Moment reconstruction and moment-adjusted imputation when exposure is generated by a complex, nonlinear random effects modeling process
For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et al., 2011) are appealing, computationally simple imputation-like methods for general model fitting. Like classical regression calibration, the idea...
        Saved in:
      
    
          | Published in | Biometrics Vol. 72; no. 4; pp. 1369 - 1377 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Blackwell Publishing Ltd
    
        01.12.2016
     Wiley-Blackwell  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0006-341X 1541-0420 1541-0420  | 
| DOI | 10.1111/biom.12524 | 
Cover
| Abstract | For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et al., 2011) are appealing, computationally simple imputation-like methods for general model fitting. Like classical regression calibration, the idea is to replace the unobserved variable subject to measurement error with a proxy that can be used in a variety of analyses. Moment reconstruction and moment-adjusted imputation differ from regression calibration in that they attempt to match multiple features of the latent variable, and also to match some of the latent variable's relationships with the response and additional covariates. In this note, we consider a problem where true exposure is generated by a complex, nonlinear random effects modeling process, and develop analogues of moment reconstruction and moment-adjusted imputation for this case. This general model includes classical measurement errors, Berkson measurement errors, mixtures of Berkson and classical errors and problems that are not measurement error problems, but also cases where the data-generating process for true exposure is a complex, nonlinear random effects modeling process. The methods are illustrated using the National Institutes of Health-AARP Diet and Health Study where the latent variable is a dietary pattern score called the Healthy Eating Index-2005. We also show how our general model includes methods used in radiation epidemiology as a special case. Simulations are used to illustrate the methods. | 
    
|---|---|
| AbstractList | For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et al., 2011) are appealing, computationally simple imputation-like methods for general model fitting. Like classical regression calibration, the idea is to replace the unobserved variable subject to measurement error with a proxy that can be used in a variety of analyses. Moment reconstruction and moment-adjusted imputation differ from regression calibration in that they attempt to match multiple features of the latent variable, and also to match some of the latent variable's relationships with the response and additional covariates. In this note, we consider a problem where true exposure is generated by a complex, nonlinear random effects modeling process, and develop analogues of moment reconstruction and moment-adjusted imputation for this case. This general model includes classical measurement errors, Berkson measurement errors, mixtures of Berkson and classical errors and problems that are not measurement error problems, but also cases where the data-generating process for true exposure is a complex, nonlinear random effects modeling process. The methods are illustrated using the National Institutes of Health-AARP Diet and Health Study where the latent variable is a dietary pattern score called the Healthy Eating Index-2005. We also show how our general model includes methods used in radiation epidemiology as a special case. Simulations are used to illustrate the methods. Summary For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et al., 2011) are appealing, computationally simple imputation-like methods for general model fitting. Like classical regression calibration, the idea is to replace the unobserved variable subject to measurement error with a proxy that can be used in a variety of analyses. Moment reconstruction and moment-adjusted imputation differ from regression calibration in that they attempt to match multiple features of the latent variable, and also to match some of the latent variable's relationships with the response and additional covariates. In this note, we consider a problem where true exposure is generated by a complex, nonlinear random effects modeling process, and develop analogues of moment reconstruction and moment-adjusted imputation for this case. This general model includes classical measurement errors, Berkson measurement errors, mixtures of Berkson and classical errors and problems that are not measurement error problems, but also cases where the data-generating process for true exposure is a complex, nonlinear random effects modeling process. The methods are illustrated using the National Institutes of Health-AARP Diet and Health Study where the latent variable is a dietary pattern score called the Healthy Eating Index-2005. We also show how our general model includes methods used in radiation epidemiology as a special case. Simulations are used to illustrate the methods. For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et al., 2011) are appealing, computationally simple imputation-like methods for general model fitting. Like classical regression calibration, the idea is to replace the unobserved variable subject to measurement error with a proxy that can be used in a variety of analyses. Moment reconstruction and moment-adjusted imputation differ from regression calibration in that they attempt to match multiple features of the latent variable, and also to match some of the latent variable's relationships with the response and additional covariates. In this note, we consider a problem where true exposure is generated by a complex, nonlinear random effects modeling process, and develop analogues of moment reconstruction and moment-adjusted imputation for this case. This general model includes classical measurement errors, Berkson measurement errors, mixtures of Berkson and classical errors and problems that are not measurement error problems, but also cases where the data-generating process for true exposure is a complex, nonlinear random effects modeling process. The methods are illustrated using the National Institutes of Health-AARP Diet and Health Study where the latent variable is a dietary pattern score called the Healthy Eating Index-2005. We also show how our general model includes methods used in radiation epidemiology as a special case. Simulations are used to illustrate the methods. Summary For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment‐adjusted imputation (Thomas et al., 2011) are appealing, computationally simple imputation‐like methods for general model fitting. Like classical regression calibration, the idea is to replace the unobserved variable subject to measurement error with a proxy that can be used in a variety of analyses. Moment reconstruction and moment‐adjusted imputation differ from regression calibration in that they attempt to match multiple features of the latent variable, and also to match some of the latent variable's relationships with the response and additional covariates. In this note, we consider a problem where true exposure is generated by a complex, nonlinear random effects modeling process, and develop analogues of moment reconstruction and moment‐adjusted imputation for this case. This general model includes classical measurement errors, Berkson measurement errors, mixtures of Berkson and classical errors and problems that are not measurement error problems, but also cases where the data‐generating process for true exposure is a complex, nonlinear random effects modeling process. The methods are illustrated using the National Institutes of Health–AARP Diet and Health Study where the latent variable is a dietary pattern score called the Healthy Eating Index‐2005. We also show how our general model includes methods used in radiation epidemiology as a special case. Simulations are used to illustrate the methods. For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et al., 2011) are appealing, computationally simple imputation-like methods for general model fitting. Like classical regression calibration, the idea is to replace the unobserved variable subject to measurement error with a proxy that can be used in a variety of analyses. Moment reconstruction and moment-adjusted imputation differ from regression calibration in that they attempt to match multiple features of the latent variable, and also to match some of the latent variable's relationships with the response and additional covariates. In this note, we consider a problem where true exposure is generated by a complex, nonlinear random effects modeling process, and develop analogues of moment reconstruction and moment-adjusted imputation for this case. This general model includes classical measurement errors, Berkson measurement errors, mixtures of Berkson and classical errors and problems that are not measurement error problems, but also cases where the data-generating process for true exposure is a complex, nonlinear random effects modeling process. The methods are illustrated using the National Institutes of Health-AARP Diet and Health Study where the latent variable is a dietary pattern score called the Healthy Eating Index-2005. We also show how our general model includes methods used in radiation epidemiology as a special case. Simulations are used to illustrate the methods.For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et al., 2011) are appealing, computationally simple imputation-like methods for general model fitting. Like classical regression calibration, the idea is to replace the unobserved variable subject to measurement error with a proxy that can be used in a variety of analyses. Moment reconstruction and moment-adjusted imputation differ from regression calibration in that they attempt to match multiple features of the latent variable, and also to match some of the latent variable's relationships with the response and additional covariates. In this note, we consider a problem where true exposure is generated by a complex, nonlinear random effects modeling process, and develop analogues of moment reconstruction and moment-adjusted imputation for this case. This general model includes classical measurement errors, Berkson measurement errors, mixtures of Berkson and classical errors and problems that are not measurement error problems, but also cases where the data-generating process for true exposure is a complex, nonlinear random effects modeling process. The methods are illustrated using the National Institutes of Health-AARP Diet and Health Study where the latent variable is a dietary pattern score called the Healthy Eating Index-2005. We also show how our general model includes methods used in radiation epidemiology as a special case. Simulations are used to illustrate the methods.  | 
    
| Author | Freedman, Laurence S. Kipnis, Victor Wei, Rubin Carroll, Raymond J. Potgieter, Cornelis J.  | 
    
| AuthorAffiliation | 5 Department of Statistics, Texas A&M University, College Station, TX 77843, and School of Mathematical and Physical Sciences, University of Technology, Sydney, NSW, 2007 3 Biometry Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20814 4 Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel 2 Eli Lilly and Company, Indianapolis IN 46285 1 Department of Statistical Science, Southern Methodist University, Dallas TX 75275  | 
    
| AuthorAffiliation_xml | – name: 1 Department of Statistical Science, Southern Methodist University, Dallas TX 75275 – name: 2 Eli Lilly and Company, Indianapolis IN 46285 – name: 4 Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel – name: 3 Biometry Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20814 – name: 5 Department of Statistics, Texas A&M University, College Station, TX 77843, and School of Mathematical and Physical Sciences, University of Technology, Sydney, NSW, 2007  | 
    
| Author_xml | – sequence: 1 givenname: Cornelis J. surname: Potgieter fullname: Potgieter, Cornelis J. email: cpotgieter@smu.edu, cpotgieter@smu.eduweirubin@gmail.comkipnisv@mail.nih.govlsf@actcom.co.ilcarroll@stat.tamu.edu organization: Department of Statistical Science, Southern Methodist University, Dallas, Texas 75275, U.S.A – sequence: 2 givenname: Rubin surname: Wei fullname: Wei, Rubin email: weirubin@gmail.com, cpotgieter@smu.eduweirubin@gmail.comkipnisv@mail.nih.govlsf@actcom.co.ilcarroll@stat.tamu.edu organization: Eli Lilly and Company, Indianapolis, Indiana 46285, U.S.A – sequence: 3 givenname: Victor surname: Kipnis fullname: Kipnis, Victor email: kipnisv@mail.nih.gov, cpotgieter@smu.eduweirubin@gmail.comkipnisv@mail.nih.govlsf@actcom.co.ilcarroll@stat.tamu.edu organization: Biometry Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland 20814, U.S.A – sequence: 4 givenname: Laurence S. surname: Freedman fullname: Freedman, Laurence S. email: lsf@actcom.co.il, cpotgieter@smu.eduweirubin@gmail.comkipnisv@mail.nih.govlsf@actcom.co.ilcarroll@stat.tamu.edu organization: Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel – sequence: 5 givenname: Raymond J. surname: Carroll fullname: Carroll, Raymond J. email: carroll@stat.tamu.edu, cpotgieter@smu.eduweirubin@gmail.comkipnisv@mail.nih.govlsf@actcom.co.ilcarroll@stat.tamu.edu organization: Department of Statistics, Texas A&M University, College Station, Texas 77843, U.S.A  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27061196$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNks1u1DAUhSNURKeFDXuQJTYVkGI7tpNskGhFS1FLNyDYWY5zM82Q2MFOmJkn4LVxJu3wsxjw5so637nXPvZBtGesgSh6TPAxCetVUdv2mFBO2b1oRjgjMWYU70UzjLGIE0a-7EcH3i_CNueYPoj2aYoFIbmYRT-ubAumRw60Nb53g-5ra5AyJWo3SqzKxeB7KFHddkOvNvLyBgyCVWf94ADVHs3BgFMjVayRQtq2XQOrlyictKkNKIdcaGlbBFUFuveheQlBmaPOWQ3eP4zuV6rx8Oi2Hkafzt5-PH0XX16fX5y-uYw1F4TFUGCtWVmJQnGqVVZUhAPRJCc6TQnTGgoIFbOEUZIynmUpzmkgaY6VUFlyGL2Y-g6mU-ulahrZubpVbi0JlmOccoxTbuIM9OuJ7oaihVKHPJz65bCqln8qpr6Rc_tdcsx5xsZxR7cNnP02gO9lW3sNTaMM2MFLGt6EpSmj_0ZJJrKEYJrl_4FSIUTCMQ7os7_QhR2cCRFLktMkZZjkfCeV8QTzJMvHsU9_T2Mbw91vCsDzCdDOeu-g2p0tmeBl3cB6BylPLq6v7jxPJs_C99ZtPYyJcAk-6vGk1-HHrra6cl-lSJOUy88fzmUmCD9L3nOJk582EwOv | 
    
| CODEN | BIOMA5 | 
    
| Cites_doi | 10.1214/10-AOAS446 10.1201/9781420010138 10.1201/9781420066586 10.1093/aje/154.12.1119 10.1111/j.1467-9868.2006.00540.x 10.1667/RR1059.1 10.1111/j.1541-0420.2006.00632.x 10.1111/j.1541-0420.2009.01223.x 10.1002/1097-0258(20010115)20:1<139::AID-SIM644>3.0.CO;2-K 10.1111/j.0006-341X.2004.00164.x 10.1093/biomet/69.2.331 10.1002/(SICI)1097-0258(19981015)17:19<2157::AID-SIM916>3.0.CO;2-F 10.1093/oxfordjournals.aje.a115715 10.1214/13-AOS1122 10.1002/9780470316665 10.1093/jn/133.2.601S 10.1111/j.0006-341X.2002.00013.x 10.1080/01621459.1996.10476712 10.2202/1557-4679.1267 10.1111/j.1541-0420.2011.01569.x 10.1016/j.jada.2008.08.011 10.1080/01621459.2000.10473898 10.1093/aje/kwn097 10.1002/sim.3361 10.1667/RR3596.1 10.1016/j.csda.2013.04.017  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2016 International Biometric Society 2016, The International Biometric Society 2016, The International Biometric Society.  | 
    
| Copyright_xml | – notice: Copyright © 2016 International Biometric Society – notice: 2016, The International Biometric Society – notice: 2016, The International Biometric Society.  | 
    
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 7U7 C1K 7S9 L.6 5PM ADTOC UNPAY  | 
    
| DOI | 10.1111/biom.12524 | 
    
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic Toxicology Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic Toxicology Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | CrossRef ProQuest Computer Science Collection Toxicology Abstracts MEDLINE AGRICOLA ProQuest Computer Science Collection MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Statistics Biology Mathematics  | 
    
| EISSN | 1541-0420 | 
    
| EndPage | 1377 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:5055848 PMC5055848 4287430651 27061196 10_1111_biom_12524 BIOM12524 44695354 ark_67375_WNG_8615F3J5_0  | 
    
| Genre | article Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: U01 CA057030  | 
    
| GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAMMB AANHP AANLZ AAONW AASGY AAUAY AAWIL AAXRX AAYCA AAZKR AAZSN ABAWQ ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOD ACHJO ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEOTA AEUPB AEUYR AFBPY AFDVO AFEBI AFGKR AFKRA AFVYC AFWVQ AFZJQ AGLNM AGQPQ AGTJU AGXDD AHGBF AHMBA AIAGR AIDQK AIDYY AIHAF AIURR AJAOE AJBYB AJNCP AJXKR ALAGY ALEEW ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESTFP ESX F00 F01 F04 F5P FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X H13 HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AGORE ALIPV 3V. AAHHS ABTAH ACCFJ ADZOD AEEZP AELPN AEQDE AEUQT AFFTP AFPWT AIBGX AIWBW AJBDE JSODD VQA WRC AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN JQ2 7X8 7U7 C1K 7S9 L.6 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c5614-eb0cc4df6ba52ca8bf15e1c191c7714ccebe7140434217458870922ca290a6a83 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0006-341X 1541-0420  | 
    
| IngestDate | Sun Oct 26 04:16:48 EDT 2025 Tue Sep 30 16:55:14 EDT 2025 Fri Oct 03 00:12:36 EDT 2025 Tue Oct 07 10:13:38 EDT 2025 Sat Sep 27 19:42:50 EDT 2025 Wed Aug 13 06:37:40 EDT 2025 Wed Aug 13 09:20:33 EDT 2025 Wed Feb 19 02:43:17 EST 2025 Wed Oct 01 01:41:34 EDT 2025 Wed Jan 22 16:56:49 EST 2025 Thu Jul 03 22:16:58 EDT 2025 Sun Sep 21 06:29:00 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Computer models Latent variable models Berkson-type error Healthy Eating Index-2005 Classical measurement error Moment-adjusted imputation Moment reconstruction Nutritional epidemiology  | 
    
| Language | English | 
    
| License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model 2016, The International Biometric Society.  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c5614-eb0cc4df6ba52ca8bf15e1c191c7714ccebe7140434217458870922ca290a6a83 | 
    
| Notes | istex:4EC24AC87BF0C24A168D84B8FC1464BB99BDAF05 ark:/67375/WNG-8615F3J5-0 ArticleID:BIOM12524 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 weirubin@gmail.com cpotgieter@smu.edu kipnisv@mail.nih.gov carroll@stat.tamu.edu lsf@actcom.co.il  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1111/biom.12524 | 
    
| PMID | 27061196 | 
    
| PQID | 1853053899 | 
    
| PQPubID | 35366 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | unpaywall_primary_10_1111_biom_12524 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5055848 proquest_miscellaneous_2000477428 proquest_miscellaneous_1868310289 proquest_miscellaneous_1826663500 proquest_journals_1923740195 proquest_journals_1853053899 pubmed_primary_27061196 crossref_primary_10_1111_biom_12524 wiley_primary_10_1111_biom_12524_BIOM12524 jstor_primary_44695354 istex_primary_ark_67375_WNG_8615F3J5_0  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | December 2016 | 
    
| PublicationDateYYYYMMDD | 2016-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2016 text: December 2016  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Washington  | 
    
| PublicationTitle | Biometrics | 
    
| PublicationTitleAlternate | Biom | 
    
| PublicationYear | 2016 | 
    
| Publisher | Blackwell Publishing Ltd Wiley-Blackwell  | 
    
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell  | 
    
| References | Sugar, E. A., Wang, C.-Y., and Prentice, R. L. (2007). Logistic regression with exposure biomarkers and flexible measurement error. Biometrics 63, 143-151. Mallick, B., Hoffman, F. O., and Carroll, R. J. (2002). Semiparametric regression modeling with mixtures of berkson and classical error, with application to fallout from the Nevada test site. Biometrics 58, 13-20. Carriquiry, A. L. (2003). Estimation of usual intake distributions of nutrients and foods. The Journal of Nutrition 133, 601S-608S. Schennach, S. M. (2013). Regressions with Berkson errors in covariates a nonparametric approach. Annals of Statistics 41, 1642-1668. Guenther, P. M., Reedy, J., Krebs-Smith, S. M., and Reeve, B. B. (2008). Evaluation of the Healthy Eating Index-2005. Journal of the American Dietetic Association 108, 1854-1864. Thomas, L., Stefanski, L. A., and Davidian, M. (2013). Moment adjusted imputation for multivariate measurement error data with applications to logistic regression. Computational Statistics & Data Analysis 67, 15-24. Thomas, L., Stefanski, L. A., and Davidian, M. (2011). A moment-adjusted imputation method for measurement error models. Biometrics 67, 1461-1470. Nusser, S. M., Carriquiry, A. L., Dodd, K. W., and Fuller, W. A. (1996). A semiparametric transformation approach to estimating usual daily intake distributions. Journal of the American Statistical Association 91, 1440-1449. Pierce, D. A., Væth, M., and Cologne, J. B. (2009). Allowance for random dose estimation errors in atomic bomb survivor studies: A revision. Radiation Research 170, 118-126. Reeves, G., Cox, D., Darby, S., and Whitley, E. (1998). Some aspects of measurement error in explanatory variables for continuous and binary regression models. Statistics in Medicine 17, 2157-2177.\enlargethispage 10pt Schatzkin, A., Subar, A. F., Thompson, F. E., Harlan, L. C., Tangrea, J., Hollenbeck, A. R., et al. (2001). Design and serendipity in establishing a large cohort with wide dietary intake distributions: the national institutes of health-aarp diet and health study. American Journal of Epidemiology 154, 1119-1125. Zhang, S., Midthune, D., P'erez, A., Buckman, D. W., Kipnis, V., Freedman, L. S., et al. (2011). Fitting a bivariate measurement error model for episodically consumed dietary components. International Journal of Biostatistics 7, 1-32. Available at: http://www.bepress.com/ijb/vol7/iss1/1 Delaigle, A., Hall, P., and Qiu, P. (2006). Nonparametric methods for solving the Berkson errors-in-variables problem. Journal of the Royal Statistical Society, Series B 68, 201-220. Rosner, B., Spiegelman, D., and Willett, W. C. (1990). Correction of logistic regression relative risk estimates and confidence intervals for measurement error: the case of multiple covariates measured with error. American Journal of Epidemiology 132, 734-745. Zhang, S., Midthune, D., Guenther, P. M., Krebs-Smith, S. M., Kipnis, V., Dodd, et al. (2011). A new multivariate measurement error model with zero-inflated dietary data, and its application to dietary assessment. Annals of Applied Statistics 5, 1456-1487. Spiegelman, D., Rosner, B., and Logan, R. (2000). Estimation and inference for logistic regression with covariate misclassification and measurement error in main study/validation study designs. Journal of the American Statistical Association 95, 51-61. Freedman, L. S., Midthune, D., Carroll, R. J., and Kipnis, V. (2008). A comparison of regression calibration, moment reconstruction and imputation for adjusting for covariate measurement error in regression. Statistics in Medicine 27, 5195-6216. Reedy, J. R., Mitrou, P. N., Krebs-Smith, S. M., Wirfält, E., Flood, A. V., Kipnis, V., et al. (2008). Index-based dietary patterns and risk of colorectal cancer: the nih-aarp diet and health study. American Journal of Epidemiology 168, 38-48. Spiegelman, D., Carroll, R. J., and Kipnis, V. (2001). Efficient regression calibration for logistic regression in main study/internal validation study designs with an imperfect reference instrument. Statistics in Medicine 20, 139-160. Kipnis, V., Midthune, D., Buckman, D. W., Dodd, K. W., Guenther, P. M., Krebs-Smith, S.M., et al. (2009). Modeling data with excess zeros and measurement error: application to evaluating relationships between episodically consumed foods and health outcomes. Biometrics 65, 1003-1010. Prentice, R. L. (1982). Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika 69, 331-342. Freedman, L. S., Feinberg, V., Kipnis, V., Midthune, D., and Carroll, R. J. (2004). A new method for dealing with measurement error in explanatory variables of regression models. Biometrics 60, 171-181. Kopecky, K. J., Stepanenko, V., Rivkind, N., Voillequé, P., Onstad, L., Shakhtarin, V., et al. (2011). Childhood thyroid cancer, radiation dose from Chernobyl and dose uncertainties in Bryansk Oblast, Russia: A population-based case-control study. Radiation Research 166, 367-374. 2002; 58 2009; 65 2004; 60 2010 2013; 67 2013; 41 2008; 108 2000; 95 2006 2004 2002 1996; 91 2008; 168 2011; 5 2003; 133 2011; 7 2001; 20 2001; 154 1982; 69 1998; 17 2006; 68 2000 2009; 170 2008; 27 1987 2011; 67 2007; 63 1990; 132 2011; 166 Freedman (2024011003333717200_biom12524-bib-0007) 2008; 27 Mallick (2024011003333717200_biom12524-bib-0013) 2002; 58 Prentice (2024011003333717200_biom12524-bib-0017) 1982; 69 Carriquiry (2024011003333717200_biom12524-bib-0002) 2003; 133 Kipnis (2024011003333717200_biom12524-bib-0011) 2009; 65 Nusser (2024011003333717200_biom12524-bib-0014) 1996; 91 Ostrouchov (2024011003333717200_biom12524-bib-0015) 2000 Guenther (2024011003333717200_biom12524-bib-0009) 2008; 108 Fuller (2024011003333717200_biom12524-bib-0008) 1987 Freedman (2024011003333717200_biom12524-bib-0006) 2004; 60 Spiegelman (2024011003333717200_biom12524-bib-0024) 2000; 95 Zhang (2024011003333717200_biom12524-bib-0028) 2011; 5 Pierce (2024011003333717200_biom12524-bib-0016) 2009; 170 Sugar (2024011003333717200_biom12524-bib-0025) 2007; 63 Delaigle (2024011003333717200_biom12524-bib-0005) 2006; 68 Schennach (2024011003333717200_biom12524-bib-0022) 2013; 41 Buonaccorsi (2024011003333717200_biom12524-bib-0001) 2010 Carroll (2024011003333717200_biom12524-bib-0003) 2006 Zhang (2024011003333717200_biom12524-bib-0029) 2011; 7 Davis (2024011003333717200_biom12524-bib-0004) 2002 Rosner (2024011003333717200_biom12524-bib-0020) 1990; 132 Thomas (2024011003333717200_biom12524-bib-0026) 2011; 67 Schatzkin (2024011003333717200_biom12524-bib-0021) 2001; 154 Thomas (2024011003333717200_biom12524-bib-0027) 2013; 67 Spiegelman (2024011003333717200_biom12524-bib-0023) 2001; 20 Kopecky (2024011003333717200_biom12524-bib-0012) 2011; 166 Gustafson (2024011003333717200_biom12524-bib-0010) 2004 Reedy (2024011003333717200_biom12524-bib-0018) 2008; 168 Reeves (2024011003333717200_biom12524-bib-0019) 1998; 17 9802176 - Stat Med. 1998 Oct 15;17(19):2157-77 16881738 - Radiat Res. 2006 Aug;166(2):367-74 11744517 - Am J Epidemiol. 2001 Dec 15;154(12):1119-25 24072947 - Comput Stat Data Anal. 2013 Nov 1;67:15-24 21804910 - Ann Appl Stat. 2011 Jun 1;5(2B):1456-1487 18582151 - Radiat Res. 2008 Jul;170(1):118-26 15032787 - Biometrics. 2004 Mar;60(1):172-81 2403114 - Am J Epidemiol. 1990 Oct;132(4):734-45 11890308 - Biometrics. 2002 Mar;58(1):13-20 18954575 - J Am Diet Assoc. 2008 Nov;108(11):1854-64 12566510 - J Nutr. 2003 Feb;133(2):601S-8S 18525082 - Am J Epidemiol. 2008 Jul 1;168(1):38-48 17447939 - Biometrics. 2007 Mar;63(1):143-51 11135353 - Stat Med. 2001 Jan 15;20(1):139-160 21385161 - Biometrics. 2011 Dec;67(4):1461-70 19302405 - Biometrics. 2009 Dec;65(4):1003-10 22848190 - Int J Biostat. 2011;7(1):1 18680172 - Stat Med. 2008 Nov 10;27(25):5195-216  | 
    
| References_xml | – reference: Kopecky, K. J., Stepanenko, V., Rivkind, N., Voillequé, P., Onstad, L., Shakhtarin, V., et al. (2011). Childhood thyroid cancer, radiation dose from Chernobyl and dose uncertainties in Bryansk Oblast, Russia: A population-based case-control study. Radiation Research 166, 367-374. – reference: Mallick, B., Hoffman, F. O., and Carroll, R. J. (2002). Semiparametric regression modeling with mixtures of berkson and classical error, with application to fallout from the Nevada test site. Biometrics 58, 13-20. – reference: Carriquiry, A. L. (2003). Estimation of usual intake distributions of nutrients and foods. The Journal of Nutrition 133, 601S-608S. – reference: Delaigle, A., Hall, P., and Qiu, P. (2006). Nonparametric methods for solving the Berkson errors-in-variables problem. Journal of the Royal Statistical Society, Series B 68, 201-220. – reference: Reeves, G., Cox, D., Darby, S., and Whitley, E. (1998). Some aspects of measurement error in explanatory variables for continuous and binary regression models. Statistics in Medicine 17, 2157-2177.\enlargethispage 10pt – reference: Thomas, L., Stefanski, L. A., and Davidian, M. (2011). A moment-adjusted imputation method for measurement error models. Biometrics 67, 1461-1470. – reference: Spiegelman, D., Carroll, R. J., and Kipnis, V. (2001). Efficient regression calibration for logistic regression in main study/internal validation study designs with an imperfect reference instrument. Statistics in Medicine 20, 139-160. – reference: Reedy, J. R., Mitrou, P. N., Krebs-Smith, S. M., Wirfält, E., Flood, A. V., Kipnis, V., et al. (2008). Index-based dietary patterns and risk of colorectal cancer: the nih-aarp diet and health study. American Journal of Epidemiology 168, 38-48. – reference: Freedman, L. S., Midthune, D., Carroll, R. J., and Kipnis, V. (2008). A comparison of regression calibration, moment reconstruction and imputation for adjusting for covariate measurement error in regression. Statistics in Medicine 27, 5195-6216. – reference: Zhang, S., Midthune, D., Guenther, P. M., Krebs-Smith, S. M., Kipnis, V., Dodd, et al. (2011). A new multivariate measurement error model with zero-inflated dietary data, and its application to dietary assessment. Annals of Applied Statistics 5, 1456-1487. – reference: Freedman, L. S., Feinberg, V., Kipnis, V., Midthune, D., and Carroll, R. J. (2004). A new method for dealing with measurement error in explanatory variables of regression models. Biometrics 60, 171-181. – reference: Prentice, R. L. (1982). Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika 69, 331-342. – reference: Schatzkin, A., Subar, A. F., Thompson, F. E., Harlan, L. C., Tangrea, J., Hollenbeck, A. R., et al. (2001). Design and serendipity in establishing a large cohort with wide dietary intake distributions: the national institutes of health-aarp diet and health study. American Journal of Epidemiology 154, 1119-1125. – reference: Rosner, B., Spiegelman, D., and Willett, W. C. (1990). Correction of logistic regression relative risk estimates and confidence intervals for measurement error: the case of multiple covariates measured with error. American Journal of Epidemiology 132, 734-745. – reference: Sugar, E. A., Wang, C.-Y., and Prentice, R. L. (2007). Logistic regression with exposure biomarkers and flexible measurement error. Biometrics 63, 143-151. – reference: Guenther, P. M., Reedy, J., Krebs-Smith, S. M., and Reeve, B. B. (2008). Evaluation of the Healthy Eating Index-2005. Journal of the American Dietetic Association 108, 1854-1864. – reference: Thomas, L., Stefanski, L. A., and Davidian, M. (2013). Moment adjusted imputation for multivariate measurement error data with applications to logistic regression. Computational Statistics & Data Analysis 67, 15-24. – reference: Kipnis, V., Midthune, D., Buckman, D. W., Dodd, K. W., Guenther, P. M., Krebs-Smith, S.M., et al. (2009). Modeling data with excess zeros and measurement error: application to evaluating relationships between episodically consumed foods and health outcomes. Biometrics 65, 1003-1010. – reference: Nusser, S. M., Carriquiry, A. L., Dodd, K. W., and Fuller, W. A. (1996). A semiparametric transformation approach to estimating usual daily intake distributions. Journal of the American Statistical Association 91, 1440-1449. – reference: Spiegelman, D., Rosner, B., and Logan, R. (2000). Estimation and inference for logistic regression with covariate misclassification and measurement error in main study/validation study designs. Journal of the American Statistical Association 95, 51-61. – reference: Zhang, S., Midthune, D., P'erez, A., Buckman, D. W., Kipnis, V., Freedman, L. S., et al. (2011). Fitting a bivariate measurement error model for episodically consumed dietary components. International Journal of Biostatistics 7, 1-32. Available at: http://www.bepress.com/ijb/vol7/iss1/1 – reference: Pierce, D. A., Væth, M., and Cologne, J. B. (2009). Allowance for random dose estimation errors in atomic bomb survivor studies: A revision. Radiation Research 170, 118-126. – reference: Schennach, S. M. (2013). Regressions with Berkson errors in covariates a nonparametric approach. Annals of Statistics 41, 1642-1668. – volume: 69 start-page: 331 year: 1982 end-page: 342 article-title: Covariate measurement errors and parameter estimation in a failure time regression model publication-title: Biometrika – volume: 95 start-page: 51 year: 2000 end-page: 61 article-title: Estimation and inference for logistic regression with covariate misclassification and measurement error in main study/validation study designs publication-title: Journal of the American Statistical Association – volume: 154 start-page: 1119 year: 2001 end-page: 1125 article-title: Design and serendipity in establishing a large cohort with wide dietary intake distributions: the national institutes of health‐aarp diet and health study publication-title: American Journal of Epidemiology – year: 1987 – volume: 166 start-page: 367 year: 2011 end-page: 374 article-title: Childhood thyroid cancer, radiation dose from Chernobyl and dose uncertainties in Bryansk Oblast, Russia: A population‐based case‐control study publication-title: Radiation Research – year: 2000 – volume: 63 start-page: 143 year: 2007 end-page: 151 article-title: Logistic regression with exposure biomarkers and flexible measurement error publication-title: Biometrics – volume: 5 start-page: 1456 year: 2011 end-page: 1487 article-title: A new multivariate measurement error model with zero‐inflated dietary data, and its application to dietary assessment publication-title: Annals of Applied Statistics – volume: 27 start-page: 5195 year: 2008 end-page: 6216 article-title: A comparison of regression calibration, moment reconstruction and imputation for adjusting for covariate measurement error in regression publication-title: Statistics in Medicine – volume: 108 start-page: 1854 year: 2008 end-page: 1864 article-title: Evaluation of the Healthy Eating Index‐2005 publication-title: Journal of the American Dietetic Association – volume: 132 start-page: 734 year: 1990 end-page: 745 article-title: Correction of logistic regression relative risk estimates and confidence intervals for measurement error: the case of multiple covariates measured with error publication-title: American Journal of Epidemiology – volume: 58 start-page: 13 year: 2002 end-page: 20 article-title: Semiparametric regression modeling with mixtures of berkson and classical error, with application to fallout from the Nevada test site publication-title: Biometrics – year: 2010 – volume: 7 start-page: 1 year: 2011 end-page: 32 article-title: Fitting a bivariate measurement error model for episodically consumed dietary components publication-title: International Journal of Biostatistics – volume: 168 start-page: 38 year: 2008 end-page: 48 article-title: Index‐based dietary patterns and risk of colorectal cancer: the nih–aarp diet and health study publication-title: American Journal of Epidemiology – volume: 60 start-page: 171 year: 2004 end-page: 181 article-title: A new method for dealing with measurement error in explanatory variables of regression models publication-title: Biometrics – volume: 41 start-page: 1642 year: 2013 end-page: 1668 article-title: Regressions with Berkson errors in covariates a nonparametric approach publication-title: Annals of Statistics – volume: 17 start-page: 2157 year: 1998 end-page: 2177 article-title: Some aspects of measurement error in explanatory variables for continuous and binary regression models publication-title: Statistics in Medicine – volume: 67 start-page: 1461 year: 2011 end-page: 1470 article-title: A moment‐adjusted imputation method for measurement error models publication-title: Biometrics – year: 2002 – volume: 170 start-page: 118 year: 2009 end-page: 126 article-title: Allowance for random dose estimation errors in atomic bomb survivor studies: A revision publication-title: Radiation Research – volume: 91 start-page: 1440 year: 1996 end-page: 1449 article-title: A semiparametric transformation approach to estimating usual daily intake distributions publication-title: Journal of the American Statistical Association – year: 2006 – year: 2004 – volume: 68 start-page: 201 year: 2006 end-page: 220 article-title: Nonparametric methods for solving the Berkson errors‐in‐variables problem publication-title: Journal of the Royal Statistical Society, Series B – volume: 20 start-page: 139 year: 2001 end-page: 160 article-title: Efficient regression calibration for logistic regression in main study/internal validation study designs with an imperfect reference instrument publication-title: Statistics in Medicine – volume: 67 start-page: 15 year: 2013 end-page: 24 article-title: Moment adjusted imputation for multivariate measurement error data with applications to logistic regression publication-title: Computational Statistics & Data Analysis – volume: 133 start-page: 601S year: 2003 end-page: 608S article-title: Estimation of usual intake distributions of nutrients and foods publication-title: The Journal of Nutrition – volume: 65 start-page: 1003 year: 2009 end-page: 1010 article-title: Modeling data with excess zeros and measurement error: application to evaluating relationships between episodically consumed foods and health outcomes publication-title: Biometrics – volume: 5 start-page: 1456 year: 2011 ident: 2024011003333717200_biom12524-bib-0028 article-title: A new multivariate measurement error model with zero-inflated dietary data, and its application to dietary assessment publication-title: Annals of Applied Statistics doi: 10.1214/10-AOAS446 – volume-title: Measurement Error in Nonlinear Models: A Modern Perspective, Second Edition year: 2006 ident: 2024011003333717200_biom12524-bib-0003 doi: 10.1201/9781420010138 – volume-title: Measurement Error: Models, Methods and Applications year: 2010 ident: 2024011003333717200_biom12524-bib-0001 doi: 10.1201/9781420066586 – volume: 154 start-page: 1119 year: 2001 ident: 2024011003333717200_biom12524-bib-0021 article-title: Design and serendipity in establishing a large cohort with wide dietary intake distributions: the national institutes of health-aarp diet and health study publication-title: American Journal of Epidemiology doi: 10.1093/aje/154.12.1119 – volume: 68 start-page: 201 year: 2006 ident: 2024011003333717200_biom12524-bib-0005 article-title: Nonparametric methods for solving the Berkson errors-in-variables problem publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.1467-9868.2006.00540.x – volume: 170 start-page: 118 year: 2009 ident: 2024011003333717200_biom12524-bib-0016 article-title: Allowance for random dose estimation errors in atomic bomb survivor studies: A revision publication-title: Radiation Research doi: 10.1667/RR1059.1 – volume: 63 start-page: 143 year: 2007 ident: 2024011003333717200_biom12524-bib-0025 article-title: Logistic regression with exposure biomarkers and flexible measurement error publication-title: Biometrics doi: 10.1111/j.1541-0420.2006.00632.x – volume-title: Hanford Thyroid Disease Study: Final Report year: 2002 ident: 2024011003333717200_biom12524-bib-0004 – volume: 65 start-page: 1003 year: 2009 ident: 2024011003333717200_biom12524-bib-0011 article-title: Modeling data with excess zeros and measurement error: application to evaluating relationships between episodically consumed foods and health outcomes publication-title: Biometrics doi: 10.1111/j.1541-0420.2009.01223.x – volume: 20 start-page: 139 year: 2001 ident: 2024011003333717200_biom12524-bib-0023 article-title: Efficient regression calibration for logistic regression in main study/internal validation study designs with an imperfect reference instrument publication-title: Statistics in Medicine doi: 10.1002/1097-0258(20010115)20:1<139::AID-SIM644>3.0.CO;2-K – volume: 60 start-page: 171 year: 2004 ident: 2024011003333717200_biom12524-bib-0006 article-title: A new method for dealing with measurement error in explanatory variables of regression models publication-title: Biometrics doi: 10.1111/j.0006-341X.2004.00164.x – volume: 69 start-page: 331 year: 1982 ident: 2024011003333717200_biom12524-bib-0017 article-title: Covariate measurement errors and parameter estimation in a failure time regression model publication-title: Biometrika doi: 10.1093/biomet/69.2.331 – volume: 17 start-page: 2157 year: 1998 ident: 2024011003333717200_biom12524-bib-0019 article-title: Some aspects of measurement error in explanatory variables for continuous and binary regression models publication-title: Statistics in Medicine doi: 10.1002/(SICI)1097-0258(19981015)17:19<2157::AID-SIM916>3.0.CO;2-F – volume: 132 start-page: 734 year: 1990 ident: 2024011003333717200_biom12524-bib-0020 article-title: Correction of logistic regression relative risk estimates and confidence intervals for measurement error: the case of multiple covariates measured with error publication-title: American Journal of Epidemiology doi: 10.1093/oxfordjournals.aje.a115715 – volume-title: Dose Estimation from Daily and Weekly Dosimetry Data year: 2000 ident: 2024011003333717200_biom12524-bib-0015 – volume: 41 start-page: 1642 year: 2013 ident: 2024011003333717200_biom12524-bib-0022 article-title: Regressions with Berkson errors in covariates a nonparametric approach publication-title: Annals of Statistics doi: 10.1214/13-AOS1122 – volume-title: Measurement Error Models year: 1987 ident: 2024011003333717200_biom12524-bib-0008 doi: 10.1002/9780470316665 – volume: 133 start-page: 601S year: 2003 ident: 2024011003333717200_biom12524-bib-0002 article-title: Estimation of usual intake distributions of nutrients and foods publication-title: The Journal of Nutrition doi: 10.1093/jn/133.2.601S – volume: 58 start-page: 13 year: 2002 ident: 2024011003333717200_biom12524-bib-0013 article-title: Semiparametric regression modeling with mixtures of berkson and classical error, with application to fallout from the Nevada test site publication-title: Biometrics doi: 10.1111/j.0006-341X.2002.00013.x – volume: 91 start-page: 1440 year: 1996 ident: 2024011003333717200_biom12524-bib-0014 article-title: A semiparametric transformation approach to estimating usual daily intake distributions publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1996.10476712 – volume: 7 start-page: 1 year: 2011 ident: 2024011003333717200_biom12524-bib-0029 article-title: Fitting a bivariate measurement error model for episodically consumed dietary components publication-title: International Journal of Biostatistics doi: 10.2202/1557-4679.1267 – volume-title: Measurement Error and Misclassication in Statistics and Epidemiology year: 2004 ident: 2024011003333717200_biom12524-bib-0010 – volume: 67 start-page: 1461 year: 2011 ident: 2024011003333717200_biom12524-bib-0026 article-title: A moment-adjusted imputation method for measurement error models publication-title: Biometrics doi: 10.1111/j.1541-0420.2011.01569.x – volume: 108 start-page: 1854 year: 2008 ident: 2024011003333717200_biom12524-bib-0009 article-title: Evaluation of the Healthy Eating Index-2005 publication-title: Journal of the American Dietetic Association doi: 10.1016/j.jada.2008.08.011 – volume: 95 start-page: 51 year: 2000 ident: 2024011003333717200_biom12524-bib-0024 article-title: Estimation and inference for logistic regression with covariate misclassification and measurement error in main study/validation study designs publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2000.10473898 – volume: 168 start-page: 38 year: 2008 ident: 2024011003333717200_biom12524-bib-0018 article-title: Index-based dietary patterns and risk of colorectal cancer: the nih–aarp diet and health study publication-title: American Journal of Epidemiology doi: 10.1093/aje/kwn097 – volume: 27 start-page: 5195 year: 2008 ident: 2024011003333717200_biom12524-bib-0007 article-title: A comparison of regression calibration, moment reconstruction and imputation for adjusting for covariate measurement error in regression publication-title: Statistics in Medicine doi: 10.1002/sim.3361 – volume: 166 start-page: 367 year: 2011 ident: 2024011003333717200_biom12524-bib-0012 article-title: Childhood thyroid cancer, radiation dose from Chernobyl and dose uncertainties in Bryansk Oblast, Russia: A population-based case-control study publication-title: Radiation Research doi: 10.1667/RR3596.1 – volume: 67 start-page: 15 year: 2013 ident: 2024011003333717200_biom12524-bib-0027 article-title: Moment adjusted imputation for multivariate measurement error data with applications to logistic regression publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2013.04.017 – reference: 17447939 - Biometrics. 2007 Mar;63(1):143-51 – reference: 12566510 - J Nutr. 2003 Feb;133(2):601S-8S – reference: 11135353 - Stat Med. 2001 Jan 15;20(1):139-160 – reference: 15032787 - Biometrics. 2004 Mar;60(1):172-81 – reference: 21804910 - Ann Appl Stat. 2011 Jun 1;5(2B):1456-1487 – reference: 19302405 - Biometrics. 2009 Dec;65(4):1003-10 – reference: 11890308 - Biometrics. 2002 Mar;58(1):13-20 – reference: 21385161 - Biometrics. 2011 Dec;67(4):1461-70 – reference: 16881738 - Radiat Res. 2006 Aug;166(2):367-74 – reference: 11744517 - Am J Epidemiol. 2001 Dec 15;154(12):1119-25 – reference: 22848190 - Int J Biostat. 2011;7(1):1 – reference: 18525082 - Am J Epidemiol. 2008 Jul 1;168(1):38-48 – reference: 18954575 - J Am Diet Assoc. 2008 Nov;108(11):1854-64 – reference: 9802176 - Stat Med. 1998 Oct 15;17(19):2157-77 – reference: 18680172 - Stat Med. 2008 Nov 10;27(25):5195-216 – reference: 2403114 - Am J Epidemiol. 1990 Oct;132(4):734-45 – reference: 24072947 - Comput Stat Data Anal. 2013 Nov 1;67:15-24 – reference: 18582151 - Radiat Res. 2008 Jul;170(1):118-26  | 
    
| SSID | ssj0009502 | 
    
| Score | 2.1722212 | 
    
| Snippet | For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et al.,... Summary For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment‐adjusted imputation (Thomas... For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et al.,... Summary For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et... For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment‐adjusted imputation (Thomas et al.,...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley jstor istex  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 1369 | 
    
| SubjectTerms | Berkson-type error BIOMETRIC PRACTICE biometry Calibration Classical measurement error Computer models Computer Simulation eating habits Economic models Epidemiology Error analysis Errors Exposure Feeding Behavior healthy diet Healthy Eating Index-2005 Humans Latent variable models Logistic Models Measurement errors Modelling Models, Statistical Moment reconstruction Moment-adjusted imputation Nutrition research Nutrition Surveys - statistics & numerical data Nutritional epidemiology Reconstruction Regression Analysis  | 
    
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VRYhy4BEoGApaRMUB4ciPtZ2VuAAilEopEqIiF2TtrtdtaOtETaImnLhy4zfyS5jZjU0DJRLcLO34sat5fLOe_QZgO06FDJTQPnpF7vOQG1-YJPZLDEdKlrLISlvlu5fu7PPdftJfg-f1WRjHD9FsuJFlWH9NBi7V-JyR0_H0NobniMhAwzi1-dT76BzjbuCowqm4i4f9BTcplfH8unUpGl2ihZ3VhYkXQc4_KyevTKuRnJ_J4-NldGvDU_c6fKon5qpSjtrTiWrrL79xPv7vzG_AtQVuZS-cot2ENVO14LLrZDlvwdVeQ_86bsEGQVjHAH0LvvWI5GHCbOrd0NUyWRXsxI78-PpdFp-ntO_KBtRjwioLOzs0FTOz0ZD2MNlgzA4sQzZJqTmTzBbDm9kzVrk5yVOGcbcYnrBFjQqzXX4wNLOROw1xG_a7rz-82vEXDSB8TQSlvlGB1rwoUyWTSMuOKsPEhBpTTJ1lIdcaNTCz_ECcMqsEHWYgIpSMRCBT2Yk3YR2_wdwFFopCFCpBu5Gcq6KQSYy5GjqfrBQ65sqDx7Ui5CPH85HX-RGtd27X24MnVkcaEXl6RJVxWZJ_3HuTdxAeduPdJA882LRK1Ahi1i3olR5s1VqVL7zFOCfMhM4QU9-LhxGEU-NEkXjwqBlGN0D_dmRlhlN6BCItBI9BsEompbZymGL_XYZObnFMCaKOB3ecrjdziDIEf-ixPciWrKARIKry5ZFqcGgpyxFnI9LFZ2439rJymZ9a_V8hkr98-65nr-79i_B92EDEm7p6pC1YR6U3DxBVTtRD6z1-AiOGdcs priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | Moment reconstruction and moment-adjusted imputation when exposure is generated by a complex, nonlinear random effects modeling process | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-8615F3J5-0/fulltext.pdf https://www.jstor.org/stable/44695354 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12524 https://www.ncbi.nlm.nih.gov/pubmed/27061196 https://www.proquest.com/docview/1853053899 https://www.proquest.com/docview/1923740195 https://www.proquest.com/docview/1826663500 https://www.proquest.com/docview/1868310289 https://www.proquest.com/docview/2000477428 https://pubmed.ncbi.nlm.nih.gov/PMC5055848 http://doi.org/10.1111/biom.12524  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 72 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1541-0420 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: ABDBF dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1541-0420 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: A8Z dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0006-341X databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1541-0420 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009502 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB2VRIhy4CNQMJRoERUHhCPH3rXjYwINTaUEVBERTtauPwQ0OFGTiIQ_wN9mZtd2idpG3CLteCOvZ2ffs2feABx5figdFcY2RkVu8zZP7TAVnp3hcaRkJpMg01m-I_9kzE8nYrIHZX_Cfz_fU8IN1aC38Ax2-S2o-wLhdg3q49Gn7lcDa30bo_BEa6JypMXcdQoJ0u2Ltw6dOq3fusw_vA5ZXk2QvLPK53LzS06n2yBWn0L9-5e1PCb55Ly1WqpW_PuqtOPNN_gA7hUYlHWN0zyEvTRvwG3TlXLTgLvDSsp10YB9gqNGzfkR_BmSYMOSEWm9lJ5lMk-YGbG7yY8VvUFlA-oWoR87w4Cfs-P1fEZvI9lgwYzWNVmpDZOMYtI0Xb9lI6PbIS_YGU45-8mMtvKCUcc2qptnRV3DYxj3jz-_O7GLVg52TFKjdqqcOOZJ5isp3Fh2VNYWaTtGshgHQZvHMfpSoJV-OHEkgaHPCV20dENH-rLjHUAtn-XpU2DtMAkTJXAHSM5VkkjhIevCMBJkYexxZcGr8llHc6PYEZVMh1Y70qttwWvtBpWJvDinHLdARF9GH6IOAr2-dyoix4ID7SeVIfLnkP7SgsPScaJi3y8iQj8Y1pDEXj-McJpaIIbCgpfVMG5o-koj83S2oikQMyEMdJxdNj41iEOyfLMN1WBxBPdux4Inxp2re3ADhHEYey0Ithy9MiDR8e2R_Ps3LT6OiBkxK855VG2Jncv8Ru-WHSZRb_BxqH89-785n8M-olbf5BQdQg2dPX2ByHCpmlDv9t73-k3kRmdus4gUfwHoeV_w | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB1BK9Ry4CNQMBRYRMWhwpE_1nZ8BERISxMk1IrcrN31moa2TtQkasqJKzd-I7-EmV3HNFAiwS3STpzsamb2zfrtG4CtME6FJ1PlYlbkLve5dlMdhW6B25EUhciTwrB8e3HngO_2o37FzaG7MFYfoj5wo8gw-ZoCnA6kL0Q53U9v4v4c8KuwymMsVAgTfQguaO56Viyc6F3c71fqpETk-fXdhf1olZZ2NqcmXgY6_-ROrk3LkTg_E8fHi_jWbFDtm7YL69joGhIv5ag5ncim-vKb6uN_z_0W3KigK3tpfe02XNFlA67ZZpbnDbjerRVgxw1YJxRrRaDvwLcu6TxMmKm-a8VaJsqcnZiRH1-_i_zzlI5e2YDaTBh_YWeHumR6NhrSMSYbjNknI5JNVvKcCWb48Hr2gpV2UuKU4dabD09YRVNhptEP7s5sZC9E3IWD9pv91x236gHhKtIodbX0lOJ5EUsRBUq0ZOFH2ldYZaok8blS6ISJkQjiVFxFmDO9NEDLIPVELFrhBqzgf9D3gflpnuYywtARnMs8F1GI5Rrmn6RIVcilA8_mnpCNrNRHNi-RaL0zs94OPDdOUpuI0yMixyVR9rH3NmshQmyHu1HmObBhvKg2xMI7pZ90YHPuVlmVMMYZwSbMh1j9Xj6MOJx6J6aRA0_rYcwE9HpHlHo4pUcg2EL86HnLbGLqLIdV9t9t6PIWx6ogaDlwzzp7PYcgQfyHSduBZCEMagNSK18cKQeHRrUcoTaCXXzmVh0wS5d52wTAEpPs1c77rvn04F-Mn8BaZ7-7l-3t9N49hHUEwLGlJ23CCgaAfoQgcyIfm1TyE0rmeew | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELWgFVAOfAQKCwWMqDggNtoPezc-AiW0hQSEqMhtZXu9NLTdRE2iJpy4cuM38kuYsTdLAyUS3CJ5somtmfEb7_MbQjbjRMhACe1DVmQ-C5nxheGxX8B2pGQh87SwLN9usr3Hdnu8V3Fz8C6M04eoD9wwMmy-xgA3w7w4FeV4P70J-3PEzpNVxkULGX1b76NTmruBEwtHehcLe5U6KRJ5fn13YT9axaWdzqmJZ4HOP7mTlyblUM5O5OHhIr61G1T7quvCOrK6hshLOWhOxqqpv_ym-vjfc79GrlTQlT5zvnadnDNlg1xwzSxnDXK5UyvAjhpkDVGsE4G-Qb51UOdhTG31XSvWUlnm9MiO_Pj6XeafJ3j0SvvYZsL6Cz3ZNyU10-EAjzFpf0Q_WZFstFIzKqnlw5vpU1q6ScljCltvPjiiFU2F2kY_sDvTobsQcZPstV9-eLHtVz0gfI0apb5RgdYsLxIleaRlSxUhN6GGKlOnaci0BidMrUQQw-KKQ84MRASWkQhkIlvxOlmB_2BuExqKXOSKQ-hIxlSeSx5DuQb5Jy2EjpnyyKO5J2RDJ_WRzUskXO_MrrdHHlsnqU3k8QGS41Kefey-ylqAENvxLs8Cj6xbL6oNofAW-JMe2Zi7VVYljFGGsAnyIVS_Zw8DDsfeiYJ75GE9DJkAX-_I0gwm-AgAW4Afg2CZTYKd5aDK_rsNXt5iUBVELY_ccs5ezyFKAf9B0vZIuhAGtQGqlS-OlP19q1oOUBvALjxzsw6Ypcv8xAbAEpPs-c7bjv1051-MH5CL77ba2Zud7uu7ZA3wb-LYSRtkBfzf3AOMOVb3bSb5CVBGeXA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NVojxwEdhEBjIiIkHRKp82EnzWNDKOqkFISrKU2Q7iYCVtFpb0fIP8G9zZ6cZ1baKt0i-OIpzd_6dc_c7gKMwSqSnEu2iV-Qu93nuJrkI3QK3IyULmcWFyfIdRicjfjoW4z3Y9Cf89_c9JdxQDXob9-CA34BmJBBuN6A5Gn7sfrWwNnLRC48NJyrHsJgHXkVBun3z1qbTpPVbbfIPr0KWlxMkby3LmVz_kpPJNog1u1Dv7kUtj00-OWsvF6qtf1-mdrz-Be_BnQqDsq5Vmvuwl5ctuGm7Uq5bcHtQU7nOW7BPcNSyOT-APwMibFgwClovqGeZLDNmR9xu9mNJJ6isT90izGdn6PBLdryaTek0kvXnzHJdk5RaM8nIJ03y1Rs2tLwd8px9wimnP5nlVp4z6thGdfOsqmt4CKPe8ed3J27VysHVRDXq5srTmmdFpKQItOyowhe5rzFY1HHsc61Rl2LD9MMpRhLo-rwkQMkg8WQkO-EBNMppmT8G5idZkimBFiA5V1kmRYhRF7qRuEh0yJUDLzffOp1Zxo50E-nQaqdmtR14ZdSgFpHnZ5TjFov0y_B92kGg1wtPReo5cGD0pBbE-DmhRzpwuFGctLL7eUroB90aBrFXDyOcphaIiXDgRT2MBk1_aWSZT5c0BWImhIGet0smogZxGCxfL0M1WBzBfdBx4JFV5_odghhhHPpeB-ItRa8FiHR8e6T8_s2QjyNiRsyKcx7VJrFzmV8ba9khkr7tfxiYqyf_N-dT2EfUGtmcokNooLLnzxAZLtTzyjf8Bb7RXZU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moment+Reconstruction+and+Moment-Adjusted+Imputation+When+Exposure+Is+Generated+by+a+Complex%2C+Nonlinear+Random+Effects+Modeling+Process&rft.jtitle=Biometrics&rft.au=Potgieter%2C+Cornelis+J.&rft.au=Wei%2C+Rubin&rft.au=Kipnis%2C+Victor&rft.au=Freedman%2C+Laurence+S.&rft.date=2016-12-01&rft.pub=Wiley-Blackwell&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=72&rft.issue=4&rft.spage=1369&rft.epage=1377&rft_id=info:doi/10.1111%2Fbiom.12524&rft.externalDocID=44695354 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |