A Triangular Form-based Multiple Flow Algorithm to Estimate Overland Flow Distribution and Accumulation on a Digital Elevation Model
In this study, we present a newly developed method for the estimation of surface flow paths on a digital elevation model (DEM). The objective is to use a form‐based algorithm, analyzing flow over single cells by dividing them into eight triangular facets and to estimate the surface flow paths on a r...
        Saved in:
      
    
          | Published in | Transactions in GIS Vol. 18; no. 1; pp. 108 - 124 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Blackwell Publishing Ltd
    
        01.02.2014
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1361-1682 1467-9671 1467-9671  | 
| DOI | 10.1111/tgis.12015 | 
Cover
| Abstract | In this study, we present a newly developed method for the estimation of surface flow paths on a digital elevation model (DEM). The objective is to use a form‐based algorithm, analyzing flow over single cells by dividing them into eight triangular facets and to estimate the surface flow paths on a raster DEM. For each cell on a gridded DEM, the triangular form‐based multiple flow algorithm (TFM) was used to distribute flow to one or more of the eight neighbor cells, which determined the flow paths over the DEM. Because each of the eight facets covering a cell has a constant slope and aspect, the estimations of – for example – flow direction and divergence/convergence are more intuitive and less complicated than many traditional raster‐based solutions. Experiments were undertaken by estimating the specific catchment area (SCA) over a number of mathematical surfaces, as well as on a real‐world DEM. Comparisons were made between the derived SCA by the TFM algorithm with eight other algorithms reported in the literature. The results show that the TFM algorithm produced the closest outcomes to the theoretical values of the SCA compared with other algorithms, derived more consistent outcomes, and was less influenced by surface shapes. The real‐world DEM test shows that the TFM was capable of modeling flow distribution without noticeable ‘artefacts’, and its ability to track flow paths makes it an appropriate platform for dynamic surface flow simulation. | 
    
|---|---|
| AbstractList | In this study, we present a newly developed method for the estimation of surface flow paths on a digital elevation model (DEM). The objective is to use a form-based algorithm, analyzing flow over single cells by dividing them into eight triangular facets and to estimate the surface flow paths on a raster DEM. For each cell on a gridded DEM, the triangular form-based multiple flow algorithm (TFM) was used to distribute flow to one or more of the eight neighbor cells, which determined the flow paths over the DEM. Because each of the eight facets covering a cell has a constant slope and aspect, the estimations of - for example - flow direction and divergence/convergence are more intuitive and less complicated than many traditional raster-based solutions. Experiments were undertaken by estimating the specific catchment area (SCA) over a number of mathematical surfaces, as well as on a real-world DEM. Comparisons were made between the derived SCA by the TFM algorithm with eight other algorithms reported in the literature. The results show that the TFM algorithm produced the closest outcomes to the theoretical values of the SCA compared with other algorithms, derived more consistent outcomes, and was less influenced by surface shapes. The real-world DEM test shows that the TFM was capable of modeling flow distribution without noticeable 'artefacts', and its ability to track flow paths makes it an appropriate platform for dynamic surface flow simulation. In this study, we present a newly developed method for the estimation of surface flow paths on a digital elevation model ( DEM ). The objective is to use a form‐based algorithm, analyzing flow over single cells by dividing them into eight triangular facets and to estimate the surface flow paths on a raster DEM . For each cell on a gridded DEM , the triangular form‐based multiple flow algorithm ( TFM ) was used to distribute flow to one or more of the eight neighbor cells, which determined the flow paths over the DEM . Because each of the eight facets covering a cell has a constant slope and aspect, the estimations of – for example – flow direction and divergence/convergence are more intuitive and less complicated than many traditional raster‐based solutions. Experiments were undertaken by estimating the specific catchment area ( SCA ) over a number of mathematical surfaces, as well as on a real‐world DEM . Comparisons were made between the derived SCA by the TFM algorithm with eight other algorithms reported in the literature. The results show that the TFM algorithm produced the closest outcomes to the theoretical values of the SCA compared with other algorithms, derived more consistent outcomes, and was less influenced by surface shapes. The real‐world DEM test shows that the TFM was capable of modeling flow distribution without noticeable ‘artefacts’, and its ability to track flow paths makes it an appropriate platform for dynamic surface flow simulation. In this study, we present a newly developed method for the estimation of surface flow paths on a digital elevation model (DEM). The objective is to use a form-based algorithm, analyzing flow over single cells by dividing them into eight triangular facets and to estimate the surface flow paths on a raster DEM. For each cell on a gridded DEM, the triangular form-based multiple flow algorithm (TFM) was used to distribute flow to one or more of the eight neighbor cells, which determined the flow paths over the DEM. Because each of the eight facets covering a cell has a constant slope and aspect, the estimations of - for example - flow direction and divergence/convergence are more intuitive and less complicated than many traditional raster-based solutions. Experiments were undertaken by estimating the specific catchment area (SCA) over a number of mathematical surfaces, as well as on a real-world DEM. Comparisons were made between the derived SCA by the TFM algorithm with eight other algorithms reported in the literature. The results show that the TFM algorithm produced the closest outcomes to the theoretical values of the SCA compared with other algorithms, derived more consistent outcomes, and was less influenced by surface shapes. The real-world DEM test shows that the TFM was capable of modeling flow distribution without noticeable 'artefacts', and its ability to track flow paths makes it an appropriate platform for dynamic surface flow simulation. [PUBLICATION ABSTRACT]  | 
    
| Author | Pilesjö, Petter Hasan, Abdulghani  | 
    
| Author_xml | – sequence: 1 givenname: Petter surname: Pilesjö fullname: Pilesjö, Petter email: petter.pilesjo@gis.lu.se organization: GIS Center, Lund University – sequence: 2 givenname: Abdulghani surname: Hasan fullname: Hasan, Abdulghani organization: GIS Center, Lund University  | 
    
| BookMark | eNqFksFv0zAUxiM0JLbBhb8gEheElGE3sR0fq9F20zp2WCWOT3by2nm4cbGddbvzh-M0jMOEIBdHn37fe5-f30l21LkOs-w9JWc0fZ_jxoQzOiGUvcqOacVFIbmgR-m_5LSgvJ68yU5CuCeEVJUUx9nPab7yRnWb3iqfz53fFloFbPPr3kazs5jPrdvnU7tx3sS7bR5dPgvRbFXE_OYBvVVdOzJfTIje6D4a1-WDOm2afpvqHoRBS8jGRGXzmcWHUb52Ldq32eu1sgHf_T5Ps9V8tjq_KJY3i8vz6bJoGKesEHWrBK9FLddY10h0KwVWa821bClFpVuitaKybBGpljVbC4Jco1S6Zk1TnmZqLBv2uOs17Hy6hn8CpwzsnE_BwGNA5Zs7sD0EhERZ0xySBphUvG5ExUEwJqFKpUHriQQsGVcydW1LlXp8HHvsvPvRY4iwNaFBm8aErg9A03MwUdKK_h9lhJeCVmRAP7xA713vuzQroJVg5SRlE4kiI9V4F4LHNTRp2kP46JWxQAkMSwLDksBhSZLl0wvL81D-CtMR3huLT_8gYbW4vH32FKMnLQc-_vEo_x1SYsHg29cFXF3Nl6vlLYGL8hdI6uEg | 
    
| CitedBy_id | crossref_primary_10_1016_j_robot_2024_104774 crossref_primary_10_1515_rgg_2017_0020 crossref_primary_10_1016_j_envsoft_2020_104804 crossref_primary_10_1016_j_envsoft_2014_08_025 crossref_primary_10_3390_rs14133169 crossref_primary_10_1029_2019JG005348 crossref_primary_10_1002_eap_1901 crossref_primary_10_1002_esp_5938 crossref_primary_10_1029_2021WR029871 crossref_primary_10_1002_eco_1446 crossref_primary_10_1007_s12665_017_6786_3 crossref_primary_10_1002_hyp_11479 crossref_primary_10_1002_eco_1526 crossref_primary_10_1175_JHM_D_21_0251_1 crossref_primary_10_1111_tgis_12870 crossref_primary_10_1016_j_scitotenv_2017_11_252 crossref_primary_10_1080_14614103_2023_2216530 crossref_primary_10_1016_j_measurement_2016_02_030 crossref_primary_10_1016_j_rse_2024_114333 crossref_primary_10_1080_17445647_2015_1077168 crossref_primary_10_1080_19376812_2022_2076133 crossref_primary_10_1016_j_catena_2021_105818 crossref_primary_10_1016_j_jhydrol_2022_127468 crossref_primary_10_1016_j_jhydrol_2021_126432 crossref_primary_10_1016_j_ecolind_2017_10_016 crossref_primary_10_1016_j_agrformet_2022_109247 crossref_primary_10_1007_s12303_015_0020_7 crossref_primary_10_1016_j_geoderma_2021_115350 crossref_primary_10_1029_2021WR031706 crossref_primary_10_3390_w14152363 crossref_primary_10_1016_j_envsoft_2023_105865 crossref_primary_10_3390_w12020452 crossref_primary_10_3390_w13152002 crossref_primary_10_3390_su14052738 crossref_primary_10_3390_land13060765 crossref_primary_10_1002_hyp_13963 crossref_primary_10_5194_bg_12_2791_2015 crossref_primary_10_1029_2019WR026507 crossref_primary_10_1080_24694452_2020_1806026 crossref_primary_10_1016_j_jhydrol_2020_124619 crossref_primary_10_3390_geosciences5020117  | 
    
| Cites_doi | 10.1080/13658810601073240 10.1029/90WR02658 10.1029/2009WR008540 10.1007/978-3-540-77800-4_13 10.1002/hyp.3360050106 10.1016/0098-3004(91)90048-I 10.1016/S0734-189X(84)80011-0 10.1016/j.cageo.2003.07.005 10.4324/9780203302217_chapter_9 10.1007/978-3-540-77800-4 10.1002/hyp.3360080405 10.1007/978-3-540-77800-4_12 10.1080/13658810600816573 10.1029/2010WR009961 10.1029/2008WR007099 10.1029/2006WR005128 10.1029/96WR03137 10.1029/2002WR001639 10.1080/13658810210149425 10.1029/93WR03512  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2013 John Wiley & Sons Ltd Copyright © 2014 John Wiley & Sons Ltd  | 
    
| Copyright_xml | – notice: 2013 John Wiley & Sons Ltd – notice: Copyright © 2014 John Wiley & Sons Ltd  | 
    
| CorporateAuthor | Departments of Administrative, Economic and Social Sciences Centrum för geografiska informationssystem (GIS-centrum) Faculty of Social Sciences Samhällsvetenskapliga fakulteten Lunds universitet Naturvetenskapliga fakulteten Profile areas and other strong research environments Faculty of Science Lund University Institutionen för naturgeografi och ekosystemvetenskap Strategiska forskningsområden (SFO) Centrum för Mellanösternstudier (CMES) Dept of Physical Geography and Ecosystem Science MECW: The Middle East in the Contemporary World Samhällsvetenskapliga institutioner och centrumbildningar Strategic research areas (SRA) eSSENCE: The e-Science Collaboration Centre for Advanced Middle Eastern Studies (CMES) Centre for Geographical Information Systems (GIS Centre) Profilområden och andra starka forskningsmiljöer  | 
    
| CorporateAuthor_xml | – name: Naturvetenskapliga fakulteten – name: Strategiska forskningsområden (SFO) – name: MECW: The Middle East in the Contemporary World – name: Institutionen för naturgeografi och ekosystemvetenskap – name: Samhällsvetenskapliga institutioner och centrumbildningar – name: Strategic research areas (SRA) – name: Lunds universitet – name: Faculty of Science – name: Dept of Physical Geography and Ecosystem Science – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: Centre for Advanced Middle Eastern Studies (CMES) – name: Centrum för Mellanösternstudier (CMES) – name: Profile areas and other strong research environments – name: Centrum för geografiska informationssystem (GIS-centrum) – name: eSSENCE: The e-Science Collaboration – name: Samhällsvetenskapliga fakulteten – name: Faculty of Social Sciences – name: Departments of Administrative, Economic and Social Sciences – name: Centre for Geographical Information Systems (GIS Centre)  | 
    
| DBID | BSCLL AAYXX CITATION 7SC 8FD F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D ADTPV AOWAS D95  | 
    
| DOI | 10.1111/tgis.12015 | 
    
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional SwePub SwePub Articles SWEPUB Lunds universitet  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database Computer and Information Systems Abstracts – Academic ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Civil Engineering Abstracts CrossRef Civil Engineering Abstracts Civil Engineering Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography | 
    
| EISSN | 1467-9671 | 
    
| EndPage | 124 | 
    
| ExternalDocumentID | oai_portal_research_lu_se_publications_2468c746_7559_40e6_bb29_e356a993dd3a 3176389731 10_1111_tgis_12015 TGIS12015 ark_67375_WNG_KKFLTLS0_H  | 
    
| Genre | article | 
    
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29Q 31~ 33P 4.4 50Y 50Z 51W 51Y 52M 52O 52Q 52S 52T 52U 52W 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8V8 930 A04 AABNI AAESR AAHQN AAMMB AAMNL AANHP AAONW AAOUF AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABSOO ACAHQ ACBKW ACBWZ ACCZN ACGFS ACHQT ACIWK ACPOU ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADEMA ADEOM ADIZJ ADKYN ADMGS ADNMO ADXAS ADZMN AEFGJ AEIGN AEIMD AEMOZ AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFKFF AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AHBTC AHQJS AIDQK AIDYY AIQQE AIURR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BMXJE BNVMJ BQESF BROTX BRXPI BSCLL BY8 CAG COF CS3 D-C D-D DCZOG DPXWK DR2 DRFUL DRSSH DU5 EAD EAP EAYBP EBA EBO EBR EBS EBU EDH EJD EMK ESX F00 F01 FEDTE G-S G.N G50 GODZA HGLYW HVGLF HZI HZ~ IHE IX1 J0M K1G K48 LATKE LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MM- MRFUL MRSSH MSFUL MSSSH MXFUL MXSSH N04 N06 N9A NF~ O66 O9- OIG P2W P2Y P4C PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 UB1 W8V W99 WBKPD WIH WII WMRSR WOHZO WQZ WSUWO WXSBR XG1 ZY4 ZZTAW ~IA ~WP AAHHS ABTAH ACCFJ AEEZP AEQDE AEUQT AFPWT AFYRF AIFKG AIWBW AJBDE WRC AAYXX CITATION 7SC 8FD F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D ADTPV AOWAS D95  | 
    
| ID | FETCH-LOGICAL-c5615-78da768789fe88e0bd97e4fb6b9d11eabd0bba193dee1b985f70e6be9ab85cc3 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 1361-1682 1467-9671  | 
    
| IngestDate | Wed Oct 15 12:57:10 EDT 2025 Thu Oct 02 07:42:25 EDT 2025 Thu Jul 10 17:04:30 EDT 2025 Sat Aug 16 22:12:13 EDT 2025 Wed Oct 01 03:57:06 EDT 2025 Thu Apr 24 22:57:01 EDT 2025 Wed Jan 22 16:55:24 EST 2025 Sun Sep 21 06:17:19 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c5615-78da768789fe88e0bd97e4fb6b9d11eabd0bba193dee1b985f70e6be9ab85cc3 | 
    
| Notes | istex:7695303D1668039C973F5AE29DDFD1E2D10B36D6 ArticleID:TGIS12015 ark:/67375/WNG-KKFLTLS0-H ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PQID | 1475322467 | 
    
| PQPubID | 23500 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_2468c746_7559_40e6_bb29_e356a993dd3a proquest_miscellaneous_1671573141 proquest_miscellaneous_1506371401 proquest_journals_1475322467 crossref_citationtrail_10_1111_tgis_12015 crossref_primary_10_1111_tgis_12015 wiley_primary_10_1111_tgis_12015_TGIS12015 istex_primary_ark_67375_WNG_KKFLTLS0_H  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | February 2014 | 
    
| PublicationDateYYYYMMDD | 2014-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2014 text: February 2014  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford | 
    
| PublicationTitle | Transactions in GIS | 
    
| PublicationTitleAlternate | Transactions in GIS | 
    
| PublicationYear | 2014 | 
    
| Publisher | Blackwell Publishing Ltd | 
    
| Publisher_xml | – name: Blackwell Publishing Ltd | 
    
| References | Holmgren P 1994 Multiple flow direction algorithms for runoff modeling in grid based elevation models: An empirical evaluation, Hydrological Processes 8: 327-334 Pilesjö P, Zhou Q, and Harrie L 1998 Estimating flow distribution over Digital Elevation Models using a form-based algorithm. Geographic Information Science 4: 44-51 Quinn P, Beven K, Chevallier P, and Planchon O 1991 The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrological Processes 5: 9-79 Ackermann F and Kraus K 2004 Reader commentary: Grid based digital terrain models. Geoinformatics 7(6): 28-31 Qin C, Zhu A-X, Pei T, Li B, Zhou C, and Yang L 2007 An adaptive approach to selecting a flow-partition exponent for a multiple-flow-direction algorithm. International Journal of Geographical Information Science 21: 443-458 Fairfield J and Leymarie P 1991 Drainage network from grid digital elevation models. Water Resources Research 27: 709-717 Hasan A, Pilesjö P, and Persson A 2012b On Generating Digital Elevation Models from LiDAR Data: Resolution Versus Accuracy and Topographic Wetness Index Indices in Northern Peatlands. London, Taylor and Francis Orlandini S, Moretti G, Franchini M, Aldighieri B, and Testa B 2003 Path-based methods for the determination of non-dispersive drainage directions in grid-based digital elevation models. Water Resources Research 39: W001144 Zhou Q and Liu X 2002 Error assessment of grid-based flow routing algorithms used in hydrological models. International Journal of Geographical Information Science 16: 819-842 Zhou Q and Liu X 2004 Analysis of errors of derived slope and aspect related to DEM data properties. Computers and Geosciences 30: 369-378 Wilson J P and Gallant J C (eds) 2000 Terrain Analysis: Principles and Applications. New York, John Wiley and Sons Zhou Q , Lees B , and Tang G (eds) 2008 Advances in Digital Terrain Analysis. Berlin, Springer Freeman T G 1991 Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences 17: 413-422 Costa-Cabral M C and Burges S J 1994 Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research 30: 1681-1692 Orlandini S and Moretti G 2009 Determination of surface flow paths from gridded elevation data. Water Resources Research, 45: W03417 Zhou Q, Pilesjö P, and Chen Y 2011 Estimating surface flow paths on a digital elevation model using a triangular facet network. Water Resources Research 47: W07522 Beven K J and Moore I D (eds) 1994 Terrain Analysis and Distributed Modeling in Hydrology. Chichester, John Wiley and Sons Li Z, Zhu Q, and Gold C 2005 Digital Terrain Modeling: Principles and Methodology. Boca Raton, FL, CRC Press Seibert J and McGlynn B L 2007 A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Research 43: W04501 Zhou Q, Liu X, and Sun Y 2006 Terrain complexity and uncertainties in grid-based digital terrain analysis. International Journal of Geographical Information Science 20: 1137-1147 O'Callaghan J F and Mark D M 1984 The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image Processing 28: 323-344 Tarboton D G 1997 A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 32: 309-319 Gallant J C and Hutchinson M F 2011 A differential equation for specific catchment area. Water Resources Research 47: W05535 2009; 45 2002; 16 1991; 17 2012 1984; 28 2004; 7 2008 1994 2005 2003; 39 1992 2002 1991; 5 1994; 8 2004; 30 1991; 27 2006; 20 1997; 32 2000 2012b 2012a 2011; 47 2007; 21 2007; 43 1998; 4 1994; 30 e_1_2_8_28_1 e_1_2_8_29_1 Hasan A (e_1_2_8_8_1) 2012 Wilson J P (e_1_2_8_24_1) 2000 e_1_2_8_25_1 e_1_2_8_26_1 Hasan A (e_1_2_8_9_1) 2012 Lea N J (e_1_2_8_11_1) 1992 Zhou Q (e_1_2_8_27_1) 2004; 30 Pilesjö P (e_1_2_8_18_1) 1998; 4 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 Li Z (e_1_2_8_12_1) 2005 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 Beven K J (e_1_2_8_3_1) 1994 Ackermann F (e_1_2_8_2_1) 2004; 7 e_1_2_8_17_1 e_1_2_8_19_1 Tarboton D G (e_1_2_8_23_1) 1997; 32 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_30_1  | 
    
| References_xml | – reference: O'Callaghan J F and Mark D M 1984 The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image Processing 28: 323-344 – reference: Zhou Q, Pilesjö P, and Chen Y 2011 Estimating surface flow paths on a digital elevation model using a triangular facet network. Water Resources Research 47: W07522 – reference: Seibert J and McGlynn B L 2007 A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Research 43: W04501 – reference: Hasan A, Pilesjö P, and Persson A 2012b On Generating Digital Elevation Models from LiDAR Data: Resolution Versus Accuracy and Topographic Wetness Index Indices in Northern Peatlands. London, Taylor and Francis – reference: Li Z, Zhu Q, and Gold C 2005 Digital Terrain Modeling: Principles and Methodology. Boca Raton, FL, CRC Press – reference: Zhou Q, Liu X, and Sun Y 2006 Terrain complexity and uncertainties in grid-based digital terrain analysis. International Journal of Geographical Information Science 20: 1137-1147 – reference: Quinn P, Beven K, Chevallier P, and Planchon O 1991 The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrological Processes 5: 9-79 – reference: Fairfield J and Leymarie P 1991 Drainage network from grid digital elevation models. Water Resources Research 27: 709-717 – reference: Freeman T G 1991 Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences 17: 413-422 – reference: Beven K J and Moore I D (eds) 1994 Terrain Analysis and Distributed Modeling in Hydrology. Chichester, John Wiley and Sons – reference: Wilson J P and Gallant J C (eds) 2000 Terrain Analysis: Principles and Applications. New York, John Wiley and Sons – reference: Zhou Q , Lees B , and Tang G (eds) 2008 Advances in Digital Terrain Analysis. Berlin, Springer – reference: Costa-Cabral M C and Burges S J 1994 Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research 30: 1681-1692 – reference: Orlandini S and Moretti G 2009 Determination of surface flow paths from gridded elevation data. Water Resources Research, 45: W03417 – reference: Pilesjö P, Zhou Q, and Harrie L 1998 Estimating flow distribution over Digital Elevation Models using a form-based algorithm. Geographic Information Science 4: 44-51 – reference: Tarboton D G 1997 A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 32: 309-319 – reference: Zhou Q and Liu X 2002 Error assessment of grid-based flow routing algorithms used in hydrological models. International Journal of Geographical Information Science 16: 819-842 – reference: Holmgren P 1994 Multiple flow direction algorithms for runoff modeling in grid based elevation models: An empirical evaluation, Hydrological Processes 8: 327-334 – reference: Zhou Q and Liu X 2004 Analysis of errors of derived slope and aspect related to DEM data properties. Computers and Geosciences 30: 369-378 – reference: Orlandini S, Moretti G, Franchini M, Aldighieri B, and Testa B 2003 Path-based methods for the determination of non-dispersive drainage directions in grid-based digital elevation models. Water Resources Research 39: W001144 – reference: Gallant J C and Hutchinson M F 2011 A differential equation for specific catchment area. Water Resources Research 47: W05535 – reference: Qin C, Zhu A-X, Pei T, Li B, Zhou C, and Yang L 2007 An adaptive approach to selecting a flow-partition exponent for a multiple-flow-direction algorithm. International Journal of Geographical Information Science 21: 443-458 – reference: Ackermann F and Kraus K 2004 Reader commentary: Grid based digital terrain models. Geoinformatics 7(6): 28-31 – volume: 45 start-page: W03417 year: 2009 article-title: Determination of surface flow paths from gridded elevation data publication-title: Water Resources Research – volume: 30 start-page: 369 year: 2004 end-page: 378 article-title: Analysis of errors of derived slope and aspect related to DEM data properties publication-title: Computers and Geosciences – volume: 20 start-page: 1137 year: 2006 end-page: 1147 article-title: Terrain complexity and uncertainties in grid‐based digital terrain analysis publication-title: International Journal of Geographical Information Science – year: 2005 – start-page: 237 year: 2008 end-page: 255 – year: 2012b – volume: 5 start-page: 9 year: 1991 end-page: 79 article-title: The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models publication-title: Hydrological Processes – volume: 43 start-page: W04501 year: 2007 article-title: A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models publication-title: Water Resources Research – year: 2000 – volume: 32 start-page: 309 year: 1997 end-page: 319 article-title: A new method for the determination of flow directions and upslope areas in grid digital elevation models publication-title: Water Resources Research – volume: 47 start-page: W07522 year: 2011 article-title: Estimating surface flow paths on a digital elevation model using a triangular facet network publication-title: Water Resources Research – volume: 16 start-page: 819 year: 2002 end-page: 842 article-title: Error assessment of grid‐based flow routing algorithms used in hydrological models publication-title: International Journal of Geographical Information Science – year: 1994 – start-page: 213 year: 2008 end-page: 236 – volume: 8 start-page: 327 year: 1994 end-page: 334 article-title: Multiple flow direction algorithms for runoff modeling in grid based elevation models: An empirical evaluation publication-title: Hydrological Processes – year: 2012 – volume: 21 start-page: 443 year: 2007 end-page: 458 article-title: An adaptive approach to selecting a flow‐partition exponent for a multiple‐flow‐direction algorithm publication-title: International Journal of Geographical Information Science – volume: 7 start-page: 28 issue: 6 year: 2004 end-page: 31 article-title: Reader commentary: Grid based digital terrain models publication-title: Geoinformatics – volume: 4 start-page: 44 year: 1998 end-page: 51 article-title: Estimating flow distribution over Digital Elevation Models using a form‐based algorithm publication-title: Geographic Information Science – volume: 17 start-page: 413 year: 1991 end-page: 422 article-title: Calculating catchment area with divergent flow based on a regular grid publication-title: Computers and Geosciences – volume: 39 start-page: W001144 year: 2003 article-title: Path‐based methods for the determination of non‐dispersive drainage directions in grid‐based digital elevation models publication-title: Water Resources Research – year: 2012a – start-page: 393 year: 1992 end-page: 407 – start-page: 166 year: 2002 end-page: 200 – year: 2008 – volume: 27 start-page: 709 year: 1991 end-page: 717 article-title: Drainage network from grid digital elevation models publication-title: Water Resources Research – volume: 28 start-page: 323 year: 1984 end-page: 344 article-title: The extraction of drainage networks from digital elevation data publication-title: Computer Vision, Graphics, and Image Processing – volume: 47 start-page: W05535 year: 2011 article-title: A differential equation for specific catchment area publication-title: Water Resources Research – volume: 30 start-page: 1681 year: 1994 end-page: 1692 article-title: Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas publication-title: Water Resources Research – ident: e_1_2_8_19_1 doi: 10.1080/13658810601073240 – ident: e_1_2_8_5_1 doi: 10.1029/90WR02658 – ident: e_1_2_8_7_1 doi: 10.1029/2009WR008540 – ident: e_1_2_8_17_1 doi: 10.1007/978-3-540-77800-4_13 – volume-title: On Generating Digital Elevation Models from LiDAR Data: Resolution Versus Accuracy and Topographic Wetness Index Indices in Northern Peatlands year: 2012 ident: e_1_2_8_9_1 – ident: e_1_2_8_20_1 doi: 10.1002/hyp.3360050106 – ident: e_1_2_8_6_1 doi: 10.1016/0098-3004(91)90048-I – ident: e_1_2_8_13_1 doi: 10.1016/S0734-189X(84)80011-0 – volume-title: Terrain Analysis: Principles and Applications year: 2000 ident: e_1_2_8_24_1 – volume: 30 start-page: 369 year: 2004 ident: e_1_2_8_27_1 article-title: Analysis of errors of derived slope and aspect related to DEM data properties publication-title: Computers and Geosciences doi: 10.1016/j.cageo.2003.07.005 – volume-title: Digital Terrain Modeling: Principles and Methodology year: 2005 ident: e_1_2_8_12_1 – volume: 7 start-page: 28 issue: 6 year: 2004 ident: e_1_2_8_2_1 article-title: Reader commentary: Grid based digital terrain models publication-title: Geoinformatics – ident: e_1_2_8_21_1 – ident: e_1_2_8_14_1 doi: 10.4324/9780203302217_chapter_9 – ident: e_1_2_8_28_1 doi: 10.1007/978-3-540-77800-4 – ident: e_1_2_8_10_1 doi: 10.1002/hyp.3360080405 – ident: e_1_2_8_25_1 doi: 10.1007/978-3-540-77800-4_12 – ident: e_1_2_8_29_1 doi: 10.1080/13658810600816573 – ident: e_1_2_8_30_1 doi: 10.1029/2010WR009961 – ident: e_1_2_8_16_1 doi: 10.1029/2008WR007099 – ident: e_1_2_8_22_1 doi: 10.1029/2006WR005128 – volume: 32 start-page: 309 year: 1997 ident: e_1_2_8_23_1 article-title: A new method for the determination of flow directions and upslope areas in grid digital elevation models publication-title: Water Resources Research doi: 10.1029/96WR03137 – ident: e_1_2_8_15_1 doi: 10.1029/2002WR001639 – ident: e_1_2_8_26_1 doi: 10.1080/13658810210149425 – volume-title: Terrain Analysis and Distributed Modeling in Hydrology year: 1994 ident: e_1_2_8_3_1 – start-page: 393 volume-title: Overland Flow: Hydraulics and Erosion Mechanics year: 1992 ident: e_1_2_8_11_1 – ident: e_1_2_8_4_1 doi: 10.1029/93WR03512 – volume-title: Proceedings of the Ostrava Surface Models for Geosciences Symposium (GIS Ostrava 2012) year: 2012 ident: e_1_2_8_8_1 – volume: 4 start-page: 44 year: 1998 ident: e_1_2_8_18_1 article-title: Estimating flow distribution over Digital Elevation Models using a form‐based algorithm publication-title: Geographic Information Science  | 
    
| SSID | ssj0004497 | 
    
| Score | 2.2272859 | 
    
| Snippet | In this study, we present a newly developed method for the estimation of surface flow paths on a digital elevation model (DEM). The objective is to use a... In this study, we present a newly developed method for the estimation of surface flow paths on a digital elevation model ( DEM ). The objective is to use a...  | 
    
| SourceID | swepub proquest crossref wiley istex  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 108 | 
    
| SubjectTerms | Algorithms Analysis Catchment areas Digital Elevation Models Discrete element method Earth and Related Environmental Sciences Estimates Estimating techniques Flow distribution Flow paths Geographic information systems Geovetenskap och relaterad miljövetenskap Human Geography Kulturgeografi Mathematical models Natural Sciences Naturgeografi Naturvetenskap Overland flow Physical Geography Raster Samhällsvetenskap Social and Economic Geography Social och ekonomisk geografi Social Sciences Studies Surface flow  | 
    
| Title | A Triangular Form-based Multiple Flow Algorithm to Estimate Overland Flow Distribution and Accumulation on a Digital Elevation Model | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-KKFLTLS0-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftgis.12015 https://www.proquest.com/docview/1475322467 https://www.proquest.com/docview/1506371401 https://www.proquest.com/docview/1671573141  | 
    
| Volume | 18 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1467-9671 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0004497 issn: 1361-1682 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1361-1682 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-9671 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004497 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLam7QFeYNxEYSAjEBJIqZLFsR2JlwqaFXZBYkFMSMiyE3dFy5qpS7g98cQzv5Ffwjlxkq0ITYKnRulJ5Z6eY3_HPf4-Qh7Fluc54HpP6ph5TGrrGSm0B8lnJA-1jhodst09PnnLXh1EByvkWXcWxvFD9BtumBnNfI0Jrs3puSSvoLAfBrB-4QnzIORNPfXmjDuKMaesEnJUQpabLTcptvGcPbq0Gq2hY78sQ01HH7qMXJulJ7lKPnSDdh0nR8O6MsPs2x98jv_7rdbJlRaT0pELomtkxc6vk0utPPrs6w3yY0RTCNQ5ytYvaAIw99f3n7j-5XS3bUikSVF-pqPisFx8rGbHtCrpGGYPwMOWvv7kjhQ7mxdI1duqbFG8O8qy-rhVEaN4D0wOUcuEjgvrdowpSrYVN0majNPnE68VcPAygGWRJ2SuoZwRMp5aKa1v8lhYNjXcxHkQWG1y3xgNEDK3NjCxjKbCt9zYWBsZZVl4i6zOy7m9TSiALKPDmEtjpygOIg2SKvqxhvlahNYfkCfd76iyltwcNTYK1RU56FjVOHZAHva2J47S469Wj5tw6E304gib4ESk3u1tqe3tZCfd2ffVZEA2unhRbf7DRzAoA5GrTwzIg_5tyFz8O0bPbVmDTQTwEPkSgwtsuAgiEQYMbN67WOwHhMTgrkZTLTHUTBW1OrXq5NyOr4JByEwwrgQUj4qBg5Uxm7GyYcQ1oNM8D_WAPG2C8gJ_qHTr5X5zdedfjO-Sy_DCXJ_7BlmtFrW9BzCuMvebdP0N-RNHOQ | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgexgv3BGFAUYgJJBSJYtjO48VtOvoBYkFMfFi2Ym7omXN1KXcnnjimd_IL-Gc2O1WhCbBW-ScVsnpOfZ33OPvI-RpanlRAK4PpE5ZwKS2gZFCB5B8RvJY66TRIRuNef8de32QHPjeHDwL4_ghVhtumBnNfI0JjhvS57K8hsq-HcECllwmm4xDoYKY6O0ZexRjTlsl5qiFLHc8Oyk28px9dm092kTXflkHm45AdB27NotP75pTWD1tOAux5-SovahNO__2B6Pjf7_XdXLVw1LacXF0g1yys5tkyyukT7_eIj86NINYnaFy_Zz2AOn--v4Tl8CCjnxPIu2V1WfaKQ-r-cd6ekzrinZhAgFIbOmbT-5UsbN5hWy9XmiL4mgnzxfHXkiM4hiYHKKcCe2W1m0aU1RtK2-TrNfNXvYDr-EQ5IDMkkDIQkNFI2Q6sVLa0BSpsGxiuEmLKLLaFKExGlBkYW1kUplMRGi5sak2Msnz-A7ZmFUze5dQwFlGxymXxk5QH0Qa5FUMUw1Ttoht2CLPlz-kyj2_OcpslGpZ56BjVePYFnmysj1xrB5_tXrWxMPKRM-PsA9OJOr9eFcNBr1hNtwPVb9FtpcBo_wUAF_BoBJEuj7RIo9XtyF58R8ZPbPVAmwSQIhImRhdYMNFlIg4YmDzwQXj6oGQG9yVacpzQ01VuVCnVp2c2_RV8BAyF4wrAfWjYuBgZcxOqmyccA0AtShi3SIvmqi8wB8q293bb67u_YvxI7LVz0ZDNdwbD-6TKzDEXNv7Ntmo5wv7AFBdbR42ufsbSZxLWg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgk4AXfiMKA4xASCClShYndh4r2qyjXUGsiIkXy47dFS1rqy7l1xNPPPM38pdwF7vditAkeIucS5Re7uzv3Mv3EfI0s6kxgOsDoTIWMKFsoAVXASSfFmmsVFLrkO0N0u479uogOfC9OfgtjOOHWG24YWbU8zUmuJ2Z0Zksr6Cyb0awgCUXySZLMoEdfe23p-xRjDltlThFLWSx7dlJsZHn9Nq19WgTXftlHWw6AtF17FovPvk1p7B6UnMWYs_JUXNR6Wbx7Q9Gx__-XdfJVQ9LacvF0Q1ywU5uksteIX389Rb50aJDiNUJKtfPaQ5I99f3n7gEGrrnexJpXk4_01Z5OJ1_rMbHtJrSDkwgAIktff3JfVXsbNrI1uuFtiiOtopiceyFxCiOgckhypnQTmndpjFF1bbyNhnmneHLbuA1HIICkFkScGEUVDRcZCMrhA21ybhlI53qzESRVdqEWitAkcbaSMM7HPHQptpmSoukKOI7ZGMyndi7hALO0irOUqHtCPVBhEZexTBTMGXz2IYN8nz5ImXh-c1RZqOUyzoHHStrxzbIk5XtzLF6_NXqWR0PKxM1P8I-OJ7I94Md2evl_WF_P5TdBtlaBoz0UwDcgkEliHR9vEEer05D8uI_MmpipwuwSQAhImVidI5NyqOExxEDmw8uGFcPhNzgrkyTnhtqLMuFPLFydmbTV8JDiIKzVHKoHyUDB0uttzNp4yRVAFCNiVWDvKij8hx_yOHO7n59dO9fjB-RS2_auezvDnr3yRUYYa7rfYtsVPOFfQCgrtIP69T9DYybSt4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Triangular+Form-based+Multiple+Flow+Algorithm+to+Estimate+Overland+Flow+Distribution+and+Accumulation+on+a+Digital+Elevation+Model&rft.jtitle=Transactions+in+GIS&rft.au=Pilesjo%2C+Petter&rft.au=Hasan%2C+Abdulghani&rft.date=2014-02-01&rft.issn=1361-1682&rft.eissn=1467-9671&rft.volume=18&rft.issue=1&rft.spage=108&rft.epage=124&rft_id=info:doi/10.1111%2Ftgis.12015&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-1682&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-1682&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-1682&client=summon |