Artificial intelligence in oncology
Artificial intelligence (AI) has contributed substantially to the resolution of a variety of biomedical problems, including cancer, over the past decade. Deep learning, a subfield of AI that is highly flexible and supports automatic feature extraction, is increasingly being applied in various areas...
Saved in:
Published in | Cancer science Vol. 111; no. 5; pp. 1452 - 1460 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.05.2020
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1347-9032 1349-7006 1349-7006 |
DOI | 10.1111/cas.14377 |
Cover
Abstract | Artificial intelligence (AI) has contributed substantially to the resolution of a variety of biomedical problems, including cancer, over the past decade. Deep learning, a subfield of AI that is highly flexible and supports automatic feature extraction, is increasingly being applied in various areas of both basic and clinical cancer research. In this review, we describe numerous recent examples of the application of AI in oncology, including cases in which deep learning has efficiently solved problems that were previously thought to be unsolvable, and we address obstacles that must be overcome before such application can become more widespread. We also highlight resources and datasets that can help harness the power of AI for cancer research. The development of innovative approaches to and applications of AI will yield important insights in oncology in the coming decade.
Artificial intelligence (AI) has contributed substantially to the resolution of a variety of biomedical problems, including cancer, over the past decade. In this review, we describe numerous recent examples of the application of AI in oncology, including cases in which deep learning has efficiently solved problems that were previously thought to be unsolvable, and we address obstacles that must be overcome before such application can become more widespread. |
---|---|
AbstractList | Artificial intelligence (AI) has contributed substantially to the resolution of a variety of biomedical problems, including cancer, over the past decade. Deep learning, a subfield of AI that is highly flexible and supports automatic feature extraction, is increasingly being applied in various areas of both basic and clinical cancer research. In this review, we describe numerous recent examples of the application of AI in oncology, including cases in which deep learning has efficiently solved problems that were previously thought to be unsolvable, and we address obstacles that must be overcome before such application can become more widespread. We also highlight resources and datasets that can help harness the power of AI for cancer research. The development of innovative approaches to and applications of AI will yield important insights in oncology in the coming decade.
Artificial intelligence (AI) has contributed substantially to the resolution of a variety of biomedical problems, including cancer, over the past decade. In this review, we describe numerous recent examples of the application of AI in oncology, including cases in which deep learning has efficiently solved problems that were previously thought to be unsolvable, and we address obstacles that must be overcome before such application can become more widespread. Artificial intelligence (AI) has contributed substantially to the resolution of a variety of biomedical problems, including cancer, over the past decade. Deep learning, a subfield of AI that is highly flexible and supports automatic feature extraction, is increasingly being applied in various areas of both basic and clinical cancer research. In this review, we describe numerous recent examples of the application of AI in oncology, including cases in which deep learning has efficiently solved problems that were previously thought to be unsolvable, and we address obstacles that must be overcome before such application can become more widespread. We also highlight resources and datasets that can help harness the power of AI for cancer research. The development of innovative approaches to and applications of AI will yield important insights in oncology in the coming decade.Artificial intelligence (AI) has contributed substantially to the resolution of a variety of biomedical problems, including cancer, over the past decade. Deep learning, a subfield of AI that is highly flexible and supports automatic feature extraction, is increasingly being applied in various areas of both basic and clinical cancer research. In this review, we describe numerous recent examples of the application of AI in oncology, including cases in which deep learning has efficiently solved problems that were previously thought to be unsolvable, and we address obstacles that must be overcome before such application can become more widespread. We also highlight resources and datasets that can help harness the power of AI for cancer research. The development of innovative approaches to and applications of AI will yield important insights in oncology in the coming decade. Artificial intelligence (AI) has contributed substantially to the resolution of a variety of biomedical problems, including cancer, over the past decade. Deep learning, a subfield of AI that is highly flexible and supports automatic feature extraction, is increasingly being applied in various areas of both basic and clinical cancer research. In this review, we describe numerous recent examples of the application of AI in oncology, including cases in which deep learning has efficiently solved problems that were previously thought to be unsolvable, and we address obstacles that must be overcome before such application can become more widespread. We also highlight resources and datasets that can help harness the power of AI for cancer research. The development of innovative approaches to and applications of AI will yield important insights in oncology in the coming decade. |
Author | Shimizu, Hideyuki Nakayama, Keiichi I. |
AuthorAffiliation | 1 Department of Molecular and Cellular Biology Medical Institute of Bioregulation Kyushu University Fukuoka Japan |
AuthorAffiliation_xml | – name: 1 Department of Molecular and Cellular Biology Medical Institute of Bioregulation Kyushu University Fukuoka Japan |
Author_xml | – sequence: 1 givenname: Hideyuki surname: Shimizu fullname: Shimizu, Hideyuki organization: Kyushu University – sequence: 2 givenname: Keiichi I. orcidid: 0000-0002-7185-1529 surname: Nakayama fullname: Nakayama, Keiichi I. email: nakayak1@bioreg.kyushu-u.ac.jp organization: Kyushu University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32133724$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLAzEUhYNU7EMX_gEpdKOLafNqMtkIpfiCggt1HTKZTE2ZJnUyVfrvTR8WLdhsbi757uHcnDZoOO8MAJcI9lE8A61CH1HC-QloIUJFwiFkjc2dJwIS3ATtEGYQEkYFPQNNghEhHNMW6I2q2hZWW1V2ratNWdqpcdrEpuud9qWfrs7BaaHKYC52tQPe7u9ex4_J5PnhaTyaJHrIEE8oSTOF2JBwxYtMFBmhSKA8H2qKWF5oAhnCSotYTV7kawc5KzBjkBimMkw64Haru1hmc5Nr4-pKlXJR2bmqVtIrK_--OPsup_5TcowZSkUUuN4JVP5jaUIt5zbouJNyxi-DxISjlLEUDSPaO0Bnflm5uJ7EVEDKqSDpcQoymiIMWaSufvveG_755QjcbAFd-RAqU-wRBOU6QRkTlJsEIzs4YLWtVW39emVbHpv4sqVZ_S8tx6OX7cQ30oaprA |
CitedBy_id | crossref_primary_10_2147_RMHP_S488159 crossref_primary_10_1051_e3sconf_202449104002 crossref_primary_10_3389_fcvm_2022_927769 crossref_primary_10_1016_j_esmoop_2021_100237 crossref_primary_10_11648_j_ejcbs_20241002_12 crossref_primary_10_1016_j_plrev_2021_10_001 crossref_primary_10_3390_diagnostics14131393 crossref_primary_10_1016_j_jpi_2023_100347 crossref_primary_10_1002_cam4_7398 crossref_primary_10_3389_fonc_2021_709659 crossref_primary_10_1016_j_suronc_2024_102079 crossref_primary_10_7759_cureus_46454 crossref_primary_10_1016_j_compbiomed_2025_109918 crossref_primary_10_3390_ani13193028 crossref_primary_10_32628_CSEIT217633 crossref_primary_10_1136_bmjonc_2023_000134 crossref_primary_10_1097_01_COT_0000820648_19847_2a crossref_primary_10_1016_j_jddst_2024_105401 crossref_primary_10_1186_s12913_024_10928_x crossref_primary_10_21926_obm_neurobiol_2304198 crossref_primary_10_1016_j_bspc_2024_106067 crossref_primary_10_3390_biomedinformatics2040049 crossref_primary_10_3390_cancers13102469 crossref_primary_10_7200_esicm_54_316 crossref_primary_10_4103_2303_9027_313802 crossref_primary_10_1371_journal_pone_0303217 crossref_primary_10_1007_s40139_020_00217_7 crossref_primary_10_47619_2713_2617_zm_2024_v_5i2_115_124 crossref_primary_10_3390_cancers16040692 crossref_primary_10_1089_omi_2023_0015 crossref_primary_10_1007_s10926_023_10112_8 crossref_primary_10_1007_s10928_020_09707_y crossref_primary_10_1007_s11604_024_01702_4 crossref_primary_10_17816_socm627101 crossref_primary_10_2196_48631 crossref_primary_10_1007_s43441_023_00541_1 crossref_primary_10_1097_MOU_0000000000000884 crossref_primary_10_3390_ph17091134 crossref_primary_10_35713_aic_v1_i3_45 crossref_primary_10_7759_cureus_46860 crossref_primary_10_1371_journal_pdig_0000189 crossref_primary_10_3390_curroncol30030260 crossref_primary_10_1109_ACCESS_2023_3285596 crossref_primary_10_1097_JS9_0000000000001627 crossref_primary_10_1186_s12974_024_03304_3 crossref_primary_10_56294_saludcyt20251430 crossref_primary_10_1016_j_jlb_2023_100008 crossref_primary_10_1016_j_arthro_2025_01_064 crossref_primary_10_4103_ijo_IJO_1393_22 crossref_primary_10_1080_21645515_2024_2429893 crossref_primary_10_1097_MS9_0000000000002953 crossref_primary_10_2139_ssrn_4693638 crossref_primary_10_17749_2313_7347_ob_gyn_rep_2024_491 crossref_primary_10_3390_educsci14091019 crossref_primary_10_35713_aic_v3_i1_11 crossref_primary_10_1136_bmjhci_2023_100775 crossref_primary_10_56294_dm2023123 crossref_primary_10_3390_cancers13184600 crossref_primary_10_1016_j_isci_2022_105314 crossref_primary_10_1109_ACCESS_2024_3388841 crossref_primary_10_1042_ETLS20210218 crossref_primary_10_3389_fphys_2022_952709 crossref_primary_10_1177_15330338231186467 crossref_primary_10_3389_fmed_2023_1133269 crossref_primary_10_32084_tekapr_2021_14_1_18 crossref_primary_10_1007_s10278_022_00766_w crossref_primary_10_1007_s00259_021_05492_z crossref_primary_10_3393_ac_2023_00892_0127 crossref_primary_10_1016_j_eclinm_2022_101662 crossref_primary_10_1038_s41598_021_81188_6 crossref_primary_10_1016_j_ijmedinf_2024_105421 crossref_primary_10_1016_j_acthis_2022_151890 crossref_primary_10_3390_s24237792 crossref_primary_10_1186_s12859_022_04764_1 crossref_primary_10_3389_fonc_2022_1065934 crossref_primary_10_1016_j_ejca_2023_113504 crossref_primary_10_1016_j_jpi_2022_100177 crossref_primary_10_1016_j_breast_2024_103797 crossref_primary_10_3390_computation12030047 crossref_primary_10_3389_fpubh_2025_1510801 crossref_primary_10_3390_app15010269 crossref_primary_10_3390_diagnostics15020221 crossref_primary_10_1200_CCI_23_00045 crossref_primary_10_2196_49944 crossref_primary_10_3390_cancers13112522 crossref_primary_10_3390_cancers13164182 crossref_primary_10_1007_s00259_022_06056_5 crossref_primary_10_1016_j_jbi_2023_104550 crossref_primary_10_3390_biomedicines11041217 crossref_primary_10_1007_s00383_023_05590_z crossref_primary_10_1016_j_jncc_2024_05_004 crossref_primary_10_17749_2070_4909_farmakoekonomika_2021_063 crossref_primary_10_1007_s11912_025_01651_9 crossref_primary_10_1007_s00521_023_08766_9 crossref_primary_10_1200_EDBK_350652 crossref_primary_10_1002_hsr2_2268 crossref_primary_10_1002_jmv_29355 crossref_primary_10_1038_s41467_021_24733_1 crossref_primary_10_1016_j_csbj_2021_07_003 crossref_primary_10_1186_s12887_024_04775_2 crossref_primary_10_1002_adhm_202202457 crossref_primary_10_2147_CMAR_S341583 crossref_primary_10_3390_jcm12144830 crossref_primary_10_3389_fmedt_2022_1007822 crossref_primary_10_1016_j_aichem_2023_100039 crossref_primary_10_23946_2500_0764_2021_6_4_67_81 crossref_primary_10_3390_cancers15174282 crossref_primary_10_3390_jpm14060561 crossref_primary_10_3390_app12084010 crossref_primary_10_1007_s10552_024_01942_9 crossref_primary_10_1016_j_heliyon_2023_e19411 crossref_primary_10_17680_erciyesiletisim_1346576 crossref_primary_10_1016_j_wneu_2023_08_042 crossref_primary_10_3390_bioengineering10121433 crossref_primary_10_3390_diagnostics14192174 crossref_primary_10_3389_fonc_2020_564725 crossref_primary_10_1111_cas_16327 crossref_primary_10_1007_s00520_024_08738_2 crossref_primary_10_1109_ACCESS_2024_3426279 crossref_primary_10_1039_D3NR05648A crossref_primary_10_1109_RBME_2024_3503761 crossref_primary_10_3892_ol_2023_13906 crossref_primary_10_3390_ijerph19127379 crossref_primary_10_1097_JS9_0000000000001306 crossref_primary_10_3390_cancers16071377 crossref_primary_10_1371_journal_pone_0292063 crossref_primary_10_1200_GO_24_00199 crossref_primary_10_1007_s00417_023_06052_x crossref_primary_10_1007_s11845_023_03570_9 crossref_primary_10_2174_1574892818666221018091415 crossref_primary_10_1007_s11831_021_09679_3 crossref_primary_10_1016_j_dcmed_2021_03_001 crossref_primary_10_1109_ACCESS_2024_3370157 crossref_primary_10_3390_diagnostics11091551 crossref_primary_10_2139_ssrn_4637894 crossref_primary_10_3390_app112210753 crossref_primary_10_1007_s12032_021_01500_2 crossref_primary_10_1016_S1470_2045_23_00412_6 crossref_primary_10_1038_s41598_024_81734_y crossref_primary_10_4103_jrcr_jrcr_7_24 crossref_primary_10_1016_j_addr_2021_113959 crossref_primary_10_1038_s41598_024_78571_4 crossref_primary_10_1007_s11912_023_01376_7 crossref_primary_10_1097_MS9_0000000000002070 crossref_primary_10_1016_S2589_7500_23_00094_8 crossref_primary_10_7759_cureus_71625 crossref_primary_10_1007_s12032_023_02200_9 crossref_primary_10_1038_s41598_025_85857_8 crossref_primary_10_3390_cancers16101894 crossref_primary_10_1149_1945_7111_ad4c57 crossref_primary_10_1038_s43856_024_00469_z crossref_primary_10_3390_medicina60040527 crossref_primary_10_3389_froh_2024_1494867 crossref_primary_10_3389_fonc_2023_1117420 crossref_primary_10_3390_bioengineering12030288 crossref_primary_10_12677_BIPHY_2023_112003 crossref_primary_10_1155_2022_1211238 crossref_primary_10_1515_ntrev_2024_0056 crossref_primary_10_3390_cancers14061549 crossref_primary_10_3390_ijms252413669 crossref_primary_10_1038_s41416_023_02215_z crossref_primary_10_3390_cells12060935 crossref_primary_10_1111_cas_15930 crossref_primary_10_1016_j_ahjo_2022_100129 crossref_primary_10_1016_j_ijmedinf_2021_104557 crossref_primary_10_1097_MNM_0000000000001543 crossref_primary_10_1186_s12885_022_09509_0 crossref_primary_10_3390_cancers14020352 crossref_primary_10_1016_j_ijsu_2022_106851 crossref_primary_10_3390_cancers14051349 crossref_primary_10_3346_jkms_2020_35_e379 crossref_primary_10_3390_mi13122217 crossref_primary_10_1007_s00256_021_03820_w crossref_primary_10_1089_gtmb_2023_29074_persp crossref_primary_10_1007_s10439_023_03304_z crossref_primary_10_1080_14737140_2021_1951240 crossref_primary_10_3389_fmolb_2024_1346242 crossref_primary_10_3389_fonc_2024_1324222 crossref_primary_10_5306_wjco_v15_i8_992 |
Cites_doi | 10.21037/mhealth.2017.08.07 10.1001/jama.2016.17216 10.1016/j.celrep.2018.03.086 10.1186/s13058-017-0911-9 10.1038/ncomms12549 10.1200/JCO.2018.36.15_suppl.540 10.1101/760173 10.1109/TVCG.2018.2865138 10.1109/TMI.2016.2642839 10.1109/ISBI.2018.8363641 10.1093/bioinformatics/bty535 10.15252/msb.20156651 10.1001/jama.2017.14585 10.3322/caac.21577 10.1056/NEJMra1814259 10.1016/j.media.2017.01.009 10.1038/s41746-019-0112-2 10.1016/j.ccr.2013.01.026 10.1038/s41467-018-04647-1 10.1038/srep45938 10.4132/jptm.2018.12.16 10.1038/s41588-018-0160-6 10.1073/pnas.1718338115 10.1146/annurev-bioeng-071516-044442 10.1093/jnci/djy222 10.1200/CCI.18.00157 10.1634/theoncologist.2017-0170 10.1093/bib/bbx044 10.1093/bioinformatics/btr444 10.1016/j.trecan.2017.09.001 10.1016/j.drudis.2018.01.039 10.1007/s10278-017-9993-2 10.1371/journal.pbio.1002195 10.1098/rsif.2017.0387 10.1109/TMI.2015.2482920 10.1016/j.cell.2018.12.015 10.1016/j.cell.2019.04.016 10.1016/S1470-2045(19)30154-8 10.1016/j.ajpath.2019.05.007 10.1172/jci.insight.125138 10.1371/journal.pone.0205387 10.1038/nature14539 10.1038/s41591-018-0177-5 10.1038/nm.4165 10.1093/nar/gkw1121 10.1016/S0092-8240(05)80006-0 10.1016/j.gde.2017.01.001 10.1038/nature10983 10.1038/srep26286 10.1016/j.semcancer.2017.08.010 10.1109/TMI.2019.2927182 10.1007/s11604-018-0795-3 10.3322/caac.21551 10.1109/CINTI.2016.7846429 10.1111/cas.12958 10.1016/j.media.2017.07.005 10.1038/nature21056 10.1038/s41598-018-35501-5 10.1016/j.ebiom.2019.07.046 10.1016/j.ebiom.2019.07.073 10.1038/nm.4333 10.1007/s12272-019-01162-9 10.1016/j.csbj.2018.01.001 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. 2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. – notice: 2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. – notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1111/cas.14377 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | SHIMIZU and NAKAYAMA |
EISSN | 1349-7006 |
EndPage | 1460 |
ExternalDocumentID | PMC7226189 32133724 10_1111_cas_14377 CAS14377 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science funderid: KAKENHI grant (18H05215); KAKENHI grant (19K20403) – fundername: Japan Society for the Promotion of Science grantid: KAKENHI grant (18H05215) – fundername: Japan Society for the Promotion of Science grantid: KAKENHI grant (19K20403) – fundername: ; grantid: KAKENHI grant (18H05215); KAKENHI grant (19K20403) |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29B 2WC 31~ 36B 3O- 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 7.U 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAHHS AAZKR ABCQN ABEML ACCFJ ACCMX ACSCC ACXQS ADBBV ADKYN ADPDF ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFEBI AFFNX AFKRA AFPKN AFZJQ AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 DU5 E3Z EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ HCIFZ HF~ HOLLA HYE HZI HZ~ IAO IHR IPNFZ ITC IX1 J0M K.9 K48 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P MK4 N04 N05 N9A O9- OIG OK1 OVD P2P P2X P2Z P4B P4D PIMPY PROAC Q11 ROL RPM RX1 SJN SUPJJ SV3 TEORI UB1 W8V WIN WOW WQJ WRC WXI X7M XG1 ZXP ~IA ~WT 7X7 88E 8FI 8FJ AAFWJ AAYXX ABUWG CITATION FYUFA HMCUK M1P PHGZM PHGZT PSQYO UKHRP NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c5617-438ba16537a7fb9fb34191dd5c416dfc30612ac9306edfd1337d6f26603e6ab23 |
IEDL.DBID | 24P |
ISSN | 1347-9032 1349-7006 |
IngestDate | Thu Aug 21 18:32:29 EDT 2025 Fri Sep 05 13:31:29 EDT 2025 Wed Aug 13 09:07:24 EDT 2025 Sat Aug 23 14:15:58 EDT 2025 Wed Feb 19 02:30:59 EST 2025 Tue Jul 01 01:31:08 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Wed Jan 22 16:33:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | deep learning machine learning artificial intelligence oncology personalized medicine |
Language | English |
License | Attribution-NonCommercial 2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5617-438ba16537a7fb9fb34191dd5c416dfc30612ac9306edfd1337d6f26603e6ab23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7185-1529 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcas.14377 |
PMID | 32133724 |
PQID | 2406481206 |
PQPubID | 4378882 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7226189 proquest_miscellaneous_2371866815 proquest_journals_2490474938 proquest_journals_2406481206 pubmed_primary_32133724 crossref_primary_10_1111_cas_14377 crossref_citationtrail_10_1111_cas_14377 wiley_primary_10_1111_cas_14377_CAS14377 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Tokyo – name: Hoboken |
PublicationTitle | Cancer science |
PublicationTitleAlternate | Cancer Sci |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2017; 318 1990; 52 2017; 42 2017; 7 2017; 3 2012; 486 2019; 53 2013; 23 2016; 107 2017; 45 2016; 35 2018; 9 2017; 30 2018; 8 2019; 20 2017; 37 2017; 36 2016; 316 2019; 69 2019; 25 2011; 27 2019; 111 2018; 36 2015; 13 2019; 4 2019; 3 2015; 521 2019; 2 2019; 35 2019; 37 2017; 23 2018; 23 2019; 380 2019; 189 2016; 12 2018; 24 2018; 19 2016; 6 2016; 7 2019; 42 2019; 46 2018; 115 2019 2018 2016 2017; 19 2018; 52 2014 2018; 50 2017; 542 2018; 16 2019; 177 2018; 15 2018; 13 2019; 176 2016; 22 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Szegedy C (e_1_2_9_50_1) 2014 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_64_1 e_1_2_9_20_1 Shaban MT (e_1_2_9_35_1) 2018 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 Xu Z (e_1_2_9_41_1) 2019 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Goodfellow I (e_1_2_9_16_1) 2016 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 27 start-page: 2554 year: 2011 end-page: 2562 article-title: Bayesian prediction of tissue‐regulated splicing using RNA sequence and cellular context publication-title: Bioinformatics – volume: 3 start-page: 38 year: 2017 article-title: Digital health is a cultural transformation of traditional healthcare publication-title: Mhealth – volume: 107 start-page: 875 year: 2016 end-page: 881 article-title: To wake up cancer stem cells, or to let them sleep, that is the question publication-title: Cancer Sci – volume: 316 start-page: 2402 year: 2016 end-page: 2410 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA – volume: 6 start-page: 26286 year: 2016 article-title: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis publication-title: Sci Rep – volume: 7 start-page: 45938 year: 2017 article-title: Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer publication-title: Sci Rep – volume: 19 start-page: 221 year: 2017 end-page: 248 article-title: Deep learning in medical image analysis publication-title: Annu Rev Biomed Eng – volume: 37 start-page: 15 year: 2019 end-page: 33 article-title: Technical and clinical overview of deep learning in radiology publication-title: Jpn J Radiol – year: 2018 – volume: 16 start-page: 34 year: 2018 end-page: 42 article-title: Machine learning methods for histopathological image analysis publication-title: Comput Struct Biotechnol J – volume: 69 start-page: 7 year: 2019 end-page: 34 article-title: Cancer statistics, 2019 publication-title: CA Cancer J Clin – year: 2019 article-title: Transcriptomic learning for digital pathology publication-title: bioRxiv – volume: 15 start-page: 20170387 year: 2018 article-title: Opportunities and obstacles for deep learning in biology and medicine publication-title: J R Soc Interface – volume: 3 start-page: 1 year: 2019 end-page: 7 article-title: HistoQC: an open‐source quality control tool for digital pathology slides publication-title: JCO Clin Cancer Inform – volume: 69 start-page: 452 year: 2019 end-page: 467 article-title: Cancer statistics for adults aged 85 years and older, 2019 publication-title: CA Cancer J Clin – volume: 8 start-page: 17343 year: 2018 article-title: Deep semi supervised generative learning for automated tumor proportion scoring on NSCLC tissue needle biopsies publication-title: Sci Rep – volume: 4 start-page: 125138 year: 2019 article-title: Prevention of cancer dormancy by Fbxw7 ablation eradicates disseminated tumor cells publication-title: JCI insight – volume: 42 start-page: 492 year: 2019 end-page: 504 article-title: Applications of deep learning for the analysis of medical data publication-title: Arch Pharm Res – volume: 2 start-page: 48 year: 2019 article-title: Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer publication-title: NPJ Digit Med – volume: 20 start-page: e253 year: 2019 end-page: e261 article-title: Digital pathology and artificial intelligence publication-title: Lancet Oncol – volume: 53 start-page: 1 year: 2019 end-page: 12 article-title: Artificial intelligence in pathology publication-title: J Pathol Transl Med – volume: 22 start-page: 976 year: 2016 end-page: 986 article-title: Therapeutic targeting of splicing in cancer publication-title: Nat. Med – volume: 24 start-page: 1559 year: 2018 end-page: 1567 article-title: Classification and mutation prediction from non‐small cell lung cancer histopathology images using deep learning publication-title: Nat Med – volume: 13 year: 2018 article-title: DeepFocus: detection of out‐of‐focus regions in whole slide digital images using deep learning publication-title: PLoS One – volume: 52 start-page: 99 year: 1990 end-page: 115 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull Math Biol – volume: 177 start-page: 1649 year: 2019 end-page: 1661 article-title: A white‐box machine learning approach for revealing antibiotic mechanisms of action publication-title: Cell – volume: 380 start-page: 1347 year: 2019 end-page: 1358 article-title: Machine learning in medicine publication-title: N Engl J Med – volume: 13 year: 2015 article-title: Big data: astronomical or genomical? publication-title: PLoS Biol – volume: 46 start-page: 150 year: 2019 end-page: 159 article-title: A 23 gene‐based molecular prognostic score precisely predicts overall survival of breast cancer patients publication-title: EBioMedicine – volume: 542 start-page: 115 year: 2017 end-page: 118 article-title: Dermatologist‐level classification of skin cancer with deep neural networks publication-title: Nature – volume: 23 start-page: 1241 year: 2018 end-page: 1250 article-title: The rise of deep learning in drug discovery publication-title: Drug Discov Today – year: 2019 article-title: Deep adversarial training for multi‐organ nuclei segmentation in histopathology images publication-title: IEEE Trans Med Imaging – volume: 23 start-page: 181 year: 2018 end-page: 193 article-title: Spatial organization and molecular correlation of tumor‐infiltrating lymphocytes using deep learning on pathology images publication-title: Cell Rep – volume: 12 start-page: 878 year: 2016 article-title: Deep learning for computational biology publication-title: Mol Syst Biol – volume: 46 start-page: 6 year: 2019 end-page: 7 article-title: Artificial intelligence‐directed prognostication of breast cancer publication-title: EBioMedicine – volume: 36 start-page: 540 year: 2018 article-title: Image‐based risk score to predict recurrence of ER+ breast cancer in ECOG‐ACRIN Cancer Research Group E2197 publication-title: J Clin Oncol – volume: 35 start-page: 1170 year: 2016 end-page: 1181 article-title: Improving computer‐aided detection using convolutional neural networks and random view aggregation publication-title: IEEE Trans Med Imaging – volume: 42 start-page: 33 year: 2017 end-page: 39 article-title: The current state of clinical interpretation of sequence variants publication-title: Curr Opin Genet Dev – year: 2016 – volume: 25 start-page: 641 year: 2019 end-page: 650 article-title: Evaluating ‘Graphical Perception’ with CNNs publication-title: IEEE Trans Vis Comput Graph – volume: 3 start-page: 753 year: 2017 end-page: 760 article-title: Breast cancer: multiple subtypes within a tumor? publication-title: Trends Cancer – volume: 111 start-page: 916 year: 2019 end-page: 922 article-title: Stand‐alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists publication-title: J Natl Cancer Inst – volume: 45 start-page: D777 year: 2017 end-page: D783 article-title: COSMIC: somatic cancer genetics at high‐resolution publication-title: Nucleic Acids Res – volume: 115 start-page: 5462 year: 2018 end-page: 5467 article-title: Pan‐cancer transcriptional signatures predictive of oncogenic mutations reveal that Fbw7 regulates cancer cell oxidative metabolism publication-title: Proc Natl Acad Sci USA – volume: 23 start-page: 347 year: 2013 end-page: 361 article-title: Ablation of Fbxw7 eliminates leukemia‐initiating cells by preventing quiescence publication-title: Cancer Cell – volume: 318 start-page: 2199 year: 2017 end-page: 2210 article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer publication-title: JAMA – year: 2019 article-title: GAN‐based virtual re‐staining: a promising solution for whole slide image analysis publication-title: ArXiv.org – volume: 521 start-page: 436 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 189 start-page: 1686 year: 2019 end-page: 1698 article-title: Pathology image analysis using segmentation deep learning algorithms publication-title: Am J Pathol – year: 2018 article-title: StainGAN: stain style transfer for digital historical images publication-title: arXiv – volume: 23 start-page: 703 year: 2017 end-page: 713 article-title: Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients publication-title: Nat Med – volume: 19 start-page: 1236 year: 2018 end-page: 1246 article-title: Deep learning for healthcare: review, opportunities and challenges publication-title: Brief Bioinform – volume: 37 start-page: 114 year: 2017 end-page: 128 article-title: A deep learning approach for the analysis of masses in mammograms with minimal user intervention publication-title: Med Image Anal – volume: 486 start-page: 346 year: 2012 end-page: 352 article-title: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups publication-title: Nature – volume: 35 start-page: 309 year: 2019 end-page: 318 article-title: Compound‐protein interaction prediction with end‐to‐end learning of neural networks for graphs and sequences publication-title: Bioinformatics – volume: 50 start-page: 1171 year: 2018 end-page: 1179 article-title: Deep learning sequence‐based ab initio prediction of variant effects on expression and disease risk publication-title: Nat Genet – volume: 52 start-page: 56 year: 2018 end-page: 73 article-title: Prognostic and predictive biomarkers in breast cancer: past, present and future publication-title: Semin Cancer Biol – volume: 42 start-page: 60 year: 2017 end-page: 88 article-title: A survey on deep learning in medical image analysis publication-title: Med Image Anal – year: 2014 article-title: Going deeper with convolutions publication-title: arXiv – volume: 7 start-page: 12549 year: 2016 article-title: Determining crystal structures through crowdsourcing and coursework publication-title: Nat. Commun – volume: 19 start-page: 120 year: 2017 article-title: Prognostic value of PAM50 and risk of recurrence score in patients with early‐stage breast cancer with long‐term follow‐up publication-title: Breast Cancer Res – volume: 36 start-page: 994 year: 2017 end-page: 1004 article-title: Automated melanoma recognition in dermoscopy images via very deep residual networks publication-title: IEEE Trans Med Imaging – volume: 23 start-page: 179 year: 2018 end-page: 185 article-title: Enhancing next‐generation sequencing‐guided cancer care through cognitive computing publication-title: Oncologist – volume: 176 start-page: 535 year: 2019 end-page: 548 article-title: Predicting splicing from primary sequence with deep learning publication-title: Cell – volume: 9 start-page: 2546 year: 2018 article-title: Harnessing synthetic lethality to predict the response to cancer treatment publication-title: Nat Commun – volume: 30 start-page: 499 year: 2017 end-page: 505 article-title: Malignancy detection on mammography using dual deep convolutional neural networks and genetically discovered false color input enhancement publication-title: J Digit Imaging – ident: e_1_2_9_67_1 doi: 10.21037/mhealth.2017.08.07 – ident: e_1_2_9_6_1 doi: 10.1001/jama.2016.17216 – ident: e_1_2_9_30_1 doi: 10.1016/j.celrep.2018.03.086 – ident: e_1_2_9_59_1 doi: 10.1186/s13058-017-0911-9 – year: 2014 ident: e_1_2_9_50_1 article-title: Going deeper with convolutions publication-title: arXiv – ident: e_1_2_9_66_1 doi: 10.1038/ncomms12549 – ident: e_1_2_9_65_1 doi: 10.1200/JCO.2018.36.15_suppl.540 – ident: e_1_2_9_33_1 doi: 10.1101/760173 – ident: e_1_2_9_19_1 doi: 10.1109/TVCG.2018.2865138 – ident: e_1_2_9_22_1 doi: 10.1109/TMI.2016.2642839 – ident: e_1_2_9_38_1 doi: 10.1109/ISBI.2018.8363641 – ident: e_1_2_9_20_1 doi: 10.1093/bioinformatics/bty535 – ident: e_1_2_9_15_1 doi: 10.15252/msb.20156651 – ident: e_1_2_9_5_1 doi: 10.1001/jama.2017.14585 – ident: e_1_2_9_10_1 doi: 10.3322/caac.21577 – ident: e_1_2_9_2_1 doi: 10.1056/NEJMra1814259 – year: 2019 ident: e_1_2_9_41_1 article-title: GAN‐based virtual re‐staining: a promising solution for whole slide image analysis publication-title: ArXiv.org – ident: e_1_2_9_44_1 doi: 10.1016/j.media.2017.01.009 – ident: e_1_2_9_29_1 doi: 10.1038/s41746-019-0112-2 – ident: e_1_2_9_53_1 doi: 10.1016/j.ccr.2013.01.026 – ident: e_1_2_9_48_1 doi: 10.1038/s41467-018-04647-1 – ident: e_1_2_9_31_1 doi: 10.1038/srep45938 – volume-title: Deep Learning year: 2016 ident: e_1_2_9_16_1 – ident: e_1_2_9_43_1 doi: 10.4132/jptm.2018.12.16 – ident: e_1_2_9_51_1 doi: 10.1038/s41588-018-0160-6 – ident: e_1_2_9_52_1 doi: 10.1073/pnas.1718338115 – ident: e_1_2_9_25_1 doi: 10.1146/annurev-bioeng-071516-044442 – ident: e_1_2_9_23_1 doi: 10.1093/jnci/djy222 – ident: e_1_2_9_36_1 doi: 10.1200/CCI.18.00157 – ident: e_1_2_9_49_1 doi: 10.1634/theoncologist.2017-0170 – ident: e_1_2_9_14_1 doi: 10.1093/bib/bbx044 – ident: e_1_2_9_56_1 doi: 10.1093/bioinformatics/btr444 – ident: e_1_2_9_60_1 doi: 10.1016/j.trecan.2017.09.001 – ident: e_1_2_9_7_1 doi: 10.1016/j.drudis.2018.01.039 – ident: e_1_2_9_4_1 doi: 10.1007/s10278-017-9993-2 – ident: e_1_2_9_8_1 doi: 10.1371/journal.pbio.1002195 – ident: e_1_2_9_12_1 doi: 10.1098/rsif.2017.0387 – ident: e_1_2_9_24_1 doi: 10.1109/TMI.2015.2482920 – ident: e_1_2_9_57_1 doi: 10.1016/j.cell.2018.12.015 – ident: e_1_2_9_68_1 doi: 10.1016/j.cell.2019.04.016 – ident: e_1_2_9_27_1 doi: 10.1016/S1470-2045(19)30154-8 – ident: e_1_2_9_18_1 doi: 10.1016/j.ajpath.2019.05.007 – ident: e_1_2_9_55_1 doi: 10.1172/jci.insight.125138 – ident: e_1_2_9_37_1 doi: 10.1371/journal.pone.0205387 – ident: e_1_2_9_3_1 doi: 10.1038/nature14539 – year: 2018 ident: e_1_2_9_35_1 article-title: StainGAN: stain style transfer for digital historical images publication-title: arXiv – ident: e_1_2_9_32_1 doi: 10.1038/s41591-018-0177-5 – ident: e_1_2_9_58_1 doi: 10.1038/nm.4165 – ident: e_1_2_9_47_1 doi: 10.1093/nar/gkw1121 – ident: e_1_2_9_17_1 doi: 10.1016/S0092-8240(05)80006-0 – ident: e_1_2_9_46_1 doi: 10.1016/j.gde.2017.01.001 – ident: e_1_2_9_62_1 doi: 10.1038/nature10983 – ident: e_1_2_9_34_1 doi: 10.1038/srep26286 – ident: e_1_2_9_63_1 doi: 10.1016/j.semcancer.2017.08.010 – ident: e_1_2_9_39_1 doi: 10.1109/TMI.2019.2927182 – ident: e_1_2_9_26_1 doi: 10.1007/s11604-018-0795-3 – ident: e_1_2_9_9_1 doi: 10.3322/caac.21551 – ident: e_1_2_9_28_1 doi: 10.1109/CINTI.2016.7846429 – ident: e_1_2_9_54_1 doi: 10.1111/cas.12958 – ident: e_1_2_9_13_1 doi: 10.1016/j.media.2017.07.005 – ident: e_1_2_9_21_1 doi: 10.1038/nature21056 – ident: e_1_2_9_40_1 doi: 10.1038/s41598-018-35501-5 – ident: e_1_2_9_61_1 doi: 10.1016/j.ebiom.2019.07.046 – ident: e_1_2_9_64_1 doi: 10.1016/j.ebiom.2019.07.073 – ident: e_1_2_9_45_1 doi: 10.1038/nm.4333 – ident: e_1_2_9_11_1 doi: 10.1007/s12272-019-01162-9 – ident: e_1_2_9_42_1 doi: 10.1016/j.csbj.2018.01.001 |
SSID | ssj0036494 |
Score | 2.6602905 |
SecondaryResourceType | review_article |
Snippet | Artificial intelligence (AI) has contributed substantially to the resolution of a variety of biomedical problems, including cancer, over the past decade. Deep... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1452 |
SubjectTerms | Algorithms Artificial intelligence Cancer Deep learning Dermatology Industrialized nations Machine learning Mammography Medical research Medical screening Neural networks Oncology Pathology personalized medicine Researchers Review |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8UwEB5cQLyIu3XjuRy8FJMmbdqDiIoigg9xAW8lW1GQPteD_96ZtH34cDm1ZebQziQz3zTJNwC73jjGKl7EnuFsktxhHPQmjXmac4v5VOSMDidf9rPzO3lxn96PQb87C0PbKruYGAK1G1j6R76PZQKTShYiP3x-ialrFK2udi00dNtawR0EirFxmMSQnOO4nzw-7V9dd7FZZLJo2txKFRdMJC3XEO3toRZjCB6UGs1QP2Dnz92T31FtSEtnszDT4sneUTMA5mDM1_MwddmumC_ADkkaloje4zf6TXzoDepAWf25CHdnp7cn53HbGCG2CHdULEVuNM9SobSqTFEZImXjzqUW4ZWrrCDcom2BV-8qh2WoclmFqZgJn2mTiCWYqAe1X4Ge0s4Iq7zMGRZqnmvtvXAMYZApbGpsBHudMUrbsoZT84qnsqse0G5lsFsE20PV54Yq4zel9c6iZTtb3kpCFRKRBsv-EHeuj2BrKMZpQGsbuvaDD9QRiqj7cp5GsNz4Z_gSIiELJDICNeK5oQJRbI9K6seHQLWtEJ3yvEArBB___V3lydFNuFn9_wvWYDqhij1smVyHiffXD7-BsObdbLZj9QvTlfTP priority: 102 providerName: ProQuest |
Title | Artificial intelligence in oncology |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcas.14377 https://www.ncbi.nlm.nih.gov/pubmed/32133724 https://www.proquest.com/docview/2406481206 https://www.proquest.com/docview/2490474938 https://www.proquest.com/docview/2371866815 https://pubmed.ncbi.nlm.nih.gov/PMC7226189 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB_0hOJLsfWjae1xbX3oS2A3u8lm8UlFkYIiWuHewn4FDyRXqvfgf-_M5oM7VPBlk7ATSGZ3dn6zH78BOAjWM1ZznQaG1iS5x3Ew2Dzleckd-lNRMjqcfHFZnN_KP9N8ugaH_VmYlh9imHAjy4jjNRm4sQ9LRk4pwdDZK7UOG3S0lvI2ZPKqH4ZFIXWb0VaqVDORdbRCtI1neHXVGb1AmC83Si4D2OiBzrbgYwcdJ0dtW3-CtdB8hg8X3eL4NvyimpYQYjJbYtrEh8m8iezUTztwe3b69-Q87XIgpA6RjUqlKK3hRS6UUbXVtSX-Ne597hBJ-doJgijGabwGX3uMOJUvavS6TITC2EzswqiZN-ELTJTxVjgVZMkwJgvcmBCEZ4h4rHa5dQn87pVRuY4gnPJU3Fd9oIB6q6LeEvg5iP5rWTFeE9rvNVp1hvFQEYCQCCpY8Ua1ZlJJLcoEfgzV2ONpGcM0Yb5AGaGIpa_keQJ7bfsMHyEy0kAmE1ArLTcIEJv2ak0zu4us2gqBKC81aiG28dv_VZ0c3cSbr-8X_QabGQXqcafkPowe_y_Cd0Qzj3Ycey2WaqrGsHF8enl1PY4zA1ReZ89sp_KI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwm4IN6kFAgviUuEHTtxfKhQKa22tLtC0Eq9pX5FVKqyhbZC_XP8NmacZNVVKbeekmh8iMcezzf2-BuAt8F6xhqus8DQmiT3uA4GW2S8qLhDfyoqRpeTJ9NyvC-_HBQHS_BnuAtDaZXDmhgXaj9ztEf-AcMEJpXUovp48jOjqlF0ujqU0DB9aQW_FinG-osdO-HiN4Zwp2vbn3G83-X51ubexjjrqwxkDrGDyqSorOFlIZRRjdWNJYYz7n3hEKv4xgkCAcZpfAbfeIzplC8b9GtMhNJYIj5AF7CMsEPLESx_2px-_Tb4AlFK3ZXVlSrTTOQ9txHlElFJMwQrSi16xCsw92q25mUUHd3g1j242-PXdL2bcPdhKbQP4NakP6F_CG9I0rFSpEeX6D7xI521kSL74hHs34iKHsOonbXhKaTKeCucCrJiGBgGbkwIwjOEXVa7wroE3g_KqF3PUk7FMo7rIVpBvdVRbwm8njc96ag5_tVoddBo3VvnaU0oRiKyYeU14mGqJfBqLkazo7MU04bZObYRiqgCK14k8KQbn_lPiJw0kMsE1MLIzRsQpfeipD36Eam9FaJhXmnUQhzj6_tVb6x_jy8r_-_BS7g93pvs1rvb051ncCen3YKYrrkKo7Nf5-E5Qqoz-6Kftykc3rSp_AVs9zD6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hkFAvVUtfKY-mL6mXCDt24uSAKgqsoJQVaovELfUrKhLK0gKq-Iv8qs44zooVpTdOSTQ-xGOP5xt7_A3AO28cYy2vM8_QmiR3uA56U2S8qLhFfyoqRpeTD8bl7pH8fFwcz8H1cBeG0iqHNTEs1G5iaY98HcMEJpWsRbXexrSIw-3Rx7NfGVWQopPWoZyGjmUW3EagG4uXPPb91R8M58439rZx7N_n-Wjn-9ZuFisOZBZxhMqkqIzmZSGUVq2pW0NsZ9y5wiJuca0VBAi0rfHpXeswvlOubNHHMeFLbYgEAd3BgkIviTa38GlnfPh18AuilHVfYleqrGYijzxHlFdE5c0QuCg16x1vQd7bmZs3EXVwiaNH8DBi2XSzn3yPYc53S7B4EE_rn8BbkvQMFenJDepP_EgnXaDLvnoKR_eiomcw3006_wJSpZ0RVnlZMQwSPdfae-EYQjBT28LYBD4MymhsZCynwhmnzRC5oN6aoLcE3kybnvU0Hf9qtDJotImWet4QopGIclh5h3iYdgm8norRBOlcRXd-colthCLawIoXCTzvx2f6EyInDeQyATUzctMGRO89K-lOfgaab4XImFc1aiGM8d39arY2v4WXl__vwStYRJNpvuyN95fhQU4bByFzcwXmL35f-lVEVxdmLU7bFH7ct6X8BYrzNSY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+in+oncology&rft.jtitle=Cancer+science&rft.au=Shimizu%2C+Hideyuki&rft.au=Nakayama%2C+Keiichi+I.&rft.date=2020-05-01&rft.issn=1347-9032&rft.eissn=1349-7006&rft.volume=111&rft.issue=5&rft.spage=1452&rft.epage=1460&rft_id=info:doi/10.1111%2Fcas.14377&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cas_14377 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-9032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-9032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-9032&client=summon |