Improving diagnostic recognition of primary hyperparathyroidism with machine learning

Parathyroidectomy offers the only cure for primary hyperparathyroidism, but today only 50% of primary hyperparathyroidism patients are referred for operation, in large part, because the condition is widely under-recognized. The diagnosis of primary hyperparathyroidism can be especially challenging w...

Full description

Saved in:
Bibliographic Details
Published inSurgery Vol. 161; no. 4; pp. 1113 - 1121
Main Authors Somnay, Yash R., Craven, Mark, McCoy, Kelly L., Carty, Sally E., Wang, Tracy S., Greenberg, Caprice C., Schneider, David F.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2017
Subjects
Online AccessGet full text
ISSN0039-6060
1532-7361
1532-7361
DOI10.1016/j.surg.2016.09.044

Cover

Abstract Parathyroidectomy offers the only cure for primary hyperparathyroidism, but today only 50% of primary hyperparathyroidism patients are referred for operation, in large part, because the condition is widely under-recognized. The diagnosis of primary hyperparathyroidism can be especially challenging with mild biochemical indices. Machine learning is a collection of methods in which computers build predictive algorithms based on labeled examples. With the aim of facilitating diagnosis, we tested the ability of machine learning to distinguish primary hyperparathyroidism from normal physiology using clinical and laboratory data. This retrospective cohort study used a labeled training set and 10-fold cross-validation to evaluate accuracy of the algorithm. Measures of accuracy included area under the receiver operating characteristic curve, precision (sensitivity), and positive and negative predictive value. Several different algorithms and ensembles of algorithms were tested using the Weka platform. Among 11,830 patients managed operatively at 3 high-volume endocrine surgery programs from March 2001 to August 2013, 6,777 underwent parathyroidectomy for confirmed primary hyperparathyroidism, and 5,053 control patients without primary hyperparathyroidism underwent thyroidectomy. Test-set accuracies for machine learning models were determined using 10-fold cross-validation. Age, sex, and serum levels of preoperative calcium, phosphate, parathyroid hormone, vitamin D, and creatinine were defined as potential predictors of primary hyperparathyroidism. Mild primary hyperparathyroidism was defined as primary hyperparathyroidism with normal preoperative calcium or parathyroid hormone levels. After testing a variety of machine learning algorithms, Bayesian network models proved most accurate, classifying correctly 95.2% of all primary hyperparathyroidism patients (area under receiver operating characteristic = 0.989). Omitting parathyroid hormone from the model did not decrease the accuracy significantly (area under receiver operating characteristic = 0.985). In mild disease cases, however, the Bayesian network model classified correctly 71.1% of patients with normal calcium and 92.1% with normal parathyroid hormone levels preoperatively. Bayesian networking and AdaBoost improved the accuracy of all parathyroid hormone patients to 97.2% cases (area under receiver operating characteristic = 0.994), and 91.9% of primary hyperparathyroidism patients with mild disease. This was significantly improved relative to Bayesian networking alone (P < .0001). Machine learning can diagnose accurately primary hyperparathyroidism without human input even in mild disease. Incorporation of this tool into electronic medical record systems may aid in recognition of this under-diagnosed disorder.
AbstractList BACKGROUNDParathyroidectomy offers the only cure for primary hyperparathyroidism, but today only 50% of primary hyperparathyroidism patients are referred for operation, in large part, because the condition is widely under-recognized. The diagnosis of primary hyperparathyroidism can be especially challenging with mild biochemical indices. Machine learning is a collection of methods in which computers build predictive algorithms based on labeled examples. With the aim of facilitating diagnosis, we tested the ability of machine learning to distinguish primary hyperparathyroidism from normal physiology using clinical and laboratory data.METHODSThis retrospective cohort study used a labeled training set and 10-fold cross-validation to evaluate accuracy of the algorithm. Measures of accuracy included area under the receiver operating characteristic curve, precision (sensitivity), and positive and negative predictive value. Several different algorithms and ensembles of algorithms were tested using the Weka platform. Among 11,830 patients managed operatively at 3 high-volume endocrine surgery programs from March 2001 to August 2013, 6,777 underwent parathyroidectomy for confirmed primary hyperparathyroidism, and 5,053 control patients without primary hyperparathyroidism underwent thyroidectomy. Test-set accuracies for machine learning models were determined using 10-fold cross-validation. Age, sex, and serum levels of preoperative calcium, phosphate, parathyroid hormone, vitamin D, and creatinine were defined as potential predictors of primary hyperparathyroidism. Mild primary hyperparathyroidism was defined as primary hyperparathyroidism with normal preoperative calcium or parathyroid hormone levels.RESULTSAfter testing a variety of machine learning algorithms, Bayesian network models proved most accurate, classifying correctly 95.2% of all primary hyperparathyroidism patients (area under receiver operating characteristic = 0.989). Omitting parathyroid hormone from the model did not decrease the accuracy significantly (area under receiver operating characteristic = 0.985). In mild disease cases, however, the Bayesian network model classified correctly 71.1% of patients with normal calcium and 92.1% with normal parathyroid hormone levels preoperatively. Bayesian networking and AdaBoost improved the accuracy of all parathyroid hormone patients to 97.2% cases (area under receiver operating characteristic = 0.994), and 91.9% of primary hyperparathyroidism patients with mild disease. This was significantly improved relative to Bayesian networking alone (P < .0001).CONCLUSIONMachine learning can diagnose accurately primary hyperparathyroidism without human input even in mild disease. Incorporation of this tool into electronic medical record systems may aid in recognition of this under-diagnosed disorder.
Parathyroidectomy offers the only cure for primary hyperparathyroidism, but today only 50% of primary hyperparathyroidism patients are referred for operation, in large part, because the condition is widely under-recognized. The diagnosis of primary hyperparathyroidism can be especially challenging with mild biochemical indices. Machine learning is a collection of methods in which computers build predictive algorithms based on labeled examples. With the aim of facilitating diagnosis, we tested the ability of machine learning to distinguish primary hyperparathyroidism from normal physiology using clinical and laboratory data. This retrospective cohort study used a labeled training set and 10-fold cross-validation to evaluate accuracy of the algorithm. Measures of accuracy included area under the receiver operating characteristic curve, precision (sensitivity), and positive and negative predictive value. Several different algorithms and ensembles of algorithms were tested using the Weka platform. Among 11,830 patients managed operatively at 3 high-volume endocrine surgery programs from March 2001 to August 2013, 6,777 underwent parathyroidectomy for confirmed primary hyperparathyroidism, and 5,053 control patients without primary hyperparathyroidism underwent thyroidectomy. Test-set accuracies for machine learning models were determined using 10-fold cross-validation. Age, sex, and serum levels of preoperative calcium, phosphate, parathyroid hormone, vitamin D, and creatinine were defined as potential predictors of primary hyperparathyroidism. Mild primary hyperparathyroidism was defined as primary hyperparathyroidism with normal preoperative calcium or parathyroid hormone levels. After testing a variety of machine learning algorithms, Bayesian network models proved most accurate, classifying correctly 95.2% of all primary hyperparathyroidism patients (area under receiver operating characteristic = 0.989). Omitting parathyroid hormone from the model did not decrease the accuracy significantly (area under receiver operating characteristic = 0.985). In mild disease cases, however, the Bayesian network model classified correctly 71.1% of patients with normal calcium and 92.1% with normal parathyroid hormone levels preoperatively. Bayesian networking and AdaBoost improved the accuracy of all parathyroid hormone patients to 97.2% cases (area under receiver operating characteristic = 0.994), and 91.9% of primary hyperparathyroidism patients with mild disease. This was significantly improved relative to Bayesian networking alone (P < .0001). Machine learning can diagnose accurately primary hyperparathyroidism without human input even in mild disease. Incorporation of this tool into electronic medical record systems may aid in recognition of this under-diagnosed disorder.
Background Parathyroidectomy offers the only cure for primary hyperparathyroidism, but today only 50% of primary hyperparathyroidism patients are referred for operation, in large part, because the condition is widely under-recognized. The diagnosis of primary hyperparathyroidism can be especially challenging with mild biochemical indices. Machine learning is a collection of methods in which computers build predictive algorithms based on labeled examples. With the aim of facilitating diagnosis, we tested the ability of machine learning to distinguish primary hyperparathyroidism from normal physiology using clinical and laboratory data. Methods This retrospective cohort study used a labeled training set and 10-fold cross-validation to evaluate accuracy of the algorithm. Measures of accuracy included area under the receiver operating characteristic curve, precision (sensitivity), and positive and negative predictive value. Several different algorithms and ensembles of algorithms were tested using the Weka platform. Among 11,830 patients managed operatively at 3 high-volume endocrine surgery programs from March 2001 to August 2013, 6,777 underwent parathyroidectomy for confirmed primary hyperparathyroidism, and 5,053 control patients without primary hyperparathyroidism underwent thyroidectomy. Test-set accuracies for machine learning models were determined using 10-fold cross-validation. Age, sex, and serum levels of preoperative calcium, phosphate, parathyroid hormone, vitamin D, and creatinine were defined as potential predictors of primary hyperparathyroidism. Mild primary hyperparathyroidism was defined as primary hyperparathyroidism with normal preoperative calcium or parathyroid hormone levels. Results After testing a variety of machine learning algorithms, Bayesian network models proved most accurate, classifying correctly 95.2% of all primary hyperparathyroidism patients (area under receiver operating characteristic = 0.989). Omitting parathyroid hormone from the model did not decrease the accuracy significantly (area under receiver operating characteristic = 0.985). In mild disease cases, however, the Bayesian network model classified correctly 71.1% of patients with normal calcium and 92.1% with normal parathyroid hormone levels preoperatively. Bayesian networking and AdaBoost improved the accuracy of all parathyroid hormone patients to 97.2% cases (area under receiver operating characteristic = 0.994), and 91.9% of primary hyperparathyroidism patients with mild disease. This was significantly improved relative to Bayesian networking alone ( P  < .0001). Conclusion Machine learning can diagnose accurately primary hyperparathyroidism without human input even in mild disease. Incorporation of this tool into electronic medical record systems may aid in recognition of this under-diagnosed disorder.
Author McCoy, Kelly L.
Schneider, David F.
Craven, Mark
Wang, Tracy S.
Carty, Sally E.
Greenberg, Caprice C.
Somnay, Yash R.
AuthorAffiliation 3 Department of Biostatistics and Medical Informatics, and the Department Computer Science, University of Wisconsin, Madison, WI
4 Division of Endocrine Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
5 Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI
1 Section of Endocrine Surgery, Department of Surgery, University of Wisconsin, Madison, WI
2 Wisconsin Surgical Outcomes Research Program, Department of Surgery, University of Wisconsin, Madison, WI
AuthorAffiliation_xml – name: 1 Section of Endocrine Surgery, Department of Surgery, University of Wisconsin, Madison, WI
– name: 4 Division of Endocrine Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
– name: 2 Wisconsin Surgical Outcomes Research Program, Department of Surgery, University of Wisconsin, Madison, WI
– name: 3 Department of Biostatistics and Medical Informatics, and the Department Computer Science, University of Wisconsin, Madison, WI
– name: 5 Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI
Author_xml – sequence: 1
  givenname: Yash R.
  surname: Somnay
  fullname: Somnay, Yash R.
  organization: Section of Endocrine Surgery, Department of Surgery, University of Wisconsin, Madison, WI
– sequence: 2
  givenname: Mark
  surname: Craven
  fullname: Craven, Mark
  organization: Department of Biostatistics and Medical Informatics, and the Department Computer Science, University of Wisconsin, Madison, WI
– sequence: 3
  givenname: Kelly L.
  surname: McCoy
  fullname: McCoy, Kelly L.
  organization: Division of Endocrine Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
– sequence: 4
  givenname: Sally E.
  surname: Carty
  fullname: Carty, Sally E.
  organization: Division of Endocrine Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
– sequence: 5
  givenname: Tracy S.
  surname: Wang
  fullname: Wang, Tracy S.
  organization: Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI
– sequence: 6
  givenname: Caprice C.
  surname: Greenberg
  fullname: Greenberg, Caprice C.
  organization: Wisconsin Surgical Outcomes Research Program, Department of Surgery, University of Wisconsin, Madison, WI
– sequence: 7
  givenname: David F.
  surname: Schneider
  fullname: Schneider, David F.
  email: schneiderd@surgery.wisc.edu
  organization: Section of Endocrine Surgery, Department of Surgery, University of Wisconsin, Madison, WI
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27989606$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URLcLf4ADypFLFjtOHBshpKrio1IlDtCz5XUmu7MkdrCTrfbf42iX8iEBPdmS53ln_L5zQc6cd0DIc0ZXjDLxareKU9isinRfUbWiZfmILFjFi7zmgp2RBaVc5YIKek4uYtxRSlXJ5BNyXtRKqvSwILfX_RD8Ht0ma9BsnI8j2iyA9RuHI3qX-TYbAvYmHLLtYYAwmGDG7SF4bDD22R2O26w3dosOsg5McEnrKXncmi7Cs9O5JLfv3325-pjffPpwfXV5k9tKsDHnbVWvq7aUStWct1SYyrCSN1KZulF1UTfrdi1Nw8qmFZQLWygJFBS3AiSrS74k_Kg7ucEc7kzX6dOsmlE9m6R3ejZJzyZpqnQyKVFvj9QwrXtoLLgxmJ-kN6h_f3G41Ru_1xUXtapkEnh5Egj-2wRx1D1GC11nHPgpaiYrVijGpUilL37tdd_kRwKpoDgW2OBjDNA-7AfyD8jiaOa40rzY_Rt9c0Qh5bJHCDpaBGehwZT6qBuPD_LuHrcdOrSm-woHiDs_BZcS10zHQlP9eV7BeQOZ4LRmaTmX5PXfBf7X_TvYr-2h
CitedBy_id crossref_primary_10_1016_j_jss_2024_01_020
crossref_primary_10_1007_s42000_018_0069_6
crossref_primary_10_2106_JBJS_RVW_23_00232
crossref_primary_10_3390_informatics9010017
crossref_primary_10_1002_ila2_9
crossref_primary_10_1016_j_otc_2023_07_013
crossref_primary_10_1016_j_imr_2024_101100
crossref_primary_10_1016_j_jss_2017_05_117
crossref_primary_10_1515_cclm_2017_0287
crossref_primary_10_1634_theoncologist_2018_0424
crossref_primary_10_3390_make6020058
crossref_primary_10_1210_clinem_dgac544
crossref_primary_10_12997_jla_2021_10_3_282
crossref_primary_10_1080_13645706_2019_1575882
crossref_primary_10_1007_s00330_024_11159_8
crossref_primary_10_3803_EnM_2020_35_1_71
crossref_primary_10_1016_j_hpr_2022_300596
crossref_primary_10_1111_apt_14172
crossref_primary_10_1186_s12874_020_01151_3
crossref_primary_10_1016_j_surg_2018_04_097
crossref_primary_10_1007_s40618_023_02235_9
crossref_primary_10_1136_jclinpath_2021_207393
crossref_primary_10_3390_diseases10030056
crossref_primary_10_3390_make4040040
crossref_primary_10_1097_ALN_0000000000002374
crossref_primary_10_1515_cclm_2020_0716
crossref_primary_10_3343_alm_2024_0053
crossref_primary_10_1210_jc_2017_02773
crossref_primary_10_12688_f1000research_21569_1
crossref_primary_10_2478_raon_2022_0037
crossref_primary_10_1016_j_jacr_2024_09_009
Cites_doi 10.1056/NEJMp1006114
10.1001/archinte.160.3.301
10.1001/archsurg.141.9.885
10.1001/archsurg.140.5.472
10.1007/s00268-009-9987-4
10.1016/S0039-6060(97)90285-3
10.1016/S0039-6060(96)80039-0
10.1016/S0039-6060(99)70224-2
10.1016/0002-9343(93)90260-V
10.1359/jbmr.07s202
10.1245/s10434-013-3190-4
10.1016/0002-9343(94)90128-7
10.1093/bioinformatics/btg287
10.1007/BF03190296
10.1210/jc.2009-2819
10.1002/jbmr.5650061431
10.1016/j.surg.2013.06.051
10.1006/jcss.1997.1504
10.1016/j.amjsurg.2014.09.030
10.1016/j.amjmed.2010.12.028
10.1016/j.surg.2012.08.013
10.4158/EP.9.6.494
10.1377/hlthaff.26.2.w181
10.1111/j.1365-2796.2004.01422.x
10.1111/j.1365-2265.2007.02970.x
10.1016/j.surg.2009.10.021
10.1093/ajcp/55.5.523
10.1210/jc.2014-1415
10.1016/S0039-6060(05)80076-5
10.1097/SLA.0b013e31824dad7d
10.1634/theoncologist.2014-0084
10.1097/CCO.0b013e3282f2838f
10.1308/147870804290
10.1016/S0893-6080(01)00111-3
10.1136/bmj.321.7261.598
10.1016/j.surg.2004.06.059
10.1007/s00268-014-2450-1
10.1210/jc.2013-1518
10.1016/j.surg.2011.09.011
10.1097/01.sla.0000186337.83407.ec
10.1148/radiol.2403051096
10.1530/eje.1.02029
10.1016/j.jamcollsurg.2011.06.401
10.1001/jamasurg.2016.2310
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.surg.2016.09.044
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 1532-7361
EndPage 1121
ExternalDocumentID oai:pubmedcentral.nih.gov:5367958
PMC5367958
27989606
10_1016_j_surg_2016_09_044
S0039606016307115
1_s2_0_S0039606016307115
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM008692
– fundername: NCATS NIH HHS
  grantid: KL2 TR000428
– fundername: NCATS NIH HHS
  grantid: UL1 TR000427
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.XZ
.~1
0R~
123
1B1
1CY
1P~
1~.
1~5
354
4.4
457
4CK
4G.
53G
5RE
5VS
7-5
71M
8F7
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABCQX
ABFNM
ABFRF
ABLJU
ABMAC
ABMZM
ABOCM
ABWVN
ABXDB
ACDAQ
ACGFO
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ACWUS
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M41
MO0
N4W
N9A
O-L
O9-
OAUVE
OBH
OHH
OJ0
OV0
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SJN
SPCBC
SSH
SSZ
T5K
TEORI
UDS
UGJ
UHS
UQV
UQZ
UV1
VVN
WH7
X7M
YOC
Z5R
ZGI
ZXP
ZY1
~G-
~HD
AACTN
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
ZA5
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c561t-3f57b5f4899733f06a5a143d89a7d9727dbfb8ad14df6036c298e0e93c6e81743
IEDL.DBID .~1
ISSN 0039-6060
1532-7361
IngestDate Wed Oct 29 11:54:23 EDT 2025
Tue Sep 30 16:56:24 EDT 2025
Mon Sep 29 05:39:02 EDT 2025
Mon Jul 21 06:05:22 EDT 2025
Wed Oct 01 03:28:43 EDT 2025
Thu Apr 24 23:01:05 EDT 2025
Fri Feb 23 02:24:44 EST 2024
Tue Feb 25 20:06:51 EST 2025
Tue Oct 14 19:34:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c561t-3f57b5f4899733f06a5a143d89a7d9727dbfb8ad14df6036c298e0e93c6e81743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1016/j.surg.2016.09.044
PMID 27989606
PQID 1851291386
PQPubID 23479
PageCount 9
ParticipantIDs unpaywall_primary_10_1016_j_surg_2016_09_044
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5367958
proquest_miscellaneous_1851291386
pubmed_primary_27989606
crossref_primary_10_1016_j_surg_2016_09_044
crossref_citationtrail_10_1016_j_surg_2016_09_044
elsevier_sciencedirect_doi_10_1016_j_surg_2016_09_044
elsevier_clinicalkeyesjournals_1_s2_0_S0039606016307115
elsevier_clinicalkey_doi_10_1016_j_surg_2016_09_044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Surgery
PublicationTitleAlternate Surgery
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Stefenelli, Mayr, Bergler-Klein, Globits, Woloszczuk, Niederle (bib39) 1993; 95
Blumenthal, Tavenner (bib12) 2010; 363
Ljunghall, Jakobsson, Joborn, Palmér, Rastad, Akerström (bib41) 1991; 6
Helmons, Suijkerbuijk, Nannan Panday, Kosterink (bib13) 2015; 22
Kawaler, Cobian, Peissig, Cross, Yale, Craven (bib22) 2012; 2012
Almqvist, Becker, Bondeson, Bondeson, Svensson (bib37) 2004; 136
Wallace, Parikh, Ross (bib49) 2011; 150
Press, Siperstein, Berber (bib8) 2013; 154
Wilhelm, Wang, Ruan (bib23) 2016; 151
Koumakis, Souberbielle, Sarfati (bib50) 2013; 98
Caron, Pasieka (bib44) 2009; 33
O'Connell, Yen, Shaker, Wilson, Evans, Wang (bib17) 2015; 210
Freund, Schapire (bib27) 1997; 55
Stefenelli, Abela, Frank, Koller-Strametz, Niederle (bib40) 1997; 121
Applewhite, Schneider (bib33) 2014; 19
Health Information Technology for Economic and Clinical Health Act, Title XIII of the American Recovery and Reinvestment Act of 2009 HITECH Act. 2009; Available from
Schneider, Burke, Ojomo (bib47) 2013; 20
Ramesh, Kambhampati, Monson, Drew (bib19) 2004; 86
Burney, Jones, Christy, Thompson (bib42) 1999; 125
Sarkar, Butte, Lussier, Tarczy-Hornoch, Ohno-Machado (bib55) 2011; 18
Boonstra, Jackson (bib10) 1971; 55
Lisboa (bib20) 2002; 15
Bargren, Repplinger, Chen, Sippel (bib48) 2011; 213
Dutra, Nassif, Page (bib28) 2011; 2011
Pasieka, Parsons, Jones (bib45) 2009; 146
.
VanderWalde, Liu, O'Connell, Haigh (bib35) 2006; 141
Mahadevia, Sosa, Levine, Zeiger, Powe (bib32) 2003; 9
Padmanabhan (bib9) 2011; 124
Oba, Sato, Takemasa, Monden, Matsubara, Ishii (bib26) 2003; 19
Silverberg (bib29) 2007; 22
Silverberg, Clarke, Peacock (bib34) 2014; 99
Jensen, Jensen, Brunak (bib18) 2012; 13
Kahn, Roberts, Wang, Jenks, Haddawy (bib25) 1995
Chen, Zeiger, Gordon, Udelsman (bib6) 1996; 120
Dhawan, Wenzel, George, Gussak, Bojovic, Panescu (bib53) 2012; 2012
Stewart, Shah, Selna, Paulus, Walker (bib54) 2007; 26
Yeh, Wiseman, Ituarte (bib7) 2012; 255
Balas, Weingarten, Garb, Blumenthal, Boren, Brown (bib15) 2000; 160
Jin, Mitchell, Shin, Berber, Siperstein, Milas (bib52) 2012; 152
Bilezikian, Brandi, Rubin, Silverberg (bib30) 2005; 257
McCoy, Chen, Armstrong (bib51) 2014; 38
Doppman, Miller (bib4) 1991; 6
Sejean, Calmus, Durand-Zaleski (bib46) 2005; 153
Denekamp (bib16) 2007; 9
Coker, Rorie, Cantley (bib1) 2005; 242
Shea, DuMouchel, Bahamonde (bib14) 1996; 3
Burnside, Rubin, Fine, Shachter, Sisney, Leung (bib21) 2006; 240
Wu, Haigh, Hwang (bib31) 2010; 95
Hedbäck, Odén, Tisell (bib38) 1995; 117
Solomon, Schaaf, Smallridge (bib43) 1994; 96
Kahn, Laur, Carrera (bib24) 2001; 14
Mihai, Wass, Sadler (bib2) 2008; 68
Vestergaard, Mollerup, Frokjaer, Christiansen, Blichert-Toft, Mosekilde (bib36) 2000; 321
Rodgers, Lew, Solórzano (bib3) 2008; 20
Grant, Thompson, Farley, van Heerden (bib5) 2005; 140
Schneider (10.1016/j.surg.2016.09.044_bib47) 2013; 20
O'Connell (10.1016/j.surg.2016.09.044_bib17) 2015; 210
Shea (10.1016/j.surg.2016.09.044_bib14) 1996; 3
Solomon (10.1016/j.surg.2016.09.044_bib43) 1994; 96
Silverberg (10.1016/j.surg.2016.09.044_bib34) 2014; 99
Oba (10.1016/j.surg.2016.09.044_bib26) 2003; 19
Burnside (10.1016/j.surg.2016.09.044_bib21) 2006; 240
Almqvist (10.1016/j.surg.2016.09.044_bib37) 2004; 136
Stefenelli (10.1016/j.surg.2016.09.044_bib40) 1997; 121
Sarkar (10.1016/j.surg.2016.09.044_bib55) 2011; 18
Jin (10.1016/j.surg.2016.09.044_bib52) 2012; 152
Denekamp (10.1016/j.surg.2016.09.044_bib16) 2007; 9
Lisboa (10.1016/j.surg.2016.09.044_bib20) 2002; 15
Freund (10.1016/j.surg.2016.09.044_bib27) 1997; 55
Kahn (10.1016/j.surg.2016.09.044_bib25) 1995
Pasieka (10.1016/j.surg.2016.09.044_bib45) 2009; 146
Kahn (10.1016/j.surg.2016.09.044_bib24) 2001; 14
VanderWalde (10.1016/j.surg.2016.09.044_bib35) 2006; 141
Stefenelli (10.1016/j.surg.2016.09.044_bib39) 1993; 95
Wallace (10.1016/j.surg.2016.09.044_bib49) 2011; 150
Hedbäck (10.1016/j.surg.2016.09.044_bib38) 1995; 117
Burney (10.1016/j.surg.2016.09.044_bib42) 1999; 125
Kawaler (10.1016/j.surg.2016.09.044_bib22) 2012; 2012
Helmons (10.1016/j.surg.2016.09.044_bib13) 2015; 22
Vestergaard (10.1016/j.surg.2016.09.044_bib36) 2000; 321
Coker (10.1016/j.surg.2016.09.044_bib1) 2005; 242
Rodgers (10.1016/j.surg.2016.09.044_bib3) 2008; 20
Applewhite (10.1016/j.surg.2016.09.044_bib33) 2014; 19
Padmanabhan (10.1016/j.surg.2016.09.044_bib9) 2011; 124
Dutra (10.1016/j.surg.2016.09.044_bib28) 2011; 2011
Bilezikian (10.1016/j.surg.2016.09.044_bib30) 2005; 257
Wilhelm (10.1016/j.surg.2016.09.044_bib23) 2016; 151
Blumenthal (10.1016/j.surg.2016.09.044_bib12) 2010; 363
10.1016/j.surg.2016.09.044_bib11
Bargren (10.1016/j.surg.2016.09.044_bib48) 2011; 213
Mihai (10.1016/j.surg.2016.09.044_bib2) 2008; 68
Dhawan (10.1016/j.surg.2016.09.044_bib53) 2012; 2012
Ramesh (10.1016/j.surg.2016.09.044_bib19) 2004; 86
Chen (10.1016/j.surg.2016.09.044_bib6) 1996; 120
Sejean (10.1016/j.surg.2016.09.044_bib46) 2005; 153
McCoy (10.1016/j.surg.2016.09.044_bib51) 2014; 38
Stewart (10.1016/j.surg.2016.09.044_bib54) 2007; 26
Press (10.1016/j.surg.2016.09.044_bib8) 2013; 154
Mahadevia (10.1016/j.surg.2016.09.044_bib32) 2003; 9
Grant (10.1016/j.surg.2016.09.044_bib5) 2005; 140
Wu (10.1016/j.surg.2016.09.044_bib31) 2010; 95
Doppman (10.1016/j.surg.2016.09.044_bib4) 1991; 6
Caron (10.1016/j.surg.2016.09.044_bib44) 2009; 33
Balas (10.1016/j.surg.2016.09.044_bib15) 2000; 160
Jensen (10.1016/j.surg.2016.09.044_bib18) 2012; 13
Ljunghall (10.1016/j.surg.2016.09.044_bib41) 1991; 6
Boonstra (10.1016/j.surg.2016.09.044_bib10) 1971; 55
Koumakis (10.1016/j.surg.2016.09.044_bib50) 2013; 98
Silverberg (10.1016/j.surg.2016.09.044_bib29) 2007; 22
Yeh (10.1016/j.surg.2016.09.044_bib7) 2012; 255
22195087 - AMIA Annu Symp Proc. 2011;2011:349-55
5090209 - Am J Clin Pathol. 1971 May;55(5):523-6
15333167 - Ann R Coll Surg Engl. 2004 Sep;86(5):334-8
1763661 - J Bone Miner Res. 1991 Oct;6 Suppl 2:S111-6; discussion S121-4
15897443 - Arch Surg. 2005 May;140(5):472-8; discussion 478-9
14715476 - Endocr Pract. 2003 Nov-Dec;9(6):494-503
21816381 - Am J Med. 2011 Oct;124(10):911-4
19288279 - World J Surg. 2009 Nov;33(11):2244-55
14594714 - Bioinformatics. 2003 Nov 1;19(16):2088-96
25162667 - J Clin Endocrinol Metab. 2014 Oct;99(10):3580-94
10668831 - Arch Intern Med. 2000 Feb 14;160(3):301-8
16926323 - Radiology. 2006 Sep;240(3):666-73
23102677 - Surgery. 2012 Dec;152(6):1184-92
15606372 - J Intern Med. 2005 Jan;257(1):6-17
20647183 - N Engl J Med. 2010 Aug 5;363(6):501-4
8930856 - J Am Med Inform Assoc. 1996 Nov-Dec;3(6):399-409
17651448 - Clin Endocrinol (Oxf). 2008 Feb;68(2):155-64
24510243 - World J Surg. 2014 Jun;38(6):1274-81
1763668 - J Bone Miner Res. 1991 Oct;6 Suppl 2:S153-8; discussion S159
10977834 - BMJ. 2000 Sep 9;321(7261):598-602
23943034 - Ann Surg Oncol. 2013 Dec;20(13):4205-11
8563269 - Proc Annu Symp Comput Appl Med Care. 1995;:208-12
25595714 - Am J Surg. 2015 Jul;210(1):123-8
27532368 - JAMA Surg. 2016 Oct 1;151(10 ):959-968
23783096 - J Clin Endocrinol Metab. 2013 Aug;98(8):3213-20
18043256 - Curr Opin Oncol. 2008 Jan;20(1):52-8
21561873 - J Am Med Inform Assoc. 2011 Jul-Aug;18(4):354-7
25670751 - J Am Med Inform Assoc. 2015 Jul;22(4):764-72
20610600 - J Clin Endocrinol Metab. 2010 Sep;95(9):4324-30
15657588 - Surgery. 2004 Dec;136(6):1281-8
16322399 - Eur J Endocrinol. 2005 Dec;153(6):915-27
23304314 - AMIA Annu Symp Proc. 2012;2012:436-45
22549152 - Nat Rev Genet. 2012 May 02;13(6):395-405
22136828 - Surgery. 2011 Dec;150(6):1102-12
18290710 - J Bone Miner Res. 2007 Dec;22 Suppl 2:V100-4
9037227 - Surgery. 1997 Feb;121(2):157-61
11958484 - Neural Netw. 2002 Jan;15(1):11-39
16244536 - Ann Surg. 2005 Nov;242(5):642-50
19958927 - Surgery. 2009 Dec;146(6):1006-13
24383100 - Surgery. 2013 Dec;154(6):1232-7; discussion 1237-8
10372026 - Surgery. 1999 Jun;125(6):608-14
11442121 - J Digit Imaging. 2001 Jun;14 (2 Suppl 1):56-7
8356983 - Am J Med. 1993 Aug;95(2):197-202
18085031 - Isr Med Assoc J. 2007 Nov;9(11):771-6
23366483 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2704-7
8957479 - Surgery. 1996 Dec;120(6):948-52; discussion 952-3
8109593 - Am J Med. 1994 Feb;96(2):101-6
25063228 - Oncologist. 2014 Sep;19(9):919-29
22584631 - Ann Surg. 2012 Jun;255(6):1179-83
16983032 - Arch Surg. 2006 Sep;141(9):885-9; discussion 889-91
17259202 - Health Aff (Millwood). 2007 Mar-Apr;26(2):w181-91
21723154 - J Am Coll Surg. 2011 Sep;213(3):410-4
7846616 - Surgery. 1995 Feb;117(2):134-9
References_xml – volume: 19
  start-page: 2088
  year: 2003
  end-page: 2096
  ident: bib26
  article-title: A Bayesian missing value estimation method for gene expression profile data
  publication-title: Bioinformatics
– volume: 151
  start-page: 959
  year: 2016
  end-page: 968
  ident: bib23
  article-title: The American Association of Endocrine Surgeons (AAES) guidelines for definitive management of primary hyperparathyroidism
  publication-title: JAMA Surgery
– volume: 141
  start-page: 885
  year: 2006
  end-page: 889
  ident: bib35
  article-title: The effect of parathyroidectomy on bone fracture risk in patients with primary hyperparathyroidism
  publication-title: Arch Surg
– volume: 38
  start-page: 1274
  year: 2014
  end-page: 1281
  ident: bib51
  article-title: The small abnormal parathyroid gland is increasingly common and heralds operative complexity
  publication-title: World J Surg
– volume: 140
  start-page: 472
  year: 2005
  end-page: 478
  ident: bib5
  article-title: Primary hyperparathyroidism surgical management since the introduction of minimally invasive parathyroidectomy: Mayo Clinic experience
  publication-title: Arch Surg
– volume: 240
  start-page: 666
  year: 2006
  end-page: 673
  ident: bib21
  article-title: Bayesian network to predict breast cancer risk of mammographic microcalcifications and reduce number of benign biopsy results: initial experience
  publication-title: Radiology
– volume: 22
  start-page: V100
  year: 2007
  end-page: V104
  ident: bib29
  article-title: Vitamin D deficiency and primary hyperparathyroidism
  publication-title: J Bone Miner Res
– volume: 13
  start-page: 395
  year: 2012
  end-page: 405
  ident: bib18
  article-title: Mining electronic health records: towards better research applications and clinical care. Nature reviews
  publication-title: Genetics
– volume: 22
  start-page: 764
  year: 2015
  end-page: 772
  ident: bib13
  article-title: Drug-drug interaction checking assisted by clinical decision support: a return on investment analysis
  publication-title: JAMIA
– volume: 3
  start-page: 399
  year: 1996
  end-page: 409
  ident: bib14
  article-title: A meta-analysis of 16 randomized controlled trials to evaluate computer-based clinical reminder systems for preventive care in the ambulatory setting
  publication-title: JAMIA
– start-page: 208
  year: 1995
  end-page: 212
  ident: bib25
  article-title: Preliminary investigation of a Bayesian network for mammographic diagnosis of breast cancer
  publication-title: Proc Annu Symp Comput Appl Med Care
– volume: 6
  start-page: S153
  year: 1991
  end-page: S158
  ident: bib4
  article-title: Localization of parathyroid tumors in patients with asymptomatic hyperparathyroidism and no previous surgery
  publication-title: J Bone Miner Res
– volume: 86
  start-page: 334
  year: 2004
  end-page: 338
  ident: bib19
  article-title: Artificial intelligence in medicine
  publication-title: Ann R Coll Surg Engl
– volume: 321
  start-page: 598
  year: 2000
  end-page: 602
  ident: bib36
  article-title: Cohort study of risk of fracture before and after surgery for primary hyperparathyroidism
  publication-title: BMJ
– volume: 20
  start-page: 52
  year: 2008
  end-page: 58
  ident: bib3
  article-title: Primary hyperparathyroidism
  publication-title: Curr Opin Oncol
– volume: 160
  start-page: 301
  year: 2000
  end-page: 308
  ident: bib15
  article-title: Improving preventive care by prompting physicians
  publication-title: Arch Intern Med
– volume: 210
  start-page: 123
  year: 2015
  end-page: 128
  ident: bib17
  article-title: Low 24-hour urine calcium levels in patients with sporadic primary hyperparathyroidism: is further evaluation warranted prior to parathyroidectomy?
  publication-title: Am J Surg
– volume: 121
  start-page: 157
  year: 1997
  end-page: 161
  ident: bib40
  article-title: Time course of regression of left ventricular hypertrophy after successful parathyroidectomy
  publication-title: Surgery
– volume: 55
  start-page: 523
  year: 1971
  end-page: 526
  ident: bib10
  article-title: Serum calcium survey for hyperparathyroidism: results in 50,000 clinic patients
  publication-title: Am J Clin Pathol
– volume: 33
  start-page: 2244
  year: 2009
  end-page: 2255
  ident: bib44
  article-title: What symptom improvement can be expected after operation for primary hyperparathyroidism?
  publication-title: World J Surg
– volume: 98
  start-page: 3213
  year: 2013
  end-page: 3220
  ident: bib50
  article-title: Bone mineral density evolution after successful parathyroidectomy in patients with normocalcemic primary hyperparathyroidism
  publication-title: J Clin Endocrinol Metab
– volume: 2012
  start-page: 2704
  year: 2012
  end-page: 2707
  ident: bib53
  article-title: Detection of acute myocardial infarction from serial ECG using multilayer support vector machine
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 242
  start-page: 642
  year: 2005
  end-page: 650
  ident: bib1
  article-title: Primary hyperparathyroidism, cognition, and health-related quality of life
  publication-title: Ann Surg
– volume: 68
  start-page: 155
  year: 2008
  end-page: 164
  ident: bib2
  article-title: Asymptomatic hyperparathyroidism—need for multicentre studies
  publication-title: Clin Endocrinol (Oxf)
– volume: 213
  start-page: 410
  year: 2011
  end-page: 414
  ident: bib48
  article-title: Can biochemical abnormalities predict symptomatology in patients with primary hyperparathyroidism?
  publication-title: J Am Coll Surg
– volume: 257
  start-page: 6
  year: 2005
  end-page: 17
  ident: bib30
  article-title: Primary hyperparathyroidism: new concepts in clinical, densitometric and biochemical features
  publication-title: J Intern Med
– volume: 152
  start-page: 1184
  year: 2012
  end-page: 1192
  ident: bib52
  article-title: Calculating an individual maxPTH to aid diagnosis of normocalemic primary hyperparathyroidism
  publication-title: Surgery
– volume: 6
  start-page: S111
  year: 1991
  end-page: S116
  ident: bib41
  article-title: Longitudinal studies of mild primary hyperparathyroidism
  publication-title: J Bone Miner Res
– volume: 99
  start-page: 3580
  year: 2014
  end-page: 3594
  ident: bib34
  article-title: Current issues in the presentation of asymptomatic primary hyperparathyroidism: proceedings of the Fourth International Workshop
  publication-title: J Clin Endocrinol Metab
– volume: 96
  start-page: 101
  year: 1994
  end-page: 106
  ident: bib43
  article-title: Psychologic symptoms before and after parathyroid surgery
  publication-title: Am J Med
– volume: 9
  start-page: 494
  year: 2003
  end-page: 503
  ident: bib32
  article-title: Clinical management of primary hyperparathyroidism and thresholds for surgical referral: a national study examining concordance between practice patterns and consensus panel recommendations
  publication-title: Endocr Pract
– volume: 153
  start-page: 915
  year: 2005
  end-page: 927
  ident: bib46
  article-title: Surgery versus medical follow-up in patients with asymptomatic primary hyperparathyroidism: a decision analysis
  publication-title: Eur J Endocrinol
– volume: 15
  start-page: 11
  year: 2002
  end-page: 39
  ident: bib20
  article-title: A review of evidence of health benefit from artificial neural networks in medical intervention
  publication-title: Neural Netw
– volume: 95
  start-page: 4324
  year: 2010
  end-page: 4330
  ident: bib31
  article-title: Underutilization of parathyroidectomy in elderly patients with primary hyperparathyroidism
  publication-title: J Clin Endocrinol Metab
– volume: 146
  start-page: 1006
  year: 2009
  end-page: 1013
  ident: bib45
  article-title: The long-term benefit of parathyroidectomy in primary hyperparathyroidism: a 10-year prospective surgical outcome study
  publication-title: Surgery
– volume: 20
  start-page: 4205
  year: 2013
  end-page: 4211
  ident: bib47
  article-title: Multigland disease and slower decline in intraoperative PTH characterize mild primary hyperparathyroidism
  publication-title: Ann Surg Oncol
– volume: 26
  start-page: w181
  year: 2007
  end-page: w191
  ident: bib54
  article-title: Bridging the inferential gap: the electronic health record and clinical evidence
  publication-title: Health Aff (Millwood)
– volume: 18
  start-page: 354
  year: 2011
  end-page: 357
  ident: bib55
  article-title: Translational bioinformatics: linking knowledge across biological and clinical realms
  publication-title: JAMIA
– volume: 255
  start-page: 1179
  year: 2012
  end-page: 1183
  ident: bib7
  article-title: Surgery for primary hyperparathyroidism: are the consensus guidelines being followed?
  publication-title: Ann Surg
– volume: 14
  start-page: 56
  year: 2001
  end-page: 57
  ident: bib24
  article-title: A Bayesian network for diagnosis of primary bone tumors
  publication-title: J Digit Imaging
– volume: 125
  start-page: 608
  year: 1999
  end-page: 614
  ident: bib42
  article-title: Health status improvement after surgical correction of primary hyperparathyroidism in patients with high and low preoperative calcium levels
  publication-title: Surgery
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: bib27
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: Journal of Computer and System Sciences
– volume: 136
  start-page: 1281
  year: 2004
  end-page: 1288
  ident: bib37
  article-title: Early parathyroidectomy increases bone mineral density in patients with mild primary hyperparathyroidism: a prospective and randomized study
  publication-title: Surgery
– volume: 363
  start-page: 501
  year: 2010
  end-page: 504
  ident: bib12
  article-title: The “meaningful use” regulation for electronic health records
  publication-title: N Engl J Med
– volume: 9
  start-page: 771
  year: 2007
  end-page: 776
  ident: bib16
  article-title: Clinical decision support systems for addressing information needs of physicians
  publication-title: Isr Med Assoc J
– volume: 2011
  start-page: 349
  year: 2011
  end-page: 355
  ident: bib28
  article-title: Integrating machine learning and physician knowledge to improve the accuracy of breast biopsy. AMIA. Annual Symposium proceedings/AMIA Symposium
  publication-title: AMIA Symposium
– volume: 19
  start-page: 919
  year: 2014
  end-page: 929
  ident: bib33
  article-title: Mild primary hyperparathyroidism: a literature review
  publication-title: Oncologist
– reference: .
– volume: 150
  start-page: 1102
  year: 2011
  end-page: 1112
  ident: bib49
  article-title: The phenotype of primary hyperparathyroidism with normal parathyroid hormone levels: how low can parathyroid hormone go?
  publication-title: Surgery
– reference: Health Information Technology for Economic and Clinical Health Act, Title XIII of the American Recovery and Reinvestment Act of 2009 HITECH Act. 2009; Available from:
– volume: 120
  start-page: 948
  year: 1996
  end-page: 952
  ident: bib6
  article-title: Parathyroidectomy in Maryland: effects of an endocrine center
  publication-title: Surgery
– volume: 154
  start-page: 1232
  year: 2013
  end-page: 1237
  ident: bib8
  article-title: The prevalence of undiagnosed and unrecognized primary hyperparathyroidism: a population-based analysis from the electronic medical record
  publication-title: Surgery
– volume: 124
  start-page: 911
  year: 2011
  end-page: 914
  ident: bib9
  article-title: Outpatient management of primary hyperparathyroidism
  publication-title: Am J Med
– volume: 2012
  start-page: 436
  year: 2012
  end-page: 445
  ident: bib22
  article-title: Learning to predict post-hospitalization VTE risk from EHR data. AMIA. Annual Symposium proceedings/AMIA Symposium
  publication-title: AMIA Symposium
– volume: 117
  start-page: 134
  year: 1995
  end-page: 139
  ident: bib38
  article-title: Parathyroid adenoma weight and the risk of death after treatment for primary hyperparathyroidism
  publication-title: Surgery
– volume: 95
  start-page: 197
  year: 1993
  end-page: 202
  ident: bib39
  article-title: Primary hyperparathyroidism: incidence of cardiac abnormalities and partial reversibility after successful parathyroidectomy
  publication-title: Am J Med
– volume: 363
  start-page: 501
  year: 2010
  ident: 10.1016/j.surg.2016.09.044_bib12
  article-title: The “meaningful use” regulation for electronic health records
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1006114
– volume: 160
  start-page: 301
  year: 2000
  ident: 10.1016/j.surg.2016.09.044_bib15
  article-title: Improving preventive care by prompting physicians
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.160.3.301
– volume: 141
  start-page: 885
  year: 2006
  ident: 10.1016/j.surg.2016.09.044_bib35
  article-title: The effect of parathyroidectomy on bone fracture risk in patients with primary hyperparathyroidism
  publication-title: Arch Surg
  doi: 10.1001/archsurg.141.9.885
– volume: 140
  start-page: 472
  year: 2005
  ident: 10.1016/j.surg.2016.09.044_bib5
  article-title: Primary hyperparathyroidism surgical management since the introduction of minimally invasive parathyroidectomy: Mayo Clinic experience
  publication-title: Arch Surg
  doi: 10.1001/archsurg.140.5.472
– volume: 33
  start-page: 2244
  year: 2009
  ident: 10.1016/j.surg.2016.09.044_bib44
  article-title: What symptom improvement can be expected after operation for primary hyperparathyroidism?
  publication-title: World J Surg
  doi: 10.1007/s00268-009-9987-4
– volume: 121
  start-page: 157
  year: 1997
  ident: 10.1016/j.surg.2016.09.044_bib40
  article-title: Time course of regression of left ventricular hypertrophy after successful parathyroidectomy
  publication-title: Surgery
  doi: 10.1016/S0039-6060(97)90285-3
– volume: 120
  start-page: 948
  year: 1996
  ident: 10.1016/j.surg.2016.09.044_bib6
  article-title: Parathyroidectomy in Maryland: effects of an endocrine center
  publication-title: Surgery
  doi: 10.1016/S0039-6060(96)80039-0
– volume: 125
  start-page: 608
  year: 1999
  ident: 10.1016/j.surg.2016.09.044_bib42
  article-title: Health status improvement after surgical correction of primary hyperparathyroidism in patients with high and low preoperative calcium levels
  publication-title: Surgery
  doi: 10.1016/S0039-6060(99)70224-2
– volume: 95
  start-page: 197
  year: 1993
  ident: 10.1016/j.surg.2016.09.044_bib39
  article-title: Primary hyperparathyroidism: incidence of cardiac abnormalities and partial reversibility after successful parathyroidectomy
  publication-title: Am J Med
  doi: 10.1016/0002-9343(93)90260-V
– volume: 18
  start-page: 354
  year: 2011
  ident: 10.1016/j.surg.2016.09.044_bib55
  article-title: Translational bioinformatics: linking knowledge across biological and clinical realms
  publication-title: JAMIA
– volume: 13
  start-page: 395
  year: 2012
  ident: 10.1016/j.surg.2016.09.044_bib18
  article-title: Mining electronic health records: towards better research applications and clinical care. Nature reviews
  publication-title: Genetics
– volume: 22
  start-page: V100
  issue: Suppl 2
  year: 2007
  ident: 10.1016/j.surg.2016.09.044_bib29
  article-title: Vitamin D deficiency and primary hyperparathyroidism
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.07s202
– volume: 20
  start-page: 4205
  year: 2013
  ident: 10.1016/j.surg.2016.09.044_bib47
  article-title: Multigland disease and slower decline in intraoperative PTH characterize mild primary hyperparathyroidism
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-013-3190-4
– ident: 10.1016/j.surg.2016.09.044_bib11
– volume: 96
  start-page: 101
  year: 1994
  ident: 10.1016/j.surg.2016.09.044_bib43
  article-title: Psychologic symptoms before and after parathyroid surgery
  publication-title: Am J Med
  doi: 10.1016/0002-9343(94)90128-7
– volume: 19
  start-page: 2088
  year: 2003
  ident: 10.1016/j.surg.2016.09.044_bib26
  article-title: A Bayesian missing value estimation method for gene expression profile data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg287
– volume: 14
  start-page: 56
  issue: 2 Suppl 1
  year: 2001
  ident: 10.1016/j.surg.2016.09.044_bib24
  article-title: A Bayesian network for diagnosis of primary bone tumors
  publication-title: J Digit Imaging
  doi: 10.1007/BF03190296
– volume: 95
  start-page: 4324
  year: 2010
  ident: 10.1016/j.surg.2016.09.044_bib31
  article-title: Underutilization of parathyroidectomy in elderly patients with primary hyperparathyroidism
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2009-2819
– volume: 6
  start-page: S111
  issue: Suppl 2
  year: 1991
  ident: 10.1016/j.surg.2016.09.044_bib41
  article-title: Longitudinal studies of mild primary hyperparathyroidism
  publication-title: J Bone Miner Res
– volume: 6
  start-page: S153
  issue: Suppl 2
  year: 1991
  ident: 10.1016/j.surg.2016.09.044_bib4
  article-title: Localization of parathyroid tumors in patients with asymptomatic hyperparathyroidism and no previous surgery
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.5650061431
– volume: 154
  start-page: 1232
  year: 2013
  ident: 10.1016/j.surg.2016.09.044_bib8
  article-title: The prevalence of undiagnosed and unrecognized primary hyperparathyroidism: a population-based analysis from the electronic medical record
  publication-title: Surgery
  doi: 10.1016/j.surg.2013.06.051
– volume: 55
  start-page: 119
  year: 1997
  ident: 10.1016/j.surg.2016.09.044_bib27
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: Journal of Computer and System Sciences
  doi: 10.1006/jcss.1997.1504
– volume: 210
  start-page: 123
  year: 2015
  ident: 10.1016/j.surg.2016.09.044_bib17
  article-title: Low 24-hour urine calcium levels in patients with sporadic primary hyperparathyroidism: is further evaluation warranted prior to parathyroidectomy?
  publication-title: Am J Surg
  doi: 10.1016/j.amjsurg.2014.09.030
– volume: 124
  start-page: 911
  year: 2011
  ident: 10.1016/j.surg.2016.09.044_bib9
  article-title: Outpatient management of primary hyperparathyroidism
  publication-title: Am J Med
  doi: 10.1016/j.amjmed.2010.12.028
– volume: 3
  start-page: 399
  year: 1996
  ident: 10.1016/j.surg.2016.09.044_bib14
  article-title: A meta-analysis of 16 randomized controlled trials to evaluate computer-based clinical reminder systems for preventive care in the ambulatory setting
  publication-title: JAMIA
– volume: 152
  start-page: 1184
  year: 2012
  ident: 10.1016/j.surg.2016.09.044_bib52
  article-title: Calculating an individual maxPTH to aid diagnosis of normocalemic primary hyperparathyroidism
  publication-title: Surgery
  doi: 10.1016/j.surg.2012.08.013
– volume: 9
  start-page: 494
  year: 2003
  ident: 10.1016/j.surg.2016.09.044_bib32
  article-title: Clinical management of primary hyperparathyroidism and thresholds for surgical referral: a national study examining concordance between practice patterns and consensus panel recommendations
  publication-title: Endocr Pract
  doi: 10.4158/EP.9.6.494
– volume: 26
  start-page: w181
  year: 2007
  ident: 10.1016/j.surg.2016.09.044_bib54
  article-title: Bridging the inferential gap: the electronic health record and clinical evidence
  publication-title: Health Aff (Millwood)
  doi: 10.1377/hlthaff.26.2.w181
– volume: 257
  start-page: 6
  year: 2005
  ident: 10.1016/j.surg.2016.09.044_bib30
  article-title: Primary hyperparathyroidism: new concepts in clinical, densitometric and biochemical features
  publication-title: J Intern Med
  doi: 10.1111/j.1365-2796.2004.01422.x
– volume: 68
  start-page: 155
  year: 2008
  ident: 10.1016/j.surg.2016.09.044_bib2
  article-title: Asymptomatic hyperparathyroidism—need for multicentre studies
  publication-title: Clin Endocrinol (Oxf)
  doi: 10.1111/j.1365-2265.2007.02970.x
– volume: 2011
  start-page: 349
  year: 2011
  ident: 10.1016/j.surg.2016.09.044_bib28
  article-title: Integrating machine learning and physician knowledge to improve the accuracy of breast biopsy. AMIA. Annual Symposium proceedings/AMIA Symposium
  publication-title: AMIA Symposium
– volume: 146
  start-page: 1006
  year: 2009
  ident: 10.1016/j.surg.2016.09.044_bib45
  article-title: The long-term benefit of parathyroidectomy in primary hyperparathyroidism: a 10-year prospective surgical outcome study
  publication-title: Surgery
  doi: 10.1016/j.surg.2009.10.021
– volume: 55
  start-page: 523
  year: 1971
  ident: 10.1016/j.surg.2016.09.044_bib10
  article-title: Serum calcium survey for hyperparathyroidism: results in 50,000 clinic patients
  publication-title: Am J Clin Pathol
  doi: 10.1093/ajcp/55.5.523
– volume: 99
  start-page: 3580
  year: 2014
  ident: 10.1016/j.surg.2016.09.044_bib34
  article-title: Current issues in the presentation of asymptomatic primary hyperparathyroidism: proceedings of the Fourth International Workshop
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2014-1415
– volume: 9
  start-page: 771
  year: 2007
  ident: 10.1016/j.surg.2016.09.044_bib16
  article-title: Clinical decision support systems for addressing information needs of physicians
  publication-title: Isr Med Assoc J
– volume: 117
  start-page: 134
  year: 1995
  ident: 10.1016/j.surg.2016.09.044_bib38
  article-title: Parathyroid adenoma weight and the risk of death after treatment for primary hyperparathyroidism
  publication-title: Surgery
  doi: 10.1016/S0039-6060(05)80076-5
– volume: 2012
  start-page: 2704
  year: 2012
  ident: 10.1016/j.surg.2016.09.044_bib53
  article-title: Detection of acute myocardial infarction from serial ECG using multilayer support vector machine
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 255
  start-page: 1179
  year: 2012
  ident: 10.1016/j.surg.2016.09.044_bib7
  article-title: Surgery for primary hyperparathyroidism: are the consensus guidelines being followed?
  publication-title: Ann Surg
  doi: 10.1097/SLA.0b013e31824dad7d
– volume: 19
  start-page: 919
  year: 2014
  ident: 10.1016/j.surg.2016.09.044_bib33
  article-title: Mild primary hyperparathyroidism: a literature review
  publication-title: Oncologist
  doi: 10.1634/theoncologist.2014-0084
– volume: 20
  start-page: 52
  year: 2008
  ident: 10.1016/j.surg.2016.09.044_bib3
  article-title: Primary hyperparathyroidism
  publication-title: Curr Opin Oncol
  doi: 10.1097/CCO.0b013e3282f2838f
– volume: 86
  start-page: 334
  year: 2004
  ident: 10.1016/j.surg.2016.09.044_bib19
  article-title: Artificial intelligence in medicine
  publication-title: Ann R Coll Surg Engl
  doi: 10.1308/147870804290
– volume: 15
  start-page: 11
  year: 2002
  ident: 10.1016/j.surg.2016.09.044_bib20
  article-title: A review of evidence of health benefit from artificial neural networks in medical intervention
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(01)00111-3
– start-page: 208
  year: 1995
  ident: 10.1016/j.surg.2016.09.044_bib25
  article-title: Preliminary investigation of a Bayesian network for mammographic diagnosis of breast cancer
  publication-title: Proc Annu Symp Comput Appl Med Care
– volume: 321
  start-page: 598
  year: 2000
  ident: 10.1016/j.surg.2016.09.044_bib36
  article-title: Cohort study of risk of fracture before and after surgery for primary hyperparathyroidism
  publication-title: BMJ
  doi: 10.1136/bmj.321.7261.598
– volume: 22
  start-page: 764
  year: 2015
  ident: 10.1016/j.surg.2016.09.044_bib13
  article-title: Drug-drug interaction checking assisted by clinical decision support: a return on investment analysis
  publication-title: JAMIA
– volume: 136
  start-page: 1281
  year: 2004
  ident: 10.1016/j.surg.2016.09.044_bib37
  article-title: Early parathyroidectomy increases bone mineral density in patients with mild primary hyperparathyroidism: a prospective and randomized study
  publication-title: Surgery
  doi: 10.1016/j.surg.2004.06.059
– volume: 2012
  start-page: 436
  year: 2012
  ident: 10.1016/j.surg.2016.09.044_bib22
  article-title: Learning to predict post-hospitalization VTE risk from EHR data. AMIA. Annual Symposium proceedings/AMIA Symposium
  publication-title: AMIA Symposium
– volume: 38
  start-page: 1274
  year: 2014
  ident: 10.1016/j.surg.2016.09.044_bib51
  article-title: The small abnormal parathyroid gland is increasingly common and heralds operative complexity
  publication-title: World J Surg
  doi: 10.1007/s00268-014-2450-1
– volume: 98
  start-page: 3213
  year: 2013
  ident: 10.1016/j.surg.2016.09.044_bib50
  article-title: Bone mineral density evolution after successful parathyroidectomy in patients with normocalcemic primary hyperparathyroidism
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2013-1518
– volume: 150
  start-page: 1102
  year: 2011
  ident: 10.1016/j.surg.2016.09.044_bib49
  article-title: The phenotype of primary hyperparathyroidism with normal parathyroid hormone levels: how low can parathyroid hormone go?
  publication-title: Surgery
  doi: 10.1016/j.surg.2011.09.011
– volume: 242
  start-page: 642
  year: 2005
  ident: 10.1016/j.surg.2016.09.044_bib1
  article-title: Primary hyperparathyroidism, cognition, and health-related quality of life
  publication-title: Ann Surg
  doi: 10.1097/01.sla.0000186337.83407.ec
– volume: 240
  start-page: 666
  year: 2006
  ident: 10.1016/j.surg.2016.09.044_bib21
  article-title: Bayesian network to predict breast cancer risk of mammographic microcalcifications and reduce number of benign biopsy results: initial experience
  publication-title: Radiology
  doi: 10.1148/radiol.2403051096
– volume: 153
  start-page: 915
  year: 2005
  ident: 10.1016/j.surg.2016.09.044_bib46
  article-title: Surgery versus medical follow-up in patients with asymptomatic primary hyperparathyroidism: a decision analysis
  publication-title: Eur J Endocrinol
  doi: 10.1530/eje.1.02029
– volume: 213
  start-page: 410
  year: 2011
  ident: 10.1016/j.surg.2016.09.044_bib48
  article-title: Can biochemical abnormalities predict symptomatology in patients with primary hyperparathyroidism?
  publication-title: J Am Coll Surg
  doi: 10.1016/j.jamcollsurg.2011.06.401
– volume: 151
  start-page: 959
  year: 2016
  ident: 10.1016/j.surg.2016.09.044_bib23
  article-title: The American Association of Endocrine Surgeons (AAES) guidelines for definitive management of primary hyperparathyroidism
  publication-title: JAMA Surgery
  doi: 10.1001/jamasurg.2016.2310
– reference: 17259202 - Health Aff (Millwood). 2007 Mar-Apr;26(2):w181-91
– reference: 7846616 - Surgery. 1995 Feb;117(2):134-9
– reference: 15657588 - Surgery. 2004 Dec;136(6):1281-8
– reference: 20610600 - J Clin Endocrinol Metab. 2010 Sep;95(9):4324-30
– reference: 11958484 - Neural Netw. 2002 Jan;15(1):11-39
– reference: 18290710 - J Bone Miner Res. 2007 Dec;22 Suppl 2:V100-4
– reference: 22584631 - Ann Surg. 2012 Jun;255(6):1179-83
– reference: 10372026 - Surgery. 1999 Jun;125(6):608-14
– reference: 16322399 - Eur J Endocrinol. 2005 Dec;153(6):915-27
– reference: 17651448 - Clin Endocrinol (Oxf). 2008 Feb;68(2):155-64
– reference: 23783096 - J Clin Endocrinol Metab. 2013 Aug;98(8):3213-20
– reference: 10977834 - BMJ. 2000 Sep 9;321(7261):598-602
– reference: 1763668 - J Bone Miner Res. 1991 Oct;6 Suppl 2:S153-8; discussion S159
– reference: 15333167 - Ann R Coll Surg Engl. 2004 Sep;86(5):334-8
– reference: 24510243 - World J Surg. 2014 Jun;38(6):1274-81
– reference: 25162667 - J Clin Endocrinol Metab. 2014 Oct;99(10):3580-94
– reference: 19288279 - World J Surg. 2009 Nov;33(11):2244-55
– reference: 14715476 - Endocr Pract. 2003 Nov-Dec;9(6):494-503
– reference: 21561873 - J Am Med Inform Assoc. 2011 Jul-Aug;18(4):354-7
– reference: 5090209 - Am J Clin Pathol. 1971 May;55(5):523-6
– reference: 8957479 - Surgery. 1996 Dec;120(6):948-52; discussion 952-3
– reference: 25063228 - Oncologist. 2014 Sep;19(9):919-29
– reference: 22549152 - Nat Rev Genet. 2012 May 02;13(6):395-405
– reference: 14594714 - Bioinformatics. 2003 Nov 1;19(16):2088-96
– reference: 27532368 - JAMA Surg. 2016 Oct 1;151(10 ):959-968
– reference: 23304314 - AMIA Annu Symp Proc. 2012;2012:436-45
– reference: 22136828 - Surgery. 2011 Dec;150(6):1102-12
– reference: 16926323 - Radiology. 2006 Sep;240(3):666-73
– reference: 1763661 - J Bone Miner Res. 1991 Oct;6 Suppl 2:S111-6; discussion S121-4
– reference: 23366483 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2704-7
– reference: 19958927 - Surgery. 2009 Dec;146(6):1006-13
– reference: 22195087 - AMIA Annu Symp Proc. 2011;2011:349-55
– reference: 20647183 - N Engl J Med. 2010 Aug 5;363(6):501-4
– reference: 21816381 - Am J Med. 2011 Oct;124(10):911-4
– reference: 18085031 - Isr Med Assoc J. 2007 Nov;9(11):771-6
– reference: 16983032 - Arch Surg. 2006 Sep;141(9):885-9; discussion 889-91
– reference: 15897443 - Arch Surg. 2005 May;140(5):472-8; discussion 478-9
– reference: 8109593 - Am J Med. 1994 Feb;96(2):101-6
– reference: 18043256 - Curr Opin Oncol. 2008 Jan;20(1):52-8
– reference: 23943034 - Ann Surg Oncol. 2013 Dec;20(13):4205-11
– reference: 25595714 - Am J Surg. 2015 Jul;210(1):123-8
– reference: 8930856 - J Am Med Inform Assoc. 1996 Nov-Dec;3(6):399-409
– reference: 15606372 - J Intern Med. 2005 Jan;257(1):6-17
– reference: 8356983 - Am J Med. 1993 Aug;95(2):197-202
– reference: 16244536 - Ann Surg. 2005 Nov;242(5):642-50
– reference: 8563269 - Proc Annu Symp Comput Appl Med Care. 1995;:208-12
– reference: 11442121 - J Digit Imaging. 2001 Jun;14 (2 Suppl 1):56-7
– reference: 21723154 - J Am Coll Surg. 2011 Sep;213(3):410-4
– reference: 9037227 - Surgery. 1997 Feb;121(2):157-61
– reference: 10668831 - Arch Intern Med. 2000 Feb 14;160(3):301-8
– reference: 23102677 - Surgery. 2012 Dec;152(6):1184-92
– reference: 24383100 - Surgery. 2013 Dec;154(6):1232-7; discussion 1237-8
– reference: 25670751 - J Am Med Inform Assoc. 2015 Jul;22(4):764-72
SSID ssj0009418
Score 2.4087121
Snippet Parathyroidectomy offers the only cure for primary hyperparathyroidism, but today only 50% of primary hyperparathyroidism patients are referred for operation,...
Background Parathyroidectomy offers the only cure for primary hyperparathyroidism, but today only 50% of primary hyperparathyroidism patients are referred for...
BACKGROUNDParathyroidectomy offers the only cure for primary hyperparathyroidism, but today only 50% of primary hyperparathyroidism patients are referred for...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1113
SubjectTerms Algorithms
Bayes Theorem
Case-Control Studies
Databases, Factual
Female
Humans
Hyperparathyroidism, Primary - diagnosis
Hyperparathyroidism, Primary - surgery
Machine Learning
Male
Middle Aged
Parathyroid Hormone - blood
Parathyroidectomy - methods
Predictive Value of Tests
Quality Improvement
ROC Curve
Sensitivity and Specificity
Severity of Illness Index
Surgery
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtwgFEXpZNFu2kbpw32JStm1jmzzMCyjqlFUqVGldqRkhTCGzLQTOxqPVaVf34uNnY4mj2YNGHPvBQ5wOCC05_zBv0uLWHJbxFRTFheu8CzCTNrEltQRfxv56zE_mtIvJ-zkSix67fi-o2E17fLMM7B4J0dK6QO0zRnA7gnanh5_OzjtZRdlDEA86bVRATESnoYLMtd_5KZJaBNkbnIlH7bVhb78rReLfyaiwyc9havp9As9_-TXfrsq9s2fTXXHu9v4FD0OcBQf9PGzg7ZstYum404DLnsmHqTikWpUV7h2-KKXqcAzWMguOwHx2eWynpfz5hz7zV183tE0LQ7vUpw9Q9PDzz8-HcXh-YXYAKhaxcSxvGCOwoosJ8QlXDMN6KoUUuelBNxTgleFLlNaOg4TocmkAPdKYrgVfqHzHE2qurIvEfY6c8JqlzsmqeFaWg0wKNdGC60zYyKUDv5QJmiT-ycyFmogof1U3kjKG0klUoGRIvRhLBOafGtuMrhZDXdOYZRU4IxbS-XXlbJN6OiNSlWTqUR99zHIO20bGDQBZUeIjSUDlukxyp01vh9iUEFH96c3urJ1CzUJj81SIniEXvQxObY7y6Xw1cP_rkXrmMGLiK-nVPNZJybOCM8lExH6OMb1f5jz1f2yv0aPMg-HOsbTGzRZLVv7FsDcqngXuvFfmhBGPA
  priority: 102
  providerName: Unpaywall
Title Improving diagnostic recognition of primary hyperparathyroidism with machine learning
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0039606016307115
https://www.clinicalkey.es/playcontent/1-s2.0-S0039606016307115
https://dx.doi.org/10.1016/j.surg.2016.09.044
https://www.ncbi.nlm.nih.gov/pubmed/27989606
https://www.proquest.com/docview/1851291386
https://pubmed.ncbi.nlm.nih.gov/PMC5367958
http://doi.org/10.1016/j.surg.2016.09.044
UnpaywallVersion submittedVersion
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1532-7361
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009418
  issn: 0039-6060
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1532-7361
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0009418
  issn: 0039-6060
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1532-7361
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009418
  issn: 0039-6060
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1532-7361
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0009418
  issn: 0039-6060
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1532-7361
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009418
  issn: 0039-6060
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLamcYALAvErsE1G4gZhTezE9rGaNhUQFQcqjZPlJPaaqUuqphXaZX_73kucjKowEKdIsS3bz8_Pn-3vPRPyzuHFv4uyUKU2C7nhSZi5DFmEsbIjW3DH0Bv56zSdzPjn8-R8j5z0vjBIq_S2v7PprbX2f469NI-XZYk-vgzhN2AW0NOodTTnXOArBh9v7mgeikedNWYqxNzecabjeDWb1QXSu9I21innf1qcdsHnLofy4aZamuufZrH4ZYE6e0Iee2RJx13jn5I9Wz0js-HQgBYdqQ5S6cAaqitaO7rsIk7QOexJV20s8Pn1qi6LsrmieE5Lr1rGpaX-iYmL52R2dvr9ZBL6lxTCHPDROmQuEVniOGyuBGNulJrEAFAqpDKiUABhChggaYqIFy6FNS2PlYSRUixPrcQ9ywuyX9WVfUUohoyT1jjhEsXz1ChrANEIkxtpTJznAYl6EerchxnH1y4WuueTXWoUu0ax65HSIPaAvB_K-C7fm5v1I6N791EweBrWgHtLid-Vso2fs42OdBPrkd7Rq4AkQ8kt1fxrjW97tdEwZ_EixlS23kBNEmFWxGQakJedGg39joWSWD20d0vBhgwYD3w7pSrnbVzwhKVCJTIgHwZV_Adxvv7P7r0hj2KEOC2L6YDsr1cbewgAbZ0dtTPwiDwYf_oymcJ3Nv02_nEL0ME_Rg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcigXBOIVnkbiBqGb2I7tI6qoFmh76kq9WU5id1Ntk9VmV6gXfjsziRNYLRTENfbI8Xg8_mx_MybkrceLf5_ksc5cHnPLRZz7HFmEqXYTV3LPMBr59CybzviXC3GxR46GWBikVQbf3_v0zluHL4dBm4fLqsIYX4bwGzAL2GmCgeZ3uEgl7sA-fP_J89A86d0x0zFWD5EzPcmr3awukd-VdclOOf_T6rSLPndJlAebemlvvtnF4pcV6vg-uRegJf3Y__0Dsufqh2Q2nhrQsmfVQSkdaUNNTRtPl33KCTqHTemqSwY-v1k1VVm11xQPaul1R7l0NLwxcfmIzI4_nR9N4_CUQlwAQFrHzAuZC89hdyUZ85PMCgtIqVTaylIDhilhhJQtE176DBa1ItUKhkqzInMKNy2PyX7d1O4poZgzTjnrpReaF5nVzgKkkbawytq0KCKSDCo0Rcgzjs9dLMxAKLsyqHaDajcTbUDtEXk3yoQu31qbDSNjhvhR8HgGFoFbpeTvpFwbJm1rEtOmZmJ2DCsiYpTcss2_tvhmMBsDkxZvYmztmg20pBBnJUxlEXnSm9HY71Rqhc3D_24Z2FgBE4Jvl9TVvEsMLlgmtVAReT-a4j-o89l_du81OZien56Yk89nX5-TuyninY7S9ILsr1cb9xLQ2jp_1c3GH9qBPys
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtwgFEXpZNFu2kbpw32JStm1jmzzMCyjqlFUqVGldqRkhTCGzLQTOxqPVaVf34uNnY4mj2YNGHPvBQ5wOCC05_zBv0uLWHJbxFRTFheu8CzCTNrEltQRfxv56zE_mtIvJ-zkSix67fi-o2E17fLMM7B4J0dK6QO0zRnA7gnanh5_OzjtZRdlDEA86bVRATESnoYLMtd_5KZJaBNkbnIlH7bVhb78rReLfyaiwyc9havp9As9_-TXfrsq9s2fTXXHu9v4FD0OcBQf9PGzg7ZstYum404DLnsmHqTikWpUV7h2-KKXqcAzWMguOwHx2eWynpfz5hz7zV183tE0LQ7vUpw9Q9PDzz8-HcXh-YXYAKhaxcSxvGCOwoosJ8QlXDMN6KoUUuelBNxTgleFLlNaOg4TocmkAPdKYrgVfqHzHE2qurIvEfY6c8JqlzsmqeFaWg0wKNdGC60zYyKUDv5QJmiT-ycyFmogof1U3kjKG0klUoGRIvRhLBOafGtuMrhZDXdOYZRU4IxbS-XXlbJN6OiNSlWTqUR99zHIO20bGDQBZUeIjSUDlukxyp01vh9iUEFH96c3urJ1CzUJj81SIniEXvQxObY7y6Xw1cP_rkXrmMGLiK-nVPNZJybOCM8lExH6OMb1f5jz1f2yv0aPMg-HOsbTGzRZLVv7FsDcqngXuvFfmhBGPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+diagnostic+recognition+of+primary+hyperparathyroidism+with+machine+learning&rft.jtitle=Surgery&rft.au=Somnay%2C+Yash+R.&rft.au=Craven%2C+Mark&rft.au=McCoy%2C+Kelly+L.&rft.au=Carty%2C+Sally+E.&rft.date=2017-04-01&rft.issn=0039-6060&rft.volume=161&rft.issue=4&rft.spage=1113&rft.epage=1121&rft_id=info:doi/10.1016%2Fj.surg.2016.09.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_surg_2016_09_044
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00396060%2FS0039606017X00032%2Fcov150h.gif