Revolutionizing Molecular Design for Innovative Therapeutic Applications through Artificial Intelligence

The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computational methods now play a crucial role in enhancing...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 29; no. 19; p. 4626
Main Authors Son, Ahrum, Park, Jongham, Kim, Woojin, Yoon, Yoonki, Lee, Sangwoon, Park, Yongho, Kim, Hyunsoo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.10.2024
MDPI
Subjects
Online AccessGet full text
ISSN1420-3049
1420-3049
DOI10.3390/molecules29194626

Cover

Abstract The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computational methods now play a crucial role in enhancing the stability, activity, and specificity of proteins for diverse applications in biotechnology and medicine. Techniques such as deep learning, reinforcement learning, and transfer learning have dramatically improved protein structure prediction, optimization of binding affinities, and enzyme design. These innovations have streamlined the process of protein engineering by allowing the rapid generation of targeted libraries, reducing experimental sampling, and enabling the rational design of proteins with tailored properties. Furthermore, the integration of computational approaches with high-throughput experimental techniques has facilitated the development of multifunctional proteins and novel therapeutics. However, challenges remain in bridging the gap between computational predictions and experimental validation and in addressing ethical concerns related to AI-driven protein design. This review provides a comprehensive overview of the current state and future directions of computational methods in protein engineering, emphasizing their transformative potential in creating next-generation biologics and advancing synthetic biology.
AbstractList The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computational methods now play a crucial role in enhancing the stability, activity, and specificity of proteins for diverse applications in biotechnology and medicine. Techniques such as deep learning, reinforcement learning, and transfer learning have dramatically improved protein structure prediction, optimization of binding affinities, and enzyme design. These innovations have streamlined the process of protein engineering by allowing the rapid generation of targeted libraries, reducing experimental sampling, and enabling the rational design of proteins with tailored properties. Furthermore, the integration of computational approaches with high-throughput experimental techniques has facilitated the development of multifunctional proteins and novel therapeutics. However, challenges remain in bridging the gap between computational predictions and experimental validation and in addressing ethical concerns related to AI-driven protein design. This review provides a comprehensive overview of the current state and future directions of computational methods in protein engineering, emphasizing their transformative potential in creating next-generation biologics and advancing synthetic biology.
The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computational methods now play a crucial role in enhancing the stability, activity, and specificity of proteins for diverse applications in biotechnology and medicine. Techniques such as deep learning, reinforcement learning, and transfer learning have dramatically improved protein structure prediction, optimization of binding affinities, and enzyme design. These innovations have streamlined the process of protein engineering by allowing the rapid generation of targeted libraries, reducing experimental sampling, and enabling the rational design of proteins with tailored properties. Furthermore, the integration of computational approaches with high-throughput experimental techniques has facilitated the development of multifunctional proteins and novel therapeutics. However, challenges remain in bridging the gap between computational predictions and experimental validation and in addressing ethical concerns related to AI-driven protein design. This review provides a comprehensive overview of the current state and future directions of computational methods in protein engineering, emphasizing their transformative potential in creating next-generation biologics and advancing synthetic biology.The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computational methods now play a crucial role in enhancing the stability, activity, and specificity of proteins for diverse applications in biotechnology and medicine. Techniques such as deep learning, reinforcement learning, and transfer learning have dramatically improved protein structure prediction, optimization of binding affinities, and enzyme design. These innovations have streamlined the process of protein engineering by allowing the rapid generation of targeted libraries, reducing experimental sampling, and enabling the rational design of proteins with tailored properties. Furthermore, the integration of computational approaches with high-throughput experimental techniques has facilitated the development of multifunctional proteins and novel therapeutics. However, challenges remain in bridging the gap between computational predictions and experimental validation and in addressing ethical concerns related to AI-driven protein design. This review provides a comprehensive overview of the current state and future directions of computational methods in protein engineering, emphasizing their transformative potential in creating next-generation biologics and advancing synthetic biology.
Audience Academic
Author Park, Yongho
Kim, Hyunsoo
Park, Jongham
Son, Ahrum
Lee, Sangwoon
Yoon, Yoonki
Kim, Woojin
AuthorAffiliation 3 Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
4 Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
1 Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA; ahson@scripps.edu
5 SCICS, Prove beyond AI, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
2 Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; 975pjh@gmail.com (J.P.); woojin1544@gmail.com (W.K.); dbsrl0218@gmail.com (Y.Y.); sanguni088@gmail.com (S.L.); kmalrpkr13@gmail.com (Y.P.)
AuthorAffiliation_xml – name: 5 SCICS, Prove beyond AI, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
– name: 1 Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA; ahson@scripps.edu
– name: 3 Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
– name: 4 Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
– name: 2 Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; 975pjh@gmail.com (J.P.); woojin1544@gmail.com (W.K.); dbsrl0218@gmail.com (Y.Y.); sanguni088@gmail.com (S.L.); kmalrpkr13@gmail.com (Y.P.)
Author_xml – sequence: 1
  givenname: Ahrum
  orcidid: 0000-0003-2706-1340
  surname: Son
  fullname: Son, Ahrum
– sequence: 2
  givenname: Jongham
  orcidid: 0009-0001-5734-3800
  surname: Park
  fullname: Park, Jongham
– sequence: 3
  givenname: Woojin
  orcidid: 0009-0001-2592-5486
  surname: Kim
  fullname: Kim, Woojin
– sequence: 4
  givenname: Yoonki
  surname: Yoon
  fullname: Yoon, Yoonki
– sequence: 5
  givenname: Sangwoon
  surname: Lee
  fullname: Lee, Sangwoon
– sequence: 6
  givenname: Yongho
  surname: Park
  fullname: Park, Yongho
– sequence: 7
  givenname: Hyunsoo
  orcidid: 0000-0002-8441-3376
  surname: Kim
  fullname: Kim, Hyunsoo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39407556$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhiNURD_gB3BBkbhw2eJx_JGc0Kq0sFIREipny3EmWa-89mInK5Vfj7fbQreAfLA1ft_HM-M5LY588FgUr4GcV1VD3q-DQzM5TLSBhgkqnhUnwCiZVYQ1R4_Ox8VpSitCKDDgL4rjqmFEci5OiuU33AY3jTZ4-9P6ofyyZ-pYfsRkB1_2IZYL78NWj3aL5c0So95gdphyvtk4a_TOnMpxGcM0LMt5HG1vjdUu20Z0zg7oDb4snvfaJXx1v58V368uby4-z66_flpczK9nhgsYZzk_AVh1neyplhx5T3IBjBOCTd2hpp0EwYEajnVDqRQtSGQtF7ymPWBdnRWLPbcLeqU20a51vFVBW3UXCHFQOmdoHCrJeM1qisI0kiFtWiZrlAI0aaHSXZtZH_aszdSusTPox6jdAfTwxtulGsJWATApJeyyeXdPiOHHhGlUa5tMbor2GKakKgBJZNUAydK3T6SrMEWfe7VTCQmENuKPatC5Auv7kB82O6ia18AYqWoms-r8H6q8Olxbk4eotzl-YHjzuNLfJT4MShbIvcDEkFLEXhk73v18JlungKjdSKq_RjI74YnzAf5_zy8lA-Ym
CitedBy_id crossref_primary_10_1016_j_arr_2025_102726
crossref_primary_10_1016_j_ijbiomac_2025_142136
crossref_primary_10_1016_j_compbiomed_2025_109833
Cites_doi 10.3390/ijms25158320
10.5936/csbj.201209008
10.1093/bib/bbaa150
10.1186/s12911-024-02582-4
10.1038/s41467-023-38039-x
10.3390/ijms19123899
10.1002/cbic.202300754
10.3390/ijms11083016
10.1186/s12915-023-01791-z
10.3389/fbioe.2022.870083
10.3390/molecules29040832
10.1038/s41587-022-01432-w
10.1038/s41591-023-02483-5
10.1021/acs.jctc.4c00253
10.1021/acs.jpcb.4c01466
10.1186/s12864-024-10400-4
10.1038/s41580-024-00718-y
10.2174/0929867330666230602143700
10.1038/s41586-024-07487-w
10.1038/s41467-023-44528-w
10.3390/ijms131012428
10.1016/j.addr.2012.09.039
10.1038/s41467-024-47613-w
10.3389/fmicb.2017.02012
10.1038/s41467-021-23303-9
10.1002/prot.26398
10.1093/bioinformatics/btac353
10.1016/j.sbi.2022.102334
10.1093/bib/bbad289
10.3389/fmolb.2020.00136
10.1038/s41467-024-46574-4
10.1021/jacs.3c10941
10.1038/s43586-021-00044-z
10.1101/2024.04.11.589149
10.1021/acsphyschemau.4c00004
10.3390/ijms20184574
10.1186/s40537-021-00444-8
10.1186/1471-2105-4-16
10.1016/j.compbiomed.2024.108339
10.2196/47049
10.1021/acs.jctc.3c00254
10.1016/j.sbi.2022.102367
10.3389/fphar.2022.920747
10.1038/s41586-023-05905-z
10.1007/978-1-4939-7811-3_5
10.1038/s41586-023-06415-8
10.1021/acscentsci.3c00572
10.1186/s12859-023-05246-8
10.1007/s12551-022-01032-7
10.1038/s41467-021-27241-4
10.1017/qrd.2022.16
10.7554/eLife.81850
10.1038/s41586-023-05993-x
10.1016/j.compbiomed.2023.107068
10.1093/bioinformatics/btab253
10.1080/19420862.2024.2362775
10.1515/cclm-2023-1136
10.3390/bioengineering11050480
10.1016/j.patter.2020.100142
10.1093/nar/gkx285
10.1016/j.bbagen.2014.10.019
10.1021/acsomega.2c06653
10.1016/j.patter.2023.100830
10.1063/5.0022135
10.3390/biom12040546
10.3389/fmolb.2021.643752
10.1038/s41586-021-03258-z
10.1038/s41467-024-49798-6
10.3390/molecules28135169
10.3390/app14062433
10.1007/978-1-62703-017-5_20
10.1039/D3DD00216K
10.1016/j.drudis.2022.03.012
10.3389/fbioe.2023.1138596
10.3390/ijms22041676
10.3390/bios11090336
10.1002/wcms.1620
10.3389/fimmu.2022.858057
10.1016/j.ijhcs.2022.102792
10.3389/fbioe.2021.673005
10.1016/j.csbj.2024.05.002
10.1093/sysbio/syad036
10.1038/s42003-023-05610-7
10.3390/s24175513
10.1186/s12859-021-04540-7
10.1021/acsomega.2c07619
10.1049/enb2.12028
10.1021/acs.chemrev.2c00910
10.1016/j.chembiol.2017.06.013
10.1021/acs.jpcb.3c04843
10.3389/fsybi.2023.1255472
10.1038/s41598-023-47496-9
10.1093/protein/gzac001
10.1016/j.csbj.2023.04.027
10.1038/s41598-021-04590-0
10.1007/s43681-024-00493-8
10.1016/j.sbi.2022.102379
10.1002/ange.202309305
10.1007/s11042-024-18767-y
10.1016/j.csbj.2020.09.020
10.1038/s41467-021-21879-w
10.1093/bioinformatics/bts628
10.1016/j.sbi.2024.102814
10.1093/nar/gkad1131
10.1021/acs.jctc.2c01018
10.1093/nar/gkad356
10.1073/pnas.2307371120
10.3390/life14020233
10.1016/j.sbi.2021.11.008
10.1038/s41467-024-48198-0
10.1007/s10867-021-09593-6
10.1007/s40259-023-00641-2
10.1038/s41467-024-50698-y
10.1016/j.bbagen.2023.130534
10.1007/s11033-024-09332-9
10.1021/acs.jctc.3c00602
10.1021/acs.jcim.1c01361
10.1021/acs.jcim.3c00557
10.1039/D4CS00196F
10.1007/s12652-022-03868-z
10.3390/a17030104
10.1007/s11431-022-2133-1
10.1007/978-1-0716-3195-9
10.1186/s13321-024-00857-6
10.3390/technologies11020040
10.1038/s42004-022-00653-z
10.1039/D3SC05281H
10.1093/bib/bbae042
10.3389/fbinf.2023.1120370
10.1038/s41467-022-28865-w
10.1016/j.sbi.2023.102548
10.1021/acscatal.3c03417
10.1016/j.jbc.2021.100558
10.1038/s41467-024-46203-0
10.7554/eLife.82593
10.1093/bib/bbad425
10.3390/jpm14050443
10.1016/j.cels.2023.10.006
10.1021/acs.jctc.1c01214
10.1093/nar/gkad348
10.1016/j.celrep.2015.12.015
10.1146/annurev-biophys-102622-084607
10.1146/annurev-biophys-111622-091140
10.1016/j.mtbio.2023.100580
10.1016/j.trechm.2022.02.004
10.1038/s44271-024-00055-y
10.3390/molecules28010175
10.1016/j.heliyon.2023.e17575
10.1093/jamia/ocae114
10.3390/ijms21030847
10.1371/journal.pcbi.1010214
10.1016/j.jbc.2022.102435
10.1021/acscatal.3c02746
10.3389/fchem.2020.00093
10.1038/s41598-021-83626-x
10.1016/j.csbj.2023.11.056
10.1016/j.sbi.2024.102870
10.1002/pro.4861
10.1021/ct3000316
10.3390/molecules27144568
10.3390/synbio1030013
10.1055/s-0042-1742516
10.1021/acs.jpcb.2c01198
10.3390/biom11101416
10.1007/s10462-024-10731-4
10.1145/3422622
10.1016/j.csbj.2023.05.003
10.1002/biot.202300554
10.1021/acs.jcim.4c00247
10.1016/j.compbiomed.2023.107660
10.1016/j.sbi.2022.102517
10.1016/j.sbi.2024.102829
10.1016/j.neuron.2018.08.011
10.3390/s21041109
10.1039/D3RA06375E
10.1021/acs.jcim.3c00618
10.1186/s12859-023-05425-7
10.1016/j.cell.2023.12.028
10.1093/bib/bbx030
10.1007/978-1-4939-1465-4_3
10.1016/j.ymben.2022.09.001
10.1016/bs.mie.2020.05.005
10.1016/j.biotechadv.2024.108376
10.1038/s41598-019-41594-3
10.1016/j.sbi.2019.01.013
10.1016/j.tibs.2021.08.008
10.1038/s41467-023-38328-5
10.1038/s41467-023-41512-2
10.1039/D1CC04635G
10.1093/bib/bbz095
10.1042/BST20160155
10.3390/ph15050646
10.1016/j.nbt.2023.02.001
10.1080/00268976.2020.1788189
10.1021/acs.jctc.0c01343
10.1186/s13015-023-00247-x
10.1145/1862648.1862653
10.1016/j.bpj.2023.04.007
10.1021/acs.jcim.4c00704
10.1038/s41598-024-58122-7
10.1007/s00284-024-03750-5
10.1016/j.tips.2022.12.005
10.1016/j.envres.2023.117427
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules29194626
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef

Publicly Available Content Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Engineering
Biology
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_7458482e6c974e29b478e761a0b13adb
PMC11477718
A814403847
39407556
10_3390_molecules29194626
Genre Journal Article
Review
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GrantInformation_xml – fundername: Korea Basic Science Institute (National research Facilities and Equipment Center)
  grantid: RS-2024-00402298
– fundername: National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
  grantid: RS-2023-00209456
