGYBPtUQy6qmLFcO3TGMRNypPYgLDTmHZaqX4gfPxSXF4nn1b5stRqS-OCfPpgf3G7Wh25BmJhSXki7JsMm2QuHedNKmqXcO3L5mxgUwFqpWSXfI-TEWkfueHLzWLN7Ik0l5wJoWRFeqT9d-_kkc2aRovOTJAi014HpCjmPsZv4BH2L2Ep3tDwbZXcHGKd0GRLn-TRRLHQ-lb8bWP0xAEUMVRKIN6h-Ls79srMR85skUo3tP_l88wIY5GqTtfw_li_2zvMA6FFGJL8GgVM0lLUTmnW1nrHPOWHaJZniRYGoe1dMSayPLbHE0ppS6aVGPWENYzsk3RqDew0V13-A5EY6y10hCNawmL1JkpkW6MzGZOplhaF0EybGxlQ5ZxLnZxVRHbYFlU92QRwZf1kJ8-xca_Ou-ytNYdOTt2_4F0pgo6U_1PZyL4zLKu-AzT5GwdniLQEjkbVjU37PJWZLgj2J70JInaafOgLVU4-zeVYtcW4baSJvtx3cwjOZ6tw-vbvo9mH2maRPDWK9d6SVyrXuc5jTYTtZusedrSXV70mcGJ3GpNaOP9Q-zSFjyThOB85OI2bKx-3eIHQmCrZgaP9VLTr1kczODJ7v7J99NZfwD_AF9DM4A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NITR4QFC-AgOMBEJCipbYSWw_IFQ2ppate0Cd1LeQOFc2CdqxdUPjj-Jv5C4fbaJJe9trbEd27uz7Xe58P4C3mUQy6mHhK4ZvkcbEz1Uc-ASGC4V2qpXiC86jg2RwGH2dxJM1-NfcheG0yuZMLA_qYu74H_mW4oABWUObfDr57TNrFEdXGwqNSi328PIPuWxnH4c7JN93Uu5-GW8P_JpVwHeEFRY-eywhqqLQU5npGOMpRwejOAjQmgIzWZALQWbQxWislDrJQ41RTsDHyGmIRtF7b8HtiAfR_tGTlYMX0ruryKlSNtj6VRHc4pm0oY0Srt_Qsn0lRcBVQ9CyhN0szZbZ230A92u8KvqVgj2ENZz14E7FYHnZg43thjCuB_datQ0fwdE3vKjV-vgvPRGjhohX7JRZI4LgshjWpKwXKMarm2Ci3wqri5pKqJxDVe9CDFuFRB_D4Y0I4Amsz-YzfAYiN845acipnBIyyiJjkc6vyEWFDNG6woOg-eCpq2ueM_XGz5R8H5ZRekVGHnxYDjmpCn5c1_kzS3HZkWt1lw_mpz_SeuunmkPRRmLiyHdDafNIG9RJmAV5qLIi9-A960DKJwpNzmX1xQhaItfmSvuGA_CKYIQHm52eJF_XbW60KK1PorN0tW88eLNs5pGcXTfD-XnZR3PENgw8eFop3XJJypLLH8c02nTUsbPmbsvs-KisU06uttaEfZ5fP6_XsDEYj_bT_eHB3gu4Kwk1VtmSm7C-OD3Hl4T6FvmrcqsJ-H7Te_s_6f1qZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIb4eEBQYgQFGAiEhRU3sJI4fECor1crYhNAm9S0kzoVNGu1Yu6Hxp_HXcZePNtGkve01tiOnd777Xe98P4A3qURy6n7uKoZvgcbIzVTouQSGc4Wm0ErxBefdvWj7IPgyCSdr8K-5C8NllY1NLA11PrP8H3lfccKAvKGJ-kVdFvFtOPp48ttlBinOtDZ0GpWK7ODFHwrf5h_GQ5L1WylHn_e3tt2aYcC1hBsWLkcvPqo814VMdYhhwZnCIPQ8NHGOqcwpnCCXaEOMjZQ6ynyNQUYgKJaFj7Gi996Am1oFisvJ9GQV7Pn07iqLqpTx-r8qslucS-ObIOJeDi0_WNIFXHYKLa_YrdhsucDRA7hfY1cxqJTtIazhtAe3KjbLix7c2WrI43pwr9Xn8BEcfsfzWsWP_tITsduQ8ophWUEiCDqLcU3Qeo5if3UrTAxaKXZR0wqVe6h6X4hxq6noYzi4FgE8gfXpbIpPQWSxtVbGFGAWhJLSIDZItiywQS59NDZ3wGt-8MTW_c-ZhuM4oTiIZZRckpED75dLTqrmH1dN_sRSXE7kvt3lg9npz6Q2A4nmtHQsMbIUx6E0WaBj1JGfepmv0jxz4B3rQMLWhTZn0_qSBH0i9-lKBjEn4xVBCgc2OzNJvrY73GhRUlulebI6Qw68Xg7zSq60m-LsrJyjOXvrew5sVEq3_CRlKPwPQ1odd9Sx883dkenRYdmznMJurQkHPbt6X6_gNp3q5Ot4b-c53JUEIKvCyU1YX5ye4QsCgIvsZXnSBPy47qP9H93Lbp8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revolutionizing+Molecular+Design+for+Innovative+Therapeutic+Applications+through+Artificial+Intelligence&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Ahrum+Son&rft.au=Jongham+Park&rft.au=Woojin+Kim&rft.au=Yoonki+Yoon&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.eissn=1420-3049&rft.volume=29&rft.issue=19&rft.spage=4626&rft_id=info:doi/10.3390%2Fmolecules29194626&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7458482e6c974e29b478e761a0b13adb |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |