A Triangular Form-based Multiple Flow Algorithm to Estimate Overland Flow Distribution and Accumulation on a Digital Elevation Model

In this study, we present a newly developed method for the estimation of surface flow paths on a digital elevation model (DEM). The objective is to use a form‐based algorithm, analyzing flow over single cells by dividing them into eight triangular facets and to estimate the surface flow paths on a r...

Full description

Saved in:
Bibliographic Details
Published inTransactions in GIS Vol. 18; no. 1; pp. 108 - 124
Main Authors Pilesjö, Petter, Hasan, Abdulghani
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.02.2014
Subjects
Online AccessGet full text
ISSN1361-1682
1467-9671
1467-9671
DOI10.1111/tgis.12015

Cover

Abstract In this study, we present a newly developed method for the estimation of surface flow paths on a digital elevation model (DEM). The objective is to use a form‐based algorithm, analyzing flow over single cells by dividing them into eight triangular facets and to estimate the surface flow paths on a raster DEM. For each cell on a gridded DEM, the triangular form‐based multiple flow algorithm (TFM) was used to distribute flow to one or more of the eight neighbor cells, which determined the flow paths over the DEM. Because each of the eight facets covering a cell has a constant slope and aspect, the estimations of – for example – flow direction and divergence/convergence are more intuitive and less complicated than many traditional raster‐based solutions. Experiments were undertaken by estimating the specific catchment area (SCA) over a number of mathematical surfaces, as well as on a real‐world DEM. Comparisons were made between the derived SCA by the TFM algorithm with eight other algorithms reported in the literature. The results show that the TFM algorithm produced the closest outcomes to the theoretical values of the SCA compared with other algorithms, derived more consistent outcomes, and was less influenced by surface shapes. The real‐world DEM test shows that the TFM was capable of modeling flow distribution without noticeable ‘artefacts’, and its ability to track flow paths makes it an appropriate platform for dynamic surface flow simulation.
AbstractList In this study, we present a newly developed method for the estimation of surface flow paths on a digital elevation model (DEM). The objective is to use a form-based algorithm, analyzing flow over single cells by dividing them into eight triangular facets and to estimate the surface flow paths on a raster DEM. For each cell on a gridded DEM, the triangular form-based multiple flow algorithm (TFM) was used to distribute flow to one or more of the eight neighbor cells, which determined the flow paths over the DEM. Because each of the eight facets covering a cell has a constant slope and aspect, the estimations of - for example - flow direction and divergence/convergence are more intuitive and less complicated than many traditional raster-based solutions. Experiments were undertaken by estimating the specific catchment area (SCA) over a number of mathematical surfaces, as well as on a real-world DEM. Comparisons were made between the derived SCA by the TFM algorithm with eight other algorithms reported in the literature. The results show that the TFM algorithm produced the closest outcomes to the theoretical values of the SCA compared with other algorithms, derived more consistent outcomes, and was less influenced by surface shapes. The real-world DEM test shows that the TFM was capable of modeling flow distribution without noticeable 'artefacts', and its ability to track flow paths makes it an appropriate platform for dynamic surface flow simulation.
In this study, we present a newly developed method for the estimation of surface flow paths on a digital elevation model ( DEM ). The objective is to use a form‐based algorithm, analyzing flow over single cells by dividing them into eight triangular facets and to estimate the surface flow paths on a raster DEM . For each cell on a gridded DEM , the triangular form‐based multiple flow algorithm ( TFM ) was used to distribute flow to one or more of the eight neighbor cells, which determined the flow paths over the DEM . Because each of the eight facets covering a cell has a constant slope and aspect, the estimations of – for example – flow direction and divergence/convergence are more intuitive and less complicated than many traditional raster‐based solutions. Experiments were undertaken by estimating the specific catchment area ( SCA ) over a number of mathematical surfaces, as well as on a real‐world DEM . Comparisons were made between the derived SCA by the TFM algorithm with eight other algorithms reported in the literature. The results show that the TFM algorithm produced the closest outcomes to the theoretical values of the SCA compared with other algorithms, derived more consistent outcomes, and was less influenced by surface shapes. The real‐world DEM test shows that the TFM was capable of modeling flow distribution without noticeable ‘artefacts’, and its ability to track flow paths makes it an appropriate platform for dynamic surface flow simulation.
In this study, we present a newly developed method for the estimation of surface flow paths on a digital elevation model (DEM). The objective is to use a form-based algorithm, analyzing flow over single cells by dividing them into eight triangular facets and to estimate the surface flow paths on a raster DEM. For each cell on a gridded DEM, the triangular form-based multiple flow algorithm (TFM) was used to distribute flow to one or more of the eight neighbor cells, which determined the flow paths over the DEM. Because each of the eight facets covering a cell has a constant slope and aspect, the estimations of - for example - flow direction and divergence/convergence are more intuitive and less complicated than many traditional raster-based solutions. Experiments were undertaken by estimating the specific catchment area (SCA) over a number of mathematical surfaces, as well as on a real-world DEM. Comparisons were made between the derived SCA by the TFM algorithm with eight other algorithms reported in the literature. The results show that the TFM algorithm produced the closest outcomes to the theoretical values of the SCA compared with other algorithms, derived more consistent outcomes, and was less influenced by surface shapes. The real-world DEM test shows that the TFM was capable of modeling flow distribution without noticeable 'artefacts', and its ability to track flow paths makes it an appropriate platform for dynamic surface flow simulation. [PUBLICATION ABSTRACT]
Author Pilesjö, Petter
Hasan, Abdulghani
Author_xml – sequence: 1
  givenname: Petter
  surname: Pilesjö
  fullname: Pilesjö, Petter
  email: petter.pilesjo@gis.lu.se
  organization: GIS Center, Lund University
– sequence: 2
  givenname: Abdulghani
  surname: Hasan
  fullname: Hasan, Abdulghani
  organization: GIS Center, Lund University
BookMark eNqFksFv0zAUxiM0JLbBhb8gEheElGE3sR0fq9F20zp2WCWOT3by2nm4cbGddbvzh-M0jMOEIBdHn37fe5-f30l21LkOs-w9JWc0fZ_jxoQzOiGUvcqOacVFIbmgR-m_5LSgvJ68yU5CuCeEVJUUx9nPab7yRnWb3iqfz53fFloFbPPr3kazs5jPrdvnU7tx3sS7bR5dPgvRbFXE_OYBvVVdOzJfTIje6D4a1-WDOm2afpvqHoRBS8jGRGXzmcWHUb52Ldq32eu1sgHf_T5Ps9V8tjq_KJY3i8vz6bJoGKesEHWrBK9FLddY10h0KwVWa821bClFpVuitaKybBGpljVbC4Jco1S6Zk1TnmZqLBv2uOs17Hy6hn8CpwzsnE_BwGNA5Zs7sD0EhERZ0xySBphUvG5ExUEwJqFKpUHriQQsGVcydW1LlXp8HHvsvPvRY4iwNaFBm8aErg9A03MwUdKK_h9lhJeCVmRAP7xA713vuzQroJVg5SRlE4kiI9V4F4LHNTRp2kP46JWxQAkMSwLDksBhSZLl0wvL81D-CtMR3huLT_8gYbW4vH32FKMnLQc-_vEo_x1SYsHg29cFXF3Nl6vlLYGL8hdI6uEg
CitedBy_id crossref_primary_10_1016_j_robot_2024_104774
crossref_primary_10_1515_rgg_2017_0020
crossref_primary_10_1016_j_envsoft_2020_104804
crossref_primary_10_1016_j_envsoft_2014_08_025
crossref_primary_10_3390_rs14133169
crossref_primary_10_1029_2019JG005348
crossref_primary_10_1002_eap_1901
crossref_primary_10_1002_esp_5938
crossref_primary_10_1029_2021WR029871
crossref_primary_10_1002_eco_1446
crossref_primary_10_1007_s12665_017_6786_3
crossref_primary_10_1002_hyp_11479
crossref_primary_10_1002_eco_1526
crossref_primary_10_1175_JHM_D_21_0251_1
crossref_primary_10_1111_tgis_12870
crossref_primary_10_1016_j_scitotenv_2017_11_252
crossref_primary_10_1080_14614103_2023_2216530
crossref_primary_10_1016_j_measurement_2016_02_030
crossref_primary_10_1016_j_rse_2024_114333
crossref_primary_10_1080_17445647_2015_1077168
crossref_primary_10_1080_19376812_2022_2076133
crossref_primary_10_1016_j_catena_2021_105818
crossref_primary_10_1016_j_jhydrol_2022_127468
crossref_primary_10_1016_j_jhydrol_2021_126432
crossref_primary_10_1016_j_ecolind_2017_10_016
crossref_primary_10_1016_j_agrformet_2022_109247
crossref_primary_10_1007_s12303_015_0020_7
crossref_primary_10_1016_j_geoderma_2021_115350
crossref_primary_10_1029_2021WR031706
crossref_primary_10_3390_w14152363
crossref_primary_10_1016_j_envsoft_2023_105865
crossref_primary_10_3390_w12020452
crossref_primary_10_3390_w13152002
crossref_primary_10_3390_su14052738
crossref_primary_10_3390_land13060765
crossref_primary_10_1002_hyp_13963
crossref_primary_10_5194_bg_12_2791_2015
crossref_primary_10_1029_2019WR026507
crossref_primary_10_1080_24694452_2020_1806026
crossref_primary_10_1016_j_jhydrol_2020_124619
crossref_primary_10_3390_geosciences5020117
Cites_doi 10.1080/13658810601073240
10.1029/90WR02658
10.1029/2009WR008540
10.1007/978-3-540-77800-4_13
10.1002/hyp.3360050106
10.1016/0098-3004(91)90048-I
10.1016/S0734-189X(84)80011-0
10.1016/j.cageo.2003.07.005
10.4324/9780203302217_chapter_9
10.1007/978-3-540-77800-4
10.1002/hyp.3360080405
10.1007/978-3-540-77800-4_12
10.1080/13658810600816573
10.1029/2010WR009961
10.1029/2008WR007099
10.1029/2006WR005128
10.1029/96WR03137
10.1029/2002WR001639
10.1080/13658810210149425
10.1029/93WR03512
ContentType Journal Article
Copyright 2013 John Wiley & Sons Ltd
Copyright © 2014 John Wiley & Sons Ltd
Copyright_xml – notice: 2013 John Wiley & Sons Ltd
– notice: Copyright © 2014 John Wiley & Sons Ltd
CorporateAuthor Departments of Administrative, Economic and Social Sciences
Centrum för geografiska informationssystem (GIS-centrum)
Faculty of Social Sciences
Samhällsvetenskapliga fakulteten
Lunds universitet
Naturvetenskapliga fakulteten
Profile areas and other strong research environments
Faculty of Science
Lund University
Institutionen för naturgeografi och ekosystemvetenskap
Strategiska forskningsområden (SFO)
Centrum för Mellanösternstudier (CMES)
Dept of Physical Geography and Ecosystem Science
MECW: The Middle East in the Contemporary World
Samhällsvetenskapliga institutioner och centrumbildningar
Strategic research areas (SRA)
eSSENCE: The e-Science Collaboration
Centre for Advanced Middle Eastern Studies (CMES)
Centre for Geographical Information Systems (GIS Centre)
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: Strategiska forskningsområden (SFO)
– name: MECW: The Middle East in the Contemporary World
– name: Institutionen för naturgeografi och ekosystemvetenskap
– name: Samhällsvetenskapliga institutioner och centrumbildningar
– name: Strategic research areas (SRA)
– name: Lunds universitet
– name: Faculty of Science
– name: Dept of Physical Geography and Ecosystem Science
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Centre for Advanced Middle Eastern Studies (CMES)
– name: Centrum för Mellanösternstudier (CMES)
– name: Profile areas and other strong research environments
– name: Centrum för geografiska informationssystem (GIS-centrum)
– name: eSSENCE: The e-Science Collaboration
– name: Samhällsvetenskapliga fakulteten
– name: Faculty of Social Sciences
– name: Departments of Administrative, Economic and Social Sciences
– name: Centre for Geographical Information Systems (GIS Centre)
DBID BSCLL
AAYXX
CITATION
7SC
8FD
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ADTPV
AOWAS
D95
DOI 10.1111/tgis.12015
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
Computer and Information Systems Abstracts – Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef

Civil Engineering Abstracts

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1467-9671
EndPage 124
ExternalDocumentID oai_portal_research_lu_se_publications_2468c746_7559_40e6_bb29_e356a993dd3a
3176389731
10_1111_tgis_12015
TGIS12015
ark_67375_WNG_KKFLTLS0_H
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29Q
31~
33P
4.4
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8V8
930
A04
AABNI
AAESR
AAHQN
AAMMB
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABSOO
ACAHQ
ACBKW
ACBWZ
ACCZN
ACGFS
ACHQT
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AEMOZ
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFKFF
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AHBTC
AHQJS
AIDQK
AIDYY
AIQQE
AIURR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-C
D-D
DCZOG
DPXWK
DR2
DRFUL
DRSSH
DU5
EAD
EAP
EAYBP
EBA
EBO
EBR
EBS
EBU
EDH
EJD
EMK
ESX
F00
F01
FEDTE
G-S
G.N
G50
GODZA
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MM-
MRFUL
MRSSH
MSFUL
MSSSH
MXFUL
MXSSH
N04
N06
N9A
NF~
O66
O9-
OIG
P2W
P2Y
P4C
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
UB1
W8V
W99
WBKPD
WIH
WII
WMRSR
WOHZO
WQZ
WSUWO
WXSBR
XG1
ZY4
ZZTAW
~IA
~WP
AAHHS
ABTAH
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AFYRF
AIFKG
AIWBW
AJBDE
WRC
AAYXX
CITATION
7SC
8FD
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ADTPV
AOWAS
D95
ID FETCH-LOGICAL-c5615-78da768789fe88e0bd97e4fb6b9d11eabd0bba193dee1b985f70e6be9ab85cc3
IEDL.DBID DR2
ISSN 1361-1682
1467-9671
IngestDate Wed Oct 15 12:57:10 EDT 2025
Thu Oct 02 07:42:25 EDT 2025
Thu Jul 10 17:04:30 EDT 2025
Sat Aug 16 22:12:13 EDT 2025
Wed Oct 01 03:57:06 EDT 2025
Thu Apr 24 22:57:01 EDT 2025
Wed Jan 22 16:55:24 EST 2025
Sun Sep 21 06:17:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5615-78da768789fe88e0bd97e4fb6b9d11eabd0bba193dee1b985f70e6be9ab85cc3
Notes istex:7695303D1668039C973F5AE29DDFD1E2D10B36D6
ArticleID:TGIS12015
ark:/67375/WNG-KKFLTLS0-H
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1475322467
PQPubID 23500
PageCount 17
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_2468c746_7559_40e6_bb29_e356a993dd3a
proquest_miscellaneous_1671573141
proquest_miscellaneous_1506371401
proquest_journals_1475322467
crossref_citationtrail_10_1111_tgis_12015
crossref_primary_10_1111_tgis_12015
wiley_primary_10_1111_tgis_12015_TGIS12015
istex_primary_ark_67375_WNG_KKFLTLS0_H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2014
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: February 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Transactions in GIS
PublicationTitleAlternate Transactions in GIS
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Holmgren P 1994 Multiple flow direction algorithms for runoff modeling in grid based elevation models: An empirical evaluation, Hydrological Processes 8: 327-334
Pilesjö P, Zhou Q, and Harrie L 1998 Estimating flow distribution over Digital Elevation Models using a form-based algorithm. Geographic Information Science 4: 44-51
Quinn P, Beven K, Chevallier P, and Planchon O 1991 The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrological Processes 5: 9-79
Ackermann F and Kraus K 2004 Reader commentary: Grid based digital terrain models. Geoinformatics 7(6): 28-31
Qin C, Zhu A-X, Pei T, Li B, Zhou C, and Yang L 2007 An adaptive approach to selecting a flow-partition exponent for a multiple-flow-direction algorithm. International Journal of Geographical Information Science 21: 443-458
Fairfield J and Leymarie P 1991 Drainage network from grid digital elevation models. Water Resources Research 27: 709-717
Hasan A, Pilesjö P, and Persson A 2012b On Generating Digital Elevation Models from LiDAR Data: Resolution Versus Accuracy and Topographic Wetness Index Indices in Northern Peatlands. London, Taylor and Francis
Orlandini S, Moretti G, Franchini M, Aldighieri B, and Testa B 2003 Path-based methods for the determination of non-dispersive drainage directions in grid-based digital elevation models. Water Resources Research 39: W001144
Zhou Q and Liu X 2002 Error assessment of grid-based flow routing algorithms used in hydrological models. International Journal of Geographical Information Science 16: 819-842
Zhou Q and Liu X 2004 Analysis of errors of derived slope and aspect related to DEM data properties. Computers and Geosciences 30: 369-378
Wilson J P and Gallant J C (eds) 2000 Terrain Analysis: Principles and Applications. New York, John Wiley and Sons
Zhou Q , Lees B , and Tang G (eds) 2008 Advances in Digital Terrain Analysis. Berlin, Springer
Freeman T G 1991 Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences 17: 413-422
Costa-Cabral M C and Burges S J 1994 Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research 30: 1681-1692
Orlandini S and Moretti G 2009 Determination of surface flow paths from gridded elevation data. Water Resources Research, 45: W03417
Zhou Q, Pilesjö P, and Chen Y 2011 Estimating surface flow paths on a digital elevation model using a triangular facet network. Water Resources Research 47: W07522
Beven K J and Moore I D (eds) 1994 Terrain Analysis and Distributed Modeling in Hydrology. Chichester, John Wiley and Sons
Li Z, Zhu Q, and Gold C 2005 Digital Terrain Modeling: Principles and Methodology. Boca Raton, FL, CRC Press
Seibert J and McGlynn B L 2007 A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Research 43: W04501
Zhou Q, Liu X, and Sun Y 2006 Terrain complexity and uncertainties in grid-based digital terrain analysis. International Journal of Geographical Information Science 20: 1137-1147
O'Callaghan J F and Mark D M 1984 The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image Processing 28: 323-344
Tarboton D G 1997 A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 32: 309-319
Gallant J C and Hutchinson M F 2011 A differential equation for specific catchment area. Water Resources Research 47: W05535
2009; 45
2002; 16
1991; 17
2012
1984; 28
2004; 7
2008
1994
2005
2003; 39
1992
2002
1991; 5
1994; 8
2004; 30
1991; 27
2006; 20
1997; 32
2000
2012b
2012a
2011; 47
2007; 21
2007; 43
1998; 4
1994; 30
e_1_2_8_28_1
e_1_2_8_29_1
Hasan A (e_1_2_8_8_1) 2012
Wilson J P (e_1_2_8_24_1) 2000
e_1_2_8_25_1
e_1_2_8_26_1
Hasan A (e_1_2_8_9_1) 2012
Lea N J (e_1_2_8_11_1) 1992
Zhou Q (e_1_2_8_27_1) 2004; 30
Pilesjö P (e_1_2_8_18_1) 1998; 4
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
Li Z (e_1_2_8_12_1) 2005
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
Beven K J (e_1_2_8_3_1) 1994
Ackermann F (e_1_2_8_2_1) 2004; 7
e_1_2_8_17_1
e_1_2_8_19_1
Tarboton D G (e_1_2_8_23_1) 1997; 32
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_30_1
References_xml – reference: O'Callaghan J F and Mark D M 1984 The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image Processing 28: 323-344
– reference: Zhou Q, Pilesjö P, and Chen Y 2011 Estimating surface flow paths on a digital elevation model using a triangular facet network. Water Resources Research 47: W07522
– reference: Seibert J and McGlynn B L 2007 A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Research 43: W04501
– reference: Hasan A, Pilesjö P, and Persson A 2012b On Generating Digital Elevation Models from LiDAR Data: Resolution Versus Accuracy and Topographic Wetness Index Indices in Northern Peatlands. London, Taylor and Francis
– reference: Li Z, Zhu Q, and Gold C 2005 Digital Terrain Modeling: Principles and Methodology. Boca Raton, FL, CRC Press
– reference: Zhou Q, Liu X, and Sun Y 2006 Terrain complexity and uncertainties in grid-based digital terrain analysis. International Journal of Geographical Information Science 20: 1137-1147
– reference: Quinn P, Beven K, Chevallier P, and Planchon O 1991 The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrological Processes 5: 9-79
– reference: Fairfield J and Leymarie P 1991 Drainage network from grid digital elevation models. Water Resources Research 27: 709-717
– reference: Freeman T G 1991 Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences 17: 413-422
– reference: Beven K J and Moore I D (eds) 1994 Terrain Analysis and Distributed Modeling in Hydrology. Chichester, John Wiley and Sons
– reference: Wilson J P and Gallant J C (eds) 2000 Terrain Analysis: Principles and Applications. New York, John Wiley and Sons
– reference: Zhou Q , Lees B , and Tang G (eds) 2008 Advances in Digital Terrain Analysis. Berlin, Springer
– reference: Costa-Cabral M C and Burges S J 1994 Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research 30: 1681-1692
– reference: Orlandini S and Moretti G 2009 Determination of surface flow paths from gridded elevation data. Water Resources Research, 45: W03417
– reference: Pilesjö P, Zhou Q, and Harrie L 1998 Estimating flow distribution over Digital Elevation Models using a form-based algorithm. Geographic Information Science 4: 44-51
– reference: Tarboton D G 1997 A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 32: 309-319
– reference: Zhou Q and Liu X 2002 Error assessment of grid-based flow routing algorithms used in hydrological models. International Journal of Geographical Information Science 16: 819-842
– reference: Holmgren P 1994 Multiple flow direction algorithms for runoff modeling in grid based elevation models: An empirical evaluation, Hydrological Processes 8: 327-334
– reference: Zhou Q and Liu X 2004 Analysis of errors of derived slope and aspect related to DEM data properties. Computers and Geosciences 30: 369-378
– reference: Orlandini S, Moretti G, Franchini M, Aldighieri B, and Testa B 2003 Path-based methods for the determination of non-dispersive drainage directions in grid-based digital elevation models. Water Resources Research 39: W001144
– reference: Gallant J C and Hutchinson M F 2011 A differential equation for specific catchment area. Water Resources Research 47: W05535
– reference: Qin C, Zhu A-X, Pei T, Li B, Zhou C, and Yang L 2007 An adaptive approach to selecting a flow-partition exponent for a multiple-flow-direction algorithm. International Journal of Geographical Information Science 21: 443-458
– reference: Ackermann F and Kraus K 2004 Reader commentary: Grid based digital terrain models. Geoinformatics 7(6): 28-31
– volume: 45
  start-page: W03417
  year: 2009
  article-title: Determination of surface flow paths from gridded elevation data
  publication-title: Water Resources Research
– volume: 30
  start-page: 369
  year: 2004
  end-page: 378
  article-title: Analysis of errors of derived slope and aspect related to DEM data properties
  publication-title: Computers and Geosciences
– volume: 20
  start-page: 1137
  year: 2006
  end-page: 1147
  article-title: Terrain complexity and uncertainties in grid‐based digital terrain analysis
  publication-title: International Journal of Geographical Information Science
– year: 2005
– start-page: 237
  year: 2008
  end-page: 255
– year: 2012b
– volume: 5
  start-page: 9
  year: 1991
  end-page: 79
  article-title: The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models
  publication-title: Hydrological Processes
– volume: 43
  start-page: W04501
  year: 2007
  article-title: A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models
  publication-title: Water Resources Research
– year: 2000
– volume: 32
  start-page: 309
  year: 1997
  end-page: 319
  article-title: A new method for the determination of flow directions and upslope areas in grid digital elevation models
  publication-title: Water Resources Research
– volume: 47
  start-page: W07522
  year: 2011
  article-title: Estimating surface flow paths on a digital elevation model using a triangular facet network
  publication-title: Water Resources Research
– volume: 16
  start-page: 819
  year: 2002
  end-page: 842
  article-title: Error assessment of grid‐based flow routing algorithms used in hydrological models
  publication-title: International Journal of Geographical Information Science
– year: 1994
– start-page: 213
  year: 2008
  end-page: 236
– volume: 8
  start-page: 327
  year: 1994
  end-page: 334
  article-title: Multiple flow direction algorithms for runoff modeling in grid based elevation models: An empirical evaluation
  publication-title: Hydrological Processes
– year: 2012
– volume: 21
  start-page: 443
  year: 2007
  end-page: 458
  article-title: An adaptive approach to selecting a flow‐partition exponent for a multiple‐flow‐direction algorithm
  publication-title: International Journal of Geographical Information Science
– volume: 7
  start-page: 28
  issue: 6
  year: 2004
  end-page: 31
  article-title: Reader commentary: Grid based digital terrain models
  publication-title: Geoinformatics
– volume: 4
  start-page: 44
  year: 1998
  end-page: 51
  article-title: Estimating flow distribution over Digital Elevation Models using a form‐based algorithm
  publication-title: Geographic Information Science
– volume: 17
  start-page: 413
  year: 1991
  end-page: 422
  article-title: Calculating catchment area with divergent flow based on a regular grid
  publication-title: Computers and Geosciences
– volume: 39
  start-page: W001144
  year: 2003
  article-title: Path‐based methods for the determination of non‐dispersive drainage directions in grid‐based digital elevation models
  publication-title: Water Resources Research
– year: 2012a
– start-page: 393
  year: 1992
  end-page: 407
– start-page: 166
  year: 2002
  end-page: 200
– year: 2008
– volume: 27
  start-page: 709
  year: 1991
  end-page: 717
  article-title: Drainage network from grid digital elevation models
  publication-title: Water Resources Research
– volume: 28
  start-page: 323
  year: 1984
  end-page: 344
  article-title: The extraction of drainage networks from digital elevation data
  publication-title: Computer Vision, Graphics, and Image Processing
– volume: 47
  start-page: W05535
  year: 2011
  article-title: A differential equation for specific catchment area
  publication-title: Water Resources Research
– volume: 30
  start-page: 1681
  year: 1994
  end-page: 1692
  article-title: Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas
  publication-title: Water Resources Research
– ident: e_1_2_8_19_1
  doi: 10.1080/13658810601073240
– ident: e_1_2_8_5_1
  doi: 10.1029/90WR02658
– ident: e_1_2_8_7_1
  doi: 10.1029/2009WR008540
– ident: e_1_2_8_17_1
  doi: 10.1007/978-3-540-77800-4_13
– volume-title: On Generating Digital Elevation Models from LiDAR Data: Resolution Versus Accuracy and Topographic Wetness Index Indices in Northern Peatlands
  year: 2012
  ident: e_1_2_8_9_1
– ident: e_1_2_8_20_1
  doi: 10.1002/hyp.3360050106
– ident: e_1_2_8_6_1
  doi: 10.1016/0098-3004(91)90048-I
– ident: e_1_2_8_13_1
  doi: 10.1016/S0734-189X(84)80011-0
– volume-title: Terrain Analysis: Principles and Applications
  year: 2000
  ident: e_1_2_8_24_1
– volume: 30
  start-page: 369
  year: 2004
  ident: e_1_2_8_27_1
  article-title: Analysis of errors of derived slope and aspect related to DEM data properties
  publication-title: Computers and Geosciences
  doi: 10.1016/j.cageo.2003.07.005
– volume-title: Digital Terrain Modeling: Principles and Methodology
  year: 2005
  ident: e_1_2_8_12_1
– volume: 7
  start-page: 28
  issue: 6
  year: 2004
  ident: e_1_2_8_2_1
  article-title: Reader commentary: Grid based digital terrain models
  publication-title: Geoinformatics
– ident: e_1_2_8_21_1
– ident: e_1_2_8_14_1
  doi: 10.4324/9780203302217_chapter_9
– ident: e_1_2_8_28_1
  doi: 10.1007/978-3-540-77800-4
– ident: e_1_2_8_10_1
  doi: 10.1002/hyp.3360080405
– ident: e_1_2_8_25_1
  doi: 10.1007/978-3-540-77800-4_12
– ident: e_1_2_8_29_1
  doi: 10.1080/13658810600816573
– ident: e_1_2_8_30_1
  doi: 10.1029/2010WR009961
– ident: e_1_2_8_16_1
  doi: 10.1029/2008WR007099
– ident: e_1_2_8_22_1
  doi: 10.1029/2006WR005128
– volume: 32
  start-page: 309
  year: 1997
  ident: e_1_2_8_23_1
  article-title: A new method for the determination of flow directions and upslope areas in grid digital elevation models
  publication-title: Water Resources Research
  doi: 10.1029/96WR03137
– ident: e_1_2_8_15_1
  doi: 10.1029/2002WR001639
– ident: e_1_2_8_26_1
  doi: 10.1080/13658810210149425
– volume-title: Terrain Analysis and Distributed Modeling in Hydrology
  year: 1994
  ident: e_1_2_8_3_1
– start-page: 393
  volume-title: Overland Flow: Hydraulics and Erosion Mechanics
  year: 1992
  ident: e_1_2_8_11_1
– ident: e_1_2_8_4_1
  doi: 10.1029/93WR03512
– volume-title: Proceedings of the Ostrava Surface Models for Geosciences Symposium (GIS Ostrava 2012)
  year: 2012
  ident: e_1_2_8_8_1
– volume: 4
  start-page: 44
  year: 1998
  ident: e_1_2_8_18_1
  article-title: Estimating flow distribution over Digital Elevation Models using a form‐based algorithm
  publication-title: Geographic Information Science
SSID ssj0004497
Score 2.2272859
Snippet In this study, we present a newly developed method for the estimation of surface flow paths on a digital elevation model (DEM). The objective is to use a...
In this study, we present a newly developed method for the estimation of surface flow paths on a digital elevation model ( DEM ). The objective is to use a...
SourceID swepub
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108
SubjectTerms Algorithms
Analysis
Catchment areas
Digital Elevation Models
Discrete element method
Earth and Related Environmental Sciences
Estimates
Estimating techniques
Flow distribution
Flow paths
Geographic information systems
Geovetenskap och relaterad miljövetenskap
Human Geography
Kulturgeografi
Mathematical models
Natural Sciences
Naturgeografi
Naturvetenskap
Overland flow
Physical Geography
Raster
Samhällsvetenskap
Social and Economic Geography
Social och ekonomisk geografi
Social Sciences
Studies
Surface flow
Title A Triangular Form-based Multiple Flow Algorithm to Estimate Overland Flow Distribution and Accumulation on a Digital Elevation Model
URI https://api.istex.fr/ark:/67375/WNG-KKFLTLS0-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftgis.12015
https://www.proquest.com/docview/1475322467
https://www.proquest.com/docview/1506371401
https://www.proquest.com/docview/1671573141
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-9671
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0004497
  issn: 1361-1682
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1361-1682
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-9671
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004497
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLam7QFeYNxEYSAjEBJIqZLFsR2JlwqaFXZBYkFMSMiyE3dFy5qpS7g98cQzv5Ffwjlxkq0ITYKnRulJ5Z6eY3_HPf4-Qh7Fluc54HpP6ph5TGrrGSm0B8lnJA-1jhodst09PnnLXh1EByvkWXcWxvFD9BtumBnNfI0Jrs3puSSvoLAfBrB-4QnzIORNPfXmjDuKMaesEnJUQpabLTcptvGcPbq0Gq2hY78sQ01HH7qMXJulJ7lKPnSDdh0nR8O6MsPs2x98jv_7rdbJlRaT0pELomtkxc6vk0utPPrs6w3yY0RTCNQ5ytYvaAIw99f3n7j-5XS3bUikSVF-pqPisFx8rGbHtCrpGGYPwMOWvv7kjhQ7mxdI1duqbFG8O8qy-rhVEaN4D0wOUcuEjgvrdowpSrYVN0majNPnE68VcPAygGWRJ2SuoZwRMp5aKa1v8lhYNjXcxHkQWG1y3xgNEDK3NjCxjKbCt9zYWBsZZVl4i6zOy7m9TSiALKPDmEtjpygOIg2SKvqxhvlahNYfkCfd76iyltwcNTYK1RU56FjVOHZAHva2J47S469Wj5tw6E304gib4ESk3u1tqe3tZCfd2ffVZEA2unhRbf7DRzAoA5GrTwzIg_5tyFz8O0bPbVmDTQTwEPkSgwtsuAgiEQYMbN67WOwHhMTgrkZTLTHUTBW1OrXq5NyOr4JByEwwrgQUj4qBg5Uxm7GyYcQ1oNM8D_WAPG2C8gJ_qHTr5X5zdedfjO-Sy_DCXJ_7BlmtFrW9BzCuMvebdP0N-RNHOQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgexgv3BGFAUYgJJBSJYtjO48VtOvoBYkFMfFi2Ym7omXN1KXcnnjimd_IL-Gc2O1WhCbBW-ScVsnpOfZ33OPvI-RpanlRAK4PpE5ZwKS2gZFCB5B8RvJY66TRIRuNef8de32QHPjeHDwL4_ghVhtumBnNfI0JjhvS57K8hsq-HcECllwmm4xDoYKY6O0ZexRjTlsl5qiFLHc8Oyk28px9dm092kTXflkHm45AdB27NotP75pTWD1tOAux5-SovahNO__2B6Pjf7_XdXLVw1LacXF0g1yys5tkyyukT7_eIj86NINYnaFy_Zz2AOn--v4Tl8CCjnxPIu2V1WfaKQ-r-cd6ekzrinZhAgFIbOmbT-5UsbN5hWy9XmiL4mgnzxfHXkiM4hiYHKKcCe2W1m0aU1RtK2-TrNfNXvYDr-EQ5IDMkkDIQkNFI2Q6sVLa0BSpsGxiuEmLKLLaFKExGlBkYW1kUplMRGi5sak2Msnz-A7ZmFUze5dQwFlGxymXxk5QH0Qa5FUMUw1Ttoht2CLPlz-kyj2_OcpslGpZ56BjVePYFnmysj1xrB5_tXrWxMPKRM-PsA9OJOr9eFcNBr1hNtwPVb9FtpcBo_wUAF_BoBJEuj7RIo9XtyF58R8ZPbPVAmwSQIhImRhdYMNFlIg4YmDzwQXj6oGQG9yVacpzQ01VuVCnVp2c2_RV8BAyF4wrAfWjYuBgZcxOqmyccA0AtShi3SIvmqi8wB8q293bb67u_YvxI7LVz0ZDNdwbD-6TKzDEXNv7Ntmo5wv7AFBdbR42ufsbSZxLWg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgk4AXfiMKA4xASCClShYndh4r2qyjXUGsiIkXy47dFS1rqy7l1xNPPPM38pdwF7vditAkeIucS5Re7uzv3Mv3EfI0s6kxgOsDoTIWMKFsoAVXASSfFmmsVFLrkO0N0u479uogOfC9OfgtjOOHWG24YWbU8zUmuJ2Z0Zksr6Cyb0awgCUXySZLMoEdfe23p-xRjDltlThFLWSx7dlJsZHn9Nq19WgTXftlHWw6AtF17FovPvk1p7B6UnMWYs_JUXNR6Wbx7Q9Gx__-XdfJVQ9LacvF0Q1ywU5uksteIX389Rb50aJDiNUJKtfPaQ5I99f3n7gEGrrnexJpXk4_01Z5OJ1_rMbHtJrSDkwgAIktff3JfVXsbNrI1uuFtiiOtopiceyFxCiOgckhypnQTmndpjFF1bbyNhnmneHLbuA1HIICkFkScGEUVDRcZCMrhA21ybhlI53qzESRVdqEWitAkcbaSMM7HPHQptpmSoukKOI7ZGMyndi7hALO0irOUqHtCPVBhEZexTBTMGXz2IYN8nz5ImXh-c1RZqOUyzoHHStrxzbIk5XtzLF6_NXqWR0PKxM1P8I-OJ7I94Md2evl_WF_P5TdBtlaBoz0UwDcgkEliHR9vEEer05D8uI_MmpipwuwSQAhImVidI5NyqOExxEDmw8uGFcPhNzgrkyTnhtqLMuFPLFydmbTV8JDiIKzVHKoHyUDB0uttzNp4yRVAFCNiVWDvKij8hx_yOHO7n59dO9fjB-RS2_auezvDnr3yRUYYa7rfYtsVPOFfQCgrtIP69T9DYybSt4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Triangular+Form-based+Multiple+Flow+Algorithm+to+Estimate+Overland+Flow+Distribution+and+Accumulation+on+a+Digital+Elevation+Model&rft.jtitle=Transactions+in+GIS&rft.au=Pilesjo%2C+Petter&rft.au=Hasan%2C+Abdulghani&rft.date=2014-02-01&rft.issn=1361-1682&rft.eissn=1467-9671&rft.volume=18&rft.issue=1&rft.spage=108&rft.epage=124&rft_id=info:doi/10.1111%2Ftgis.12015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-1682&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-1682&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-1682&client=summon