– fundername: by Institute of Information & communications Technology Planning & Evaluation (IITP)
  grantid: RS-2022-00155857
– fundername: Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Korean government (MSIT)
  grantid: RS-2024-00402298
– fundername: Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT)
  grantid: RS-2022-00155857
– fundername: National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT)
  grantid: RS-2023-00209456
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
ESTFP
PUEGO
5PM
ID FETCH-LOGICAL-c561t-41561e3dd7f2a75e5f03044500e98dea2d716512c5e892276b17e4b56582f1e83
IEDL.DBID DOA
ISSN 1420-3049
IngestDate Wed Aug 27 01:27:53 EDT 2025
Thu Aug 21 18:31:31 EDT 2025
Sun Sep 28 08:18:01 EDT 2025
Sat Jul 26 00:43:37 EDT 2025
Tue Jun 17 22:03:33 EDT 2025
Tue Jun 10 21:04:30 EDT 2025
Wed Feb 19 02:06:50 EST 2025
Tue Jul 01 04:00:03 EDT 2025
Thu Apr 24 22:56:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords computational biology
synthetic biology
protein engineering
de novo protein design
molecular design
artificial intelligence
therapeutic proteins
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c561t-41561e3dd7f2a75e5f03044500e98dea2d716512c5e892276b17e4b56582f1e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2706-1340
0009-0001-5734-3800
0009-0001-2592-5486
0000-0002-8441-3376
OpenAccessLink https://doaj.org/article/7458482e6c974e29b478e761a0b13adb
PMID 39407556
PQID 3116710296
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_7458482e6c974e29b478e761a0b13adb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11477718
proquest_miscellaneous_3117073910
proquest_journals_3116710296
gale_infotracmisc_A814403847
gale_infotracacademiconefile_A814403847
pubmed_primary_39407556
crossref_citationtrail_10_3390_molecules29194626
crossref_primary_10_3390_molecules29194626
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_137
ref_136
ref_92
ref_139
Goudy (ref_84) 2023; 120
ref_90
Shi (ref_132) 2023; 51
Yamagata (ref_208) 2023; 1
Rizzi (ref_109) 2023; 19
ref_131
ref_133
Gligorijevic (ref_9) 2021; 12
ref_96
ref_135
Sidhom (ref_189) 2021; 12
Alzubaidi (ref_8) 2021; 8
ref_127
Vanella (ref_89) 2022; 58
ref_120
ref_122
ref_124
Abramson (ref_57) 2024; 630
ref_123
Chen (ref_166) 2013; 65
Lin (ref_22) 2022; 62
Kafri (ref_39) 2016; 14
ref_159
Gainza (ref_149) 2023; 617
Bernardi (ref_91) 2015; 1850
Wang (ref_34) 2023; 66
ref_150
ref_78
Bell (ref_181) 2021; 1
ref_76
Han (ref_117) 2020; 118
ref_75
ref_154
ref_74
ref_156
Kohyama (ref_205) 2024; 15
Qi (ref_93) 2018; 1777
Jung (ref_113) 2024; 3
ref_160
Ebrahimi (ref_162) 2023; 14
Ingolfsson (ref_192) 2023; 19
Hossack (ref_71) 2023; 13
ref_83
ref_82
MacCallum (ref_100) 2023; 122
Tsuchiya (ref_130) 2022; 14
Vymetal (ref_164) 2022; 90
Pham (ref_179) 2024; 23
ref_140
Huang (ref_121) 2010; 11
McLure (ref_85) 2022; 4
ref_88
Doerr (ref_110) 2021; 17
ref_144
Xue (ref_126) 2017; 18
Yeh (ref_175) 2021; 591
Gao (ref_10) 2020; 1
Milanetti (ref_148) 2020; 18
Kargl (ref_201) 2022; 31
Kucera (ref_23) 2022; 38
Bennett (ref_146) 2023; 14
Kortemme (ref_147) 2024; 187
Mustali (ref_116) 2023; 13
Pinto (ref_72) 2022; 47
Wang (ref_32) 2023; 29
Perdih (ref_118) 2024; 57
Kapli (ref_66) 2023; 72
ref_203
ref_204
ref_207
Jones (ref_107) 2022; 18
Qiu (ref_183) 2024; 240
Kaczmarski (ref_174) 2019; 57
Raghavan (ref_58) 2023; 63
Zhang (ref_77) 2024; 52
Powers (ref_134) 2023; 9
Leary (ref_191) 2024; 15
Sadybekov (ref_6) 2023; 616
Tang (ref_73) 2024; 64
Bryant (ref_128) 2022; 13
Huang (ref_119) 2018; 19
Musa (ref_51) 2023; 14
Ding (ref_81) 2024; 15
Kubar (ref_61) 2023; 52
Ferruz (ref_168) 2021; 37
Lehtonen (ref_138) 2024; 16
Lopes (ref_196) 2015; 1215
Bamezai (ref_197) 2023; 7
Carobene (ref_200) 2024; 62
Marrink (ref_97) 2022; 13
ref_105
Blumer (ref_94) 2024; 15
Kim (ref_45) 2024; 31
Holzinger (ref_202) 2023; 74
Leioatts (ref_103) 2012; 8
Madsen (ref_172) 2024; 23
Khakzad (ref_37) 2023; 14
ref_102
Kim (ref_171) 2023; 44
ref_101
Zhou (ref_35) 2024; 15
Sumida (ref_157) 2024; 146
Pelaez (ref_111) 2024; 20
Ni (ref_158) 2022; 27
Watson (ref_145) 2023; 620
Kulikova (ref_13) 2021; 47
ref_14
ref_12
ref_11
Malinverno (ref_46) 2023; 4
Kim (ref_69) 2022; 74
Orsi (ref_87) 2024; 15
ref_19
Musil (ref_153) 2017; 45
ref_18
ref_17
ref_16
ref_15
Thaler (ref_112) 2021; 12
Gantz (ref_80) 2023; 123
Atz (ref_26) 2024; 15
Dietrich (ref_31) 2017; 24
Periole (ref_99) 2013; 924
ref_21
Strokach (ref_24) 2022; 72
Kleiman (ref_95) 2023; 127
Kaptan (ref_115) 2022; 7
ref_28
Chiu (ref_106) 2010; 3
Yin (ref_188) 2023; 51
Zhang (ref_29) 2023; 8
Turon (ref_141) 2023; 14
Siedhoff (ref_79) 2020; 643
Derat (ref_3) 2022; 126
Illig (ref_42) 2024; 64
Shao (ref_86) 2023; 63
Gonzalez (ref_155) 2022; 35
Dikmen (ref_52) 2022; 162
Yang (ref_4) 2023; 19
Radley (ref_182) 2023; 135
Held (ref_25) 2024; 2
ref_56
ref_55
ref_54
ref_177
Yue (ref_206) 2023; 21
ref_176
Giese (ref_62) 2024; 128
ref_178
ref_59
Qureshi (ref_142) 2023; 9
Stone (ref_104) 2016; 9945
ref_60
ref_169
Duignan (ref_114) 2024; 4
ref_68
ref_161
Goodfellow (ref_20) 2020; 63
ref_67
ref_163
ref_65
ref_64
ref_165
ref_63
ref_167
Derry (ref_41) 2022; 27
Markus (ref_180) 2023; 13
Listov (ref_38) 2024; 25
Xie (ref_70) 2023; 12
ref_33
ref_199
Harris (ref_187) 2024; 38
ref_30
Norman (ref_170) 2020; 21
Wodak (ref_53) 2023; 52
MacDonald (ref_143) 2016; 44
Blaabjerg (ref_152) 2023; 12
Chen (ref_185) 2023; 21
Kamal (ref_125) 2023; 8
Hollingsworth (ref_108) 2018; 99
Hutchinson (ref_173) 2024; 16
Khlaif (ref_50) 2023; 9
ref_47
ref_184
Rossi (ref_129) 2012; 28
Chowdhury (ref_36) 2022; 40
ref_186
ref_44
ref_43
Kjolbye (ref_98) 2022; 3
ref_40
ref_1
Barrozo (ref_198) 2012; 13
Kim (ref_27) 2024; 15
Zheng (ref_151) 2024; 33
ref_190
ref_49
ref_193
ref_48
Kamenik (ref_195) 2020; 153
Poleto (ref_194) 2022; 5
Xu (ref_2) 2024; 31
ref_5
ref_7
References_xml – ident: ref_76
  doi: 10.3390/ijms25158320
– ident: ref_199
  doi: 10.5936/csbj.201209008
– ident: ref_1
  doi: 10.1093/bib/bbaa150
– ident: ref_48
  doi: 10.1186/s12911-024-02582-4
– volume: 14
  start-page: 2411
  year: 2023
  ident: ref_162
  article-title: Engineering protein-based therapeutics through structural and chemical design
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38039-x
– ident: ref_101
  doi: 10.3390/ijms19123899
– ident: ref_40
  doi: 10.1002/cbic.202300754
– volume: 11
  start-page: 3016
  year: 2010
  ident: ref_121
  article-title: Advances and challenges in protein-ligand docking
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms11083016
– ident: ref_105
  doi: 10.1186/s12915-023-01791-z
– ident: ref_184
  doi: 10.3389/fbioe.2022.870083
– ident: ref_54
  doi: 10.3390/molecules29040832
– volume: 40
  start-page: 1617
  year: 2022
  ident: ref_36
  article-title: Single-sequence protein structure prediction using a language model and deep learning
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01432-w
– volume: 29
  start-page: 2007
  year: 2023
  ident: ref_32
  article-title: Deep-learning-enabled protein-protein interaction analysis for prediction of SARS-CoV-2 infectivity and variant evolution
  publication-title: Nat. Med.
  doi: 10.1038/s41591-023-02483-5
– volume: 20
  start-page: 4076
  year: 2024
  ident: ref_111
  article-title: TorchMD-Net 2.0: Fast Neural Network Potentials for Molecular Simulations
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.4c00253
– volume: 128
  start-page: 6257
  year: 2024
  ident: ref_62
  article-title: Software Infrastructure for Next-Generation QM/MM-DeltaMLP Force Fields
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.4c01466
– ident: ref_18
  doi: 10.1186/s12864-024-10400-4
– volume: 25
  start-page: 639
  year: 2024
  ident: ref_38
  article-title: Opportunities and challenges in design and optimization of protein function
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-024-00718-y
– volume: 31
  start-page: 2841
  year: 2024
  ident: ref_2
  article-title: Computational Protein Design—Where it goes?
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867330666230602143700
– volume: 630
  start-page: 493
  year: 2024
  ident: ref_57
  article-title: Accurate structure prediction of biomolecular interactions with AlphaFold 3
  publication-title: Nature
  doi: 10.1038/s41586-024-07487-w
– volume: 15
  start-page: 240
  year: 2024
  ident: ref_94
  article-title: Combining stochastic resetting with Metadynamics to speed-up molecular dynamics simulations
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-44528-w
– volume: 13
  start-page: 12428
  year: 2012
  ident: ref_198
  article-title: Computational protein engineering: Bridging the gap between rational design and laboratory evolution
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms131012428
– volume: 65
  start-page: 1357
  year: 2013
  ident: ref_166
  article-title: Fusion protein linkers: Property, design and functionality
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.09.039
– volume: 15
  start-page: 3408
  year: 2024
  ident: ref_26
  article-title: Prospective de novo drug design with deep interactome learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-47613-w
– ident: ref_176
  doi: 10.3389/fmicb.2017.02012
– volume: 12
  start-page: 3168
  year: 2021
  ident: ref_9
  article-title: Structure-based protein function prediction using graph convolutional networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23303-9
– volume: 90
  start-page: 2067
  year: 2022
  ident: ref_164
  article-title: Fusion of two unrelated protein domains in a chimera protein and its 3D prediction: Justification of the x-ray reference structures as a prediction benchmark
  publication-title: Proteins
  doi: 10.1002/prot.26398
– volume: 38
  start-page: 3454
  year: 2022
  ident: ref_23
  article-title: Conditional generative modeling for de novo protein design with hierarchical functions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac353
– ident: ref_161
  doi: 10.1016/j.sbi.2022.102334
– ident: ref_193
  doi: 10.1093/bib/bbad289
– ident: ref_159
  doi: 10.3389/fmolb.2020.00136
– volume: 15
  start-page: 3447
  year: 2024
  ident: ref_87
  article-title: Automated in vivo enzyme engineering accelerates biocatalyst optimization
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-46574-4
– volume: 146
  start-page: 2054
  year: 2024
  ident: ref_157
  article-title: Improving Protein Expression, Stability, and Function with ProteinMPNN
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c10941
– volume: 1
  start-page: 46
  year: 2021
  ident: ref_181
  article-title: Biocatalysis
  publication-title: Nat. Rev. Methods Primers
  doi: 10.1038/s43586-021-00044-z
– ident: ref_150
  doi: 10.1101/2024.04.11.589149
– volume: 4
  start-page: 232
  year: 2024
  ident: ref_114
  article-title: The Potential of Neural Network Potentials
  publication-title: ACS Phys. Chem. Au
  doi: 10.1021/acsphyschemau.4c00004
– ident: ref_122
  doi: 10.3390/ijms20184574
– volume: 8
  start-page: 53
  year: 2021
  ident: ref_8
  article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00444-8
– ident: ref_165
  doi: 10.1186/1471-2105-4-16
– ident: ref_12
  doi: 10.1016/j.compbiomed.2024.108339
– volume: 9
  start-page: e47049
  year: 2023
  ident: ref_50
  article-title: The Potential and Concerns of Using AI in Scientific Research: ChatGPT Performance Evaluation
  publication-title: JMIR Med. Educ.
  doi: 10.2196/47049
– volume: 19
  start-page: 5731
  year: 2023
  ident: ref_109
  article-title: OneOPES, a Combined Enhanced Sampling Method to Rule Them All
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.3c00254
– ident: ref_5
  doi: 10.1016/j.sbi.2022.102367
– ident: ref_135
  doi: 10.3389/fphar.2022.920747
– volume: 616
  start-page: 673
  year: 2023
  ident: ref_6
  article-title: Computational approaches streamlining drug discovery
  publication-title: Nature
  doi: 10.1038/s41586-023-05905-z
– volume: 18
  start-page: 458
  year: 2017
  ident: ref_126
  article-title: Template-based protein-protein docking exploiting pairwise interfacial residue restraints
  publication-title: Brief. Bioinform.
– volume: 1777
  start-page: 101
  year: 2018
  ident: ref_93
  article-title: Replica Exchange Molecular Dynamics: A Practical Application Protocol with Solutions to Common Problems and a Peptide Aggregation and Self-Assembly Example
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7811-3_5
– volume: 620
  start-page: 1089
  year: 2023
  ident: ref_145
  article-title: De novo design of protein structure and function with RFdiffusion
  publication-title: Nature
  doi: 10.1038/s41586-023-06415-8
– volume: 9
  start-page: 2257
  year: 2023
  ident: ref_134
  article-title: Geometric Deep Learning for Structure-Based Ligand Design
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.3c00572
– ident: ref_17
  doi: 10.1186/s12859-023-05246-8
– volume: 14
  start-page: 1341
  year: 2022
  ident: ref_130
  article-title: Protein-protein interaction prediction methods: From docking-based to AI-based approaches
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-022-01032-7
– volume: 12
  start-page: 6884
  year: 2021
  ident: ref_112
  article-title: Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27241-4
– volume: 3
  start-page: e19
  year: 2022
  ident: ref_98
  article-title: Towards design of drugs and delivery systems with the Martini coarse-grained model
  publication-title: QRB Discov.
  doi: 10.1017/qrd.2022.16
– volume: 12
  start-page: e81850
  year: 2023
  ident: ref_70
  article-title: Coevolution-based prediction of key allosteric residues for protein function regulation
  publication-title: Elife
  doi: 10.7554/eLife.81850
– volume: 617
  start-page: 176
  year: 2023
  ident: ref_149
  article-title: De novo design of protein interactions with learned surface fingerprints
  publication-title: Nature
  doi: 10.1038/s41586-023-05993-x
– ident: ref_102
  doi: 10.1016/j.compbiomed.2023.107068
– volume: 37
  start-page: 3182
  year: 2021
  ident: ref_168
  article-title: Protlego: A Python package for the analysis and design of chimeric proteins
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab253
– volume: 16
  start-page: 2362775
  year: 2024
  ident: ref_173
  article-title: Toward enhancement of antibody thermostability and affinity by computational design in the absence of antigen
  publication-title: MAbs
  doi: 10.1080/19420862.2024.2362775
– volume: 62
  start-page: 835
  year: 2024
  ident: ref_200
  article-title: Rising adoption of artificial intelligence in scientific publishing: Evaluating the role, risks, and ethical implications in paper drafting and review process
  publication-title: Clin. Chem. Lab. Med.
  doi: 10.1515/cclm-2023-1136
– ident: ref_65
  doi: 10.3390/bioengineering11050480
– volume: 1
  start-page: 100142
  year: 2020
  ident: ref_10
  article-title: Deep Learning in Protein Structural Modeling and Design
  publication-title: Patterns
  doi: 10.1016/j.patter.2020.100142
– volume: 45
  start-page: W393
  year: 2017
  ident: ref_153
  article-title: FireProt: Web server for automated design of thermostable proteins
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx285
– volume: 1850
  start-page: 872
  year: 2015
  ident: ref_91
  article-title: Enhanced sampling techniques in molecular dynamics simulations of biological systems
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2014.10.019
– volume: 8
  start-page: 5464
  year: 2023
  ident: ref_29
  article-title: Universal Approach to De Novo Drug Design for Target Proteins Using Deep Reinforcement Learning
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c06653
– volume: 4
  start-page: 100830
  year: 2023
  ident: ref_46
  article-title: A historical perspective of biomedical explainable AI research
  publication-title: Patterns
  doi: 10.1016/j.patter.2023.100830
– volume: 153
  start-page: 185102
  year: 2020
  ident: ref_195
  article-title: Polarizable and non-polarizable force fields: Protein folding, unfolding, and misfolding
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0022135
– ident: ref_68
  doi: 10.3390/biom12040546
– ident: ref_56
  doi: 10.3389/fmolb.2021.643752
– volume: 591
  start-page: 482
  year: 2021
  ident: ref_175
  article-title: De novo design of modular and tunable protein biosensors
  publication-title: Nature
  doi: 10.1038/s41586-021-03258-z
– volume: 15
  start-page: 5566
  year: 2024
  ident: ref_35
  article-title: Enhancing efficiency of protein language models with minimal wet-lab data through few-shot learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-49798-6
– ident: ref_44
  doi: 10.3390/molecules28135169
– ident: ref_64
  doi: 10.3390/app14062433
– volume: 924
  start-page: 533
  year: 2013
  ident: ref_99
  article-title: The Martini coarse-grained force field
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-62703-017-5_20
– volume: 3
  start-page: 514
  year: 2024
  ident: ref_113
  article-title: Active learning of neural network potentials for rare events
  publication-title: Digit. Discov.
  doi: 10.1039/D3DD00216K
– volume: 27
  start-page: 2226
  year: 2022
  ident: ref_158
  article-title: Computational elucidation of allosteric communication in proteins for allosteric drug design
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2022.03.012
– ident: ref_186
  doi: 10.3389/fbioe.2023.1138596
– ident: ref_133
  doi: 10.3390/ijms22041676
– ident: ref_177
  doi: 10.3390/bios11090336
– volume: 13
  start-page: e1620
  year: 2022
  ident: ref_97
  article-title: Two decades of Martini: Better beads, broader scope
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.1620
– ident: ref_190
  doi: 10.3389/fimmu.2022.858057
– volume: 162
  start-page: 102792
  year: 2022
  ident: ref_52
  article-title: The effects of domain knowledge on trust in explainable AI and task performance: A case of peer-to-peer lending
  publication-title: Int. J. Hum.-Comput. Stud.
  doi: 10.1016/j.ijhcs.2022.102792
– ident: ref_88
  doi: 10.3389/fbioe.2021.673005
– volume: 23
  start-page: 2211
  year: 2024
  ident: ref_179
  article-title: Computation-guided transcription factor biosensor specificity engineering for adipic acid detection
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2024.05.002
– volume: 72
  start-page: 1119
  year: 2023
  ident: ref_66
  article-title: DNA Sequences Are as Useful as Protein Sequences for Inferring Deep Phylogenies
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/syad036
– ident: ref_167
  doi: 10.1038/s42003-023-05610-7
– ident: ref_82
– ident: ref_7
  doi: 10.3390/s24175513
– ident: ref_11
  doi: 10.1186/s12859-021-04540-7
– volume: 8
  start-page: 5850
  year: 2023
  ident: ref_125
  article-title: MetaDOCK: A Combinatorial Molecular Docking Approach
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c07619
– volume: 7
  start-page: 29
  year: 2023
  ident: ref_197
  article-title: Protein engineering in the computational age: An open source framework for exploring mutational landscapes in silico
  publication-title: Eng. Biol.
  doi: 10.1049/enb2.12028
– volume: 123
  start-page: 5571
  year: 2023
  ident: ref_80
  article-title: Ultrahigh-Throughput Enzyme Engineering and Discovery in In Vitro Compartments
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00910
– volume: 24
  start-page: 958
  year: 2017
  ident: ref_31
  article-title: Cell Permeable Stapled Peptide Inhibitor of Wnt Signaling that Targets beta-Catenin Protein-Protein Interactions
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2017.06.013
– volume: 127
  start-page: 10669
  year: 2023
  ident: ref_95
  article-title: Adaptive Sampling Methods for Molecular Dynamics in the Era of Machine Learning
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.3c04843
– ident: ref_207
  doi: 10.3389/fsybi.2023.1255472
– ident: ref_67
  doi: 10.1038/s41598-023-47496-9
– volume: 9945
  start-page: 188
  year: 2016
  ident: ref_104
  article-title: Early Experiences Porting the NAMD and VMD Molecular Simulation and Analysis Software to GPU-Accelerated OpenPOWER Platforms
  publication-title: High Perform. Comput.
– volume: 35
  start-page: gzac001
  year: 2022
  ident: ref_155
  article-title: The stability and dynamics of computationally designed proteins
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/gzac001
– volume: 21
  start-page: 2909
  year: 2023
  ident: ref_185
  article-title: Accelerating therapeutic protein design with computational approaches toward the clinical stage
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2023.04.027
– volume: 7
  start-page: 2006080
  year: 2022
  ident: ref_115
  article-title: Machine learning in the analysis of biomolecular simulations
  publication-title: Adv. Phys. X
– ident: ref_47
  doi: 10.1038/s41598-021-04590-0
– ident: ref_203
  doi: 10.1007/s43681-024-00493-8
– ident: ref_78
  doi: 10.1016/j.sbi.2022.102379
– volume: 135
  start-page: e202309305
  year: 2023
  ident: ref_182
  article-title: Engineering Enzymes for Environmental Sustainability
  publication-title: Angew. Chem. Weinheim Bergstr. Ger.
  doi: 10.1002/ange.202309305
– ident: ref_21
  doi: 10.1007/s11042-024-18767-y
– volume: 18
  start-page: 2678
  year: 2020
  ident: ref_148
  article-title: A novel strategy for molecular interfaces optimization: The case of Ferritin-Transferrin receptor interaction
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2020.09.020
– volume: 12
  start-page: 1605
  year: 2021
  ident: ref_189
  article-title: DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21879-w
– volume: 28
  start-page: 3282
  year: 2012
  ident: ref_129
  article-title: A method for integrative structure determination of protein-protein complexes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts628
– ident: ref_59
  doi: 10.1016/j.sbi.2024.102814
– volume: 52
  start-page: e10
  year: 2024
  ident: ref_77
  article-title: HybridDBRpred: Improved sequence-based prediction of DNA-binding amino acids using annotations from structured complexes and disordered proteins
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad1131
– volume: 19
  start-page: 2658
  year: 2023
  ident: ref_192
  article-title: Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.2c01018
– volume: 51
  start-page: W569
  year: 2023
  ident: ref_188
  article-title: TCRmodel2: High-resolution modeling of T cell receptor recognition using deep learning
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad356
– volume: 120
  start-page: e2307371120
  year: 2023
  ident: ref_84
  article-title: In silico evolution of autoinhibitory domains for a PD-L1 antagonist using deep learning models
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2307371120
– ident: ref_140
  doi: 10.3390/life14020233
– volume: 72
  start-page: 226
  year: 2022
  ident: ref_24
  article-title: Deep generative modeling for protein design
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2021.11.008
– volume: 15
  start-page: 4271
  year: 2024
  ident: ref_191
  article-title: Designing meaningful continuous representations of T cell receptor sequences with deep generative models
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-48198-0
– volume: 47
  start-page: 435
  year: 2021
  ident: ref_13
  article-title: Learning the local landscape of protein structures with convolutional neural networks
  publication-title: J. Biol. Phys.
  doi: 10.1007/s10867-021-09593-6
– volume: 38
  start-page: 205
  year: 2024
  ident: ref_187
  article-title: Reducing Immunogenicity by Design: Approaches to Minimize Immunogenicity of Monoclonal Antibodies
  publication-title: BioDrugs
  doi: 10.1007/s40259-023-00641-2
– volume: 15
  start-page: 6392
  year: 2024
  ident: ref_81
  article-title: Machine learning-guided co-optimization of fitness and diversity facilitates combinatorial library design in enzyme engineering
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-50698-y
– ident: ref_96
  doi: 10.1016/j.bbagen.2023.130534
– ident: ref_169
  doi: 10.1007/s11033-024-09332-9
– volume: 19
  start-page: 7459
  year: 2023
  ident: ref_4
  article-title: Mutexa: A Computational Ecosystem for Intelligent Protein Engineering
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.3c00602
– volume: 62
  start-page: 761
  year: 2022
  ident: ref_22
  article-title: De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.1c01361
– volume: 63
  start-page: 3647
  year: 2023
  ident: ref_58
  article-title: Drug Design in the Exascale Era: A Perspective from Massively Parallel QM/MM Simulations
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.3c00557
– ident: ref_28
  doi: 10.1039/D4CS00196F
– volume: 14
  start-page: 9677
  year: 2023
  ident: ref_51
  article-title: A systematic review and Meta-data analysis on the applications of Deep Learning in Electrocardiogram
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-022-03868-z
– ident: ref_15
  doi: 10.3390/a17030104
– volume: 66
  start-page: 920
  year: 2023
  ident: ref_34
  article-title: Recent advances of few-shot learning methods and applications
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-022-2133-1
– ident: ref_19
  doi: 10.1007/978-1-0716-3195-9
– volume: 16
  start-page: 97
  year: 2024
  ident: ref_138
  article-title: Building shape-focused pharmacophore models for effective docking screening
  publication-title: J. Cheminform
  doi: 10.1186/s13321-024-00857-6
– ident: ref_33
  doi: 10.3390/technologies11020040
– volume: 5
  start-page: 38
  year: 2022
  ident: ref_194
  article-title: Integration of Experimental Data and Use of Automated Fitting Methods in Developing Protein Force Fields
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-022-00653-z
– volume: 15
  start-page: 7908
  year: 2024
  ident: ref_27
  article-title: Materials discovery with extreme properties via reinforcement learning-guided combinatorial chemistry
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC05281H
– ident: ref_14
  doi: 10.1093/bib/bbae042
– ident: ref_55
  doi: 10.3389/fbinf.2023.1120370
– volume: 13
  start-page: 1265
  year: 2022
  ident: ref_128
  article-title: Improved prediction of protein-protein interactions using AlphaFold2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28865-w
– ident: ref_74
  doi: 10.1016/j.sbi.2023.102548
– volume: 13
  start-page: 14454
  year: 2023
  ident: ref_180
  article-title: Accelerating Biocatalysis Discovery with Machine Learning: A Paradigm Shift in Enzyme Engineering, Discovery, and Design
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c03417
– ident: ref_144
  doi: 10.1016/j.jbc.2021.100558
– volume: 15
  start-page: 2010
  year: 2024
  ident: ref_205
  article-title: Machine learning-aided design and screening of an emergent protein function in synthetic cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-46203-0
– volume: 12
  start-page: e82593
  year: 2023
  ident: ref_152
  article-title: Rapid protein stability prediction using deep learning representations
  publication-title: Elife
  doi: 10.7554/eLife.82593
– ident: ref_154
  doi: 10.1093/bib/bbad425
– ident: ref_204
  doi: 10.3390/jpm14050443
– volume: 14
  start-page: 925
  year: 2023
  ident: ref_37
  article-title: A new age in protein design empowered by deep learning
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2023.10.006
– volume: 18
  start-page: 4047
  year: 2022
  ident: ref_107
  article-title: Accelerators for Classical Molecular Dynamics Simulations of Biomolecules
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.1c01214
– volume: 51
  start-page: W25
  year: 2023
  ident: ref_132
  article-title: ACFIS 2.0: An improved web-server for fragment-based drug discovery via a dynamic screening strategy
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad348
– volume: 14
  start-page: 22
  year: 2016
  ident: ref_39
  article-title: The Cost of Protein Production
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.12.015
– volume: 52
  start-page: 183
  year: 2023
  ident: ref_53
  article-title: Critical Assessment of Methods for Predicting the 3D Structure of Proteins and Protein Complexes
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev-biophys-102622-084607
– volume: 52
  start-page: 525
  year: 2023
  ident: ref_61
  article-title: Hybrid Quantum Mechanical/Molecular Mechanical Methods For Studying Energy Transduction in Biomolecular Machines
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev-biophys-111622-091140
– ident: ref_163
  doi: 10.1016/j.mtbio.2023.100580
– volume: 4
  start-page: 378
  year: 2022
  ident: ref_85
  article-title: High-throughput directed evolution: A golden era for protein science
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2022.02.004
– volume: 2
  start-page: 8
  year: 2024
  ident: ref_25
  article-title: Reinforcement learning of adaptive control strategies
  publication-title: Commun. Psychol.
  doi: 10.1038/s44271-024-00055-y
– ident: ref_124
  doi: 10.3390/molecules28010175
– volume: 9
  start-page: e17575
  year: 2023
  ident: ref_142
  article-title: AI in drug discovery and its clinical relevance
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e17575
– volume: 31
  start-page: 1540
  year: 2024
  ident: ref_45
  article-title: Acute myocardial infarction prognosis prediction with reliable and interpretable artificial intelligence system
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocae114
– ident: ref_160
  doi: 10.3390/ijms21030847
– ident: ref_16
  doi: 10.1371/journal.pcbi.1010214
– ident: ref_156
  doi: 10.1016/j.jbc.2022.102435
– volume: 27
  start-page: 10
  year: 2022
  ident: ref_41
  article-title: Training data composition affects performance of protein structure analysis algorithms
  publication-title: Pac. Symp. Biocomput.
– volume: 13
  start-page: 12436
  year: 2023
  ident: ref_71
  article-title: Building Enzymes through Design and Evolution
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c02746
– ident: ref_131
  doi: 10.3389/fchem.2020.00093
– ident: ref_136
  doi: 10.1038/s41598-021-83626-x
– volume: 23
  start-page: 199
  year: 2024
  ident: ref_172
  article-title: Structural trends in antibody-antigen binding interfaces: A computational analysis of 1833 experimentally determined 3D structures
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2023.11.056
– ident: ref_60
  doi: 10.1016/j.sbi.2024.102870
– volume: 33
  start-page: e4861
  year: 2024
  ident: ref_151
  article-title: Assessing computational tools for predicting protein stability changes upon missense mutations using a new dataset
  publication-title: Protein Sci.
  doi: 10.1002/pro.4861
– volume: 8
  start-page: 2424
  year: 2012
  ident: ref_103
  article-title: Elastic Network Models are Robust to Variations in Formalism
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct3000316
– ident: ref_120
  doi: 10.3390/molecules27144568
– volume: 1
  start-page: 190
  year: 2023
  ident: ref_208
  article-title: SynBio: A Journal for Advancing Solutions to Global Challenges
  publication-title: SynBio
  doi: 10.3390/synbio1030013
– volume: 31
  start-page: 152
  year: 2022
  ident: ref_201
  article-title: A Literature Review on Ethics for AI in Biomedical Research and Biobanking
  publication-title: Yearb. Med. Inform.
  doi: 10.1055/s-0042-1742516
– volume: 126
  start-page: 2449
  year: 2022
  ident: ref_3
  article-title: Computational Advances in Protein Engineering and Enzyme Design
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.2c01198
– ident: ref_92
  doi: 10.3390/biom11101416
– volume: 57
  start-page: 102
  year: 2024
  ident: ref_118
  article-title: Machine learning heralding a new development phase in molecular dynamics simulations
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-024-10731-4
– volume: 63
  start-page: 139
  year: 2020
  ident: ref_20
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– volume: 21
  start-page: 2899
  year: 2023
  ident: ref_206
  article-title: Advancing synthetic biology through cell-free protein synthesis
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2023.05.003
– ident: ref_43
  doi: 10.1002/biot.202300554
– volume: 64
  start-page: 1794
  year: 2024
  ident: ref_73
  article-title: Recent Advances in Automated Structure-Based De Novo Drug Design
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.4c00247
– ident: ref_127
  doi: 10.1016/j.compbiomed.2023.107660
– ident: ref_75
  doi: 10.1016/j.sbi.2022.102517
– ident: ref_83
  doi: 10.1016/j.sbi.2024.102829
– volume: 99
  start-page: 1129
  year: 2018
  ident: ref_108
  article-title: Molecular Dynamics Simulation for All
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.08.011
– ident: ref_178
  doi: 10.3390/s21041109
– volume: 13
  start-page: 34249
  year: 2023
  ident: ref_116
  article-title: Unsupervised deep learning for molecular dynamics simulations: A novel analysis of protein-ligand interactions in SARS-CoV-2 M(pro)
  publication-title: RSC Adv.
  doi: 10.1039/D3RA06375E
– volume: 63
  start-page: 5650
  year: 2023
  ident: ref_86
  article-title: EnzyHTP Computational Directed Evolution with Adaptive Resource Allocation
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.3c00618
– ident: ref_30
  doi: 10.1186/s12859-023-05425-7
– volume: 187
  start-page: 526
  year: 2024
  ident: ref_147
  article-title: De novo protein design-From new structures to programmable functions
  publication-title: Cell
  doi: 10.1016/j.cell.2023.12.028
– volume: 19
  start-page: 982
  year: 2018
  ident: ref_119
  article-title: Comprehensive assessment of flexible-ligand docking algorithms: Current effectiveness and challenges
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbx030
– volume: 1215
  start-page: 47
  year: 2015
  ident: ref_196
  article-title: Current status of protein force fields for molecular dynamics simulations
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-1465-4_3
– volume: 74
  start-page: 49
  year: 2022
  ident: ref_69
  article-title: Enzyme activity engineering based on sequence co-evolution analysis
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2022.09.001
– volume: 643
  start-page: 281
  year: 2020
  ident: ref_79
  article-title: Machine learning-assisted enzyme engineering
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2020.05.005
– ident: ref_90
  doi: 10.1016/j.biotechadv.2024.108376
– ident: ref_123
  doi: 10.1038/s41598-019-41594-3
– volume: 57
  start-page: 31
  year: 2019
  ident: ref_174
  article-title: Structural and evolutionary approaches to the design and optimization of fluorescence-based small molecule biosensors
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2019.01.013
– volume: 47
  start-page: 375
  year: 2022
  ident: ref_72
  article-title: Exploiting enzyme evolution for computational protein design
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2021.08.008
– volume: 14
  start-page: 2625
  year: 2023
  ident: ref_146
  article-title: Improving de novo protein binder design with deep learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38328-5
– volume: 14
  start-page: 5736
  year: 2023
  ident: ref_141
  article-title: First fully-automated AI/ML virtual screening cascade implemented at a drug discovery centre in Africa
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41512-2
– volume: 58
  start-page: 2455
  year: 2022
  ident: ref_89
  article-title: High-throughput screening, next generation sequencing and machine learning: Advanced methods in enzyme engineering
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC04635G
– volume: 21
  start-page: 1549
  year: 2020
  ident: ref_170
  article-title: Computational approaches to therapeutic antibody design: Established methods and emerging trends
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbz095
– volume: 44
  start-page: 1523
  year: 2016
  ident: ref_143
  article-title: Computational protein design with backbone plasticity
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20160155
– ident: ref_137
  doi: 10.3390/ph15050646
– volume: 74
  start-page: 16
  year: 2023
  ident: ref_202
  article-title: AI for life: Trends in artificial intelligence for biotechnology
  publication-title: N. Biotechnol.
  doi: 10.1016/j.nbt.2023.02.001
– volume: 118
  start-page: e1788189
  year: 2020
  ident: ref_117
  article-title: Trajectory-based machine learning method and its application to molecular dynamics
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2020.1788189
– volume: 17
  start-page: 2355
  year: 2021
  ident: ref_110
  article-title: TorchMD: A Deep Learning Framework for Molecular Simulations
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.0c01343
– ident: ref_63
  doi: 10.1186/s13015-023-00247-x
– volume: 3
  start-page: 23
  year: 2010
  ident: ref_106
  article-title: Molecular Dynamics Simulations on High-Performance Reconfigurable Computing Systems
  publication-title: ACM Trans. Reconfigurable Technol. Syst.
  doi: 10.1145/1862648.1862653
– volume: 122
  start-page: 2864
  year: 2023
  ident: ref_100
  article-title: An implementation of the Martini coarse-grained force field in OpenMM
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2023.04.007
– volume: 64
  start-page: 6350
  year: 2024
  ident: ref_42
  article-title: Evolutionary Probability and Stacked Regressions Enable Data-Driven Protein Engineering with Minimized Experimental Effort
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.4c00704
– ident: ref_139
  doi: 10.1038/s41598-024-58122-7
– ident: ref_49
  doi: 10.1007/s00284-024-03750-5
– volume: 44
  start-page: 175
  year: 2023
  ident: ref_171
  article-title: Computational and artificial intelligence-based methods for antibody development
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2022.12.005
– volume: 240
  start-page: 117427
  year: 2024
  ident: ref_183
  article-title: A comprehensive review on enzymatic biodegradation of polyethylene terephthalate
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2023.117427
SSID ssj0021415
Score 2.4654431
SecondaryResourceType review_article
Snippet The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4626
SubjectTerms Accuracy
Artificial Intelligence
Bioinformatics
Biology
computational biology
Computational Biology - methods
Computational linguistics
de novo protein design
Deep learning
Drug Design
Drug development
Engineering
Enzymes
Health aspects
Humans
Innovations
Language processing
Machine Learning
Models, Molecular
molecular design
Natural language interfaces
Network topologies
Neural networks
Optimization techniques
Protein binding
protein engineering
Protein Engineering - methods
Protein structure prediction
Proteins
Proteins - chemistry
Review
therapeutic proteins
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3_a9UwED90IuoPos9v1SkRBEEoa5K2SX-S5_S5CfMH2WC_lTa5uoH2zb23gf713rXpW8tgvzYJJL1L7nO5y30A3lUKyahLH2uGb6nBPK51lsQEhr3GojFa8wPng-_53lH67Tg7Dhduq5BWOZyJ3UHtl47vyHc0BwzIGhb5x7M_MbNGcXQ1UGjchjtSkSbxS_HF143DJck69ZFMTa79zu-ecBZXqiDXPed6CiNb1JXsv34wjyzTNGtyZIYWj-BhwI9i3gv8MdzCdgZ3e0bJvzO4tzsQuM3gwajW4BM4-YGXQc1O_9EXcTAQ44rPXRaHIPgq9gNJ6iWKw6uXWWI-CnOLQO3TzaGvPyH2R4U9n8LR4svh7l4caBZiR-BpHbMLJ1F7bxpVmQyzhsOlaZYkWFiPlfLkUxEucBnaQimT19JgWhMStKqRaPUz2GqXLb4AUVvnnLLk5DWEVKrUFkjnSepSryQWzkeQDD-8dKEGOVNh_CrJF2EZlddkFMGHzZCzvgDHTZ0_sRQ3Hbl2dvdhef6zDFuxNBwatgpzR74UqqJOjUWTyyqppa58HcF71oGSdzhNzlXhoQItkWtllXPLAXFNZj2C7UlPkq-bNg9aVIaTYVVe6XEEbzfNPJKz3VpcXnR9DEdQZRLB817pNktiJnuTZTTaTtRxsuZpS3t60tUNJ9fXGMIiL2-e1yu4rwi59RmL27C1Pr_A14S81vWbbnv9B_7XL5I
  priority: 102
  providerName: ProQuest
Title Revolutionizing Molecular Design for Innovative Therapeutic Applications through Artificial Intelligence
URI https://www.ncbi.nlm.nih.gov/pubmed/39407556
https://www.proquest.com/docview/3116710296
https://www.proquest.com/docview/3117073910
https://pubmed.ncbi.nlm.nih.gov/PMC11477718
https://doaj.org/article/7458482e6c974e29b478e761a0b13adb
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: HH5
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: KQ8
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: ABDBF
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals Online
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: DIK
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: GX1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3a9NBeSvrtJl1UKBQKJrZkW_Jxk2aTFBJKSGBvxpbGJJA6pdnk0F_fGUve2gTaSy57sCRW0ow07zGjGYBPtUQy6qmLFcO3TGMRNypPYgLDTmHZaqX4gfPxSXF4nn1b5stRqS-OCfPpgf3G7Wh25BmJhSXki7JsMm2QuHedNKmqXcO3L5mxgUwFqpWSXfI-TEWkfueHLzWLN7Ik0l5wJoWRFeqT9d-_kkc2aRovOTJAi014HpCjmPsZv4BH2L2Ep3tDwbZXcHGKd0GRLn-TRRLHQ-lb8bWP0xAEUMVRKIN6h-Ls79srMR85skUo3tP_l88wIY5GqTtfw_li_2zvMA6FFGJL8GgVM0lLUTmnW1nrHPOWHaJZniRYGoe1dMSayPLbHE0ppS6aVGPWENYzsk3RqDew0V13-A5EY6y10hCNawmL1JkpkW6MzGZOplhaF0EybGxlQ5ZxLnZxVRHbYFlU92QRwZf1kJ8-xca_Ou-ytNYdOTt2_4F0pgo6U_1PZyL4zLKu-AzT5GwdniLQEjkbVjU37PJWZLgj2J70JInaafOgLVU4-zeVYtcW4baSJvtx3cwjOZ6tw-vbvo9mH2maRPDWK9d6SVyrXuc5jTYTtZusedrSXV70mcGJ3GpNaOP9Q-zSFjyThOB85OI2bKx-3eIHQmCrZgaP9VLTr1kczODJ7v7J99NZfwD_AF9DM4A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NITR4QFC-AgOMBEJCipbYSWw_IFQ2ppate0Cd1LeQOFc2CdqxdUPjj-Jv5C4fbaJJe9trbEd27uz7Xe58P4C3mUQy6mHhK4ZvkcbEz1Uc-ASGC4V2qpXiC86jg2RwGH2dxJM1-NfcheG0yuZMLA_qYu74H_mW4oABWUObfDr57TNrFEdXGwqNSi328PIPuWxnH4c7JN93Uu5-GW8P_JpVwHeEFRY-eywhqqLQU5npGOMpRwejOAjQmgIzWZALQWbQxWislDrJQ41RTsDHyGmIRtF7b8HtiAfR_tGTlYMX0ruryKlSNtj6VRHc4pm0oY0Srt_Qsn0lRcBVQ9CyhN0szZbZ230A92u8KvqVgj2ENZz14E7FYHnZg43thjCuB_datQ0fwdE3vKjV-vgvPRGjhohX7JRZI4LgshjWpKwXKMarm2Ci3wqri5pKqJxDVe9CDFuFRB_D4Y0I4Amsz-YzfAYiN845acipnBIyyiJjkc6vyEWFDNG6woOg-eCpq2ueM_XGz5R8H5ZRekVGHnxYDjmpCn5c1_kzS3HZkWt1lw_mpz_SeuunmkPRRmLiyHdDafNIG9RJmAV5qLIi9-A960DKJwpNzmX1xQhaItfmSvuGA_CKYIQHm52eJF_XbW60KK1PorN0tW88eLNs5pGcXTfD-XnZR3PENgw8eFop3XJJypLLH8c02nTUsbPmbsvs-KisU06uttaEfZ5fP6_XsDEYj_bT_eHB3gu4Kwk1VtmSm7C-OD3Hl4T6FvmrcqsJ-H7Te_s_6f1qZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIb4eEBQYgQFGAiEhRU3sJI4fECor1crYhNAm9S0kzoVNGu1Yu6Hxp_HXcZePNtGkve01tiOnd777Xe98P4A3qURy6n7uKoZvgcbIzVTouQSGc4Wm0ErxBefdvWj7IPgyCSdr8K-5C8NllY1NLA11PrP8H3lfccKAvKGJ-kVdFvFtOPp48ttlBinOtDZ0GpWK7ODFHwrf5h_GQ5L1WylHn_e3tt2aYcC1hBsWLkcvPqo814VMdYhhwZnCIPQ8NHGOqcwpnCCXaEOMjZQ6ynyNQUYgKJaFj7Gi996Am1oFisvJ9GQV7Pn07iqLqpTx-r8qslucS-ObIOJeDi0_WNIFXHYKLa_YrdhsucDRA7hfY1cxqJTtIazhtAe3KjbLix7c2WrI43pwr9Xn8BEcfsfzWsWP_tITsduQ8ophWUEiCDqLcU3Qeo5if3UrTAxaKXZR0wqVe6h6X4hxq6noYzi4FgE8gfXpbIpPQWSxtVbGFGAWhJLSIDZItiywQS59NDZ3wGt-8MTW_c-ZhuM4oTiIZZRckpED75dLTqrmH1dN_sRSXE7kvt3lg9npz6Q2A4nmtHQsMbIUx6E0WaBj1JGfepmv0jxz4B3rQMLWhTZn0_qSBH0i9-lKBjEn4xVBCgc2OzNJvrY73GhRUlulebI6Qw68Xg7zSq60m-LsrJyjOXvrew5sVEq3_CRlKPwPQ1odd9Sx883dkenRYdmznMJurQkHPbt6X6_gNp3q5Ot4b-c53JUEIKvCyU1YX5ye4QsCgIvsZXnSBPy47qP9H93Lbp8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revolutionizing+Molecular+Design+for+Innovative+Therapeutic+Applications+through+Artificial+Intelligence&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Ahrum+Son&rft.au=Jongham+Park&rft.au=Woojin+Kim&rft.au=Yoonki+Yoon&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.eissn=1420-3049&rft.volume=29&rft.issue=19&rft.spage=4626&rft_id=info:doi/10.3390%2Fmolecules29194626&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7458482e6c974e29b478e761a0b13adb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon