基于自适应聚焦粒子群算法的电力系统无功优化

TM76; 自适应聚焦粒子群算法(AFPSO)是根据PSO算法的全局搜索与局部搜索平衡特性,改进得到的一种具有较好全局搜索能力和寻优速度的自适应群体智能优化算法.通过采用AFPSO算法,对电力系统进行无功优化.该方法是以最优控制原理为基础,以网损最小为目标函数,在IEEE 30节点系统上进行测试,通过仿真测试以及不同算法优化结果的对比,表明基于AFPSO算法在算法计算精度、收敛稳定性、寻优时间等方面都具有普遍优势,能有效地应用于电力系统无功优化中,证明了AFPSO算法的有效性和优越性....

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 37; no. 13; pp. 1 - 6
Main Authors 刘述奎, 陈维荣, 李奇, 林川, 段涛
Format Journal Article
LanguageChinese
Published 西南交通大学电气工程学院,四川,成都,610031%西南交通大学信息科学与技术学院,四川,成都,610031 2009
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.3969/j.issn.1674-3415.2009.13.001

Cover

Abstract TM76; 自适应聚焦粒子群算法(AFPSO)是根据PSO算法的全局搜索与局部搜索平衡特性,改进得到的一种具有较好全局搜索能力和寻优速度的自适应群体智能优化算法.通过采用AFPSO算法,对电力系统进行无功优化.该方法是以最优控制原理为基础,以网损最小为目标函数,在IEEE 30节点系统上进行测试,通过仿真测试以及不同算法优化结果的对比,表明基于AFPSO算法在算法计算精度、收敛稳定性、寻优时间等方面都具有普遍优势,能有效地应用于电力系统无功优化中,证明了AFPSO算法的有效性和优越性.
AbstractList TM76; 自适应聚焦粒子群算法(AFPSO)是根据PSO算法的全局搜索与局部搜索平衡特性,改进得到的一种具有较好全局搜索能力和寻优速度的自适应群体智能优化算法.通过采用AFPSO算法,对电力系统进行无功优化.该方法是以最优控制原理为基础,以网损最小为目标函数,在IEEE 30节点系统上进行测试,通过仿真测试以及不同算法优化结果的对比,表明基于AFPSO算法在算法计算精度、收敛稳定性、寻优时间等方面都具有普遍优势,能有效地应用于电力系统无功优化中,证明了AFPSO算法的有效性和优越性.
Abstract_FL Adaptive focusing particle swarm optimization (AFPSO) based on the balance characteristic between global search and local search of particle swarm optimization is an adaptive swarm intelligence optimization algorithm with preferable ability of global search and search rate. AFPSO is proposed to optimize the reactive power optimization. Based on optimal control principle, AFPSO applied for optimal reactive power is evaluated on an IEEE 30-bus power system. The modeling of reactive power optimization is established by taking the minimum network losses as the objective. The simulation results and the comparison results with various optimization algorithms demonstrate that the proposed approach converges to better solutions much faster than the earlier reported approaches and the algorithm can make effectively use in reactive power optimization. Simultaneously, the validity and superiority of AFPSO is proved.
Author 林川
刘述奎
陈维荣
段涛
李奇
AuthorAffiliation 西南交通大学电气工程学院,四川,成都,610031%西南交通大学信息科学与技术学院,四川,成都,610031
AuthorAffiliation_xml – name: 西南交通大学电气工程学院,四川,成都,610031%西南交通大学信息科学与技术学院,四川,成都,610031
Author_FL CHEN Wei-rong
LIU Shu-kui
LI Qi
LIN Chuan
DUAN Tao
Author_FL_xml – sequence: 1
  fullname: LIU Shu-kui
– sequence: 2
  fullname: CHEN Wei-rong
– sequence: 3
  fullname: LI Qi
– sequence: 4
  fullname: LIN Chuan
– sequence: 5
  fullname: DUAN Tao
Author_xml – sequence: 1
  fullname: 刘述奎
– sequence: 2
  fullname: 陈维荣
– sequence: 3
  fullname: 李奇
– sequence: 4
  fullname: 林川
– sequence: 5
  fullname: 段涛
BookMark eNo9j7tKA0EYRqeIYIx5i7S7zsy_c6tEgjcI2KQPszfJIht0EVuVgBBERBIjsVgLsRC0MNhsxKfJZOJbGFGsDnzF-TgrqJR20gihGsEuKK7WEredZalLuPAc8AhzKcbKJeBiTEqo_L8vo2qWtX2MgTDGpSqjdZMX0-JqfvH8dXpuiv78bGS7T_btxrxc289H-zqcjQd21LX9d9O7t-OJneSz4YPp5dOPO3N5u4qWYn2QRdU_VlBza7NZ33Eae9u79Y2GEzBOHC21lj6BkEsfhPYCwbWgnFHOg1hCLHCgQXOuIgECJKUyZMwXgfA01aBiqKDar_ZEp7FO91tJ5_goXRy2kvDwJ5bAIhW-ASMsY6Y
ClassificationCodes TM76
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1674-3415.2009.13.001
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Reactive power optimization in power system based on adaptive focusing particle swarm optimization
EndPage 6
ExternalDocumentID jdq200913001
GrantInformation_xml – fundername: 国家自然科学基金; 西南交通大学博士研究生创新基金
  funderid: (60870004); (2007-3)
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-c561-a8aa8b13d68b37a4c76a7265266cf83f70ca3a669e73738228d55b7c74a2a39f3
ISSN 1674-3415
IngestDate Thu May 29 03:55:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords reactive power optimization
无功优化
power system
电力系统
adaptive focusing particle swarm optimization
自适应聚焦粒子群算法
群体智能
swarm intelligence
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c561-a8aa8b13d68b37a4c76a7265266cf83f70ca3a669e73738228d55b7c74a2a39f3
PageCount 6
ParticipantIDs wanfang_journals_jdq200913001
PublicationCentury 2000
PublicationDate 2009
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – year: 2009
  text: 2009
PublicationDecade 2000
PublicationTitle 电力系统保护与控制
PublicationTitle_FL POWER SYSTEM PROTECTION AND CONTROL
PublicationYear 2009
Publisher 西南交通大学电气工程学院,四川,成都,610031%西南交通大学信息科学与技术学院,四川,成都,610031
Publisher_xml – name: 西南交通大学电气工程学院,四川,成都,610031%西南交通大学信息科学与技术学院,四川,成都,610031
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 1.8512602
Snippet TM76; 自适应聚焦粒子群算法(AFPSO)是根据PSO算法的全局搜索与局部搜索平衡特性,改进得到的一种具有较好全局搜索能力和寻优速度的自适应群体智能优化算法.通过采用AFPSO算...
SourceID wanfang
SourceType Aggregation Database
StartPage 1
Title 基于自适应聚焦粒子群算法的电力系统无功优化
URI https://d.wanfangdata.com.cn/periodical/jdq200913001
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1674-3415
  databaseCode: DOA
  dateStart: 20080101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002912115
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFB9qBfEiiopflR6a49TNJJOPk2S6sxRBTxV6K5nZXcXDirW99KRSEIqISLVSD_UgHgQ9WLy04l_T7dT_wvfeTHenULQWLyHz8t7Ly_vtJi-ZJBMEEzqLhOadTgijnwwljGmh8REPc9vttkUuveJ4wPn2HTV9V96ajWdHRudru5YWF7LJfOnQcyXHQRVogCuekv0HZAdKgQB5wBdSQBjSI2HM0pjZFkscSyWmJmWpYTC9d0CxuInBRMgDRVZSEWcWijQzkjmFmSRilnhck9kGUVLmJGZcyqxmqWKJYDZGCsgaKgJtSYxSBjQnJCVYUmYSNAmkQNY19nlaZOEUs4YokFH1sPhoOoGhxWwTlQMPGgkUQ61WmDpN4oYlg-XGioDVGpROyCIHxHTIYpm1yFXWlJSeajInhiwK68WKSmF9oKT0E7gZGtE8sIwy7KZRJ0iCCWhRkyQIM2wGQYXAxPhYNgPwKBGq_KLQdkSR6nGEhwM7kxozNcRF8LehX0ZCfqzsIqIiZzSoRnAuEiGwhR6XRfFxLSRUHCflnLkWGQY18oM8A5wcqkK3TRHzfzC-NrAqLUOImOL6yFte97Pfw4jaOMprAZk6bKQXVlka6VH75EB7eQEtx1uL-TDCGew7fdB-hAz4CpefCE5GuIZXW4apQlY8DF4b8_COvsEzTIeUssMpvICIvv5FiZgLLeNqZwJGg5HFSxRxJ_XAyFPBRNWCG3-yn44R9rq-d68W8c6cDc5UU9VxV_Y754KRpfvng5v9ja2drZd7zz__evKsv7W693S9WP5UfHvd__Kq-Pmx-Lq2u_mmWF8uVr_3V94Xm9vF9sbu2of-ysbOj3f9F28vBDOtdGZqOqw-whLmMLUKvfHeZFy0lcmE9jLXyutIxRDX510jurqRe-HBJR2Nd6RFkWnHcaZzLX3khe2Ki8Fo72GvcykYzzoiE9LorN3w0gqetSMN8VbuTQNmXbm_HIxV7Z2r-tjHc3XArvyl_GpwunzVi-uj14LRhfnFzhjMGBay6wTxb8ozwnM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%87%AA%E9%80%82%E5%BA%94%E8%81%9A%E7%84%A6%E7%B2%92%E5%AD%90%E7%BE%A4%E7%AE%97%E6%B3%95%E7%9A%84%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E6%97%A0%E5%8A%9F%E4%BC%98%E5%8C%96&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E5%88%98%E8%BF%B0%E5%A5%8E&rft.au=%E9%99%88%E7%BB%B4%E8%8D%A3&rft.au=%E6%9D%8E%E5%A5%87&rft.au=%E6%9E%97%E5%B7%9D&rft.date=2009&rft.pub=%E8%A5%BF%E5%8D%97%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%9B%9B%E5%B7%9D%2C%E6%88%90%E9%83%BD%2C610031%25%E8%A5%BF%E5%8D%97%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E5%9B%9B%E5%B7%9D%2C%E6%88%90%E9%83%BD%2C610031&rft.issn=1674-3415&rft.volume=37&rft.issue=13&rft.spage=1&rft.epage=6&rft_id=info:doi/10.3969%2Fj.issn.1674-3415.2009.13.001&rft.externalDocID=jdq200913001
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg