Moment reconstruction and moment-adjusted imputation when exposure is generated by a complex, nonlinear random effects modeling process

For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et al., 2011) are appealing, computationally simple imputation-like methods for general model fitting. Like classical regression calibration, the idea...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 72; no. 4; pp. 1369 - 1377
Main Authors Potgieter, Cornelis J., Wei, Rubin, Kipnis, Victor, Freedman, Laurence S., Carroll, Raymond J.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.12.2016
Wiley-Blackwell
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/biom.12524

Cover

Abstract For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et al., 2011) are appealing, computationally simple imputation-like methods for general model fitting. Like classical regression calibration, the idea is to replace the unobserved variable subject to measurement error with a proxy that can be used in a variety of analyses. Moment reconstruction and moment-adjusted imputation differ from regression calibration in that they attempt to match multiple features of the latent variable, and also to match some of the latent variable's relationships with the response and additional covariates. In this note, we consider a problem where true exposure is generated by a complex, nonlinear random effects modeling process, and develop analogues of moment reconstruction and moment-adjusted imputation for this case. This general model includes classical measurement errors, Berkson measurement errors, mixtures of Berkson and classical errors and problems that are not measurement error problems, but also cases where the data-generating process for true exposure is a complex, nonlinear random effects modeling process. The methods are illustrated using the National Institutes of Health-AARP Diet and Health Study where the latent variable is a dietary pattern score called the Healthy Eating Index-2005. We also show how our general model includes methods used in radiation epidemiology as a special case. Simulations are used to illustrate the methods.
AbstractList For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et al., 2011) are appealing, computationally simple imputation-like methods for general model fitting. Like classical regression calibration, the idea is to replace the unobserved variable subject to measurement error with a proxy that can be used in a variety of analyses. Moment reconstruction and moment-adjusted imputation differ from regression calibration in that they attempt to match multiple features of the latent variable, and also to match some of the latent variable's relationships with the response and additional covariates. In this note, we consider a problem where true exposure is generated by a complex, nonlinear random effects modeling process, and develop analogues of moment reconstruction and moment-adjusted imputation for this case. This general model includes classical measurement errors, Berkson measurement errors, mixtures of Berkson and classical errors and problems that are not measurement error problems, but also cases where the data-generating process for true exposure is a complex, nonlinear random effects modeling process. The methods are illustrated using the National Institutes of Health-AARP Diet and Health Study where the latent variable is a dietary pattern score called the Healthy Eating Index-2005. We also show how our general model includes methods used in radiation epidemiology as a special case. Simulations are used to illustrate the methods.
Summary For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et al., 2011) are appealing, computationally simple imputation-like methods for general model fitting. Like classical regression calibration, the idea is to replace the unobserved variable subject to measurement error with a proxy that can be used in a variety of analyses. Moment reconstruction and moment-adjusted imputation differ from regression calibration in that they attempt to match multiple features of the latent variable, and also to match some of the latent variable's relationships with the response and additional covariates. In this note, we consider a problem where true exposure is generated by a complex, nonlinear random effects modeling process, and develop analogues of moment reconstruction and moment-adjusted imputation for this case. This general model includes classical measurement errors, Berkson measurement errors, mixtures of Berkson and classical errors and problems that are not measurement error problems, but also cases where the data-generating process for true exposure is a complex, nonlinear random effects modeling process. The methods are illustrated using the National Institutes of Health-AARP Diet and Health Study where the latent variable is a dietary pattern score called the Healthy Eating Index-2005. We also show how our general model includes methods used in radiation epidemiology as a special case. Simulations are used to illustrate the methods.
For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et al., 2011) are appealing, computationally simple imputation-like methods for general model fitting. Like classical regression calibration, the idea is to replace the unobserved variable subject to measurement error with a proxy that can be used in a variety of analyses. Moment reconstruction and moment-adjusted imputation differ from regression calibration in that they attempt to match multiple features of the latent variable, and also to match some of the latent variable's relationships with the response and additional covariates. In this note, we consider a problem where true exposure is generated by a complex, nonlinear random effects modeling process, and develop analogues of moment reconstruction and moment-adjusted imputation for this case. This general model includes classical measurement errors, Berkson measurement errors, mixtures of Berkson and classical errors and problems that are not measurement error problems, but also cases where the data-generating process for true exposure is a complex, nonlinear random effects modeling process. The methods are illustrated using the National Institutes of Health-AARP Diet and Health Study where the latent variable is a dietary pattern score called the Healthy Eating Index-2005. We also show how our general model includes methods used in radiation epidemiology as a special case. Simulations are used to illustrate the methods.
Summary For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment‐adjusted imputation (Thomas et al., 2011) are appealing, computationally simple imputation‐like methods for general model fitting. Like classical regression calibration, the idea is to replace the unobserved variable subject to measurement error with a proxy that can be used in a variety of analyses. Moment reconstruction and moment‐adjusted imputation differ from regression calibration in that they attempt to match multiple features of the latent variable, and also to match some of the latent variable's relationships with the response and additional covariates. In this note, we consider a problem where true exposure is generated by a complex, nonlinear random effects modeling process, and develop analogues of moment reconstruction and moment‐adjusted imputation for this case. This general model includes classical measurement errors, Berkson measurement errors, mixtures of Berkson and classical errors and problems that are not measurement error problems, but also cases where the data‐generating process for true exposure is a complex, nonlinear random effects modeling process. The methods are illustrated using the National Institutes of Health–AARP Diet and Health Study where the latent variable is a dietary pattern score called the Healthy Eating Index‐2005. We also show how our general model includes methods used in radiation epidemiology as a special case. Simulations are used to illustrate the methods.
For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et al., 2011) are appealing, computationally simple imputation-like methods for general model fitting. Like classical regression calibration, the idea is to replace the unobserved variable subject to measurement error with a proxy that can be used in a variety of analyses. Moment reconstruction and moment-adjusted imputation differ from regression calibration in that they attempt to match multiple features of the latent variable, and also to match some of the latent variable's relationships with the response and additional covariates. In this note, we consider a problem where true exposure is generated by a complex, nonlinear random effects modeling process, and develop analogues of moment reconstruction and moment-adjusted imputation for this case. This general model includes classical measurement errors, Berkson measurement errors, mixtures of Berkson and classical errors and problems that are not measurement error problems, but also cases where the data-generating process for true exposure is a complex, nonlinear random effects modeling process. The methods are illustrated using the National Institutes of Health-AARP Diet and Health Study where the latent variable is a dietary pattern score called the Healthy Eating Index-2005. We also show how our general model includes methods used in radiation epidemiology as a special case. Simulations are used to illustrate the methods.For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et al., 2011) are appealing, computationally simple imputation-like methods for general model fitting. Like classical regression calibration, the idea is to replace the unobserved variable subject to measurement error with a proxy that can be used in a variety of analyses. Moment reconstruction and moment-adjusted imputation differ from regression calibration in that they attempt to match multiple features of the latent variable, and also to match some of the latent variable's relationships with the response and additional covariates. In this note, we consider a problem where true exposure is generated by a complex, nonlinear random effects modeling process, and develop analogues of moment reconstruction and moment-adjusted imputation for this case. This general model includes classical measurement errors, Berkson measurement errors, mixtures of Berkson and classical errors and problems that are not measurement error problems, but also cases where the data-generating process for true exposure is a complex, nonlinear random effects modeling process. The methods are illustrated using the National Institutes of Health-AARP Diet and Health Study where the latent variable is a dietary pattern score called the Healthy Eating Index-2005. We also show how our general model includes methods used in radiation epidemiology as a special case. Simulations are used to illustrate the methods.
Author Freedman, Laurence S.
Kipnis, Victor
Wei, Rubin
Carroll, Raymond J.
Potgieter, Cornelis J.
AuthorAffiliation 5 Department of Statistics, Texas A&M University, College Station, TX 77843, and School of Mathematical and Physical Sciences, University of Technology, Sydney, NSW, 2007
3 Biometry Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20814
4 Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel
2 Eli Lilly and Company, Indianapolis IN 46285
1 Department of Statistical Science, Southern Methodist University, Dallas TX 75275
AuthorAffiliation_xml – name: 1 Department of Statistical Science, Southern Methodist University, Dallas TX 75275
– name: 2 Eli Lilly and Company, Indianapolis IN 46285
– name: 4 Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel
– name: 3 Biometry Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20814
– name: 5 Department of Statistics, Texas A&M University, College Station, TX 77843, and School of Mathematical and Physical Sciences, University of Technology, Sydney, NSW, 2007
Author_xml – sequence: 1
  givenname: Cornelis J.
  surname: Potgieter
  fullname: Potgieter, Cornelis J.
  email: cpotgieter@smu.edu, cpotgieter@smu.eduweirubin@gmail.comkipnisv@mail.nih.govlsf@actcom.co.ilcarroll@stat.tamu.edu
  organization: Department of Statistical Science, Southern Methodist University, Dallas, Texas 75275, U.S.A
– sequence: 2
  givenname: Rubin
  surname: Wei
  fullname: Wei, Rubin
  email: weirubin@gmail.com, cpotgieter@smu.eduweirubin@gmail.comkipnisv@mail.nih.govlsf@actcom.co.ilcarroll@stat.tamu.edu
  organization: Eli Lilly and Company, Indianapolis, Indiana 46285, U.S.A
– sequence: 3
  givenname: Victor
  surname: Kipnis
  fullname: Kipnis, Victor
  email: kipnisv@mail.nih.gov, cpotgieter@smu.eduweirubin@gmail.comkipnisv@mail.nih.govlsf@actcom.co.ilcarroll@stat.tamu.edu
  organization: Biometry Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland 20814, U.S.A
– sequence: 4
  givenname: Laurence S.
  surname: Freedman
  fullname: Freedman, Laurence S.
  email: lsf@actcom.co.il, cpotgieter@smu.eduweirubin@gmail.comkipnisv@mail.nih.govlsf@actcom.co.ilcarroll@stat.tamu.edu
  organization: Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel
– sequence: 5
  givenname: Raymond J.
  surname: Carroll
  fullname: Carroll, Raymond J.
  email: carroll@stat.tamu.edu, cpotgieter@smu.eduweirubin@gmail.comkipnisv@mail.nih.govlsf@actcom.co.ilcarroll@stat.tamu.edu
  organization: Department of Statistics, Texas A&M University, College Station, Texas 77843, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27061196$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhSNURKeFDXuQJTYVkGI7tpNskGhFS1FLNyDYWY5zM82Q2MFOmJkn4LVxJu3wsxjw5so637nXPvZBtGesgSh6TPAxCetVUdv2mFBO2b1oRjgjMWYU70UzjLGIE0a-7EcH3i_CNueYPoj2aYoFIbmYRT-ubAumRw60Nb53g-5ra5AyJWo3SqzKxeB7KFHddkOvNvLyBgyCVWf94ADVHs3BgFMjVayRQtq2XQOrlyictKkNKIdcaGlbBFUFuveheQlBmaPOWQ3eP4zuV6rx8Oi2Hkafzt5-PH0XX16fX5y-uYw1F4TFUGCtWVmJQnGqVVZUhAPRJCc6TQnTGgoIFbOEUZIynmUpzmkgaY6VUFlyGL2Y-g6mU-ulahrZubpVbi0JlmOccoxTbuIM9OuJ7oaihVKHPJz65bCqln8qpr6Rc_tdcsx5xsZxR7cNnP02gO9lW3sNTaMM2MFLGt6EpSmj_0ZJJrKEYJrl_4FSIUTCMQ7os7_QhR2cCRFLktMkZZjkfCeV8QTzJMvHsU9_T2Mbw91vCsDzCdDOeu-g2p0tmeBl3cB6BylPLq6v7jxPJs_C99ZtPYyJcAk-6vGk1-HHrra6cl-lSJOUy88fzmUmCD9L3nOJk582EwOv
CODEN BIOMA5
Cites_doi 10.1214/10-AOAS446
10.1201/9781420010138
10.1201/9781420066586
10.1093/aje/154.12.1119
10.1111/j.1467-9868.2006.00540.x
10.1667/RR1059.1
10.1111/j.1541-0420.2006.00632.x
10.1111/j.1541-0420.2009.01223.x
10.1002/1097-0258(20010115)20:1<139::AID-SIM644>3.0.CO;2-K
10.1111/j.0006-341X.2004.00164.x
10.1093/biomet/69.2.331
10.1002/(SICI)1097-0258(19981015)17:19<2157::AID-SIM916>3.0.CO;2-F
10.1093/oxfordjournals.aje.a115715
10.1214/13-AOS1122
10.1002/9780470316665
10.1093/jn/133.2.601S
10.1111/j.0006-341X.2002.00013.x
10.1080/01621459.1996.10476712
10.2202/1557-4679.1267
10.1111/j.1541-0420.2011.01569.x
10.1016/j.jada.2008.08.011
10.1080/01621459.2000.10473898
10.1093/aje/kwn097
10.1002/sim.3361
10.1667/RR3596.1
10.1016/j.csda.2013.04.017
ContentType Journal Article
Copyright Copyright © 2016 International Biometric Society
2016, The International Biometric Society
2016, The International Biometric Society.
Copyright_xml – notice: Copyright © 2016 International Biometric Society
– notice: 2016, The International Biometric Society
– notice: 2016, The International Biometric Society.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7U7
C1K
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1111/biom.12524
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
Toxicology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
Toxicology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
ProQuest Computer Science Collection
Toxicology Abstracts
MEDLINE

AGRICOLA
ProQuest Computer Science Collection
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 1377
ExternalDocumentID oai:pubmedcentral.nih.gov:5055848
PMC5055848
4287430651
27061196
10_1111_biom_12524
BIOM12524
44695354
ark_67375_WNG_8615F3J5_0
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U01 CA057030
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAMMB
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAYCA
AAZKR
AAZSN
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFGKR
AFKRA
AFVYC
AFWVQ
AFZJQ
AGLNM
AGQPQ
AGTJU
AGXDD
AHGBF
AHMBA
AIAGR
AIDQK
AIDYY
AIHAF
AIURR
AJAOE
AJBYB
AJNCP
AJXKR
ALAGY
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
H13
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AGORE
ALIPV
3V.
AAHHS
ABTAH
ACCFJ
ADZOD
AEEZP
AELPN
AEQDE
AEUQT
AFFTP
AFPWT
AIBGX
AIWBW
AJBDE
JSODD
VQA
WRC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
JQ2
7X8
7U7
C1K
7S9
L.6
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5614-eb0cc4df6ba52ca8bf15e1c191c7714ccebe7140434217458870922ca290a6a83
IEDL.DBID UNPAY
ISSN 0006-341X
1541-0420
IngestDate Sun Oct 26 04:16:48 EDT 2025
Tue Sep 30 16:55:14 EDT 2025
Fri Oct 03 00:12:36 EDT 2025
Tue Oct 07 10:13:38 EDT 2025
Sat Sep 27 19:42:50 EDT 2025
Wed Aug 13 06:37:40 EDT 2025
Wed Aug 13 09:20:33 EDT 2025
Wed Feb 19 02:43:17 EST 2025
Wed Oct 01 01:41:34 EDT 2025
Wed Jan 22 16:56:49 EST 2025
Thu Jul 03 22:16:58 EDT 2025
Sun Sep 21 06:29:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Computer models
Latent variable models
Berkson-type error
Healthy Eating Index-2005
Classical measurement error
Moment-adjusted imputation
Moment reconstruction
Nutritional epidemiology
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
2016, The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5614-eb0cc4df6ba52ca8bf15e1c191c7714ccebe7140434217458870922ca290a6a83
Notes istex:4EC24AC87BF0C24A168D84B8FC1464BB99BDAF05
ark:/67375/WNG-8615F3J5-0
ArticleID:BIOM12524
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
weirubin@gmail.com
cpotgieter@smu.edu
kipnisv@mail.nih.gov
carroll@stat.tamu.edu
lsf@actcom.co.il
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1111/biom.12524
PMID 27061196
PQID 1853053899
PQPubID 35366
PageCount 9
ParticipantIDs unpaywall_primary_10_1111_biom_12524
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5055848
proquest_miscellaneous_2000477428
proquest_miscellaneous_1868310289
proquest_miscellaneous_1826663500
proquest_journals_1923740195
proquest_journals_1853053899
pubmed_primary_27061196
crossref_primary_10_1111_biom_12524
wiley_primary_10_1111_biom_12524_BIOM12524
jstor_primary_44695354
istex_primary_ark_67375_WNG_8615F3J5_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2016
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biom
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References Sugar, E. A., Wang, C.-Y., and Prentice, R. L. (2007). Logistic regression with exposure biomarkers and flexible measurement error. Biometrics 63, 143-151.
Mallick, B., Hoffman, F. O., and Carroll, R. J. (2002). Semiparametric regression modeling with mixtures of berkson and classical error, with application to fallout from the Nevada test site. Biometrics 58, 13-20.
Carriquiry, A. L. (2003). Estimation of usual intake distributions of nutrients and foods. The Journal of Nutrition 133, 601S-608S.
Schennach, S. M. (2013). Regressions with Berkson errors in covariates a nonparametric approach. Annals of Statistics 41, 1642-1668.
Guenther, P. M., Reedy, J., Krebs-Smith, S. M., and Reeve, B. B. (2008). Evaluation of the Healthy Eating Index-2005. Journal of the American Dietetic Association 108, 1854-1864.
Thomas, L., Stefanski, L. A., and Davidian, M. (2013). Moment adjusted imputation for multivariate measurement error data with applications to logistic regression. Computational Statistics & Data Analysis 67, 15-24.
Thomas, L., Stefanski, L. A., and Davidian, M. (2011). A moment-adjusted imputation method for measurement error models. Biometrics 67, 1461-1470.
Nusser, S. M., Carriquiry, A. L., Dodd, K. W., and Fuller, W. A. (1996). A semiparametric transformation approach to estimating usual daily intake distributions. Journal of the American Statistical Association 91, 1440-1449.
Pierce, D. A., Væth, M., and Cologne, J. B. (2009). Allowance for random dose estimation errors in atomic bomb survivor studies: A revision. Radiation Research 170, 118-126.
Reeves, G., Cox, D., Darby, S., and Whitley, E. (1998). Some aspects of measurement error in explanatory variables for continuous and binary regression models. Statistics in Medicine 17, 2157-2177.\enlargethispage 10pt
Schatzkin, A., Subar, A. F., Thompson, F. E., Harlan, L. C., Tangrea, J., Hollenbeck, A. R., et al. (2001). Design and serendipity in establishing a large cohort with wide dietary intake distributions: the national institutes of health-aarp diet and health study. American Journal of Epidemiology 154, 1119-1125.
Zhang, S., Midthune, D., P'erez, A., Buckman, D. W., Kipnis, V., Freedman, L. S., et al. (2011). Fitting a bivariate measurement error model for episodically consumed dietary components. International Journal of Biostatistics 7, 1-32. Available at: http://www.bepress.com/ijb/vol7/iss1/1
Delaigle, A., Hall, P., and Qiu, P. (2006). Nonparametric methods for solving the Berkson errors-in-variables problem. Journal of the Royal Statistical Society, Series B 68, 201-220.
Rosner, B., Spiegelman, D., and Willett, W. C. (1990). Correction of logistic regression relative risk estimates and confidence intervals for measurement error: the case of multiple covariates measured with error. American Journal of Epidemiology 132, 734-745.
Zhang, S., Midthune, D., Guenther, P. M., Krebs-Smith, S. M., Kipnis, V., Dodd, et al. (2011). A new multivariate measurement error model with zero-inflated dietary data, and its application to dietary assessment. Annals of Applied Statistics 5, 1456-1487.
Spiegelman, D., Rosner, B., and Logan, R. (2000). Estimation and inference for logistic regression with covariate misclassification and measurement error in main study/validation study designs. Journal of the American Statistical Association 95, 51-61.
Freedman, L. S., Midthune, D., Carroll, R. J., and Kipnis, V. (2008). A comparison of regression calibration, moment reconstruction and imputation for adjusting for covariate measurement error in regression. Statistics in Medicine 27, 5195-6216.
Reedy, J. R., Mitrou, P. N., Krebs-Smith, S. M., Wirfält, E., Flood, A. V., Kipnis, V., et al. (2008). Index-based dietary patterns and risk of colorectal cancer: the nih-aarp diet and health study. American Journal of Epidemiology 168, 38-48.
Spiegelman, D., Carroll, R. J., and Kipnis, V. (2001). Efficient regression calibration for logistic regression in main study/internal validation study designs with an imperfect reference instrument. Statistics in Medicine 20, 139-160.
Kipnis, V., Midthune, D., Buckman, D. W., Dodd, K. W., Guenther, P. M., Krebs-Smith, S.M., et al. (2009). Modeling data with excess zeros and measurement error: application to evaluating relationships between episodically consumed foods and health outcomes. Biometrics 65, 1003-1010.
Prentice, R. L. (1982). Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika 69, 331-342.
Freedman, L. S., Feinberg, V., Kipnis, V., Midthune, D., and Carroll, R. J. (2004). A new method for dealing with measurement error in explanatory variables of regression models. Biometrics 60, 171-181.
Kopecky, K. J., Stepanenko, V., Rivkind, N., Voillequé, P., Onstad, L., Shakhtarin, V., et al. (2011). Childhood thyroid cancer, radiation dose from Chernobyl and dose uncertainties in Bryansk Oblast, Russia: A population-based case-control study. Radiation Research 166, 367-374.
2002; 58
2009; 65
2004; 60
2010
2013; 67
2013; 41
2008; 108
2000; 95
2006
2004
2002
1996; 91
2008; 168
2011; 5
2003; 133
2011; 7
2001; 20
2001; 154
1982; 69
1998; 17
2006; 68
2000
2009; 170
2008; 27
1987
2011; 67
2007; 63
1990; 132
2011; 166
Freedman (2024011003333717200_biom12524-bib-0007) 2008; 27
Mallick (2024011003333717200_biom12524-bib-0013) 2002; 58
Prentice (2024011003333717200_biom12524-bib-0017) 1982; 69
Carriquiry (2024011003333717200_biom12524-bib-0002) 2003; 133
Kipnis (2024011003333717200_biom12524-bib-0011) 2009; 65
Nusser (2024011003333717200_biom12524-bib-0014) 1996; 91
Ostrouchov (2024011003333717200_biom12524-bib-0015) 2000
Guenther (2024011003333717200_biom12524-bib-0009) 2008; 108
Fuller (2024011003333717200_biom12524-bib-0008) 1987
Freedman (2024011003333717200_biom12524-bib-0006) 2004; 60
Spiegelman (2024011003333717200_biom12524-bib-0024) 2000; 95
Zhang (2024011003333717200_biom12524-bib-0028) 2011; 5
Pierce (2024011003333717200_biom12524-bib-0016) 2009; 170
Sugar (2024011003333717200_biom12524-bib-0025) 2007; 63
Delaigle (2024011003333717200_biom12524-bib-0005) 2006; 68
Schennach (2024011003333717200_biom12524-bib-0022) 2013; 41
Buonaccorsi (2024011003333717200_biom12524-bib-0001) 2010
Carroll (2024011003333717200_biom12524-bib-0003) 2006
Zhang (2024011003333717200_biom12524-bib-0029) 2011; 7
Davis (2024011003333717200_biom12524-bib-0004) 2002
Rosner (2024011003333717200_biom12524-bib-0020) 1990; 132
Thomas (2024011003333717200_biom12524-bib-0026) 2011; 67
Schatzkin (2024011003333717200_biom12524-bib-0021) 2001; 154
Thomas (2024011003333717200_biom12524-bib-0027) 2013; 67
Spiegelman (2024011003333717200_biom12524-bib-0023) 2001; 20
Kopecky (2024011003333717200_biom12524-bib-0012) 2011; 166
Gustafson (2024011003333717200_biom12524-bib-0010) 2004
Reedy (2024011003333717200_biom12524-bib-0018) 2008; 168
Reeves (2024011003333717200_biom12524-bib-0019) 1998; 17
9802176 - Stat Med. 1998 Oct 15;17(19):2157-77
16881738 - Radiat Res. 2006 Aug;166(2):367-74
11744517 - Am J Epidemiol. 2001 Dec 15;154(12):1119-25
24072947 - Comput Stat Data Anal. 2013 Nov 1;67:15-24
21804910 - Ann Appl Stat. 2011 Jun 1;5(2B):1456-1487
18582151 - Radiat Res. 2008 Jul;170(1):118-26
15032787 - Biometrics. 2004 Mar;60(1):172-81
2403114 - Am J Epidemiol. 1990 Oct;132(4):734-45
11890308 - Biometrics. 2002 Mar;58(1):13-20
18954575 - J Am Diet Assoc. 2008 Nov;108(11):1854-64
12566510 - J Nutr. 2003 Feb;133(2):601S-8S
18525082 - Am J Epidemiol. 2008 Jul 1;168(1):38-48
17447939 - Biometrics. 2007 Mar;63(1):143-51
11135353 - Stat Med. 2001 Jan 15;20(1):139-160
21385161 - Biometrics. 2011 Dec;67(4):1461-70
19302405 - Biometrics. 2009 Dec;65(4):1003-10
22848190 - Int J Biostat. 2011;7(1):1
18680172 - Stat Med. 2008 Nov 10;27(25):5195-216
References_xml – reference: Kopecky, K. J., Stepanenko, V., Rivkind, N., Voillequé, P., Onstad, L., Shakhtarin, V., et al. (2011). Childhood thyroid cancer, radiation dose from Chernobyl and dose uncertainties in Bryansk Oblast, Russia: A population-based case-control study. Radiation Research 166, 367-374.
– reference: Mallick, B., Hoffman, F. O., and Carroll, R. J. (2002). Semiparametric regression modeling with mixtures of berkson and classical error, with application to fallout from the Nevada test site. Biometrics 58, 13-20.
– reference: Carriquiry, A. L. (2003). Estimation of usual intake distributions of nutrients and foods. The Journal of Nutrition 133, 601S-608S.
– reference: Delaigle, A., Hall, P., and Qiu, P. (2006). Nonparametric methods for solving the Berkson errors-in-variables problem. Journal of the Royal Statistical Society, Series B 68, 201-220.
– reference: Reeves, G., Cox, D., Darby, S., and Whitley, E. (1998). Some aspects of measurement error in explanatory variables for continuous and binary regression models. Statistics in Medicine 17, 2157-2177.\enlargethispage 10pt
– reference: Thomas, L., Stefanski, L. A., and Davidian, M. (2011). A moment-adjusted imputation method for measurement error models. Biometrics 67, 1461-1470.
– reference: Spiegelman, D., Carroll, R. J., and Kipnis, V. (2001). Efficient regression calibration for logistic regression in main study/internal validation study designs with an imperfect reference instrument. Statistics in Medicine 20, 139-160.
– reference: Reedy, J. R., Mitrou, P. N., Krebs-Smith, S. M., Wirfält, E., Flood, A. V., Kipnis, V., et al. (2008). Index-based dietary patterns and risk of colorectal cancer: the nih-aarp diet and health study. American Journal of Epidemiology 168, 38-48.
– reference: Freedman, L. S., Midthune, D., Carroll, R. J., and Kipnis, V. (2008). A comparison of regression calibration, moment reconstruction and imputation for adjusting for covariate measurement error in regression. Statistics in Medicine 27, 5195-6216.
– reference: Zhang, S., Midthune, D., Guenther, P. M., Krebs-Smith, S. M., Kipnis, V., Dodd, et al. (2011). A new multivariate measurement error model with zero-inflated dietary data, and its application to dietary assessment. Annals of Applied Statistics 5, 1456-1487.
– reference: Freedman, L. S., Feinberg, V., Kipnis, V., Midthune, D., and Carroll, R. J. (2004). A new method for dealing with measurement error in explanatory variables of regression models. Biometrics 60, 171-181.
– reference: Prentice, R. L. (1982). Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika 69, 331-342.
– reference: Schatzkin, A., Subar, A. F., Thompson, F. E., Harlan, L. C., Tangrea, J., Hollenbeck, A. R., et al. (2001). Design and serendipity in establishing a large cohort with wide dietary intake distributions: the national institutes of health-aarp diet and health study. American Journal of Epidemiology 154, 1119-1125.
– reference: Rosner, B., Spiegelman, D., and Willett, W. C. (1990). Correction of logistic regression relative risk estimates and confidence intervals for measurement error: the case of multiple covariates measured with error. American Journal of Epidemiology 132, 734-745.
– reference: Sugar, E. A., Wang, C.-Y., and Prentice, R. L. (2007). Logistic regression with exposure biomarkers and flexible measurement error. Biometrics 63, 143-151.
– reference: Guenther, P. M., Reedy, J., Krebs-Smith, S. M., and Reeve, B. B. (2008). Evaluation of the Healthy Eating Index-2005. Journal of the American Dietetic Association 108, 1854-1864.
– reference: Thomas, L., Stefanski, L. A., and Davidian, M. (2013). Moment adjusted imputation for multivariate measurement error data with applications to logistic regression. Computational Statistics & Data Analysis 67, 15-24.
– reference: Kipnis, V., Midthune, D., Buckman, D. W., Dodd, K. W., Guenther, P. M., Krebs-Smith, S.M., et al. (2009). Modeling data with excess zeros and measurement error: application to evaluating relationships between episodically consumed foods and health outcomes. Biometrics 65, 1003-1010.
– reference: Nusser, S. M., Carriquiry, A. L., Dodd, K. W., and Fuller, W. A. (1996). A semiparametric transformation approach to estimating usual daily intake distributions. Journal of the American Statistical Association 91, 1440-1449.
– reference: Spiegelman, D., Rosner, B., and Logan, R. (2000). Estimation and inference for logistic regression with covariate misclassification and measurement error in main study/validation study designs. Journal of the American Statistical Association 95, 51-61.
– reference: Zhang, S., Midthune, D., P'erez, A., Buckman, D. W., Kipnis, V., Freedman, L. S., et al. (2011). Fitting a bivariate measurement error model for episodically consumed dietary components. International Journal of Biostatistics 7, 1-32. Available at: http://www.bepress.com/ijb/vol7/iss1/1
– reference: Pierce, D. A., Væth, M., and Cologne, J. B. (2009). Allowance for random dose estimation errors in atomic bomb survivor studies: A revision. Radiation Research 170, 118-126.
– reference: Schennach, S. M. (2013). Regressions with Berkson errors in covariates a nonparametric approach. Annals of Statistics 41, 1642-1668.
– volume: 69
  start-page: 331
  year: 1982
  end-page: 342
  article-title: Covariate measurement errors and parameter estimation in a failure time regression model
  publication-title: Biometrika
– volume: 95
  start-page: 51
  year: 2000
  end-page: 61
  article-title: Estimation and inference for logistic regression with covariate misclassification and measurement error in main study/validation study designs
  publication-title: Journal of the American Statistical Association
– volume: 154
  start-page: 1119
  year: 2001
  end-page: 1125
  article-title: Design and serendipity in establishing a large cohort with wide dietary intake distributions: the national institutes of health‐aarp diet and health study
  publication-title: American Journal of Epidemiology
– year: 1987
– volume: 166
  start-page: 367
  year: 2011
  end-page: 374
  article-title: Childhood thyroid cancer, radiation dose from Chernobyl and dose uncertainties in Bryansk Oblast, Russia: A population‐based case‐control study
  publication-title: Radiation Research
– year: 2000
– volume: 63
  start-page: 143
  year: 2007
  end-page: 151
  article-title: Logistic regression with exposure biomarkers and flexible measurement error
  publication-title: Biometrics
– volume: 5
  start-page: 1456
  year: 2011
  end-page: 1487
  article-title: A new multivariate measurement error model with zero‐inflated dietary data, and its application to dietary assessment
  publication-title: Annals of Applied Statistics
– volume: 27
  start-page: 5195
  year: 2008
  end-page: 6216
  article-title: A comparison of regression calibration, moment reconstruction and imputation for adjusting for covariate measurement error in regression
  publication-title: Statistics in Medicine
– volume: 108
  start-page: 1854
  year: 2008
  end-page: 1864
  article-title: Evaluation of the Healthy Eating Index‐2005
  publication-title: Journal of the American Dietetic Association
– volume: 132
  start-page: 734
  year: 1990
  end-page: 745
  article-title: Correction of logistic regression relative risk estimates and confidence intervals for measurement error: the case of multiple covariates measured with error
  publication-title: American Journal of Epidemiology
– volume: 58
  start-page: 13
  year: 2002
  end-page: 20
  article-title: Semiparametric regression modeling with mixtures of berkson and classical error, with application to fallout from the Nevada test site
  publication-title: Biometrics
– year: 2010
– volume: 7
  start-page: 1
  year: 2011
  end-page: 32
  article-title: Fitting a bivariate measurement error model for episodically consumed dietary components
  publication-title: International Journal of Biostatistics
– volume: 168
  start-page: 38
  year: 2008
  end-page: 48
  article-title: Index‐based dietary patterns and risk of colorectal cancer: the nih–aarp diet and health study
  publication-title: American Journal of Epidemiology
– volume: 60
  start-page: 171
  year: 2004
  end-page: 181
  article-title: A new method for dealing with measurement error in explanatory variables of regression models
  publication-title: Biometrics
– volume: 41
  start-page: 1642
  year: 2013
  end-page: 1668
  article-title: Regressions with Berkson errors in covariates a nonparametric approach
  publication-title: Annals of Statistics
– volume: 17
  start-page: 2157
  year: 1998
  end-page: 2177
  article-title: Some aspects of measurement error in explanatory variables for continuous and binary regression models
  publication-title: Statistics in Medicine
– volume: 67
  start-page: 1461
  year: 2011
  end-page: 1470
  article-title: A moment‐adjusted imputation method for measurement error models
  publication-title: Biometrics
– year: 2002
– volume: 170
  start-page: 118
  year: 2009
  end-page: 126
  article-title: Allowance for random dose estimation errors in atomic bomb survivor studies: A revision
  publication-title: Radiation Research
– volume: 91
  start-page: 1440
  year: 1996
  end-page: 1449
  article-title: A semiparametric transformation approach to estimating usual daily intake distributions
  publication-title: Journal of the American Statistical Association
– year: 2006
– year: 2004
– volume: 68
  start-page: 201
  year: 2006
  end-page: 220
  article-title: Nonparametric methods for solving the Berkson errors‐in‐variables problem
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 20
  start-page: 139
  year: 2001
  end-page: 160
  article-title: Efficient regression calibration for logistic regression in main study/internal validation study designs with an imperfect reference instrument
  publication-title: Statistics in Medicine
– volume: 67
  start-page: 15
  year: 2013
  end-page: 24
  article-title: Moment adjusted imputation for multivariate measurement error data with applications to logistic regression
  publication-title: Computational Statistics & Data Analysis
– volume: 133
  start-page: 601S
  year: 2003
  end-page: 608S
  article-title: Estimation of usual intake distributions of nutrients and foods
  publication-title: The Journal of Nutrition
– volume: 65
  start-page: 1003
  year: 2009
  end-page: 1010
  article-title: Modeling data with excess zeros and measurement error: application to evaluating relationships between episodically consumed foods and health outcomes
  publication-title: Biometrics
– volume: 5
  start-page: 1456
  year: 2011
  ident: 2024011003333717200_biom12524-bib-0028
  article-title: A new multivariate measurement error model with zero-inflated dietary data, and its application to dietary assessment
  publication-title: Annals of Applied Statistics
  doi: 10.1214/10-AOAS446
– volume-title: Measurement Error in Nonlinear Models: A Modern Perspective, Second Edition
  year: 2006
  ident: 2024011003333717200_biom12524-bib-0003
  doi: 10.1201/9781420010138
– volume-title: Measurement Error: Models, Methods and Applications
  year: 2010
  ident: 2024011003333717200_biom12524-bib-0001
  doi: 10.1201/9781420066586
– volume: 154
  start-page: 1119
  year: 2001
  ident: 2024011003333717200_biom12524-bib-0021
  article-title: Design and serendipity in establishing a large cohort with wide dietary intake distributions: the national institutes of health-aarp diet and health study
  publication-title: American Journal of Epidemiology
  doi: 10.1093/aje/154.12.1119
– volume: 68
  start-page: 201
  year: 2006
  ident: 2024011003333717200_biom12524-bib-0005
  article-title: Nonparametric methods for solving the Berkson errors-in-variables problem
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.1467-9868.2006.00540.x
– volume: 170
  start-page: 118
  year: 2009
  ident: 2024011003333717200_biom12524-bib-0016
  article-title: Allowance for random dose estimation errors in atomic bomb survivor studies: A revision
  publication-title: Radiation Research
  doi: 10.1667/RR1059.1
– volume: 63
  start-page: 143
  year: 2007
  ident: 2024011003333717200_biom12524-bib-0025
  article-title: Logistic regression with exposure biomarkers and flexible measurement error
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00632.x
– volume-title: Hanford Thyroid Disease Study: Final Report
  year: 2002
  ident: 2024011003333717200_biom12524-bib-0004
– volume: 65
  start-page: 1003
  year: 2009
  ident: 2024011003333717200_biom12524-bib-0011
  article-title: Modeling data with excess zeros and measurement error: application to evaluating relationships between episodically consumed foods and health outcomes
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2009.01223.x
– volume: 20
  start-page: 139
  year: 2001
  ident: 2024011003333717200_biom12524-bib-0023
  article-title: Efficient regression calibration for logistic regression in main study/internal validation study designs with an imperfect reference instrument
  publication-title: Statistics in Medicine
  doi: 10.1002/1097-0258(20010115)20:1<139::AID-SIM644>3.0.CO;2-K
– volume: 60
  start-page: 171
  year: 2004
  ident: 2024011003333717200_biom12524-bib-0006
  article-title: A new method for dealing with measurement error in explanatory variables of regression models
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2004.00164.x
– volume: 69
  start-page: 331
  year: 1982
  ident: 2024011003333717200_biom12524-bib-0017
  article-title: Covariate measurement errors and parameter estimation in a failure time regression model
  publication-title: Biometrika
  doi: 10.1093/biomet/69.2.331
– volume: 17
  start-page: 2157
  year: 1998
  ident: 2024011003333717200_biom12524-bib-0019
  article-title: Some aspects of measurement error in explanatory variables for continuous and binary regression models
  publication-title: Statistics in Medicine
  doi: 10.1002/(SICI)1097-0258(19981015)17:19<2157::AID-SIM916>3.0.CO;2-F
– volume: 132
  start-page: 734
  year: 1990
  ident: 2024011003333717200_biom12524-bib-0020
  article-title: Correction of logistic regression relative risk estimates and confidence intervals for measurement error: the case of multiple covariates measured with error
  publication-title: American Journal of Epidemiology
  doi: 10.1093/oxfordjournals.aje.a115715
– volume-title: Dose Estimation from Daily and Weekly Dosimetry Data
  year: 2000
  ident: 2024011003333717200_biom12524-bib-0015
– volume: 41
  start-page: 1642
  year: 2013
  ident: 2024011003333717200_biom12524-bib-0022
  article-title: Regressions with Berkson errors in covariates a nonparametric approach
  publication-title: Annals of Statistics
  doi: 10.1214/13-AOS1122
– volume-title: Measurement Error Models
  year: 1987
  ident: 2024011003333717200_biom12524-bib-0008
  doi: 10.1002/9780470316665
– volume: 133
  start-page: 601S
  year: 2003
  ident: 2024011003333717200_biom12524-bib-0002
  article-title: Estimation of usual intake distributions of nutrients and foods
  publication-title: The Journal of Nutrition
  doi: 10.1093/jn/133.2.601S
– volume: 58
  start-page: 13
  year: 2002
  ident: 2024011003333717200_biom12524-bib-0013
  article-title: Semiparametric regression modeling with mixtures of berkson and classical error, with application to fallout from the Nevada test site
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2002.00013.x
– volume: 91
  start-page: 1440
  year: 1996
  ident: 2024011003333717200_biom12524-bib-0014
  article-title: A semiparametric transformation approach to estimating usual daily intake distributions
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1996.10476712
– volume: 7
  start-page: 1
  year: 2011
  ident: 2024011003333717200_biom12524-bib-0029
  article-title: Fitting a bivariate measurement error model for episodically consumed dietary components
  publication-title: International Journal of Biostatistics
  doi: 10.2202/1557-4679.1267
– volume-title: Measurement Error and Misclassication in Statistics and Epidemiology
  year: 2004
  ident: 2024011003333717200_biom12524-bib-0010
– volume: 67
  start-page: 1461
  year: 2011
  ident: 2024011003333717200_biom12524-bib-0026
  article-title: A moment-adjusted imputation method for measurement error models
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2011.01569.x
– volume: 108
  start-page: 1854
  year: 2008
  ident: 2024011003333717200_biom12524-bib-0009
  article-title: Evaluation of the Healthy Eating Index-2005
  publication-title: Journal of the American Dietetic Association
  doi: 10.1016/j.jada.2008.08.011
– volume: 95
  start-page: 51
  year: 2000
  ident: 2024011003333717200_biom12524-bib-0024
  article-title: Estimation and inference for logistic regression with covariate misclassification and measurement error in main study/validation study designs
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2000.10473898
– volume: 168
  start-page: 38
  year: 2008
  ident: 2024011003333717200_biom12524-bib-0018
  article-title: Index-based dietary patterns and risk of colorectal cancer: the nih–aarp diet and health study
  publication-title: American Journal of Epidemiology
  doi: 10.1093/aje/kwn097
– volume: 27
  start-page: 5195
  year: 2008
  ident: 2024011003333717200_biom12524-bib-0007
  article-title: A comparison of regression calibration, moment reconstruction and imputation for adjusting for covariate measurement error in regression
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3361
– volume: 166
  start-page: 367
  year: 2011
  ident: 2024011003333717200_biom12524-bib-0012
  article-title: Childhood thyroid cancer, radiation dose from Chernobyl and dose uncertainties in Bryansk Oblast, Russia: A population-based case-control study
  publication-title: Radiation Research
  doi: 10.1667/RR3596.1
– volume: 67
  start-page: 15
  year: 2013
  ident: 2024011003333717200_biom12524-bib-0027
  article-title: Moment adjusted imputation for multivariate measurement error data with applications to logistic regression
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2013.04.017
– reference: 17447939 - Biometrics. 2007 Mar;63(1):143-51
– reference: 12566510 - J Nutr. 2003 Feb;133(2):601S-8S
– reference: 11135353 - Stat Med. 2001 Jan 15;20(1):139-160
– reference: 15032787 - Biometrics. 2004 Mar;60(1):172-81
– reference: 21804910 - Ann Appl Stat. 2011 Jun 1;5(2B):1456-1487
– reference: 19302405 - Biometrics. 2009 Dec;65(4):1003-10
– reference: 11890308 - Biometrics. 2002 Mar;58(1):13-20
– reference: 21385161 - Biometrics. 2011 Dec;67(4):1461-70
– reference: 16881738 - Radiat Res. 2006 Aug;166(2):367-74
– reference: 11744517 - Am J Epidemiol. 2001 Dec 15;154(12):1119-25
– reference: 22848190 - Int J Biostat. 2011;7(1):1
– reference: 18525082 - Am J Epidemiol. 2008 Jul 1;168(1):38-48
– reference: 18954575 - J Am Diet Assoc. 2008 Nov;108(11):1854-64
– reference: 9802176 - Stat Med. 1998 Oct 15;17(19):2157-77
– reference: 18680172 - Stat Med. 2008 Nov 10;27(25):5195-216
– reference: 2403114 - Am J Epidemiol. 1990 Oct;132(4):734-45
– reference: 24072947 - Comput Stat Data Anal. 2013 Nov 1;67:15-24
– reference: 18582151 - Radiat Res. 2008 Jul;170(1):118-26
SSID ssj0009502
Score 2.1722212
Snippet For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et al.,...
Summary For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment‐adjusted imputation (Thomas...
For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et al.,...
Summary For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment-adjusted imputation (Thomas et...
For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008) and moment‐adjusted imputation (Thomas et al.,...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
jstor
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1369
SubjectTerms Berkson-type error
BIOMETRIC PRACTICE
biometry
Calibration
Classical measurement error
Computer models
Computer Simulation
eating habits
Economic models
Epidemiology
Error analysis
Errors
Exposure
Feeding Behavior
healthy diet
Healthy Eating Index-2005
Humans
Latent variable models
Logistic Models
Measurement errors
Modelling
Models, Statistical
Moment reconstruction
Moment-adjusted imputation
Nutrition research
Nutrition Surveys - statistics & numerical data
Nutritional epidemiology
Reconstruction
Regression Analysis
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VRYhy4BEoGApaRMUB4ciPtZ2VuAAilEopEqIiF2TtrtdtaOtETaImnLhy4zfyS5jZjU0DJRLcLO34sat5fLOe_QZgO06FDJTQPnpF7vOQG1-YJPZLDEdKlrLISlvlu5fu7PPdftJfg-f1WRjHD9FsuJFlWH9NBi7V-JyR0_H0NobniMhAwzi1-dT76BzjbuCowqm4i4f9BTcplfH8unUpGl2ihZ3VhYkXQc4_KyevTKuRnJ_J4-NldGvDU_c6fKon5qpSjtrTiWrrL79xPv7vzG_AtQVuZS-cot2ENVO14LLrZDlvwdVeQ_86bsEGQVjHAH0LvvWI5GHCbOrd0NUyWRXsxI78-PpdFp-ntO_KBtRjwioLOzs0FTOz0ZD2MNlgzA4sQzZJqTmTzBbDm9kzVrk5yVOGcbcYnrBFjQqzXX4wNLOROw1xG_a7rz-82vEXDSB8TQSlvlGB1rwoUyWTSMuOKsPEhBpTTJ1lIdcaNTCz_ECcMqsEHWYgIpSMRCBT2Yk3YR2_wdwFFopCFCpBu5Gcq6KQSYy5GjqfrBQ65sqDx7Ui5CPH85HX-RGtd27X24MnVkcaEXl6RJVxWZJ_3HuTdxAeduPdJA882LRK1Ahi1i3olR5s1VqVL7zFOCfMhM4QU9-LhxGEU-NEkXjwqBlGN0D_dmRlhlN6BCItBI9BsEompbZymGL_XYZObnFMCaKOB3ecrjdziDIEf-ixPciWrKARIKry5ZFqcGgpyxFnI9LFZ2439rJymZ9a_V8hkr98-65nr-79i_B92EDEm7p6pC1YR6U3DxBVTtRD6z1-AiOGdcs
  priority: 102
  providerName: Wiley-Blackwell
Title Moment reconstruction and moment-adjusted imputation when exposure is generated by a complex, nonlinear random effects modeling process
URI https://api.istex.fr/ark:/67375/WNG-8615F3J5-0/fulltext.pdf
https://www.jstor.org/stable/44695354
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12524
https://www.ncbi.nlm.nih.gov/pubmed/27061196
https://www.proquest.com/docview/1853053899
https://www.proquest.com/docview/1923740195
https://www.proquest.com/docview/1826663500
https://www.proquest.com/docview/1868310289
https://www.proquest.com/docview/2000477428
https://pubmed.ncbi.nlm.nih.gov/PMC5055848
http://doi.org/10.1111/biom.12524
UnpaywallVersion submittedVersion
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1541-0420
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: ABDBF
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1541-0420
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: A8Z
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0006-341X
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB2VRIhy4CNQMJRoERUHhCPH3rXjYwINTaUEVBERTtauPwQ0OFGTiIQ_wN9mZtd2idpG3CLteCOvZ2ffs2feABx5figdFcY2RkVu8zZP7TAVnp3hcaRkJpMg01m-I_9kzE8nYrIHZX_Cfz_fU8IN1aC38Ax2-S2o-wLhdg3q49Gn7lcDa30bo_BEa6JypMXcdQoJ0u2Ltw6dOq3fusw_vA5ZXk2QvLPK53LzS06n2yBWn0L9-5e1PCb55Ly1WqpW_PuqtOPNN_gA7hUYlHWN0zyEvTRvwG3TlXLTgLvDSsp10YB9gqNGzfkR_BmSYMOSEWm9lJ5lMk-YGbG7yY8VvUFlA-oWoR87w4Cfs-P1fEZvI9lgwYzWNVmpDZOMYtI0Xb9lI6PbIS_YGU45-8mMtvKCUcc2qptnRV3DYxj3jz-_O7GLVg52TFKjdqqcOOZJ5isp3Fh2VNYWaTtGshgHQZvHMfpSoJV-OHEkgaHPCV20dENH-rLjHUAtn-XpU2DtMAkTJXAHSM5VkkjhIevCMBJkYexxZcGr8llHc6PYEZVMh1Y70qttwWvtBpWJvDinHLdARF9GH6IOAr2-dyoix4ID7SeVIfLnkP7SgsPScaJi3y8iQj8Y1pDEXj-McJpaIIbCgpfVMG5o-koj83S2oikQMyEMdJxdNj41iEOyfLMN1WBxBPdux4Inxp2re3ADhHEYey0Ithy9MiDR8e2R_Ps3LT6OiBkxK855VG2Jncv8Ru-WHSZRb_BxqH89-785n8M-olbf5BQdQg2dPX2ByHCpmlDv9t73-k3kRmdus4gUfwHoeV_w
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB1BK9Ry4CNQMBRYRMWhwpE_1nZ8BERISxMk1IrcrN31moa2TtQkasqJKzd-I7-EmV3HNFAiwS3STpzsamb2zfrtG4CtME6FJ1PlYlbkLve5dlMdhW6B25EUhciTwrB8e3HngO_2o37FzaG7MFYfoj5wo8gw-ZoCnA6kL0Q53U9v4v4c8KuwymMsVAgTfQguaO56Viyc6F3c71fqpETk-fXdhf1olZZ2NqcmXgY6_-ROrk3LkTg_E8fHi_jWbFDtm7YL69joGhIv5ag5ncim-vKb6uN_z_0W3KigK3tpfe02XNFlA67ZZpbnDbjerRVgxw1YJxRrRaDvwLcu6TxMmKm-a8VaJsqcnZiRH1-_i_zzlI5e2YDaTBh_YWeHumR6NhrSMSYbjNknI5JNVvKcCWb48Hr2gpV2UuKU4dabD09YRVNhptEP7s5sZC9E3IWD9pv91x236gHhKtIodbX0lOJ5EUsRBUq0ZOFH2ldYZaok8blS6ISJkQjiVFxFmDO9NEDLIPVELFrhBqzgf9D3gflpnuYywtARnMs8F1GI5Rrmn6RIVcilA8_mnpCNrNRHNi-RaL0zs94OPDdOUpuI0yMixyVR9rH3NmshQmyHu1HmObBhvKg2xMI7pZ90YHPuVlmVMMYZwSbMh1j9Xj6MOJx6J6aRA0_rYcwE9HpHlHo4pUcg2EL86HnLbGLqLIdV9t9t6PIWx6ogaDlwzzp7PYcgQfyHSduBZCEMagNSK18cKQeHRrUcoTaCXXzmVh0wS5d52wTAEpPs1c77rvn04F-Mn8BaZ7-7l-3t9N49hHUEwLGlJ23CCgaAfoQgcyIfm1TyE0rmeew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELWgFVAOfAQKCwWMqDggNtoPezc-AiW0hQSEqMhtZXu9NLTdRE2iJpy4cuM38kuYsTdLAyUS3CJ5somtmfEb7_MbQjbjRMhACe1DVmQ-C5nxheGxX8B2pGQh87SwLN9usr3Hdnu8V3Fz8C6M04eoD9wwMmy-xgA3w7w4FeV4P70J-3PEzpNVxkULGX1b76NTmruBEwtHehcLe5U6KRJ5fn13YT9axaWdzqmJZ4HOP7mTlyblUM5O5OHhIr61G1T7quvCOrK6hshLOWhOxqqpv_ym-vjfc79GrlTQlT5zvnadnDNlg1xwzSxnDXK5UyvAjhpkDVGsE4G-Qb51UOdhTG31XSvWUlnm9MiO_Pj6XeafJ3j0SvvYZsL6Cz3ZNyU10-EAjzFpf0Q_WZFstFIzKqnlw5vpU1q6ScljCltvPjiiFU2F2kY_sDvTobsQcZPstV9-eLHtVz0gfI0apb5RgdYsLxIleaRlSxUhN6GGKlOnaci0BidMrUQQw-KKQ84MRASWkQhkIlvxOlmB_2BuExqKXOSKQ-hIxlSeSx5DuQb5Jy2EjpnyyKO5J2RDJ_WRzUskXO_MrrdHHlsnqU3k8QGS41Kefey-ylqAENvxLs8Cj6xbL6oNofAW-JMe2Zi7VVYljFGGsAnyIVS_Zw8DDsfeiYJ75GE9DJkAX-_I0gwm-AgAW4Afg2CZTYKd5aDK_rsNXt5iUBVELY_ccs5ezyFKAf9B0vZIuhAGtQGqlS-OlP19q1oOUBvALjxzsw6Ypcv8xAbAEpPs-c7bjv1051-MH5CL77ba2Zud7uu7ZA3wb-LYSRtkBfzf3AOMOVb3bSb5CVBGeXA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NVojxwEdhEBjIiIkHRKp82EnzWNDKOqkFISrKU2Q7iYCVtFpb0fIP8G9zZ6cZ1baKt0i-OIpzd_6dc_c7gKMwSqSnEu2iV-Qu93nuJrkI3QK3IyULmcWFyfIdRicjfjoW4z3Y9Cf89_c9JdxQDXob9-CA34BmJBBuN6A5Gn7sfrWwNnLRC48NJyrHsJgHXkVBun3z1qbTpPVbbfIPr0KWlxMkby3LmVz_kpPJNog1u1Dv7kUtj00-OWsvF6qtf1-mdrz-Be_BnQqDsq5Vmvuwl5ctuGm7Uq5bcHtQU7nOW7BPcNSyOT-APwMibFgwClovqGeZLDNmR9xu9mNJJ6isT90izGdn6PBLdryaTek0kvXnzHJdk5RaM8nIJ03y1Rs2tLwd8px9wimnP5nlVp4z6thGdfOsqmt4CKPe8ed3J27VysHVRDXq5srTmmdFpKQItOyowhe5rzFY1HHsc61Rl2LD9MMpRhLo-rwkQMkg8WQkO-EBNMppmT8G5idZkimBFiA5V1kmRYhRF7qRuEh0yJUDLzffOp1Zxo50E-nQaqdmtR14ZdSgFpHnZ5TjFov0y_B92kGg1wtPReo5cGD0pBbE-DmhRzpwuFGctLL7eUroB90aBrFXDyOcphaIiXDgRT2MBk1_aWSZT5c0BWImhIGet0smogZxGCxfL0M1WBzBfdBx4JFV5_odghhhHPpeB-ItRa8FiHR8e6T8_s2QjyNiRsyKcx7VJrFzmV8ba9khkr7tfxiYqyf_N-dT2EfUGtmcokNooLLnzxAZLtTzyjf8Bb7RXZU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moment+Reconstruction+and+Moment-Adjusted+Imputation+When+Exposure+Is+Generated+by+a+Complex%2C+Nonlinear+Random+Effects+Modeling+Process&rft.jtitle=Biometrics&rft.au=Potgieter%2C+Cornelis+J.&rft.au=Wei%2C+Rubin&rft.au=Kipnis%2C+Victor&rft.au=Freedman%2C+Laurence+S.&rft.date=2016-12-01&rft.pub=Wiley-Blackwell&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=72&rft.issue=4&rft.spage=1369&rft.epage=1377&rft_id=info:doi/10.1111%2Fbiom.12524&rft.externalDocID=44695354
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon