Artificial intelligence in oncology

Artificial intelligence (AI) has contributed substantially to the resolution of a variety of biomedical problems, including cancer, over the past decade. Deep learning, a subfield of AI that is highly flexible and supports automatic feature extraction, is increasingly being applied in various areas...

Full description

Saved in:
Bibliographic Details
Published inCancer science Vol. 111; no. 5; pp. 1452 - 1460
Main Authors Shimizu, Hideyuki, Nakayama, Keiichi I.
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.05.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1347-9032
1349-7006
1349-7006
DOI10.1111/cas.14377

Cover

Abstract Artificial intelligence (AI) has contributed substantially to the resolution of a variety of biomedical problems, including cancer, over the past decade. Deep learning, a subfield of AI that is highly flexible and supports automatic feature extraction, is increasingly being applied in various areas of both basic and clinical cancer research. In this review, we describe numerous recent examples of the application of AI in oncology, including cases in which deep learning has efficiently solved problems that were previously thought to be unsolvable, and we address obstacles that must be overcome before such application can become more widespread. We also highlight resources and datasets that can help harness the power of AI for cancer research. The development of innovative approaches to and applications of AI will yield important insights in oncology in the coming decade. Artificial intelligence (AI) has contributed substantially to the resolution of a variety of biomedical problems, including cancer, over the past decade. In this review, we describe numerous recent examples of the application of AI in oncology, including cases in which deep learning has efficiently solved problems that were previously thought to be unsolvable, and we address obstacles that must be overcome before such application can become more widespread.
AbstractList Artificial intelligence (AI) has contributed substantially to the resolution of a variety of biomedical problems, including cancer, over the past decade. Deep learning, a subfield of AI that is highly flexible and supports automatic feature extraction, is increasingly being applied in various areas of both basic and clinical cancer research. In this review, we describe numerous recent examples of the application of AI in oncology, including cases in which deep learning has efficiently solved problems that were previously thought to be unsolvable, and we address obstacles that must be overcome before such application can become more widespread. We also highlight resources and datasets that can help harness the power of AI for cancer research. The development of innovative approaches to and applications of AI will yield important insights in oncology in the coming decade. Artificial intelligence (AI) has contributed substantially to the resolution of a variety of biomedical problems, including cancer, over the past decade. In this review, we describe numerous recent examples of the application of AI in oncology, including cases in which deep learning has efficiently solved problems that were previously thought to be unsolvable, and we address obstacles that must be overcome before such application can become more widespread.
Artificial intelligence (AI) has contributed substantially to the resolution of a variety of biomedical problems, including cancer, over the past decade. Deep learning, a subfield of AI that is highly flexible and supports automatic feature extraction, is increasingly being applied in various areas of both basic and clinical cancer research. In this review, we describe numerous recent examples of the application of AI in oncology, including cases in which deep learning has efficiently solved problems that were previously thought to be unsolvable, and we address obstacles that must be overcome before such application can become more widespread. We also highlight resources and datasets that can help harness the power of AI for cancer research. The development of innovative approaches to and applications of AI will yield important insights in oncology in the coming decade.Artificial intelligence (AI) has contributed substantially to the resolution of a variety of biomedical problems, including cancer, over the past decade. Deep learning, a subfield of AI that is highly flexible and supports automatic feature extraction, is increasingly being applied in various areas of both basic and clinical cancer research. In this review, we describe numerous recent examples of the application of AI in oncology, including cases in which deep learning has efficiently solved problems that were previously thought to be unsolvable, and we address obstacles that must be overcome before such application can become more widespread. We also highlight resources and datasets that can help harness the power of AI for cancer research. The development of innovative approaches to and applications of AI will yield important insights in oncology in the coming decade.
Artificial intelligence (AI) has contributed substantially to the resolution of a variety of biomedical problems, including cancer, over the past decade. Deep learning, a subfield of AI that is highly flexible and supports automatic feature extraction, is increasingly being applied in various areas of both basic and clinical cancer research. In this review, we describe numerous recent examples of the application of AI in oncology, including cases in which deep learning has efficiently solved problems that were previously thought to be unsolvable, and we address obstacles that must be overcome before such application can become more widespread. We also highlight resources and datasets that can help harness the power of AI for cancer research. The development of innovative approaches to and applications of AI will yield important insights in oncology in the coming decade.
Author Shimizu, Hideyuki
Nakayama, Keiichi I.
AuthorAffiliation 1 Department of Molecular and Cellular Biology Medical Institute of Bioregulation Kyushu University Fukuoka Japan
AuthorAffiliation_xml – name: 1 Department of Molecular and Cellular Biology Medical Institute of Bioregulation Kyushu University Fukuoka Japan
Author_xml – sequence: 1
  givenname: Hideyuki
  surname: Shimizu
  fullname: Shimizu, Hideyuki
  organization: Kyushu University
– sequence: 2
  givenname: Keiichi I.
  orcidid: 0000-0002-7185-1529
  surname: Nakayama
  fullname: Nakayama, Keiichi I.
  email: nakayak1@bioreg.kyushu-u.ac.jp
  organization: Kyushu University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32133724$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLAzEUhYNU7EMX_gEpdKOLafNqMtkIpfiCggt1HTKZTE2ZJnUyVfrvTR8WLdhsbi757uHcnDZoOO8MAJcI9lE8A61CH1HC-QloIUJFwiFkjc2dJwIS3ATtEGYQEkYFPQNNghEhHNMW6I2q2hZWW1V2ratNWdqpcdrEpuud9qWfrs7BaaHKYC52tQPe7u9ex4_J5PnhaTyaJHrIEE8oSTOF2JBwxYtMFBmhSKA8H2qKWF5oAhnCSotYTV7kawc5KzBjkBimMkw64Haru1hmc5Nr4-pKlXJR2bmqVtIrK_--OPsup_5TcowZSkUUuN4JVP5jaUIt5zbouJNyxi-DxISjlLEUDSPaO0Bnflm5uJ7EVEDKqSDpcQoymiIMWaSufvveG_755QjcbAFd-RAqU-wRBOU6QRkTlJsEIzs4YLWtVW39emVbHpv4sqVZ_S8tx6OX7cQ30oaprA
CitedBy_id crossref_primary_10_2147_RMHP_S488159
crossref_primary_10_1051_e3sconf_202449104002
crossref_primary_10_3389_fcvm_2022_927769
crossref_primary_10_1016_j_esmoop_2021_100237
crossref_primary_10_11648_j_ejcbs_20241002_12
crossref_primary_10_1016_j_plrev_2021_10_001
crossref_primary_10_3390_diagnostics14131393
crossref_primary_10_1016_j_jpi_2023_100347
crossref_primary_10_1002_cam4_7398
crossref_primary_10_3389_fonc_2021_709659
crossref_primary_10_1016_j_suronc_2024_102079
crossref_primary_10_7759_cureus_46454
crossref_primary_10_1016_j_compbiomed_2025_109918
crossref_primary_10_3390_ani13193028
crossref_primary_10_32628_CSEIT217633
crossref_primary_10_1136_bmjonc_2023_000134
crossref_primary_10_1097_01_COT_0000820648_19847_2a
crossref_primary_10_1016_j_jddst_2024_105401
crossref_primary_10_1186_s12913_024_10928_x
crossref_primary_10_21926_obm_neurobiol_2304198
crossref_primary_10_1016_j_bspc_2024_106067
crossref_primary_10_3390_biomedinformatics2040049
crossref_primary_10_3390_cancers13102469
crossref_primary_10_7200_esicm_54_316
crossref_primary_10_4103_2303_9027_313802
crossref_primary_10_1371_journal_pone_0303217
crossref_primary_10_1007_s40139_020_00217_7
crossref_primary_10_47619_2713_2617_zm_2024_v_5i2_115_124
crossref_primary_10_3390_cancers16040692
crossref_primary_10_1089_omi_2023_0015
crossref_primary_10_1007_s10926_023_10112_8
crossref_primary_10_1007_s10928_020_09707_y
crossref_primary_10_1007_s11604_024_01702_4
crossref_primary_10_17816_socm627101
crossref_primary_10_2196_48631
crossref_primary_10_1007_s43441_023_00541_1
crossref_primary_10_1097_MOU_0000000000000884
crossref_primary_10_3390_ph17091134
crossref_primary_10_35713_aic_v1_i3_45
crossref_primary_10_7759_cureus_46860
crossref_primary_10_1371_journal_pdig_0000189
crossref_primary_10_3390_curroncol30030260
crossref_primary_10_1109_ACCESS_2023_3285596
crossref_primary_10_1097_JS9_0000000000001627
crossref_primary_10_1186_s12974_024_03304_3
crossref_primary_10_56294_saludcyt20251430
crossref_primary_10_1016_j_jlb_2023_100008
crossref_primary_10_1016_j_arthro_2025_01_064
crossref_primary_10_4103_ijo_IJO_1393_22
crossref_primary_10_1080_21645515_2024_2429893
crossref_primary_10_1097_MS9_0000000000002953
crossref_primary_10_2139_ssrn_4693638
crossref_primary_10_17749_2313_7347_ob_gyn_rep_2024_491
crossref_primary_10_3390_educsci14091019
crossref_primary_10_35713_aic_v3_i1_11
crossref_primary_10_1136_bmjhci_2023_100775
crossref_primary_10_56294_dm2023123
crossref_primary_10_3390_cancers13184600
crossref_primary_10_1016_j_isci_2022_105314
crossref_primary_10_1109_ACCESS_2024_3388841
crossref_primary_10_1042_ETLS20210218
crossref_primary_10_3389_fphys_2022_952709
crossref_primary_10_1177_15330338231186467
crossref_primary_10_3389_fmed_2023_1133269
crossref_primary_10_32084_tekapr_2021_14_1_18
crossref_primary_10_1007_s10278_022_00766_w
crossref_primary_10_1007_s00259_021_05492_z
crossref_primary_10_3393_ac_2023_00892_0127
crossref_primary_10_1016_j_eclinm_2022_101662
crossref_primary_10_1038_s41598_021_81188_6
crossref_primary_10_1016_j_ijmedinf_2024_105421
crossref_primary_10_1016_j_acthis_2022_151890
crossref_primary_10_3390_s24237792
crossref_primary_10_1186_s12859_022_04764_1
crossref_primary_10_3389_fonc_2022_1065934
crossref_primary_10_1016_j_ejca_2023_113504
crossref_primary_10_1016_j_jpi_2022_100177
crossref_primary_10_1016_j_breast_2024_103797
crossref_primary_10_3390_computation12030047
crossref_primary_10_3389_fpubh_2025_1510801
crossref_primary_10_3390_app15010269
crossref_primary_10_3390_diagnostics15020221
crossref_primary_10_1200_CCI_23_00045
crossref_primary_10_2196_49944
crossref_primary_10_3390_cancers13112522
crossref_primary_10_3390_cancers13164182
crossref_primary_10_1007_s00259_022_06056_5
crossref_primary_10_1016_j_jbi_2023_104550
crossref_primary_10_3390_biomedicines11041217
crossref_primary_10_1007_s00383_023_05590_z
crossref_primary_10_1016_j_jncc_2024_05_004
crossref_primary_10_17749_2070_4909_farmakoekonomika_2021_063
crossref_primary_10_1007_s11912_025_01651_9
crossref_primary_10_1007_s00521_023_08766_9
crossref_primary_10_1200_EDBK_350652
crossref_primary_10_1002_hsr2_2268
crossref_primary_10_1002_jmv_29355
crossref_primary_10_1038_s41467_021_24733_1
crossref_primary_10_1016_j_csbj_2021_07_003
crossref_primary_10_1186_s12887_024_04775_2
crossref_primary_10_1002_adhm_202202457
crossref_primary_10_2147_CMAR_S341583
crossref_primary_10_3390_jcm12144830
crossref_primary_10_3389_fmedt_2022_1007822
crossref_primary_10_1016_j_aichem_2023_100039
crossref_primary_10_23946_2500_0764_2021_6_4_67_81
crossref_primary_10_3390_cancers15174282
crossref_primary_10_3390_jpm14060561
crossref_primary_10_3390_app12084010
crossref_primary_10_1007_s10552_024_01942_9
crossref_primary_10_1016_j_heliyon_2023_e19411
crossref_primary_10_17680_erciyesiletisim_1346576
crossref_primary_10_1016_j_wneu_2023_08_042
crossref_primary_10_3390_bioengineering10121433
crossref_primary_10_3390_diagnostics14192174
crossref_primary_10_3389_fonc_2020_564725
crossref_primary_10_1111_cas_16327
crossref_primary_10_1007_s00520_024_08738_2
crossref_primary_10_1109_ACCESS_2024_3426279
crossref_primary_10_1039_D3NR05648A
crossref_primary_10_1109_RBME_2024_3503761
crossref_primary_10_3892_ol_2023_13906
crossref_primary_10_3390_ijerph19127379
crossref_primary_10_1097_JS9_0000000000001306
crossref_primary_10_3390_cancers16071377
crossref_primary_10_1371_journal_pone_0292063
crossref_primary_10_1200_GO_24_00199
crossref_primary_10_1007_s00417_023_06052_x
crossref_primary_10_1007_s11845_023_03570_9
crossref_primary_10_2174_1574892818666221018091415
crossref_primary_10_1007_s11831_021_09679_3
crossref_primary_10_1016_j_dcmed_2021_03_001
crossref_primary_10_1109_ACCESS_2024_3370157
crossref_primary_10_3390_diagnostics11091551
crossref_primary_10_2139_ssrn_4637894
crossref_primary_10_3390_app112210753
crossref_primary_10_1007_s12032_021_01500_2
crossref_primary_10_1016_S1470_2045_23_00412_6
crossref_primary_10_1038_s41598_024_81734_y
crossref_primary_10_4103_jrcr_jrcr_7_24
crossref_primary_10_1016_j_addr_2021_113959
crossref_primary_10_1038_s41598_024_78571_4
crossref_primary_10_1007_s11912_023_01376_7
crossref_primary_10_1097_MS9_0000000000002070
crossref_primary_10_1016_S2589_7500_23_00094_8
crossref_primary_10_7759_cureus_71625
crossref_primary_10_1007_s12032_023_02200_9
crossref_primary_10_1038_s41598_025_85857_8
crossref_primary_10_3390_cancers16101894
crossref_primary_10_1149_1945_7111_ad4c57
crossref_primary_10_1038_s43856_024_00469_z
crossref_primary_10_3390_medicina60040527
crossref_primary_10_3389_froh_2024_1494867
crossref_primary_10_3389_fonc_2023_1117420
crossref_primary_10_3390_bioengineering12030288
crossref_primary_10_12677_BIPHY_2023_112003
crossref_primary_10_1155_2022_1211238
crossref_primary_10_1515_ntrev_2024_0056
crossref_primary_10_3390_cancers14061549
crossref_primary_10_3390_ijms252413669
crossref_primary_10_1038_s41416_023_02215_z
crossref_primary_10_3390_cells12060935
crossref_primary_10_1111_cas_15930
crossref_primary_10_1016_j_ahjo_2022_100129
crossref_primary_10_1016_j_ijmedinf_2021_104557
crossref_primary_10_1097_MNM_0000000000001543
crossref_primary_10_1186_s12885_022_09509_0
crossref_primary_10_3390_cancers14020352
crossref_primary_10_1016_j_ijsu_2022_106851
crossref_primary_10_3390_cancers14051349
crossref_primary_10_3346_jkms_2020_35_e379
crossref_primary_10_3390_mi13122217
crossref_primary_10_1007_s00256_021_03820_w
crossref_primary_10_1089_gtmb_2023_29074_persp
crossref_primary_10_1007_s10439_023_03304_z
crossref_primary_10_1080_14737140_2021_1951240
crossref_primary_10_3389_fmolb_2024_1346242
crossref_primary_10_3389_fonc_2024_1324222
crossref_primary_10_5306_wjco_v15_i8_992
Cites_doi 10.21037/mhealth.2017.08.07
10.1001/jama.2016.17216
10.1016/j.celrep.2018.03.086
10.1186/s13058-017-0911-9
10.1038/ncomms12549
10.1200/JCO.2018.36.15_suppl.540
10.1101/760173
10.1109/TVCG.2018.2865138
10.1109/TMI.2016.2642839
10.1109/ISBI.2018.8363641
10.1093/bioinformatics/bty535
10.15252/msb.20156651
10.1001/jama.2017.14585
10.3322/caac.21577
10.1056/NEJMra1814259
10.1016/j.media.2017.01.009
10.1038/s41746-019-0112-2
10.1016/j.ccr.2013.01.026
10.1038/s41467-018-04647-1
10.1038/srep45938
10.4132/jptm.2018.12.16
10.1038/s41588-018-0160-6
10.1073/pnas.1718338115
10.1146/annurev-bioeng-071516-044442
10.1093/jnci/djy222
10.1200/CCI.18.00157
10.1634/theoncologist.2017-0170
10.1093/bib/bbx044
10.1093/bioinformatics/btr444
10.1016/j.trecan.2017.09.001
10.1016/j.drudis.2018.01.039
10.1007/s10278-017-9993-2
10.1371/journal.pbio.1002195
10.1098/rsif.2017.0387
10.1109/TMI.2015.2482920
10.1016/j.cell.2018.12.015
10.1016/j.cell.2019.04.016
10.1016/S1470-2045(19)30154-8
10.1016/j.ajpath.2019.05.007
10.1172/jci.insight.125138
10.1371/journal.pone.0205387
10.1038/nature14539
10.1038/s41591-018-0177-5
10.1038/nm.4165
10.1093/nar/gkw1121
10.1016/S0092-8240(05)80006-0
10.1016/j.gde.2017.01.001
10.1038/nature10983
10.1038/srep26286
10.1016/j.semcancer.2017.08.010
10.1109/TMI.2019.2927182
10.1007/s11604-018-0795-3
10.3322/caac.21551
10.1109/CINTI.2016.7846429
10.1111/cas.12958
10.1016/j.media.2017.07.005
10.1038/nature21056
10.1038/s41598-018-35501-5
10.1016/j.ebiom.2019.07.046
10.1016/j.ebiom.2019.07.073
10.1038/nm.4333
10.1007/s12272-019-01162-9
10.1016/j.csbj.2018.01.001
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
– notice: 2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1111/cas.14377
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
CrossRef

Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate SHIMIZU and NAKAYAMA
EISSN 1349-7006
EndPage 1460
ExternalDocumentID PMC7226189
32133724
10_1111_cas_14377
CAS14377
Genre article
Journal Article
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  funderid: KAKENHI grant (18H05215); KAKENHI grant (19K20403)
– fundername: Japan Society for the Promotion of Science
  grantid: KAKENHI grant (18H05215)
– fundername: Japan Society for the Promotion of Science
  grantid: KAKENHI grant (19K20403)
– fundername: ;
  grantid: KAKENHI grant (18H05215); KAKENHI grant (19K20403)
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29B
2WC
31~
36B
3O-
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
7.U
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FH
8UM
930
A01
A03
AAHHS
AAZKR
ABCQN
ABEML
ACCFJ
ACCMX
ACSCC
ACXQS
ADBBV
ADKYN
ADPDF
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFEBI
AFFNX
AFKRA
AFPKN
AFZJQ
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BFHJK
BHPHI
BY8
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DIK
DR2
DU5
E3Z
EBS
EJD
EMB
EMOBN
EX3
F00
F01
F04
F5P
FIJ
GODZA
GROUPED_DOAJ
HCIFZ
HF~
HOLLA
HYE
HZI
HZ~
IAO
IHR
IPNFZ
ITC
IX1
J0M
K.9
K48
KQ8
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
MK4
N04
N05
N9A
O9-
OIG
OK1
OVD
P2P
P2X
P2Z
P4B
P4D
PIMPY
PROAC
Q11
ROL
RPM
RX1
SJN
SUPJJ
SV3
TEORI
UB1
W8V
WIN
WOW
WQJ
WRC
WXI
X7M
XG1
ZXP
~IA
~WT
7X7
88E
8FI
8FJ
AAFWJ
AAYXX
ABUWG
CITATION
FYUFA
HMCUK
M1P
PHGZM
PHGZT
PSQYO
UKHRP
NPM
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c5617-438ba16537a7fb9fb34191dd5c416dfc30612ac9306edfd1337d6f26603e6ab23
IEDL.DBID 24P
ISSN 1347-9032
1349-7006
IngestDate Thu Aug 21 18:32:29 EDT 2025
Fri Sep 05 13:31:29 EDT 2025
Wed Aug 13 09:07:24 EDT 2025
Sat Aug 23 14:15:58 EDT 2025
Wed Feb 19 02:30:59 EST 2025
Tue Jul 01 01:31:08 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Wed Jan 22 16:33:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords deep learning
machine learning
artificial intelligence
oncology
personalized medicine
Language English
License Attribution-NonCommercial
2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5617-438ba16537a7fb9fb34191dd5c416dfc30612ac9306edfd1337d6f26603e6ab23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7185-1529
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcas.14377
PMID 32133724
PQID 2406481206
PQPubID 4378882
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7226189
proquest_miscellaneous_2371866815
proquest_journals_2490474938
proquest_journals_2406481206
pubmed_primary_32133724
crossref_primary_10_1111_cas_14377
crossref_citationtrail_10_1111_cas_14377
wiley_primary_10_1111_cas_14377_CAS14377
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Tokyo
– name: Hoboken
PublicationTitle Cancer science
PublicationTitleAlternate Cancer Sci
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2017; 318
1990; 52
2017; 42
2017; 7
2017; 3
2012; 486
2019; 53
2013; 23
2016; 107
2017; 45
2016; 35
2018; 9
2017; 30
2018; 8
2019; 20
2017; 37
2017; 36
2016; 316
2019; 69
2019; 25
2011; 27
2019; 111
2018; 36
2015; 13
2019; 4
2019; 3
2015; 521
2019; 2
2019; 35
2019; 37
2017; 23
2018; 23
2019; 380
2019; 189
2016; 12
2018; 24
2018; 19
2016; 6
2016; 7
2019; 42
2019; 46
2018; 115
2019
2018
2016
2017; 19
2018; 52
2014
2018; 50
2017; 542
2018; 16
2019; 177
2018; 15
2018; 13
2019; 176
2016; 22
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Szegedy C (e_1_2_9_50_1) 2014
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_64_1
e_1_2_9_20_1
Shaban MT (e_1_2_9_35_1) 2018
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
Xu Z (e_1_2_9_41_1) 2019
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Goodfellow I (e_1_2_9_16_1) 2016
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 27
  start-page: 2554
  year: 2011
  end-page: 2562
  article-title: Bayesian prediction of tissue‐regulated splicing using RNA sequence and cellular context
  publication-title: Bioinformatics
– volume: 3
  start-page: 38
  year: 2017
  article-title: Digital health is a cultural transformation of traditional healthcare
  publication-title: Mhealth
– volume: 107
  start-page: 875
  year: 2016
  end-page: 881
  article-title: To wake up cancer stem cells, or to let them sleep, that is the question
  publication-title: Cancer Sci
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
– volume: 6
  start-page: 26286
  year: 2016
  article-title: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
  publication-title: Sci Rep
– volume: 7
  start-page: 45938
  year: 2017
  article-title: Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer
  publication-title: Sci Rep
– volume: 19
  start-page: 221
  year: 2017
  end-page: 248
  article-title: Deep learning in medical image analysis
  publication-title: Annu Rev Biomed Eng
– volume: 37
  start-page: 15
  year: 2019
  end-page: 33
  article-title: Technical and clinical overview of deep learning in radiology
  publication-title: Jpn J Radiol
– year: 2018
– volume: 16
  start-page: 34
  year: 2018
  end-page: 42
  article-title: Machine learning methods for histopathological image analysis
  publication-title: Comput Struct Biotechnol J
– volume: 69
  start-page: 7
  year: 2019
  end-page: 34
  article-title: Cancer statistics, 2019
  publication-title: CA Cancer J Clin
– year: 2019
  article-title: Transcriptomic learning for digital pathology
  publication-title: bioRxiv
– volume: 15
  start-page: 20170387
  year: 2018
  article-title: Opportunities and obstacles for deep learning in biology and medicine
  publication-title: J R Soc Interface
– volume: 3
  start-page: 1
  year: 2019
  end-page: 7
  article-title: HistoQC: an open‐source quality control tool for digital pathology slides
  publication-title: JCO Clin Cancer Inform
– volume: 69
  start-page: 452
  year: 2019
  end-page: 467
  article-title: Cancer statistics for adults aged 85 years and older, 2019
  publication-title: CA Cancer J Clin
– volume: 8
  start-page: 17343
  year: 2018
  article-title: Deep semi supervised generative learning for automated tumor proportion scoring on NSCLC tissue needle biopsies
  publication-title: Sci Rep
– volume: 4
  start-page: 125138
  year: 2019
  article-title: Prevention of cancer dormancy by Fbxw7 ablation eradicates disseminated tumor cells
  publication-title: JCI insight
– volume: 42
  start-page: 492
  year: 2019
  end-page: 504
  article-title: Applications of deep learning for the analysis of medical data
  publication-title: Arch Pharm Res
– volume: 2
  start-page: 48
  year: 2019
  article-title: Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer
  publication-title: NPJ Digit Med
– volume: 20
  start-page: e253
  year: 2019
  end-page: e261
  article-title: Digital pathology and artificial intelligence
  publication-title: Lancet Oncol
– volume: 53
  start-page: 1
  year: 2019
  end-page: 12
  article-title: Artificial intelligence in pathology
  publication-title: J Pathol Transl Med
– volume: 22
  start-page: 976
  year: 2016
  end-page: 986
  article-title: Therapeutic targeting of splicing in cancer
  publication-title: Nat. Med
– volume: 24
  start-page: 1559
  year: 2018
  end-page: 1567
  article-title: Classification and mutation prediction from non‐small cell lung cancer histopathology images using deep learning
  publication-title: Nat Med
– volume: 13
  year: 2018
  article-title: DeepFocus: detection of out‐of‐focus regions in whole slide digital images using deep learning
  publication-title: PLoS One
– volume: 52
  start-page: 99
  year: 1990
  end-page: 115
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull Math Biol
– volume: 177
  start-page: 1649
  year: 2019
  end-page: 1661
  article-title: A white‐box machine learning approach for revealing antibiotic mechanisms of action
  publication-title: Cell
– volume: 380
  start-page: 1347
  year: 2019
  end-page: 1358
  article-title: Machine learning in medicine
  publication-title: N Engl J Med
– volume: 13
  year: 2015
  article-title: Big data: astronomical or genomical?
  publication-title: PLoS Biol
– volume: 46
  start-page: 150
  year: 2019
  end-page: 159
  article-title: A 23 gene‐based molecular prognostic score precisely predicts overall survival of breast cancer patients
  publication-title: EBioMedicine
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  article-title: Dermatologist‐level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 23
  start-page: 1241
  year: 2018
  end-page: 1250
  article-title: The rise of deep learning in drug discovery
  publication-title: Drug Discov Today
– year: 2019
  article-title: Deep adversarial training for multi‐organ nuclei segmentation in histopathology images
  publication-title: IEEE Trans Med Imaging
– volume: 23
  start-page: 181
  year: 2018
  end-page: 193
  article-title: Spatial organization and molecular correlation of tumor‐infiltrating lymphocytes using deep learning on pathology images
  publication-title: Cell Rep
– volume: 12
  start-page: 878
  year: 2016
  article-title: Deep learning for computational biology
  publication-title: Mol Syst Biol
– volume: 46
  start-page: 6
  year: 2019
  end-page: 7
  article-title: Artificial intelligence‐directed prognostication of breast cancer
  publication-title: EBioMedicine
– volume: 36
  start-page: 540
  year: 2018
  article-title: Image‐based risk score to predict recurrence of ER+ breast cancer in ECOG‐ACRIN Cancer Research Group E2197
  publication-title: J Clin Oncol
– volume: 35
  start-page: 1170
  year: 2016
  end-page: 1181
  article-title: Improving computer‐aided detection using convolutional neural networks and random view aggregation
  publication-title: IEEE Trans Med Imaging
– volume: 42
  start-page: 33
  year: 2017
  end-page: 39
  article-title: The current state of clinical interpretation of sequence variants
  publication-title: Curr Opin Genet Dev
– year: 2016
– volume: 25
  start-page: 641
  year: 2019
  end-page: 650
  article-title: Evaluating ‘Graphical Perception’ with CNNs
  publication-title: IEEE Trans Vis Comput Graph
– volume: 3
  start-page: 753
  year: 2017
  end-page: 760
  article-title: Breast cancer: multiple subtypes within a tumor?
  publication-title: Trends Cancer
– volume: 111
  start-page: 916
  year: 2019
  end-page: 922
  article-title: Stand‐alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists
  publication-title: J Natl Cancer Inst
– volume: 45
  start-page: D777
  year: 2017
  end-page: D783
  article-title: COSMIC: somatic cancer genetics at high‐resolution
  publication-title: Nucleic Acids Res
– volume: 115
  start-page: 5462
  year: 2018
  end-page: 5467
  article-title: Pan‐cancer transcriptional signatures predictive of oncogenic mutations reveal that Fbw7 regulates cancer cell oxidative metabolism
  publication-title: Proc Natl Acad Sci USA
– volume: 23
  start-page: 347
  year: 2013
  end-page: 361
  article-title: Ablation of Fbxw7 eliminates leukemia‐initiating cells by preventing quiescence
  publication-title: Cancer Cell
– volume: 318
  start-page: 2199
  year: 2017
  end-page: 2210
  article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: JAMA
– year: 2019
  article-title: GAN‐based virtual re‐staining: a promising solution for whole slide image analysis
  publication-title: ArXiv.org
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 189
  start-page: 1686
  year: 2019
  end-page: 1698
  article-title: Pathology image analysis using segmentation deep learning algorithms
  publication-title: Am J Pathol
– year: 2018
  article-title: StainGAN: stain style transfer for digital historical images
  publication-title: arXiv
– volume: 23
  start-page: 703
  year: 2017
  end-page: 713
  article-title: Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients
  publication-title: Nat Med
– volume: 19
  start-page: 1236
  year: 2018
  end-page: 1246
  article-title: Deep learning for healthcare: review, opportunities and challenges
  publication-title: Brief Bioinform
– volume: 37
  start-page: 114
  year: 2017
  end-page: 128
  article-title: A deep learning approach for the analysis of masses in mammograms with minimal user intervention
  publication-title: Med Image Anal
– volume: 486
  start-page: 346
  year: 2012
  end-page: 352
  article-title: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups
  publication-title: Nature
– volume: 35
  start-page: 309
  year: 2019
  end-page: 318
  article-title: Compound‐protein interaction prediction with end‐to‐end learning of neural networks for graphs and sequences
  publication-title: Bioinformatics
– volume: 50
  start-page: 1171
  year: 2018
  end-page: 1179
  article-title: Deep learning sequence‐based ab initio prediction of variant effects on expression and disease risk
  publication-title: Nat Genet
– volume: 52
  start-page: 56
  year: 2018
  end-page: 73
  article-title: Prognostic and predictive biomarkers in breast cancer: past, present and future
  publication-title: Semin Cancer Biol
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal
– year: 2014
  article-title: Going deeper with convolutions
  publication-title: arXiv
– volume: 7
  start-page: 12549
  year: 2016
  article-title: Determining crystal structures through crowdsourcing and coursework
  publication-title: Nat. Commun
– volume: 19
  start-page: 120
  year: 2017
  article-title: Prognostic value of PAM50 and risk of recurrence score in patients with early‐stage breast cancer with long‐term follow‐up
  publication-title: Breast Cancer Res
– volume: 36
  start-page: 994
  year: 2017
  end-page: 1004
  article-title: Automated melanoma recognition in dermoscopy images via very deep residual networks
  publication-title: IEEE Trans Med Imaging
– volume: 23
  start-page: 179
  year: 2018
  end-page: 185
  article-title: Enhancing next‐generation sequencing‐guided cancer care through cognitive computing
  publication-title: Oncologist
– volume: 176
  start-page: 535
  year: 2019
  end-page: 548
  article-title: Predicting splicing from primary sequence with deep learning
  publication-title: Cell
– volume: 9
  start-page: 2546
  year: 2018
  article-title: Harnessing synthetic lethality to predict the response to cancer treatment
  publication-title: Nat Commun
– volume: 30
  start-page: 499
  year: 2017
  end-page: 505
  article-title: Malignancy detection on mammography using dual deep convolutional neural networks and genetically discovered false color input enhancement
  publication-title: J Digit Imaging
– ident: e_1_2_9_67_1
  doi: 10.21037/mhealth.2017.08.07
– ident: e_1_2_9_6_1
  doi: 10.1001/jama.2016.17216
– ident: e_1_2_9_30_1
  doi: 10.1016/j.celrep.2018.03.086
– ident: e_1_2_9_59_1
  doi: 10.1186/s13058-017-0911-9
– year: 2014
  ident: e_1_2_9_50_1
  article-title: Going deeper with convolutions
  publication-title: arXiv
– ident: e_1_2_9_66_1
  doi: 10.1038/ncomms12549
– ident: e_1_2_9_65_1
  doi: 10.1200/JCO.2018.36.15_suppl.540
– ident: e_1_2_9_33_1
  doi: 10.1101/760173
– ident: e_1_2_9_19_1
  doi: 10.1109/TVCG.2018.2865138
– ident: e_1_2_9_22_1
  doi: 10.1109/TMI.2016.2642839
– ident: e_1_2_9_38_1
  doi: 10.1109/ISBI.2018.8363641
– ident: e_1_2_9_20_1
  doi: 10.1093/bioinformatics/bty535
– ident: e_1_2_9_15_1
  doi: 10.15252/msb.20156651
– ident: e_1_2_9_5_1
  doi: 10.1001/jama.2017.14585
– ident: e_1_2_9_10_1
  doi: 10.3322/caac.21577
– ident: e_1_2_9_2_1
  doi: 10.1056/NEJMra1814259
– year: 2019
  ident: e_1_2_9_41_1
  article-title: GAN‐based virtual re‐staining: a promising solution for whole slide image analysis
  publication-title: ArXiv.org
– ident: e_1_2_9_44_1
  doi: 10.1016/j.media.2017.01.009
– ident: e_1_2_9_29_1
  doi: 10.1038/s41746-019-0112-2
– ident: e_1_2_9_53_1
  doi: 10.1016/j.ccr.2013.01.026
– ident: e_1_2_9_48_1
  doi: 10.1038/s41467-018-04647-1
– ident: e_1_2_9_31_1
  doi: 10.1038/srep45938
– volume-title: Deep Learning
  year: 2016
  ident: e_1_2_9_16_1
– ident: e_1_2_9_43_1
  doi: 10.4132/jptm.2018.12.16
– ident: e_1_2_9_51_1
  doi: 10.1038/s41588-018-0160-6
– ident: e_1_2_9_52_1
  doi: 10.1073/pnas.1718338115
– ident: e_1_2_9_25_1
  doi: 10.1146/annurev-bioeng-071516-044442
– ident: e_1_2_9_23_1
  doi: 10.1093/jnci/djy222
– ident: e_1_2_9_36_1
  doi: 10.1200/CCI.18.00157
– ident: e_1_2_9_49_1
  doi: 10.1634/theoncologist.2017-0170
– ident: e_1_2_9_14_1
  doi: 10.1093/bib/bbx044
– ident: e_1_2_9_56_1
  doi: 10.1093/bioinformatics/btr444
– ident: e_1_2_9_60_1
  doi: 10.1016/j.trecan.2017.09.001
– ident: e_1_2_9_7_1
  doi: 10.1016/j.drudis.2018.01.039
– ident: e_1_2_9_4_1
  doi: 10.1007/s10278-017-9993-2
– ident: e_1_2_9_8_1
  doi: 10.1371/journal.pbio.1002195
– ident: e_1_2_9_12_1
  doi: 10.1098/rsif.2017.0387
– ident: e_1_2_9_24_1
  doi: 10.1109/TMI.2015.2482920
– ident: e_1_2_9_57_1
  doi: 10.1016/j.cell.2018.12.015
– ident: e_1_2_9_68_1
  doi: 10.1016/j.cell.2019.04.016
– ident: e_1_2_9_27_1
  doi: 10.1016/S1470-2045(19)30154-8
– ident: e_1_2_9_18_1
  doi: 10.1016/j.ajpath.2019.05.007
– ident: e_1_2_9_55_1
  doi: 10.1172/jci.insight.125138
– ident: e_1_2_9_37_1
  doi: 10.1371/journal.pone.0205387
– ident: e_1_2_9_3_1
  doi: 10.1038/nature14539
– year: 2018
  ident: e_1_2_9_35_1
  article-title: StainGAN: stain style transfer for digital historical images
  publication-title: arXiv
– ident: e_1_2_9_32_1
  doi: 10.1038/s41591-018-0177-5
– ident: e_1_2_9_58_1
  doi: 10.1038/nm.4165
– ident: e_1_2_9_47_1
  doi: 10.1093/nar/gkw1121
– ident: e_1_2_9_17_1
  doi: 10.1016/S0092-8240(05)80006-0
– ident: e_1_2_9_46_1
  doi: 10.1016/j.gde.2017.01.001
– ident: e_1_2_9_62_1
  doi: 10.1038/nature10983
– ident: e_1_2_9_34_1
  doi: 10.1038/srep26286
– ident: e_1_2_9_63_1
  doi: 10.1016/j.semcancer.2017.08.010
– ident: e_1_2_9_39_1
  doi: 10.1109/TMI.2019.2927182
– ident: e_1_2_9_26_1
  doi: 10.1007/s11604-018-0795-3
– ident: e_1_2_9_9_1
  doi: 10.3322/caac.21551
– ident: e_1_2_9_28_1
  doi: 10.1109/CINTI.2016.7846429
– ident: e_1_2_9_54_1
  doi: 10.1111/cas.12958
– ident: e_1_2_9_13_1
  doi: 10.1016/j.media.2017.07.005
– ident: e_1_2_9_21_1
  doi: 10.1038/nature21056
– ident: e_1_2_9_40_1
  doi: 10.1038/s41598-018-35501-5
– ident: e_1_2_9_61_1
  doi: 10.1016/j.ebiom.2019.07.046
– ident: e_1_2_9_64_1
  doi: 10.1016/j.ebiom.2019.07.073
– ident: e_1_2_9_45_1
  doi: 10.1038/nm.4333
– ident: e_1_2_9_11_1
  doi: 10.1007/s12272-019-01162-9
– ident: e_1_2_9_42_1
  doi: 10.1016/j.csbj.2018.01.001
SSID ssj0036494
Score 2.6602905
SecondaryResourceType review_article
Snippet Artificial intelligence (AI) has contributed substantially to the resolution of a variety of biomedical problems, including cancer, over the past decade. Deep...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1452
SubjectTerms Algorithms
Artificial intelligence
Cancer
Deep learning
Dermatology
Industrialized nations
Machine learning
Mammography
Medical research
Medical screening
Neural networks
Oncology
Pathology
personalized medicine
Researchers
Review
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8UwEB5cQLyIu3XjuRy8FJMmbdqDiIoigg9xAW8lW1GQPteD_96ZtH34cDm1ZebQziQz3zTJNwC73jjGKl7EnuFsktxhHPQmjXmac4v5VOSMDidf9rPzO3lxn96PQb87C0PbKruYGAK1G1j6R76PZQKTShYiP3x-ialrFK2udi00dNtawR0EirFxmMSQnOO4nzw-7V9dd7FZZLJo2txKFRdMJC3XEO3toRZjCB6UGs1QP2Dnz92T31FtSEtnszDT4sneUTMA5mDM1_MwddmumC_ADkkaloje4zf6TXzoDepAWf25CHdnp7cn53HbGCG2CHdULEVuNM9SobSqTFEZImXjzqUW4ZWrrCDcom2BV-8qh2WoclmFqZgJn2mTiCWYqAe1X4Ge0s4Iq7zMGRZqnmvtvXAMYZApbGpsBHudMUrbsoZT84qnsqse0G5lsFsE20PV54Yq4zel9c6iZTtb3kpCFRKRBsv-EHeuj2BrKMZpQGsbuvaDD9QRiqj7cp5GsNz4Z_gSIiELJDICNeK5oQJRbI9K6seHQLWtEJ3yvEArBB___V3lydFNuFn9_wvWYDqhij1smVyHiffXD7-BsObdbLZj9QvTlfTP
  priority: 102
  providerName: ProQuest
Title Artificial intelligence in oncology
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcas.14377
https://www.ncbi.nlm.nih.gov/pubmed/32133724
https://www.proquest.com/docview/2406481206
https://www.proquest.com/docview/2490474938
https://www.proquest.com/docview/2371866815
https://pubmed.ncbi.nlm.nih.gov/PMC7226189
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB_0hOJLsfWjae1xbX3oS2A3u8lm8UlFkYIiWuHewn4FDyRXqvfgf-_M5oM7VPBlk7ATSGZ3dn6zH78BOAjWM1ZznQaG1iS5x3Ew2Dzleckd-lNRMjqcfHFZnN_KP9N8ugaH_VmYlh9imHAjy4jjNRm4sQ9LRk4pwdDZK7UOG3S0lvI2ZPKqH4ZFIXWb0VaqVDORdbRCtI1neHXVGb1AmC83Si4D2OiBzrbgYwcdJ0dtW3-CtdB8hg8X3eL4NvyimpYQYjJbYtrEh8m8iezUTztwe3b69-Q87XIgpA6RjUqlKK3hRS6UUbXVtSX-Ne597hBJ-doJgijGabwGX3uMOJUvavS6TITC2EzswqiZN-ELTJTxVjgVZMkwJgvcmBCEZ4h4rHa5dQn87pVRuY4gnPJU3Fd9oIB6q6LeEvg5iP5rWTFeE9rvNVp1hvFQEYCQCCpY8Ua1ZlJJLcoEfgzV2ONpGcM0Yb5AGaGIpa_keQJ7bfsMHyEy0kAmE1ArLTcIEJv2ak0zu4us2gqBKC81aiG28dv_VZ0c3cSbr-8X_QabGQXqcafkPowe_y_Cd0Qzj3Ycey2WaqrGsHF8enl1PY4zA1ReZ89sp_KI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwm4IN6kFAgviUuEHTtxfKhQKa22tLtC0Eq9pX5FVKqyhbZC_XP8NmacZNVVKbeekmh8iMcezzf2-BuAt8F6xhqus8DQmiT3uA4GW2S8qLhDfyoqRpeTJ9NyvC-_HBQHS_BnuAtDaZXDmhgXaj9ztEf-AcMEJpXUovp48jOjqlF0ujqU0DB9aQW_FinG-osdO-HiN4Zwp2vbn3G83-X51ubexjjrqwxkDrGDyqSorOFlIZRRjdWNJYYz7n3hEKv4xgkCAcZpfAbfeIzplC8b9GtMhNJYIj5AF7CMsEPLESx_2px-_Tb4AlFK3ZXVlSrTTOQ9txHlElFJMwQrSi16xCsw92q25mUUHd3g1j242-PXdL2bcPdhKbQP4NakP6F_CG9I0rFSpEeX6D7xI521kSL74hHs34iKHsOonbXhKaTKeCucCrJiGBgGbkwIwjOEXVa7wroE3g_KqF3PUk7FMo7rIVpBvdVRbwm8njc96ag5_tVoddBo3VvnaU0oRiKyYeU14mGqJfBqLkazo7MU04bZObYRiqgCK14k8KQbn_lPiJw0kMsE1MLIzRsQpfeipD36Eam9FaJhXmnUQhzj6_tVb6x_jy8r_-_BS7g93pvs1rvb051ncCen3YKYrrkKo7Nf5-E5Qqoz-6Kftykc3rSp_AVs9zD6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hkFAvVUtfKY-mL6mXCDt24uSAKgqsoJQVaovELfUrKhLK0gKq-Iv8qs44zooVpTdOSTQ-xGOP5xt7_A3AO28cYy2vM8_QmiR3uA56U2S8qLhFfyoqRpeTD8bl7pH8fFwcz8H1cBeG0iqHNTEs1G5iaY98HcMEJpWsRbXexrSIw-3Rx7NfGVWQopPWoZyGjmUW3EagG4uXPPb91R8M58439rZx7N_n-Wjn-9ZuFisOZBZxhMqkqIzmZSGUVq2pW0NsZ9y5wiJuca0VBAi0rfHpXeswvlOubNHHMeFLbYgEAd3BgkIviTa38GlnfPh18AuilHVfYleqrGYijzxHlFdE5c0QuCg16x1vQd7bmZs3EXVwiaNH8DBi2XSzn3yPYc53S7B4EE_rn8BbkvQMFenJDepP_EgnXaDLvnoKR_eiomcw3006_wJSpZ0RVnlZMQwSPdfae-EYQjBT28LYBD4MymhsZCynwhmnzRC5oN6aoLcE3kybnvU0Hf9qtDJotImWet4QopGIclh5h3iYdgm8norRBOlcRXd-colthCLawIoXCTzvx2f6EyInDeQyATUzctMGRO89K-lOfgaab4XImFc1aiGM8d39arY2v4WXl__vwStYRJNpvuyN95fhQU4bByFzcwXmL35f-lVEVxdmLU7bFH7ct6X8BYrzNSY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+in+oncology&rft.jtitle=Cancer+science&rft.au=Shimizu%2C+Hideyuki&rft.au=Nakayama%2C+Keiichi+I.&rft.date=2020-05-01&rft.issn=1347-9032&rft.eissn=1349-7006&rft.volume=111&rft.issue=5&rft.spage=1452&rft.epage=1460&rft_id=info:doi/10.1111%2Fcas.14377&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cas_14377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-9032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-9032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-9032&client=summon