Improving diagnostic recognition of primary hyperparathyroidism with machine learning
Parathyroidectomy offers the only cure for primary hyperparathyroidism, but today only 50% of primary hyperparathyroidism patients are referred for operation, in large part, because the condition is widely under-recognized. The diagnosis of primary hyperparathyroidism can be especially challenging w...
Saved in:
| Published in | Surgery Vol. 161; no. 4; pp. 1113 - 1121 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.04.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0039-6060 1532-7361 1532-7361 |
| DOI | 10.1016/j.surg.2016.09.044 |
Cover
| Abstract | Parathyroidectomy offers the only cure for primary hyperparathyroidism, but today only 50% of primary hyperparathyroidism patients are referred for operation, in large part, because the condition is widely under-recognized. The diagnosis of primary hyperparathyroidism can be especially challenging with mild biochemical indices. Machine learning is a collection of methods in which computers build predictive algorithms based on labeled examples. With the aim of facilitating diagnosis, we tested the ability of machine learning to distinguish primary hyperparathyroidism from normal physiology using clinical and laboratory data.
This retrospective cohort study used a labeled training set and 10-fold cross-validation to evaluate accuracy of the algorithm. Measures of accuracy included area under the receiver operating characteristic curve, precision (sensitivity), and positive and negative predictive value. Several different algorithms and ensembles of algorithms were tested using the Weka platform. Among 11,830 patients managed operatively at 3 high-volume endocrine surgery programs from March 2001 to August 2013, 6,777 underwent parathyroidectomy for confirmed primary hyperparathyroidism, and 5,053 control patients without primary hyperparathyroidism underwent thyroidectomy. Test-set accuracies for machine learning models were determined using 10-fold cross-validation. Age, sex, and serum levels of preoperative calcium, phosphate, parathyroid hormone, vitamin D, and creatinine were defined as potential predictors of primary hyperparathyroidism. Mild primary hyperparathyroidism was defined as primary hyperparathyroidism with normal preoperative calcium or parathyroid hormone levels.
After testing a variety of machine learning algorithms, Bayesian network models proved most accurate, classifying correctly 95.2% of all primary hyperparathyroidism patients (area under receiver operating characteristic = 0.989). Omitting parathyroid hormone from the model did not decrease the accuracy significantly (area under receiver operating characteristic = 0.985). In mild disease cases, however, the Bayesian network model classified correctly 71.1% of patients with normal calcium and 92.1% with normal parathyroid hormone levels preoperatively. Bayesian networking and AdaBoost improved the accuracy of all parathyroid hormone patients to 97.2% cases (area under receiver operating characteristic = 0.994), and 91.9% of primary hyperparathyroidism patients with mild disease. This was significantly improved relative to Bayesian networking alone (P < .0001).
Machine learning can diagnose accurately primary hyperparathyroidism without human input even in mild disease. Incorporation of this tool into electronic medical record systems may aid in recognition of this under-diagnosed disorder. |
|---|---|
| AbstractList | BACKGROUNDParathyroidectomy offers the only cure for primary hyperparathyroidism, but today only 50% of primary hyperparathyroidism patients are referred for operation, in large part, because the condition is widely under-recognized. The diagnosis of primary hyperparathyroidism can be especially challenging with mild biochemical indices. Machine learning is a collection of methods in which computers build predictive algorithms based on labeled examples. With the aim of facilitating diagnosis, we tested the ability of machine learning to distinguish primary hyperparathyroidism from normal physiology using clinical and laboratory data.METHODSThis retrospective cohort study used a labeled training set and 10-fold cross-validation to evaluate accuracy of the algorithm. Measures of accuracy included area under the receiver operating characteristic curve, precision (sensitivity), and positive and negative predictive value. Several different algorithms and ensembles of algorithms were tested using the Weka platform. Among 11,830 patients managed operatively at 3 high-volume endocrine surgery programs from March 2001 to August 2013, 6,777 underwent parathyroidectomy for confirmed primary hyperparathyroidism, and 5,053 control patients without primary hyperparathyroidism underwent thyroidectomy. Test-set accuracies for machine learning models were determined using 10-fold cross-validation. Age, sex, and serum levels of preoperative calcium, phosphate, parathyroid hormone, vitamin D, and creatinine were defined as potential predictors of primary hyperparathyroidism. Mild primary hyperparathyroidism was defined as primary hyperparathyroidism with normal preoperative calcium or parathyroid hormone levels.RESULTSAfter testing a variety of machine learning algorithms, Bayesian network models proved most accurate, classifying correctly 95.2% of all primary hyperparathyroidism patients (area under receiver operating characteristic = 0.989). Omitting parathyroid hormone from the model did not decrease the accuracy significantly (area under receiver operating characteristic = 0.985). In mild disease cases, however, the Bayesian network model classified correctly 71.1% of patients with normal calcium and 92.1% with normal parathyroid hormone levels preoperatively. Bayesian networking and AdaBoost improved the accuracy of all parathyroid hormone patients to 97.2% cases (area under receiver operating characteristic = 0.994), and 91.9% of primary hyperparathyroidism patients with mild disease. This was significantly improved relative to Bayesian networking alone (P < .0001).CONCLUSIONMachine learning can diagnose accurately primary hyperparathyroidism without human input even in mild disease. Incorporation of this tool into electronic medical record systems may aid in recognition of this under-diagnosed disorder. Parathyroidectomy offers the only cure for primary hyperparathyroidism, but today only 50% of primary hyperparathyroidism patients are referred for operation, in large part, because the condition is widely under-recognized. The diagnosis of primary hyperparathyroidism can be especially challenging with mild biochemical indices. Machine learning is a collection of methods in which computers build predictive algorithms based on labeled examples. With the aim of facilitating diagnosis, we tested the ability of machine learning to distinguish primary hyperparathyroidism from normal physiology using clinical and laboratory data. This retrospective cohort study used a labeled training set and 10-fold cross-validation to evaluate accuracy of the algorithm. Measures of accuracy included area under the receiver operating characteristic curve, precision (sensitivity), and positive and negative predictive value. Several different algorithms and ensembles of algorithms were tested using the Weka platform. Among 11,830 patients managed operatively at 3 high-volume endocrine surgery programs from March 2001 to August 2013, 6,777 underwent parathyroidectomy for confirmed primary hyperparathyroidism, and 5,053 control patients without primary hyperparathyroidism underwent thyroidectomy. Test-set accuracies for machine learning models were determined using 10-fold cross-validation. Age, sex, and serum levels of preoperative calcium, phosphate, parathyroid hormone, vitamin D, and creatinine were defined as potential predictors of primary hyperparathyroidism. Mild primary hyperparathyroidism was defined as primary hyperparathyroidism with normal preoperative calcium or parathyroid hormone levels. After testing a variety of machine learning algorithms, Bayesian network models proved most accurate, classifying correctly 95.2% of all primary hyperparathyroidism patients (area under receiver operating characteristic = 0.989). Omitting parathyroid hormone from the model did not decrease the accuracy significantly (area under receiver operating characteristic = 0.985). In mild disease cases, however, the Bayesian network model classified correctly 71.1% of patients with normal calcium and 92.1% with normal parathyroid hormone levels preoperatively. Bayesian networking and AdaBoost improved the accuracy of all parathyroid hormone patients to 97.2% cases (area under receiver operating characteristic = 0.994), and 91.9% of primary hyperparathyroidism patients with mild disease. This was significantly improved relative to Bayesian networking alone (P < .0001). Machine learning can diagnose accurately primary hyperparathyroidism without human input even in mild disease. Incorporation of this tool into electronic medical record systems may aid in recognition of this under-diagnosed disorder. Background Parathyroidectomy offers the only cure for primary hyperparathyroidism, but today only 50% of primary hyperparathyroidism patients are referred for operation, in large part, because the condition is widely under-recognized. The diagnosis of primary hyperparathyroidism can be especially challenging with mild biochemical indices. Machine learning is a collection of methods in which computers build predictive algorithms based on labeled examples. With the aim of facilitating diagnosis, we tested the ability of machine learning to distinguish primary hyperparathyroidism from normal physiology using clinical and laboratory data. Methods This retrospective cohort study used a labeled training set and 10-fold cross-validation to evaluate accuracy of the algorithm. Measures of accuracy included area under the receiver operating characteristic curve, precision (sensitivity), and positive and negative predictive value. Several different algorithms and ensembles of algorithms were tested using the Weka platform. Among 11,830 patients managed operatively at 3 high-volume endocrine surgery programs from March 2001 to August 2013, 6,777 underwent parathyroidectomy for confirmed primary hyperparathyroidism, and 5,053 control patients without primary hyperparathyroidism underwent thyroidectomy. Test-set accuracies for machine learning models were determined using 10-fold cross-validation. Age, sex, and serum levels of preoperative calcium, phosphate, parathyroid hormone, vitamin D, and creatinine were defined as potential predictors of primary hyperparathyroidism. Mild primary hyperparathyroidism was defined as primary hyperparathyroidism with normal preoperative calcium or parathyroid hormone levels. Results After testing a variety of machine learning algorithms, Bayesian network models proved most accurate, classifying correctly 95.2% of all primary hyperparathyroidism patients (area under receiver operating characteristic = 0.989). Omitting parathyroid hormone from the model did not decrease the accuracy significantly (area under receiver operating characteristic = 0.985). In mild disease cases, however, the Bayesian network model classified correctly 71.1% of patients with normal calcium and 92.1% with normal parathyroid hormone levels preoperatively. Bayesian networking and AdaBoost improved the accuracy of all parathyroid hormone patients to 97.2% cases (area under receiver operating characteristic = 0.994), and 91.9% of primary hyperparathyroidism patients with mild disease. This was significantly improved relative to Bayesian networking alone ( P < .0001). Conclusion Machine learning can diagnose accurately primary hyperparathyroidism without human input even in mild disease. Incorporation of this tool into electronic medical record systems may aid in recognition of this under-diagnosed disorder. |
| Author | McCoy, Kelly L. Schneider, David F. Craven, Mark Wang, Tracy S. Carty, Sally E. Greenberg, Caprice C. Somnay, Yash R. |
| AuthorAffiliation | 3 Department of Biostatistics and Medical Informatics, and the Department Computer Science, University of Wisconsin, Madison, WI 4 Division of Endocrine Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 5 Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 1 Section of Endocrine Surgery, Department of Surgery, University of Wisconsin, Madison, WI 2 Wisconsin Surgical Outcomes Research Program, Department of Surgery, University of Wisconsin, Madison, WI |
| AuthorAffiliation_xml | – name: 1 Section of Endocrine Surgery, Department of Surgery, University of Wisconsin, Madison, WI – name: 4 Division of Endocrine Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA – name: 2 Wisconsin Surgical Outcomes Research Program, Department of Surgery, University of Wisconsin, Madison, WI – name: 3 Department of Biostatistics and Medical Informatics, and the Department Computer Science, University of Wisconsin, Madison, WI – name: 5 Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI |
| Author_xml | – sequence: 1 givenname: Yash R. surname: Somnay fullname: Somnay, Yash R. organization: Section of Endocrine Surgery, Department of Surgery, University of Wisconsin, Madison, WI – sequence: 2 givenname: Mark surname: Craven fullname: Craven, Mark organization: Department of Biostatistics and Medical Informatics, and the Department Computer Science, University of Wisconsin, Madison, WI – sequence: 3 givenname: Kelly L. surname: McCoy fullname: McCoy, Kelly L. organization: Division of Endocrine Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA – sequence: 4 givenname: Sally E. surname: Carty fullname: Carty, Sally E. organization: Division of Endocrine Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA – sequence: 5 givenname: Tracy S. surname: Wang fullname: Wang, Tracy S. organization: Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI – sequence: 6 givenname: Caprice C. surname: Greenberg fullname: Greenberg, Caprice C. organization: Wisconsin Surgical Outcomes Research Program, Department of Surgery, University of Wisconsin, Madison, WI – sequence: 7 givenname: David F. surname: Schneider fullname: Schneider, David F. email: schneiderd@surgery.wisc.edu organization: Section of Endocrine Surgery, Department of Surgery, University of Wisconsin, Madison, WI |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27989606$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1v1DAQhi1URLcLf4ADypFLFjtOHBshpKrio1IlDtCz5XUmu7MkdrCTrfbf42iX8iEBPdmS53ln_L5zQc6cd0DIc0ZXjDLxareKU9isinRfUbWiZfmILFjFi7zmgp2RBaVc5YIKek4uYtxRSlXJ5BNyXtRKqvSwILfX_RD8Ht0ma9BsnI8j2iyA9RuHI3qX-TYbAvYmHLLtYYAwmGDG7SF4bDD22R2O26w3dosOsg5McEnrKXncmi7Cs9O5JLfv3325-pjffPpwfXV5k9tKsDHnbVWvq7aUStWct1SYyrCSN1KZulF1UTfrdi1Nw8qmFZQLWygJFBS3AiSrS74k_Kg7ucEc7kzX6dOsmlE9m6R3ejZJzyZpqnQyKVFvj9QwrXtoLLgxmJ-kN6h_f3G41Ru_1xUXtapkEnh5Egj-2wRx1D1GC11nHPgpaiYrVijGpUilL37tdd_kRwKpoDgW2OBjDNA-7AfyD8jiaOa40rzY_Rt9c0Qh5bJHCDpaBGehwZT6qBuPD_LuHrcdOrSm-woHiDs_BZcS10zHQlP9eV7BeQOZ4LRmaTmX5PXfBf7X_TvYr-2h |
| CitedBy_id | crossref_primary_10_1016_j_jss_2024_01_020 crossref_primary_10_1007_s42000_018_0069_6 crossref_primary_10_2106_JBJS_RVW_23_00232 crossref_primary_10_3390_informatics9010017 crossref_primary_10_1002_ila2_9 crossref_primary_10_1016_j_otc_2023_07_013 crossref_primary_10_1016_j_imr_2024_101100 crossref_primary_10_1016_j_jss_2017_05_117 crossref_primary_10_1515_cclm_2017_0287 crossref_primary_10_1634_theoncologist_2018_0424 crossref_primary_10_3390_make6020058 crossref_primary_10_1210_clinem_dgac544 crossref_primary_10_12997_jla_2021_10_3_282 crossref_primary_10_1080_13645706_2019_1575882 crossref_primary_10_1007_s00330_024_11159_8 crossref_primary_10_3803_EnM_2020_35_1_71 crossref_primary_10_1016_j_hpr_2022_300596 crossref_primary_10_1111_apt_14172 crossref_primary_10_1186_s12874_020_01151_3 crossref_primary_10_1016_j_surg_2018_04_097 crossref_primary_10_1007_s40618_023_02235_9 crossref_primary_10_1136_jclinpath_2021_207393 crossref_primary_10_3390_diseases10030056 crossref_primary_10_3390_make4040040 crossref_primary_10_1097_ALN_0000000000002374 crossref_primary_10_1515_cclm_2020_0716 crossref_primary_10_3343_alm_2024_0053 crossref_primary_10_1210_jc_2017_02773 crossref_primary_10_12688_f1000research_21569_1 crossref_primary_10_2478_raon_2022_0037 crossref_primary_10_1016_j_jacr_2024_09_009 |
| Cites_doi | 10.1056/NEJMp1006114 10.1001/archinte.160.3.301 10.1001/archsurg.141.9.885 10.1001/archsurg.140.5.472 10.1007/s00268-009-9987-4 10.1016/S0039-6060(97)90285-3 10.1016/S0039-6060(96)80039-0 10.1016/S0039-6060(99)70224-2 10.1016/0002-9343(93)90260-V 10.1359/jbmr.07s202 10.1245/s10434-013-3190-4 10.1016/0002-9343(94)90128-7 10.1093/bioinformatics/btg287 10.1007/BF03190296 10.1210/jc.2009-2819 10.1002/jbmr.5650061431 10.1016/j.surg.2013.06.051 10.1006/jcss.1997.1504 10.1016/j.amjsurg.2014.09.030 10.1016/j.amjmed.2010.12.028 10.1016/j.surg.2012.08.013 10.4158/EP.9.6.494 10.1377/hlthaff.26.2.w181 10.1111/j.1365-2796.2004.01422.x 10.1111/j.1365-2265.2007.02970.x 10.1016/j.surg.2009.10.021 10.1093/ajcp/55.5.523 10.1210/jc.2014-1415 10.1016/S0039-6060(05)80076-5 10.1097/SLA.0b013e31824dad7d 10.1634/theoncologist.2014-0084 10.1097/CCO.0b013e3282f2838f 10.1308/147870804290 10.1016/S0893-6080(01)00111-3 10.1136/bmj.321.7261.598 10.1016/j.surg.2004.06.059 10.1007/s00268-014-2450-1 10.1210/jc.2013-1518 10.1016/j.surg.2011.09.011 10.1097/01.sla.0000186337.83407.ec 10.1148/radiol.2403051096 10.1530/eje.1.02029 10.1016/j.jamcollsurg.2011.06.401 10.1001/jamasurg.2016.2310 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Inc. Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.surg.2016.09.044 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1532-7361 |
| EndPage | 1121 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:5367958 PMC5367958 27989606 10_1016_j_surg_2016_09_044 S0039606016307115 1_s2_0_S0039606016307115 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM008692 – fundername: NCATS NIH HHS grantid: KL2 TR000428 – fundername: NCATS NIH HHS grantid: UL1 TR000427 |
| GroupedDBID | --- --K --M .1- .55 .FO .GJ .XZ .~1 0R~ 123 1B1 1CY 1P~ 1~. 1~5 354 4.4 457 4CK 4G. 53G 5RE 5VS 7-5 71M 8F7 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABCQX ABFNM ABFRF ABLJU ABMAC ABMZM ABOCM ABWVN ABXDB ACDAQ ACGFO ACIEU ACLOT ACRLP ACRPL ACVFH ACWUS ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J5H K-O KOM L7B M41 MO0 N4W N9A O-L O9- OAUVE OBH OHH OJ0 OV0 OVD OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SDP SEL SES SEW SJN SPCBC SSH SSZ T5K TEORI UDS UGJ UHS UQV UQZ UV1 VVN WH7 X7M YOC Z5R ZGI ZXP ZY1 ~G- ~HD AACTN AFKWA AJOXV AMFUW PKN RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR ZA5 AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c561t-3f57b5f4899733f06a5a143d89a7d9727dbfb8ad14df6036c298e0e93c6e81743 |
| IEDL.DBID | .~1 |
| ISSN | 0039-6060 1532-7361 |
| IngestDate | Wed Oct 29 11:54:23 EDT 2025 Tue Sep 30 16:56:24 EDT 2025 Mon Sep 29 05:39:02 EDT 2025 Mon Jul 21 06:05:22 EDT 2025 Wed Oct 01 03:28:43 EDT 2025 Thu Apr 24 23:01:05 EDT 2025 Fri Feb 23 02:24:44 EST 2024 Tue Feb 25 20:06:51 EST 2025 Tue Oct 14 19:34:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Copyright © 2016 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c561t-3f57b5f4899733f06a5a143d89a7d9727dbfb8ad14df6036c298e0e93c6e81743 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1016/j.surg.2016.09.044 |
| PMID | 27989606 |
| PQID | 1851291386 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1016_j_surg_2016_09_044 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5367958 proquest_miscellaneous_1851291386 pubmed_primary_27989606 crossref_primary_10_1016_j_surg_2016_09_044 crossref_citationtrail_10_1016_j_surg_2016_09_044 elsevier_sciencedirect_doi_10_1016_j_surg_2016_09_044 elsevier_clinicalkeyesjournals_1_s2_0_S0039606016307115 elsevier_clinicalkey_doi_10_1016_j_surg_2016_09_044 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-01 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Surgery |
| PublicationTitleAlternate | Surgery |
| PublicationYear | 2017 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Stefenelli, Mayr, Bergler-Klein, Globits, Woloszczuk, Niederle (bib39) 1993; 95 Blumenthal, Tavenner (bib12) 2010; 363 Ljunghall, Jakobsson, Joborn, Palmér, Rastad, Akerström (bib41) 1991; 6 Helmons, Suijkerbuijk, Nannan Panday, Kosterink (bib13) 2015; 22 Kawaler, Cobian, Peissig, Cross, Yale, Craven (bib22) 2012; 2012 Almqvist, Becker, Bondeson, Bondeson, Svensson (bib37) 2004; 136 Wallace, Parikh, Ross (bib49) 2011; 150 Press, Siperstein, Berber (bib8) 2013; 154 Wilhelm, Wang, Ruan (bib23) 2016; 151 Koumakis, Souberbielle, Sarfati (bib50) 2013; 98 Caron, Pasieka (bib44) 2009; 33 O'Connell, Yen, Shaker, Wilson, Evans, Wang (bib17) 2015; 210 Freund, Schapire (bib27) 1997; 55 Stefenelli, Abela, Frank, Koller-Strametz, Niederle (bib40) 1997; 121 Applewhite, Schneider (bib33) 2014; 19 Health Information Technology for Economic and Clinical Health Act, Title XIII of the American Recovery and Reinvestment Act of 2009 HITECH Act. 2009; Available from Schneider, Burke, Ojomo (bib47) 2013; 20 Ramesh, Kambhampati, Monson, Drew (bib19) 2004; 86 Burney, Jones, Christy, Thompson (bib42) 1999; 125 Sarkar, Butte, Lussier, Tarczy-Hornoch, Ohno-Machado (bib55) 2011; 18 Boonstra, Jackson (bib10) 1971; 55 Lisboa (bib20) 2002; 15 Bargren, Repplinger, Chen, Sippel (bib48) 2011; 213 Dutra, Nassif, Page (bib28) 2011; 2011 Pasieka, Parsons, Jones (bib45) 2009; 146 . VanderWalde, Liu, O'Connell, Haigh (bib35) 2006; 141 Mahadevia, Sosa, Levine, Zeiger, Powe (bib32) 2003; 9 Padmanabhan (bib9) 2011; 124 Oba, Sato, Takemasa, Monden, Matsubara, Ishii (bib26) 2003; 19 Silverberg (bib29) 2007; 22 Silverberg, Clarke, Peacock (bib34) 2014; 99 Jensen, Jensen, Brunak (bib18) 2012; 13 Kahn, Roberts, Wang, Jenks, Haddawy (bib25) 1995 Chen, Zeiger, Gordon, Udelsman (bib6) 1996; 120 Dhawan, Wenzel, George, Gussak, Bojovic, Panescu (bib53) 2012; 2012 Stewart, Shah, Selna, Paulus, Walker (bib54) 2007; 26 Yeh, Wiseman, Ituarte (bib7) 2012; 255 Balas, Weingarten, Garb, Blumenthal, Boren, Brown (bib15) 2000; 160 Jin, Mitchell, Shin, Berber, Siperstein, Milas (bib52) 2012; 152 Bilezikian, Brandi, Rubin, Silverberg (bib30) 2005; 257 McCoy, Chen, Armstrong (bib51) 2014; 38 Doppman, Miller (bib4) 1991; 6 Sejean, Calmus, Durand-Zaleski (bib46) 2005; 153 Denekamp (bib16) 2007; 9 Coker, Rorie, Cantley (bib1) 2005; 242 Shea, DuMouchel, Bahamonde (bib14) 1996; 3 Burnside, Rubin, Fine, Shachter, Sisney, Leung (bib21) 2006; 240 Wu, Haigh, Hwang (bib31) 2010; 95 Hedbäck, Odén, Tisell (bib38) 1995; 117 Solomon, Schaaf, Smallridge (bib43) 1994; 96 Kahn, Laur, Carrera (bib24) 2001; 14 Mihai, Wass, Sadler (bib2) 2008; 68 Vestergaard, Mollerup, Frokjaer, Christiansen, Blichert-Toft, Mosekilde (bib36) 2000; 321 Rodgers, Lew, Solórzano (bib3) 2008; 20 Grant, Thompson, Farley, van Heerden (bib5) 2005; 140 Schneider (10.1016/j.surg.2016.09.044_bib47) 2013; 20 O'Connell (10.1016/j.surg.2016.09.044_bib17) 2015; 210 Shea (10.1016/j.surg.2016.09.044_bib14) 1996; 3 Solomon (10.1016/j.surg.2016.09.044_bib43) 1994; 96 Silverberg (10.1016/j.surg.2016.09.044_bib34) 2014; 99 Oba (10.1016/j.surg.2016.09.044_bib26) 2003; 19 Burnside (10.1016/j.surg.2016.09.044_bib21) 2006; 240 Almqvist (10.1016/j.surg.2016.09.044_bib37) 2004; 136 Stefenelli (10.1016/j.surg.2016.09.044_bib40) 1997; 121 Sarkar (10.1016/j.surg.2016.09.044_bib55) 2011; 18 Jin (10.1016/j.surg.2016.09.044_bib52) 2012; 152 Denekamp (10.1016/j.surg.2016.09.044_bib16) 2007; 9 Lisboa (10.1016/j.surg.2016.09.044_bib20) 2002; 15 Freund (10.1016/j.surg.2016.09.044_bib27) 1997; 55 Kahn (10.1016/j.surg.2016.09.044_bib25) 1995 Pasieka (10.1016/j.surg.2016.09.044_bib45) 2009; 146 Kahn (10.1016/j.surg.2016.09.044_bib24) 2001; 14 VanderWalde (10.1016/j.surg.2016.09.044_bib35) 2006; 141 Stefenelli (10.1016/j.surg.2016.09.044_bib39) 1993; 95 Wallace (10.1016/j.surg.2016.09.044_bib49) 2011; 150 Hedbäck (10.1016/j.surg.2016.09.044_bib38) 1995; 117 Burney (10.1016/j.surg.2016.09.044_bib42) 1999; 125 Kawaler (10.1016/j.surg.2016.09.044_bib22) 2012; 2012 Helmons (10.1016/j.surg.2016.09.044_bib13) 2015; 22 Vestergaard (10.1016/j.surg.2016.09.044_bib36) 2000; 321 Coker (10.1016/j.surg.2016.09.044_bib1) 2005; 242 Rodgers (10.1016/j.surg.2016.09.044_bib3) 2008; 20 Applewhite (10.1016/j.surg.2016.09.044_bib33) 2014; 19 Padmanabhan (10.1016/j.surg.2016.09.044_bib9) 2011; 124 Dutra (10.1016/j.surg.2016.09.044_bib28) 2011; 2011 Bilezikian (10.1016/j.surg.2016.09.044_bib30) 2005; 257 Wilhelm (10.1016/j.surg.2016.09.044_bib23) 2016; 151 Blumenthal (10.1016/j.surg.2016.09.044_bib12) 2010; 363 10.1016/j.surg.2016.09.044_bib11 Bargren (10.1016/j.surg.2016.09.044_bib48) 2011; 213 Mihai (10.1016/j.surg.2016.09.044_bib2) 2008; 68 Dhawan (10.1016/j.surg.2016.09.044_bib53) 2012; 2012 Ramesh (10.1016/j.surg.2016.09.044_bib19) 2004; 86 Chen (10.1016/j.surg.2016.09.044_bib6) 1996; 120 Sejean (10.1016/j.surg.2016.09.044_bib46) 2005; 153 McCoy (10.1016/j.surg.2016.09.044_bib51) 2014; 38 Stewart (10.1016/j.surg.2016.09.044_bib54) 2007; 26 Press (10.1016/j.surg.2016.09.044_bib8) 2013; 154 Mahadevia (10.1016/j.surg.2016.09.044_bib32) 2003; 9 Grant (10.1016/j.surg.2016.09.044_bib5) 2005; 140 Wu (10.1016/j.surg.2016.09.044_bib31) 2010; 95 Doppman (10.1016/j.surg.2016.09.044_bib4) 1991; 6 Caron (10.1016/j.surg.2016.09.044_bib44) 2009; 33 Balas (10.1016/j.surg.2016.09.044_bib15) 2000; 160 Jensen (10.1016/j.surg.2016.09.044_bib18) 2012; 13 Ljunghall (10.1016/j.surg.2016.09.044_bib41) 1991; 6 Boonstra (10.1016/j.surg.2016.09.044_bib10) 1971; 55 Koumakis (10.1016/j.surg.2016.09.044_bib50) 2013; 98 Silverberg (10.1016/j.surg.2016.09.044_bib29) 2007; 22 Yeh (10.1016/j.surg.2016.09.044_bib7) 2012; 255 22195087 - AMIA Annu Symp Proc. 2011;2011:349-55 5090209 - Am J Clin Pathol. 1971 May;55(5):523-6 15333167 - Ann R Coll Surg Engl. 2004 Sep;86(5):334-8 1763661 - J Bone Miner Res. 1991 Oct;6 Suppl 2:S111-6; discussion S121-4 15897443 - Arch Surg. 2005 May;140(5):472-8; discussion 478-9 14715476 - Endocr Pract. 2003 Nov-Dec;9(6):494-503 21816381 - Am J Med. 2011 Oct;124(10):911-4 19288279 - World J Surg. 2009 Nov;33(11):2244-55 14594714 - Bioinformatics. 2003 Nov 1;19(16):2088-96 25162667 - J Clin Endocrinol Metab. 2014 Oct;99(10):3580-94 10668831 - Arch Intern Med. 2000 Feb 14;160(3):301-8 16926323 - Radiology. 2006 Sep;240(3):666-73 23102677 - Surgery. 2012 Dec;152(6):1184-92 15606372 - J Intern Med. 2005 Jan;257(1):6-17 20647183 - N Engl J Med. 2010 Aug 5;363(6):501-4 8930856 - J Am Med Inform Assoc. 1996 Nov-Dec;3(6):399-409 17651448 - Clin Endocrinol (Oxf). 2008 Feb;68(2):155-64 24510243 - World J Surg. 2014 Jun;38(6):1274-81 1763668 - J Bone Miner Res. 1991 Oct;6 Suppl 2:S153-8; discussion S159 10977834 - BMJ. 2000 Sep 9;321(7261):598-602 23943034 - Ann Surg Oncol. 2013 Dec;20(13):4205-11 8563269 - Proc Annu Symp Comput Appl Med Care. 1995;:208-12 25595714 - Am J Surg. 2015 Jul;210(1):123-8 27532368 - JAMA Surg. 2016 Oct 1;151(10 ):959-968 23783096 - J Clin Endocrinol Metab. 2013 Aug;98(8):3213-20 18043256 - Curr Opin Oncol. 2008 Jan;20(1):52-8 21561873 - J Am Med Inform Assoc. 2011 Jul-Aug;18(4):354-7 25670751 - J Am Med Inform Assoc. 2015 Jul;22(4):764-72 20610600 - J Clin Endocrinol Metab. 2010 Sep;95(9):4324-30 15657588 - Surgery. 2004 Dec;136(6):1281-8 16322399 - Eur J Endocrinol. 2005 Dec;153(6):915-27 23304314 - AMIA Annu Symp Proc. 2012;2012:436-45 22549152 - Nat Rev Genet. 2012 May 02;13(6):395-405 22136828 - Surgery. 2011 Dec;150(6):1102-12 18290710 - J Bone Miner Res. 2007 Dec;22 Suppl 2:V100-4 9037227 - Surgery. 1997 Feb;121(2):157-61 11958484 - Neural Netw. 2002 Jan;15(1):11-39 16244536 - Ann Surg. 2005 Nov;242(5):642-50 19958927 - Surgery. 2009 Dec;146(6):1006-13 24383100 - Surgery. 2013 Dec;154(6):1232-7; discussion 1237-8 10372026 - Surgery. 1999 Jun;125(6):608-14 11442121 - J Digit Imaging. 2001 Jun;14 (2 Suppl 1):56-7 8356983 - Am J Med. 1993 Aug;95(2):197-202 18085031 - Isr Med Assoc J. 2007 Nov;9(11):771-6 23366483 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2704-7 8957479 - Surgery. 1996 Dec;120(6):948-52; discussion 952-3 8109593 - Am J Med. 1994 Feb;96(2):101-6 25063228 - Oncologist. 2014 Sep;19(9):919-29 22584631 - Ann Surg. 2012 Jun;255(6):1179-83 16983032 - Arch Surg. 2006 Sep;141(9):885-9; discussion 889-91 17259202 - Health Aff (Millwood). 2007 Mar-Apr;26(2):w181-91 21723154 - J Am Coll Surg. 2011 Sep;213(3):410-4 7846616 - Surgery. 1995 Feb;117(2):134-9 |
| References_xml | – volume: 19 start-page: 2088 year: 2003 end-page: 2096 ident: bib26 article-title: A Bayesian missing value estimation method for gene expression profile data publication-title: Bioinformatics – volume: 151 start-page: 959 year: 2016 end-page: 968 ident: bib23 article-title: The American Association of Endocrine Surgeons (AAES) guidelines for definitive management of primary hyperparathyroidism publication-title: JAMA Surgery – volume: 141 start-page: 885 year: 2006 end-page: 889 ident: bib35 article-title: The effect of parathyroidectomy on bone fracture risk in patients with primary hyperparathyroidism publication-title: Arch Surg – volume: 38 start-page: 1274 year: 2014 end-page: 1281 ident: bib51 article-title: The small abnormal parathyroid gland is increasingly common and heralds operative complexity publication-title: World J Surg – volume: 140 start-page: 472 year: 2005 end-page: 478 ident: bib5 article-title: Primary hyperparathyroidism surgical management since the introduction of minimally invasive parathyroidectomy: Mayo Clinic experience publication-title: Arch Surg – volume: 240 start-page: 666 year: 2006 end-page: 673 ident: bib21 article-title: Bayesian network to predict breast cancer risk of mammographic microcalcifications and reduce number of benign biopsy results: initial experience publication-title: Radiology – volume: 22 start-page: V100 year: 2007 end-page: V104 ident: bib29 article-title: Vitamin D deficiency and primary hyperparathyroidism publication-title: J Bone Miner Res – volume: 13 start-page: 395 year: 2012 end-page: 405 ident: bib18 article-title: Mining electronic health records: towards better research applications and clinical care. Nature reviews publication-title: Genetics – volume: 22 start-page: 764 year: 2015 end-page: 772 ident: bib13 article-title: Drug-drug interaction checking assisted by clinical decision support: a return on investment analysis publication-title: JAMIA – volume: 3 start-page: 399 year: 1996 end-page: 409 ident: bib14 article-title: A meta-analysis of 16 randomized controlled trials to evaluate computer-based clinical reminder systems for preventive care in the ambulatory setting publication-title: JAMIA – start-page: 208 year: 1995 end-page: 212 ident: bib25 article-title: Preliminary investigation of a Bayesian network for mammographic diagnosis of breast cancer publication-title: Proc Annu Symp Comput Appl Med Care – volume: 6 start-page: S153 year: 1991 end-page: S158 ident: bib4 article-title: Localization of parathyroid tumors in patients with asymptomatic hyperparathyroidism and no previous surgery publication-title: J Bone Miner Res – volume: 86 start-page: 334 year: 2004 end-page: 338 ident: bib19 article-title: Artificial intelligence in medicine publication-title: Ann R Coll Surg Engl – volume: 321 start-page: 598 year: 2000 end-page: 602 ident: bib36 article-title: Cohort study of risk of fracture before and after surgery for primary hyperparathyroidism publication-title: BMJ – volume: 20 start-page: 52 year: 2008 end-page: 58 ident: bib3 article-title: Primary hyperparathyroidism publication-title: Curr Opin Oncol – volume: 160 start-page: 301 year: 2000 end-page: 308 ident: bib15 article-title: Improving preventive care by prompting physicians publication-title: Arch Intern Med – volume: 210 start-page: 123 year: 2015 end-page: 128 ident: bib17 article-title: Low 24-hour urine calcium levels in patients with sporadic primary hyperparathyroidism: is further evaluation warranted prior to parathyroidectomy? publication-title: Am J Surg – volume: 121 start-page: 157 year: 1997 end-page: 161 ident: bib40 article-title: Time course of regression of left ventricular hypertrophy after successful parathyroidectomy publication-title: Surgery – volume: 55 start-page: 523 year: 1971 end-page: 526 ident: bib10 article-title: Serum calcium survey for hyperparathyroidism: results in 50,000 clinic patients publication-title: Am J Clin Pathol – volume: 33 start-page: 2244 year: 2009 end-page: 2255 ident: bib44 article-title: What symptom improvement can be expected after operation for primary hyperparathyroidism? publication-title: World J Surg – volume: 98 start-page: 3213 year: 2013 end-page: 3220 ident: bib50 article-title: Bone mineral density evolution after successful parathyroidectomy in patients with normocalcemic primary hyperparathyroidism publication-title: J Clin Endocrinol Metab – volume: 2012 start-page: 2704 year: 2012 end-page: 2707 ident: bib53 article-title: Detection of acute myocardial infarction from serial ECG using multilayer support vector machine publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 242 start-page: 642 year: 2005 end-page: 650 ident: bib1 article-title: Primary hyperparathyroidism, cognition, and health-related quality of life publication-title: Ann Surg – volume: 68 start-page: 155 year: 2008 end-page: 164 ident: bib2 article-title: Asymptomatic hyperparathyroidism—need for multicentre studies publication-title: Clin Endocrinol (Oxf) – volume: 213 start-page: 410 year: 2011 end-page: 414 ident: bib48 article-title: Can biochemical abnormalities predict symptomatology in patients with primary hyperparathyroidism? publication-title: J Am Coll Surg – volume: 257 start-page: 6 year: 2005 end-page: 17 ident: bib30 article-title: Primary hyperparathyroidism: new concepts in clinical, densitometric and biochemical features publication-title: J Intern Med – volume: 152 start-page: 1184 year: 2012 end-page: 1192 ident: bib52 article-title: Calculating an individual maxPTH to aid diagnosis of normocalemic primary hyperparathyroidism publication-title: Surgery – volume: 6 start-page: S111 year: 1991 end-page: S116 ident: bib41 article-title: Longitudinal studies of mild primary hyperparathyroidism publication-title: J Bone Miner Res – volume: 99 start-page: 3580 year: 2014 end-page: 3594 ident: bib34 article-title: Current issues in the presentation of asymptomatic primary hyperparathyroidism: proceedings of the Fourth International Workshop publication-title: J Clin Endocrinol Metab – volume: 96 start-page: 101 year: 1994 end-page: 106 ident: bib43 article-title: Psychologic symptoms before and after parathyroid surgery publication-title: Am J Med – volume: 9 start-page: 494 year: 2003 end-page: 503 ident: bib32 article-title: Clinical management of primary hyperparathyroidism and thresholds for surgical referral: a national study examining concordance between practice patterns and consensus panel recommendations publication-title: Endocr Pract – volume: 153 start-page: 915 year: 2005 end-page: 927 ident: bib46 article-title: Surgery versus medical follow-up in patients with asymptomatic primary hyperparathyroidism: a decision analysis publication-title: Eur J Endocrinol – volume: 15 start-page: 11 year: 2002 end-page: 39 ident: bib20 article-title: A review of evidence of health benefit from artificial neural networks in medical intervention publication-title: Neural Netw – volume: 95 start-page: 4324 year: 2010 end-page: 4330 ident: bib31 article-title: Underutilization of parathyroidectomy in elderly patients with primary hyperparathyroidism publication-title: J Clin Endocrinol Metab – volume: 146 start-page: 1006 year: 2009 end-page: 1013 ident: bib45 article-title: The long-term benefit of parathyroidectomy in primary hyperparathyroidism: a 10-year prospective surgical outcome study publication-title: Surgery – volume: 20 start-page: 4205 year: 2013 end-page: 4211 ident: bib47 article-title: Multigland disease and slower decline in intraoperative PTH characterize mild primary hyperparathyroidism publication-title: Ann Surg Oncol – volume: 26 start-page: w181 year: 2007 end-page: w191 ident: bib54 article-title: Bridging the inferential gap: the electronic health record and clinical evidence publication-title: Health Aff (Millwood) – volume: 18 start-page: 354 year: 2011 end-page: 357 ident: bib55 article-title: Translational bioinformatics: linking knowledge across biological and clinical realms publication-title: JAMIA – volume: 255 start-page: 1179 year: 2012 end-page: 1183 ident: bib7 article-title: Surgery for primary hyperparathyroidism: are the consensus guidelines being followed? publication-title: Ann Surg – volume: 14 start-page: 56 year: 2001 end-page: 57 ident: bib24 article-title: A Bayesian network for diagnosis of primary bone tumors publication-title: J Digit Imaging – volume: 125 start-page: 608 year: 1999 end-page: 614 ident: bib42 article-title: Health status improvement after surgical correction of primary hyperparathyroidism in patients with high and low preoperative calcium levels publication-title: Surgery – volume: 55 start-page: 119 year: 1997 end-page: 139 ident: bib27 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: Journal of Computer and System Sciences – volume: 136 start-page: 1281 year: 2004 end-page: 1288 ident: bib37 article-title: Early parathyroidectomy increases bone mineral density in patients with mild primary hyperparathyroidism: a prospective and randomized study publication-title: Surgery – volume: 363 start-page: 501 year: 2010 end-page: 504 ident: bib12 article-title: The “meaningful use” regulation for electronic health records publication-title: N Engl J Med – volume: 9 start-page: 771 year: 2007 end-page: 776 ident: bib16 article-title: Clinical decision support systems for addressing information needs of physicians publication-title: Isr Med Assoc J – volume: 2011 start-page: 349 year: 2011 end-page: 355 ident: bib28 article-title: Integrating machine learning and physician knowledge to improve the accuracy of breast biopsy. AMIA. Annual Symposium proceedings/AMIA Symposium publication-title: AMIA Symposium – volume: 19 start-page: 919 year: 2014 end-page: 929 ident: bib33 article-title: Mild primary hyperparathyroidism: a literature review publication-title: Oncologist – reference: . – volume: 150 start-page: 1102 year: 2011 end-page: 1112 ident: bib49 article-title: The phenotype of primary hyperparathyroidism with normal parathyroid hormone levels: how low can parathyroid hormone go? publication-title: Surgery – reference: Health Information Technology for Economic and Clinical Health Act, Title XIII of the American Recovery and Reinvestment Act of 2009 HITECH Act. 2009; Available from: – volume: 120 start-page: 948 year: 1996 end-page: 952 ident: bib6 article-title: Parathyroidectomy in Maryland: effects of an endocrine center publication-title: Surgery – volume: 154 start-page: 1232 year: 2013 end-page: 1237 ident: bib8 article-title: The prevalence of undiagnosed and unrecognized primary hyperparathyroidism: a population-based analysis from the electronic medical record publication-title: Surgery – volume: 124 start-page: 911 year: 2011 end-page: 914 ident: bib9 article-title: Outpatient management of primary hyperparathyroidism publication-title: Am J Med – volume: 2012 start-page: 436 year: 2012 end-page: 445 ident: bib22 article-title: Learning to predict post-hospitalization VTE risk from EHR data. AMIA. Annual Symposium proceedings/AMIA Symposium publication-title: AMIA Symposium – volume: 117 start-page: 134 year: 1995 end-page: 139 ident: bib38 article-title: Parathyroid adenoma weight and the risk of death after treatment for primary hyperparathyroidism publication-title: Surgery – volume: 95 start-page: 197 year: 1993 end-page: 202 ident: bib39 article-title: Primary hyperparathyroidism: incidence of cardiac abnormalities and partial reversibility after successful parathyroidectomy publication-title: Am J Med – volume: 363 start-page: 501 year: 2010 ident: 10.1016/j.surg.2016.09.044_bib12 article-title: The “meaningful use” regulation for electronic health records publication-title: N Engl J Med doi: 10.1056/NEJMp1006114 – volume: 160 start-page: 301 year: 2000 ident: 10.1016/j.surg.2016.09.044_bib15 article-title: Improving preventive care by prompting physicians publication-title: Arch Intern Med doi: 10.1001/archinte.160.3.301 – volume: 141 start-page: 885 year: 2006 ident: 10.1016/j.surg.2016.09.044_bib35 article-title: The effect of parathyroidectomy on bone fracture risk in patients with primary hyperparathyroidism publication-title: Arch Surg doi: 10.1001/archsurg.141.9.885 – volume: 140 start-page: 472 year: 2005 ident: 10.1016/j.surg.2016.09.044_bib5 article-title: Primary hyperparathyroidism surgical management since the introduction of minimally invasive parathyroidectomy: Mayo Clinic experience publication-title: Arch Surg doi: 10.1001/archsurg.140.5.472 – volume: 33 start-page: 2244 year: 2009 ident: 10.1016/j.surg.2016.09.044_bib44 article-title: What symptom improvement can be expected after operation for primary hyperparathyroidism? publication-title: World J Surg doi: 10.1007/s00268-009-9987-4 – volume: 121 start-page: 157 year: 1997 ident: 10.1016/j.surg.2016.09.044_bib40 article-title: Time course of regression of left ventricular hypertrophy after successful parathyroidectomy publication-title: Surgery doi: 10.1016/S0039-6060(97)90285-3 – volume: 120 start-page: 948 year: 1996 ident: 10.1016/j.surg.2016.09.044_bib6 article-title: Parathyroidectomy in Maryland: effects of an endocrine center publication-title: Surgery doi: 10.1016/S0039-6060(96)80039-0 – volume: 125 start-page: 608 year: 1999 ident: 10.1016/j.surg.2016.09.044_bib42 article-title: Health status improvement after surgical correction of primary hyperparathyroidism in patients with high and low preoperative calcium levels publication-title: Surgery doi: 10.1016/S0039-6060(99)70224-2 – volume: 95 start-page: 197 year: 1993 ident: 10.1016/j.surg.2016.09.044_bib39 article-title: Primary hyperparathyroidism: incidence of cardiac abnormalities and partial reversibility after successful parathyroidectomy publication-title: Am J Med doi: 10.1016/0002-9343(93)90260-V – volume: 18 start-page: 354 year: 2011 ident: 10.1016/j.surg.2016.09.044_bib55 article-title: Translational bioinformatics: linking knowledge across biological and clinical realms publication-title: JAMIA – volume: 13 start-page: 395 year: 2012 ident: 10.1016/j.surg.2016.09.044_bib18 article-title: Mining electronic health records: towards better research applications and clinical care. Nature reviews publication-title: Genetics – volume: 22 start-page: V100 issue: Suppl 2 year: 2007 ident: 10.1016/j.surg.2016.09.044_bib29 article-title: Vitamin D deficiency and primary hyperparathyroidism publication-title: J Bone Miner Res doi: 10.1359/jbmr.07s202 – volume: 20 start-page: 4205 year: 2013 ident: 10.1016/j.surg.2016.09.044_bib47 article-title: Multigland disease and slower decline in intraoperative PTH characterize mild primary hyperparathyroidism publication-title: Ann Surg Oncol doi: 10.1245/s10434-013-3190-4 – ident: 10.1016/j.surg.2016.09.044_bib11 – volume: 96 start-page: 101 year: 1994 ident: 10.1016/j.surg.2016.09.044_bib43 article-title: Psychologic symptoms before and after parathyroid surgery publication-title: Am J Med doi: 10.1016/0002-9343(94)90128-7 – volume: 19 start-page: 2088 year: 2003 ident: 10.1016/j.surg.2016.09.044_bib26 article-title: A Bayesian missing value estimation method for gene expression profile data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg287 – volume: 14 start-page: 56 issue: 2 Suppl 1 year: 2001 ident: 10.1016/j.surg.2016.09.044_bib24 article-title: A Bayesian network for diagnosis of primary bone tumors publication-title: J Digit Imaging doi: 10.1007/BF03190296 – volume: 95 start-page: 4324 year: 2010 ident: 10.1016/j.surg.2016.09.044_bib31 article-title: Underutilization of parathyroidectomy in elderly patients with primary hyperparathyroidism publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2009-2819 – volume: 6 start-page: S111 issue: Suppl 2 year: 1991 ident: 10.1016/j.surg.2016.09.044_bib41 article-title: Longitudinal studies of mild primary hyperparathyroidism publication-title: J Bone Miner Res – volume: 6 start-page: S153 issue: Suppl 2 year: 1991 ident: 10.1016/j.surg.2016.09.044_bib4 article-title: Localization of parathyroid tumors in patients with asymptomatic hyperparathyroidism and no previous surgery publication-title: J Bone Miner Res doi: 10.1002/jbmr.5650061431 – volume: 154 start-page: 1232 year: 2013 ident: 10.1016/j.surg.2016.09.044_bib8 article-title: The prevalence of undiagnosed and unrecognized primary hyperparathyroidism: a population-based analysis from the electronic medical record publication-title: Surgery doi: 10.1016/j.surg.2013.06.051 – volume: 55 start-page: 119 year: 1997 ident: 10.1016/j.surg.2016.09.044_bib27 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: Journal of Computer and System Sciences doi: 10.1006/jcss.1997.1504 – volume: 210 start-page: 123 year: 2015 ident: 10.1016/j.surg.2016.09.044_bib17 article-title: Low 24-hour urine calcium levels in patients with sporadic primary hyperparathyroidism: is further evaluation warranted prior to parathyroidectomy? publication-title: Am J Surg doi: 10.1016/j.amjsurg.2014.09.030 – volume: 124 start-page: 911 year: 2011 ident: 10.1016/j.surg.2016.09.044_bib9 article-title: Outpatient management of primary hyperparathyroidism publication-title: Am J Med doi: 10.1016/j.amjmed.2010.12.028 – volume: 3 start-page: 399 year: 1996 ident: 10.1016/j.surg.2016.09.044_bib14 article-title: A meta-analysis of 16 randomized controlled trials to evaluate computer-based clinical reminder systems for preventive care in the ambulatory setting publication-title: JAMIA – volume: 152 start-page: 1184 year: 2012 ident: 10.1016/j.surg.2016.09.044_bib52 article-title: Calculating an individual maxPTH to aid diagnosis of normocalemic primary hyperparathyroidism publication-title: Surgery doi: 10.1016/j.surg.2012.08.013 – volume: 9 start-page: 494 year: 2003 ident: 10.1016/j.surg.2016.09.044_bib32 article-title: Clinical management of primary hyperparathyroidism and thresholds for surgical referral: a national study examining concordance between practice patterns and consensus panel recommendations publication-title: Endocr Pract doi: 10.4158/EP.9.6.494 – volume: 26 start-page: w181 year: 2007 ident: 10.1016/j.surg.2016.09.044_bib54 article-title: Bridging the inferential gap: the electronic health record and clinical evidence publication-title: Health Aff (Millwood) doi: 10.1377/hlthaff.26.2.w181 – volume: 257 start-page: 6 year: 2005 ident: 10.1016/j.surg.2016.09.044_bib30 article-title: Primary hyperparathyroidism: new concepts in clinical, densitometric and biochemical features publication-title: J Intern Med doi: 10.1111/j.1365-2796.2004.01422.x – volume: 68 start-page: 155 year: 2008 ident: 10.1016/j.surg.2016.09.044_bib2 article-title: Asymptomatic hyperparathyroidism—need for multicentre studies publication-title: Clin Endocrinol (Oxf) doi: 10.1111/j.1365-2265.2007.02970.x – volume: 2011 start-page: 349 year: 2011 ident: 10.1016/j.surg.2016.09.044_bib28 article-title: Integrating machine learning and physician knowledge to improve the accuracy of breast biopsy. AMIA. Annual Symposium proceedings/AMIA Symposium publication-title: AMIA Symposium – volume: 146 start-page: 1006 year: 2009 ident: 10.1016/j.surg.2016.09.044_bib45 article-title: The long-term benefit of parathyroidectomy in primary hyperparathyroidism: a 10-year prospective surgical outcome study publication-title: Surgery doi: 10.1016/j.surg.2009.10.021 – volume: 55 start-page: 523 year: 1971 ident: 10.1016/j.surg.2016.09.044_bib10 article-title: Serum calcium survey for hyperparathyroidism: results in 50,000 clinic patients publication-title: Am J Clin Pathol doi: 10.1093/ajcp/55.5.523 – volume: 99 start-page: 3580 year: 2014 ident: 10.1016/j.surg.2016.09.044_bib34 article-title: Current issues in the presentation of asymptomatic primary hyperparathyroidism: proceedings of the Fourth International Workshop publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2014-1415 – volume: 9 start-page: 771 year: 2007 ident: 10.1016/j.surg.2016.09.044_bib16 article-title: Clinical decision support systems for addressing information needs of physicians publication-title: Isr Med Assoc J – volume: 117 start-page: 134 year: 1995 ident: 10.1016/j.surg.2016.09.044_bib38 article-title: Parathyroid adenoma weight and the risk of death after treatment for primary hyperparathyroidism publication-title: Surgery doi: 10.1016/S0039-6060(05)80076-5 – volume: 2012 start-page: 2704 year: 2012 ident: 10.1016/j.surg.2016.09.044_bib53 article-title: Detection of acute myocardial infarction from serial ECG using multilayer support vector machine publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 255 start-page: 1179 year: 2012 ident: 10.1016/j.surg.2016.09.044_bib7 article-title: Surgery for primary hyperparathyroidism: are the consensus guidelines being followed? publication-title: Ann Surg doi: 10.1097/SLA.0b013e31824dad7d – volume: 19 start-page: 919 year: 2014 ident: 10.1016/j.surg.2016.09.044_bib33 article-title: Mild primary hyperparathyroidism: a literature review publication-title: Oncologist doi: 10.1634/theoncologist.2014-0084 – volume: 20 start-page: 52 year: 2008 ident: 10.1016/j.surg.2016.09.044_bib3 article-title: Primary hyperparathyroidism publication-title: Curr Opin Oncol doi: 10.1097/CCO.0b013e3282f2838f – volume: 86 start-page: 334 year: 2004 ident: 10.1016/j.surg.2016.09.044_bib19 article-title: Artificial intelligence in medicine publication-title: Ann R Coll Surg Engl doi: 10.1308/147870804290 – volume: 15 start-page: 11 year: 2002 ident: 10.1016/j.surg.2016.09.044_bib20 article-title: A review of evidence of health benefit from artificial neural networks in medical intervention publication-title: Neural Netw doi: 10.1016/S0893-6080(01)00111-3 – start-page: 208 year: 1995 ident: 10.1016/j.surg.2016.09.044_bib25 article-title: Preliminary investigation of a Bayesian network for mammographic diagnosis of breast cancer publication-title: Proc Annu Symp Comput Appl Med Care – volume: 321 start-page: 598 year: 2000 ident: 10.1016/j.surg.2016.09.044_bib36 article-title: Cohort study of risk of fracture before and after surgery for primary hyperparathyroidism publication-title: BMJ doi: 10.1136/bmj.321.7261.598 – volume: 22 start-page: 764 year: 2015 ident: 10.1016/j.surg.2016.09.044_bib13 article-title: Drug-drug interaction checking assisted by clinical decision support: a return on investment analysis publication-title: JAMIA – volume: 136 start-page: 1281 year: 2004 ident: 10.1016/j.surg.2016.09.044_bib37 article-title: Early parathyroidectomy increases bone mineral density in patients with mild primary hyperparathyroidism: a prospective and randomized study publication-title: Surgery doi: 10.1016/j.surg.2004.06.059 – volume: 2012 start-page: 436 year: 2012 ident: 10.1016/j.surg.2016.09.044_bib22 article-title: Learning to predict post-hospitalization VTE risk from EHR data. AMIA. Annual Symposium proceedings/AMIA Symposium publication-title: AMIA Symposium – volume: 38 start-page: 1274 year: 2014 ident: 10.1016/j.surg.2016.09.044_bib51 article-title: The small abnormal parathyroid gland is increasingly common and heralds operative complexity publication-title: World J Surg doi: 10.1007/s00268-014-2450-1 – volume: 98 start-page: 3213 year: 2013 ident: 10.1016/j.surg.2016.09.044_bib50 article-title: Bone mineral density evolution after successful parathyroidectomy in patients with normocalcemic primary hyperparathyroidism publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2013-1518 – volume: 150 start-page: 1102 year: 2011 ident: 10.1016/j.surg.2016.09.044_bib49 article-title: The phenotype of primary hyperparathyroidism with normal parathyroid hormone levels: how low can parathyroid hormone go? publication-title: Surgery doi: 10.1016/j.surg.2011.09.011 – volume: 242 start-page: 642 year: 2005 ident: 10.1016/j.surg.2016.09.044_bib1 article-title: Primary hyperparathyroidism, cognition, and health-related quality of life publication-title: Ann Surg doi: 10.1097/01.sla.0000186337.83407.ec – volume: 240 start-page: 666 year: 2006 ident: 10.1016/j.surg.2016.09.044_bib21 article-title: Bayesian network to predict breast cancer risk of mammographic microcalcifications and reduce number of benign biopsy results: initial experience publication-title: Radiology doi: 10.1148/radiol.2403051096 – volume: 153 start-page: 915 year: 2005 ident: 10.1016/j.surg.2016.09.044_bib46 article-title: Surgery versus medical follow-up in patients with asymptomatic primary hyperparathyroidism: a decision analysis publication-title: Eur J Endocrinol doi: 10.1530/eje.1.02029 – volume: 213 start-page: 410 year: 2011 ident: 10.1016/j.surg.2016.09.044_bib48 article-title: Can biochemical abnormalities predict symptomatology in patients with primary hyperparathyroidism? publication-title: J Am Coll Surg doi: 10.1016/j.jamcollsurg.2011.06.401 – volume: 151 start-page: 959 year: 2016 ident: 10.1016/j.surg.2016.09.044_bib23 article-title: The American Association of Endocrine Surgeons (AAES) guidelines for definitive management of primary hyperparathyroidism publication-title: JAMA Surgery doi: 10.1001/jamasurg.2016.2310 – reference: 17259202 - Health Aff (Millwood). 2007 Mar-Apr;26(2):w181-91 – reference: 7846616 - Surgery. 1995 Feb;117(2):134-9 – reference: 15657588 - Surgery. 2004 Dec;136(6):1281-8 – reference: 20610600 - J Clin Endocrinol Metab. 2010 Sep;95(9):4324-30 – reference: 11958484 - Neural Netw. 2002 Jan;15(1):11-39 – reference: 18290710 - J Bone Miner Res. 2007 Dec;22 Suppl 2:V100-4 – reference: 22584631 - Ann Surg. 2012 Jun;255(6):1179-83 – reference: 10372026 - Surgery. 1999 Jun;125(6):608-14 – reference: 16322399 - Eur J Endocrinol. 2005 Dec;153(6):915-27 – reference: 17651448 - Clin Endocrinol (Oxf). 2008 Feb;68(2):155-64 – reference: 23783096 - J Clin Endocrinol Metab. 2013 Aug;98(8):3213-20 – reference: 10977834 - BMJ. 2000 Sep 9;321(7261):598-602 – reference: 1763668 - J Bone Miner Res. 1991 Oct;6 Suppl 2:S153-8; discussion S159 – reference: 15333167 - Ann R Coll Surg Engl. 2004 Sep;86(5):334-8 – reference: 24510243 - World J Surg. 2014 Jun;38(6):1274-81 – reference: 25162667 - J Clin Endocrinol Metab. 2014 Oct;99(10):3580-94 – reference: 19288279 - World J Surg. 2009 Nov;33(11):2244-55 – reference: 14715476 - Endocr Pract. 2003 Nov-Dec;9(6):494-503 – reference: 21561873 - J Am Med Inform Assoc. 2011 Jul-Aug;18(4):354-7 – reference: 5090209 - Am J Clin Pathol. 1971 May;55(5):523-6 – reference: 8957479 - Surgery. 1996 Dec;120(6):948-52; discussion 952-3 – reference: 25063228 - Oncologist. 2014 Sep;19(9):919-29 – reference: 22549152 - Nat Rev Genet. 2012 May 02;13(6):395-405 – reference: 14594714 - Bioinformatics. 2003 Nov 1;19(16):2088-96 – reference: 27532368 - JAMA Surg. 2016 Oct 1;151(10 ):959-968 – reference: 23304314 - AMIA Annu Symp Proc. 2012;2012:436-45 – reference: 22136828 - Surgery. 2011 Dec;150(6):1102-12 – reference: 16926323 - Radiology. 2006 Sep;240(3):666-73 – reference: 1763661 - J Bone Miner Res. 1991 Oct;6 Suppl 2:S111-6; discussion S121-4 – reference: 23366483 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2704-7 – reference: 19958927 - Surgery. 2009 Dec;146(6):1006-13 – reference: 22195087 - AMIA Annu Symp Proc. 2011;2011:349-55 – reference: 20647183 - N Engl J Med. 2010 Aug 5;363(6):501-4 – reference: 21816381 - Am J Med. 2011 Oct;124(10):911-4 – reference: 18085031 - Isr Med Assoc J. 2007 Nov;9(11):771-6 – reference: 16983032 - Arch Surg. 2006 Sep;141(9):885-9; discussion 889-91 – reference: 15897443 - Arch Surg. 2005 May;140(5):472-8; discussion 478-9 – reference: 8109593 - Am J Med. 1994 Feb;96(2):101-6 – reference: 18043256 - Curr Opin Oncol. 2008 Jan;20(1):52-8 – reference: 23943034 - Ann Surg Oncol. 2013 Dec;20(13):4205-11 – reference: 25595714 - Am J Surg. 2015 Jul;210(1):123-8 – reference: 8930856 - J Am Med Inform Assoc. 1996 Nov-Dec;3(6):399-409 – reference: 15606372 - J Intern Med. 2005 Jan;257(1):6-17 – reference: 8356983 - Am J Med. 1993 Aug;95(2):197-202 – reference: 16244536 - Ann Surg. 2005 Nov;242(5):642-50 – reference: 8563269 - Proc Annu Symp Comput Appl Med Care. 1995;:208-12 – reference: 11442121 - J Digit Imaging. 2001 Jun;14 (2 Suppl 1):56-7 – reference: 21723154 - J Am Coll Surg. 2011 Sep;213(3):410-4 – reference: 9037227 - Surgery. 1997 Feb;121(2):157-61 – reference: 10668831 - Arch Intern Med. 2000 Feb 14;160(3):301-8 – reference: 23102677 - Surgery. 2012 Dec;152(6):1184-92 – reference: 24383100 - Surgery. 2013 Dec;154(6):1232-7; discussion 1237-8 – reference: 25670751 - J Am Med Inform Assoc. 2015 Jul;22(4):764-72 |
| SSID | ssj0009418 |
| Score | 2.4087121 |
| Snippet | Parathyroidectomy offers the only cure for primary hyperparathyroidism, but today only 50% of primary hyperparathyroidism patients are referred for operation,... Background Parathyroidectomy offers the only cure for primary hyperparathyroidism, but today only 50% of primary hyperparathyroidism patients are referred for... BACKGROUNDParathyroidectomy offers the only cure for primary hyperparathyroidism, but today only 50% of primary hyperparathyroidism patients are referred for... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1113 |
| SubjectTerms | Algorithms Bayes Theorem Case-Control Studies Databases, Factual Female Humans Hyperparathyroidism, Primary - diagnosis Hyperparathyroidism, Primary - surgery Machine Learning Male Middle Aged Parathyroid Hormone - blood Parathyroidectomy - methods Predictive Value of Tests Quality Improvement ROC Curve Sensitivity and Specificity Severity of Illness Index Surgery |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtwgFEXpZNFu2kbpw32JStm1jmzzMCyjqlFUqVGldqRkhTCGzLQTOxqPVaVf34uNnY4mj2YNGHPvBQ5wOCC05_zBv0uLWHJbxFRTFheu8CzCTNrEltQRfxv56zE_mtIvJ-zkSix67fi-o2E17fLMM7B4J0dK6QO0zRnA7gnanh5_OzjtZRdlDEA86bVRATESnoYLMtd_5KZJaBNkbnIlH7bVhb78rReLfyaiwyc9havp9As9_-TXfrsq9s2fTXXHu9v4FD0OcBQf9PGzg7ZstYum404DLnsmHqTikWpUV7h2-KKXqcAzWMguOwHx2eWynpfz5hz7zV183tE0LQ7vUpw9Q9PDzz8-HcXh-YXYAKhaxcSxvGCOwoosJ8QlXDMN6KoUUuelBNxTgleFLlNaOg4TocmkAPdKYrgVfqHzHE2qurIvEfY6c8JqlzsmqeFaWg0wKNdGC60zYyKUDv5QJmiT-ycyFmogof1U3kjKG0klUoGRIvRhLBOafGtuMrhZDXdOYZRU4IxbS-XXlbJN6OiNSlWTqUR99zHIO20bGDQBZUeIjSUDlukxyp01vh9iUEFH96c3urJ1CzUJj81SIniEXvQxObY7y6Xw1cP_rkXrmMGLiK-nVPNZJybOCM8lExH6OMb1f5jz1f2yv0aPMg-HOsbTGzRZLVv7FsDcqngXuvFfmhBGPA priority: 102 providerName: Unpaywall |
| Title | Improving diagnostic recognition of primary hyperparathyroidism with machine learning |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0039606016307115 https://www.clinicalkey.es/playcontent/1-s2.0-S0039606016307115 https://dx.doi.org/10.1016/j.surg.2016.09.044 https://www.ncbi.nlm.nih.gov/pubmed/27989606 https://www.proquest.com/docview/1851291386 https://pubmed.ncbi.nlm.nih.gov/PMC5367958 http://doi.org/10.1016/j.surg.2016.09.044 |
| UnpaywallVersion | submittedVersion |
| Volume | 161 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1532-7361 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009418 issn: 0039-6060 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Journals customDbUrl: eissn: 1532-7361 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0009418 issn: 0039-6060 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1532-7361 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009418 issn: 0039-6060 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1532-7361 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0009418 issn: 0039-6060 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1532-7361 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009418 issn: 0039-6060 databaseCode: AKRWK dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLamcYALAvErsE1G4gZhTezE9rGaNhUQFQcqjZPlJPaaqUuqphXaZX_73kucjKowEKdIsS3bz8_Pn-3vPRPyzuHFv4uyUKU2C7nhSZi5DFmEsbIjW3DH0Bv56zSdzPjn8-R8j5z0vjBIq_S2v7PprbX2f469NI-XZYk-vgzhN2AW0NOodTTnXOArBh9v7mgeikedNWYqxNzecabjeDWb1QXSu9I21innf1qcdsHnLofy4aZamuufZrH4ZYE6e0Iee2RJx13jn5I9Wz0js-HQgBYdqQ5S6cAaqitaO7rsIk7QOexJV20s8Pn1qi6LsrmieE5Lr1rGpaX-iYmL52R2dvr9ZBL6lxTCHPDROmQuEVniOGyuBGNulJrEAFAqpDKiUABhChggaYqIFy6FNS2PlYSRUixPrcQ9ywuyX9WVfUUohoyT1jjhEsXz1ChrANEIkxtpTJznAYl6EerchxnH1y4WuueTXWoUu0ax65HSIPaAvB_K-C7fm5v1I6N791EweBrWgHtLid-Vso2fs42OdBPrkd7Rq4AkQ8kt1fxrjW97tdEwZ_EixlS23kBNEmFWxGQakJedGg39joWSWD20d0vBhgwYD3w7pSrnbVzwhKVCJTIgHwZV_Adxvv7P7r0hj2KEOC2L6YDsr1cbewgAbZ0dtTPwiDwYf_oymcJ3Nv02_nEL0ME_Rg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcigXBOIVnkbiBqGb2I7tI6qoFmh76kq9WU5id1Ntk9VmV6gXfjsziRNYLRTENfbI8Xg8_mx_MybkrceLf5_ksc5cHnPLRZz7HFmEqXYTV3LPMBr59CybzviXC3GxR46GWBikVQbf3_v0zluHL4dBm4fLqsIYX4bwGzAL2GmCgeZ3uEgl7sA-fP_J89A86d0x0zFWD5EzPcmr3awukd-VdclOOf_T6rSLPndJlAebemlvvtnF4pcV6vg-uRegJf3Y__0Dsufqh2Q2nhrQsmfVQSkdaUNNTRtPl33KCTqHTemqSwY-v1k1VVm11xQPaul1R7l0NLwxcfmIzI4_nR9N4_CUQlwAQFrHzAuZC89hdyUZ85PMCgtIqVTaylIDhilhhJQtE176DBa1ItUKhkqzInMKNy2PyX7d1O4poZgzTjnrpReaF5nVzgKkkbawytq0KCKSDCo0Rcgzjs9dLMxAKLsyqHaDajcTbUDtEXk3yoQu31qbDSNjhvhR8HgGFoFbpeTvpFwbJm1rEtOmZmJ2DCsiYpTcss2_tvhmMBsDkxZvYmztmg20pBBnJUxlEXnSm9HY71Rqhc3D_24Z2FgBE4Jvl9TVvEsMLlgmtVAReT-a4j-o89l_du81OZien56Yk89nX5-TuyninY7S9ILsr1cb9xLQ2jp_1c3GH9qBPys |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtwgFEXpZNFu2kbpw32JStm1jmzzMCyjqlFUqVGldqRkhTCGzLQTOxqPVaVf34uNnY4mj2YNGHPvBQ5wOCC05_zBv0uLWHJbxFRTFheu8CzCTNrEltQRfxv56zE_mtIvJ-zkSix67fi-o2E17fLMM7B4J0dK6QO0zRnA7gnanh5_OzjtZRdlDEA86bVRATESnoYLMtd_5KZJaBNkbnIlH7bVhb78rReLfyaiwyc9havp9As9_-TXfrsq9s2fTXXHu9v4FD0OcBQf9PGzg7ZstYum404DLnsmHqTikWpUV7h2-KKXqcAzWMguOwHx2eWynpfz5hz7zV183tE0LQ7vUpw9Q9PDzz8-HcXh-YXYAKhaxcSxvGCOwoosJ8QlXDMN6KoUUuelBNxTgleFLlNaOg4TocmkAPdKYrgVfqHzHE2qurIvEfY6c8JqlzsmqeFaWg0wKNdGC60zYyKUDv5QJmiT-ycyFmogof1U3kjKG0klUoGRIvRhLBOafGtuMrhZDXdOYZRU4IxbS-XXlbJN6OiNSlWTqUR99zHIO20bGDQBZUeIjSUDlukxyp01vh9iUEFH96c3urJ1CzUJj81SIniEXvQxObY7y6Xw1cP_rkXrmMGLiK-nVPNZJybOCM8lExH6OMb1f5jz1f2yv0aPMg-HOsbTGzRZLVv7FsDcqngXuvFfmhBGPA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+diagnostic+recognition+of+primary+hyperparathyroidism+with+machine+learning&rft.jtitle=Surgery&rft.au=Somnay%2C+Yash+R.&rft.au=Craven%2C+Mark&rft.au=McCoy%2C+Kelly+L.&rft.au=Carty%2C+Sally+E.&rft.date=2017-04-01&rft.issn=0039-6060&rft.volume=161&rft.issue=4&rft.spage=1113&rft.epage=1121&rft_id=info:doi/10.1016%2Fj.surg.2016.09.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_surg_2016_09_044 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00396060%2FS0039606017X00032%2Fcov150h.gif |