Photocatalytic TiO2 nanomaterials as potential antimicrobial and antiviral agents: Scope against blocking the SARS-COV-2 spread
The whole world is struggling with current coronavirus pandemic that shows urgent need to develop novel technologies, medical innovations or innovative materials for controlling SARS-CoV-2 infection. The mode of infection of SARS-CoV-2 is still not well known and seems to spread through surface, air...
Saved in:
Published in | Micro and Nano Engineering Vol. 14; p. 100100 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2022
The Authors. Published by Elsevier B.V Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2590-0072 2590-0072 |
DOI | 10.1016/j.mne.2021.100100 |
Cover
Abstract | The whole world is struggling with current coronavirus pandemic that shows urgent need to develop novel technologies, medical innovations or innovative materials for controlling SARS-CoV-2 infection. The mode of infection of SARS-CoV-2 is still not well known and seems to spread through surface, air, and water. Therefore, the whole surrounding environment needs to be disinfected with continuous function. For that purpose, materials with excellent antiviral properties, cost effective, environmental friendly and practically applicable should be researched. Titanium dioxide (TiO2) under ultraviolet light produces strong oxidative effect and is utilized as photocatalytic disinfectant in biomedical field. TiO2 based photocatalysts are effective antimicrobial/antiviral agents under ambient conditions with potential to be used even in indoor environment for inactivation of bacteria/viruses. Interestingly, recent studies highlight the effective disinfection of SARS-CoV-2 using TiO2 photocatalysts. Here, scope of TiO2 photocatalysts as emerging disinfectant against SARS-CoV-2 infection has been discussed in view of their excellent antibacterial and antiviral activities against various bacteria and viruses (e.g. H1N1, MNV, HSV, NDV, HCoV etc.). The current state of development of TiO2 based nano-photocatalysts as disinfectant shows their potential to combat with SARS-CoV-2 viral infection and are promising for any other such variants or viruses, bacteria in future studies.
[Display omitted]
•Development of TiO2 based photocatalysts with excellent anti-bacterial/viral activities.•Emerging application of TiO2 based photocatalysts in fighting against SARS-CoV-2.•TiO2 based photocatalyst nanomaterials are effective for ambient and dark conditions.•TiO2 photocatalysts based nano-coating can be applied to the surface of objects and common places.•TiO2 photocatalysts nano coating could stop the spreading/transmission of SARS-CoV-2 and other viruses. |
---|---|
AbstractList | The whole world is struggling with current coronavirus pandemic that shows urgent need to develop novel technologies, medical innovations or innovative materials for controlling SARS-CoV-2 infection. The mode of infection of SARS-CoV-2 is still not well known and seems to spread through surface, air, and water. Therefore, the whole surrounding environment needs to be disinfected with continuous function. For that purpose, materials with excellent antiviral properties, cost effective, environmental friendly and practically applicable should be researched. Titanium dioxide (TiO2) under ultraviolet light produces strong oxidative effect and is utilized as photocatalytic disinfectant in biomedical field. TiO2 based photocatalysts are effective antimicrobial/antiviral agents under ambient conditions with potential to be used even in indoor environment for inactivation of bacteria/viruses. Interestingly, recent studies highlight the effective disinfection of SARS-CoV-2 using TiO2 photocatalysts. Here, scope of TiO2 photocatalysts as emerging disinfectant against SARS-CoV-2 infection has been discussed in view of their excellent antibacterial and antiviral activities against various bacteria and viruses (e.g. H1N1, MNV, HSV, NDV, HCoV etc.). The current state of development of TiO2 based nano-photocatalysts as disinfectant shows their potential to combat with SARS-CoV-2 viral infection and are promising for any other such variants or viruses, bacteria in future studies.The whole world is struggling with current coronavirus pandemic that shows urgent need to develop novel technologies, medical innovations or innovative materials for controlling SARS-CoV-2 infection. The mode of infection of SARS-CoV-2 is still not well known and seems to spread through surface, air, and water. Therefore, the whole surrounding environment needs to be disinfected with continuous function. For that purpose, materials with excellent antiviral properties, cost effective, environmental friendly and practically applicable should be researched. Titanium dioxide (TiO2) under ultraviolet light produces strong oxidative effect and is utilized as photocatalytic disinfectant in biomedical field. TiO2 based photocatalysts are effective antimicrobial/antiviral agents under ambient conditions with potential to be used even in indoor environment for inactivation of bacteria/viruses. Interestingly, recent studies highlight the effective disinfection of SARS-CoV-2 using TiO2 photocatalysts. Here, scope of TiO2 photocatalysts as emerging disinfectant against SARS-CoV-2 infection has been discussed in view of their excellent antibacterial and antiviral activities against various bacteria and viruses (e.g. H1N1, MNV, HSV, NDV, HCoV etc.). The current state of development of TiO2 based nano-photocatalysts as disinfectant shows their potential to combat with SARS-CoV-2 viral infection and are promising for any other such variants or viruses, bacteria in future studies. The whole world is struggling with current coronavirus pandemic that shows urgent need to develop novel technologies, medical innovations or innovative materials for controlling SARS-CoV-2 infection. The mode of infection of SARS-CoV-2 is still not well known and seems to spread through surface, air, and water. Therefore, the whole surrounding environment needs to be disinfected with continuous function. For that purpose, materials with excellent antiviral properties, cost effective, environmental friendly and practically applicable should be researched. Titanium dioxide (TiO 2 ) under ultraviolet light produces strong oxidative effect and is utilized as photocatalytic disinfectant in biomedical field. TiO 2 based photocatalysts are effective antimicrobial/antiviral agents under ambient conditions with potential to be used even in indoor environment for inactivation of bacteria/viruses. Interestingly, recent studies highlight the effective disinfection of SARS-CoV-2 using TiO 2 photocatalysts. Here, scope of TiO 2 photocatalysts as emerging disinfectant against SARS-CoV-2 infection has been discussed in view of their excellent antibacterial and antiviral activities against various bacteria and viruses (e.g. H1N1, MNV, HSV, NDV, HCoV etc.). The current state of development of TiO 2 based nano-photocatalysts as disinfectant shows their potential to combat with SARS-CoV-2 viral infection and are promising for any other such variants or viruses, bacteria in future studies. Unlabelled Image The whole world is struggling with current coronavirus pandemic that shows urgent need to develop novel technologies, medical innovations or innovative materials for controlling SARS-CoV-2 infection. The mode of infection of SARS-CoV-2 is still not well known and seems to spread through surface, air, and water. Therefore, the whole surrounding environment needs to be disinfected with continuous function. For that purpose, materials with excellent antiviral properties, cost effective, environmental friendly and practically applicable should be researched. Titanium dioxide (TiO2) under ultraviolet light produces strong oxidative effect and is utilized as photocatalytic disinfectant in biomedical field. TiO2 based photocatalysts are effective antimicrobial/antiviral agents under ambient conditions with potential to be used even in indoor environment for inactivation of bacteria/viruses. Interestingly, recent studies highlight the effective disinfection of SARS-CoV-2 using TiO2 photocatalysts. Here, scope of TiO2 photocatalysts as emerging disinfectant against SARS-CoV-2 infection has been discussed in view of their excellent antibacterial and antiviral activities against various bacteria and viruses (e.g. H1N1, MNV, HSV, NDV, HCoV etc.). The current state of development of TiO2 based nano-photocatalysts as disinfectant shows their potential to combat with SARS-CoV-2 viral infection and are promising for any other such variants or viruses, bacteria in future studies. The whole world is struggling with current coronavirus pandemic that shows urgent need to develop novel technologies, medical innovations or innovative materials for controlling SARS-CoV-2 infection. The mode of infection of SARS-CoV-2 is still not well known and seems to spread through surface, air, and water. Therefore, the whole surrounding environment needs to be disinfected with continuous function. For that purpose, materials with excellent antiviral properties, cost effective, environmental friendly and practically applicable should be researched. Titanium dioxide (TiO2) under ultraviolet light produces strong oxidative effect and is utilized as photocatalytic disinfectant in biomedical field. TiO2 based photocatalysts are effective antimicrobial/antiviral agents under ambient conditions with potential to be used even in indoor environment for inactivation of bacteria/viruses. Interestingly, recent studies highlight the effective disinfection of SARS-CoV-2 using TiO2 photocatalysts. Here, scope of TiO2 photocatalysts as emerging disinfectant against SARS-CoV-2 infection has been discussed in view of their excellent antibacterial and antiviral activities against various bacteria and viruses (e.g. H1N1, MNV, HSV, NDV, HCoV etc.). The current state of development of TiO2 based nano-photocatalysts as disinfectant shows their potential to combat with SARS-CoV-2 viral infection and are promising for any other such variants or viruses, bacteria in future studies. [Display omitted] •Development of TiO2 based photocatalysts with excellent anti-bacterial/viral activities.•Emerging application of TiO2 based photocatalysts in fighting against SARS-CoV-2.•TiO2 based photocatalyst nanomaterials are effective for ambient and dark conditions.•TiO2 photocatalysts based nano-coating can be applied to the surface of objects and common places.•TiO2 photocatalysts nano coating could stop the spreading/transmission of SARS-CoV-2 and other viruses. |
ArticleNumber | 100100 |
Author | Cho, Junghyun Mishra, Yogendra Kumar Prakash, Jai |
Author_xml | – sequence: 1 givenname: Jai surname: Prakash fullname: Prakash, Jai email: jaip@nith.ac.in organization: Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur 177005 H.P., India – sequence: 2 givenname: Junghyun surname: Cho fullname: Cho, Junghyun email: jcho@binghamton.edu organization: Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York (SUNY), Binghamton, NY 13902-6000, USA – sequence: 3 givenname: Yogendra Kumar surname: Mishra fullname: Mishra, Yogendra Kumar email: mishra@mci.sdu.dk organization: Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark |
BookMark | eNp9UU1r3DAQNSWFpml-QG8-9uKtPixbbqEQln4EAlu6aa9iLI93tbUlV9Iu5NS_XjkOpekhIBi90bw3mnkvszPrLGbZa0pWlNDq7WE1WlwxwmjCJJ1n2TkTDSkIqdnZP_cX2WUIB0IIk6KSZX2e_f66d9FpiDDcRaPzW7NhuQXrRojoDQwhh5BPLqKNCeWQwmi0d-2CuvvMyfgZ7VJReJdvtZswITA2xLwdnP5p7C6Pe8y3V9-2xXrzo2B5mDxC9yp73qcmePkQL7Lvnz7err8UN5vP1-urm0KLisRCYE8FStlSXjaEtULWQupKAml1K8qWNrpuqSSs70lXJgrhTdNrRgWrWkDCL7LrRbdzcFCTNyP4O-XAqPuE8zsFPi1gQFVy1ACCAOlECZw3Hem06JFzVnLdyaT1YdGaju2InU5Tp_EfiT5-sWavdu6kZCUFrWaBNw8C3v06YohqNEHjMIBFdwyKM1rxqmp4k0rpUppWHoLH_m8bStRsvjqoZL6azVeL-YlT_8fRJkI0bv6NGZ5kvl-YmKw4GfQqaINWY2c86ph2ZZ5g_wE3X8yJ |
CitedBy_id | crossref_primary_10_1016_j_jece_2024_115201 crossref_primary_10_1016_j_mseb_2022_116018 crossref_primary_10_1016_j_optmat_2023_113974 crossref_primary_10_3390_catal12080829 crossref_primary_10_1039_D4TB00184B crossref_primary_10_3390_catal12091047 crossref_primary_10_1016_j_nanoms_2024_02_006 crossref_primary_10_1007_s11356_023_31492_7 crossref_primary_10_1016_j_ijpharm_2023_123018 crossref_primary_10_1016_j_cocis_2023_101720 crossref_primary_10_1021_acsomega_3c08883 crossref_primary_10_1007_s42247_023_00520_0 crossref_primary_10_1016_j_physb_2023_415297 crossref_primary_10_3390_polym14112238 crossref_primary_10_3390_catal13030620 crossref_primary_10_3390_ijms231810541 crossref_primary_10_1007_s42250_023_00688_2 crossref_primary_10_1016_j_ceramint_2023_08_080 crossref_primary_10_1002_admt_202200208 crossref_primary_10_1007_s00339_022_06303_4 crossref_primary_10_1016_j_kjs_2024_100256 crossref_primary_10_1016_j_fuel_2024_131289 crossref_primary_10_1021_acsestwater_2c00402 crossref_primary_10_1007_s10853_024_10229_y crossref_primary_10_1007_s10529_023_03361_3 crossref_primary_10_3390_hygiene3030020 crossref_primary_10_3390_nano12234345 crossref_primary_10_1016_j_jwpe_2022_103077 crossref_primary_10_1016_j_jece_2024_113975 crossref_primary_10_1016_j_ceramint_2024_09_221 crossref_primary_10_1016_j_ecmx_2022_100323 crossref_primary_10_1039_D3TA00396E crossref_primary_10_3390_catal13050861 crossref_primary_10_3390_catal13071141 crossref_primary_10_1016_j_arabjc_2022_104388 crossref_primary_10_1080_09205063_2024_2365047 crossref_primary_10_3390_foods13101527 crossref_primary_10_1016_j_coesh_2024_100552 crossref_primary_10_1021_acs_langmuir_4c01727 crossref_primary_10_1016_j_tsf_2023_140195 crossref_primary_10_1016_j_mtcomm_2024_108662 crossref_primary_10_1016_j_cis_2024_103304 crossref_primary_10_1016_j_susmat_2022_e00544 crossref_primary_10_1016_j_mseb_2023_116636 crossref_primary_10_3389_fnano_2022_1064615 crossref_primary_10_1039_D4RA03259D crossref_primary_10_1186_s12934_024_02609_5 crossref_primary_10_1186_s11671_024_04117_2 crossref_primary_10_1016_j_envres_2022_113761 crossref_primary_10_3390_polym15030602 crossref_primary_10_1016_j_coesh_2023_100497 crossref_primary_10_1016_j_solidstatesciences_2022_107104 crossref_primary_10_1016_j_matchemphys_2023_128108 crossref_primary_10_1021_acsami_4c07151 crossref_primary_10_3389_fmicb_2024_1391345 crossref_primary_10_1002_jccs_202400303 crossref_primary_10_1016_j_mne_2024_100239 crossref_primary_10_1038_s41598_022_13444_2 crossref_primary_10_1016_j_jiec_2022_09_045 crossref_primary_10_1016_j_mne_2023_100237 crossref_primary_10_1039_D1ME00179E crossref_primary_10_1021_acsomega_3c10310 crossref_primary_10_1063_5_0132929 crossref_primary_10_4265_bio_27_217 crossref_primary_10_1021_acsomega_4c07515 crossref_primary_10_1016_j_enmm_2025_101049 crossref_primary_10_1016_j_bcab_2023_102710 crossref_primary_10_1007_s11356_022_24639_5 crossref_primary_10_1371_journal_pone_0294972 crossref_primary_10_3390_catal13020423 crossref_primary_10_1021_acsinfecdis_4c00115 crossref_primary_10_15251_DJNB_2024_192_953 crossref_primary_10_1016_j_optmat_2024_115071 crossref_primary_10_1038_s41598_024_58660_0 crossref_primary_10_1039_D2SD00133K crossref_primary_10_1007_s11708_024_0939_3 crossref_primary_10_1016_j_inoche_2024_113419 crossref_primary_10_1007_s12088_024_01239_0 crossref_primary_10_2109_jcersj2_22160 crossref_primary_10_1016_j_materresbull_2024_113046 crossref_primary_10_17533_udea_redin_20250365 crossref_primary_10_1016_j_chemosphere_2024_141525 crossref_primary_10_15407_microbiolj85_03_061 crossref_primary_10_1016_j_fpsl_2024_101348 |
Cites_doi | 10.1007/s00253-011-3213-7 10.1088/1361-6528/abfee6 10.1021/acsnano.0c03697 10.1016/j.colsurfb.2021.111724 10.1089/jamp.2020.1607 10.1186/s12929-019-0563-4 10.1016/S0140-6736(21)00947-8 10.1016/j.apmt.2018.02.002 10.1016/j.chemosphere.2018.06.014 10.1021/nn2045888 10.4028/www.scientific.net/MSF.734.63 10.3390/ma14051075 10.1063/5.0043009 10.1016/j.micpath.2021.104908 10.1016/j.jece.2019.102956 10.1016/j.antiviral.2011.08.017 10.3390/s20205871 10.1021/acsomega.0c06046 10.1093/femsle/fnab039 10.1016/j.materresbull.2020.110799 10.1021/acsami.7b07571 10.1017/S096318012000047X 10.1016/j.nantod.2015.04.002 10.1021/acsnano.0c05937 10.1016/j.colsurfb.2017.07.071 10.3390/idr13010008 10.1038/srep24770 10.1001/jama.2020.3227 10.1039/c2pp05414k 10.1039/C5CP06134B 10.1016/j.ceramint.2019.08.017 10.1016/j.nano.2019.03.004 10.1016/j.jhin.2020.01.022 10.1021/acsbiomaterials.0c00348 10.3762/bjnano.7.108 10.1002/chem.201204013 10.1016/j.ijhydene.2019.05.032 10.1039/D1ME00130B 10.1002/jbm.b.30939 10.1007/s00296-021-04792-9 10.1002/aenm.201900889 10.1016/j.cis.2015.10.010 10.2174/1389557516666160321114341 10.1016/j.antiviral.2012.09.020 10.1007/s10529-012-1040-2 10.3390/nano10091645 10.4049/jimmunol.1502373 10.1007/s10856-018-6042-8 10.1016/S1473-3099(07)70029-4 10.1021/es803450f 10.1126/science.abf0521 10.3390/coatings11060680 10.1016/j.spmi.2014.10.035 10.3390/catal10091093 10.1016/j.cej.2014.12.074 10.1002/smll.202002019 10.1017/ice.2017.297 10.1166/jnn.2019.16615 10.2478/v10019-011-0037-0 10.1016/j.jallcom.2020.154968 10.3389/fimmu.2019.00500 10.1038/s41586-020-2196-x 10.1063/1.4885401 10.1039/C9RA01826C 10.1016/j.mtsust.2021.100066 10.1016/j.jwpe.2021.102111 10.1039/C7RA06925A 10.1002/nano.202100078 10.3390/app10155243 10.1021/es100156p 10.1039/C7ME00038C 10.1111/jam.13681 10.1080/10420150.2011.559239 10.1002/adfm.202004615 10.1098/rsif.2009.0252.focus 10.1088/0957-4484/27/35/355707 10.1080/0144235X.2019.1634319 10.3390/ma12030412 10.1021/acsnano.1c00629 10.1039/c4ra02759k 10.1021/acsbiomaterials.0c01091 10.1039/C8ME00116B 10.1002/ppap.200731007 10.1016/j.chempr.2020.08.001 10.3390/v13050942 10.1039/C5TA03756E 10.1002/9783527825431.ch2 10.1016/j.jcis.2020.07.047 10.1088/2053-1591/ab3b27 10.1080/0144235X.2019.1660114 10.1016/j.msec.2018.06.045 10.3390/v13010019 10.1093/cid/ciab039 10.1039/C8TC06299D 10.1016/j.sna.2016.07.002 10.1016/j.carbon.2014.02.057 10.1016/j.matchemphys.2014.06.038 10.1016/j.jphotobiol.2014.08.009 |
ContentType | Journal Article |
Copyright | 2021 The Authors 2021 The Authors. 2021 The Authors 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: 2021 The Authors. – notice: 2021 The Authors 2021 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.mne.2021.100100 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2590-0072 |
EndPage | 100100 |
ExternalDocumentID | oai_doaj_org_article_43ecaa50a0d54a339d0dc5fe33243cd8 PMC8685168 10_1016_j_mne_2021_100100 S2590007221000216 |
GroupedDBID | 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ M41 M~E NCXOZ OK1 ROL SSZ 0R~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c560t-5ef15e88b134902b58758c68a0bcb54b19c7b1802ff0d45600399fc21526bae03 |
IEDL.DBID | DOA |
ISSN | 2590-0072 |
IngestDate | Wed Aug 27 01:19:32 EDT 2025 Thu Aug 21 17:41:24 EDT 2025 Wed Jul 02 02:48:04 EDT 2025 Thu Apr 24 23:09:00 EDT 2025 Tue Jul 01 00:35:31 EDT 2025 Tue Jul 25 20:59:22 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Antimicrobial Nanomaterials Antiviral SARS-CoV-2 TiO2 photocatalysts |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c560t-5ef15e88b134902b58758c68a0bcb54b19c7b1802ff0d45600399fc21526bae03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doaj.org/article/43ecaa50a0d54a339d0dc5fe33243cd8 |
PQID | 3216366939 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_43ecaa50a0d54a339d0dc5fe33243cd8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8685168 proquest_miscellaneous_3216366939 crossref_primary_10_1016_j_mne_2021_100100 crossref_citationtrail_10_1016_j_mne_2021_100100 elsevier_sciencedirect_doi_10_1016_j_mne_2021_100100 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Micro and Nano Engineering |
PublicationYear | 2022 |
Publisher | Elsevier B.V The Authors. Published by Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: The Authors. Published by Elsevier B.V – name: Elsevier |
References | Micochova, Chadha, Hesseloj, Fraternali, Ramsden, Gupta (bb0150) 2021; 6 Antoine, Mishra, Trigilio, Tiwari, Adelung, Shukla (bb0110) 2012; 96 Kampf, Todt, Pfaender, Steinmann (bb0040) 2020; 104 Vincent, Duval, Hartemann, Engels-Deutsch (bb0345) 2018; 124 Park, Cho, Cates, Lee, Oh, Vinjé (bb0070) 2014; 140 Seaton, Tran, Aitken, Donaldson (bb0355) 2010; 7 Gurunathan, Qasim, Choi, Do, Park, Hong (bb0010) 2020; 10 Haas, Angulo, McLaughlin, Anis, Singer, Khan (bb0065) 2021; 397 Kozlova, Safatov, Kiselev, Marchenko, Sergeev, Skarnovich (bb0500) 2010; 44 Pathak, Kumar, Prakash, Purohit, Swart, Kroon (bb0300) 2016; 247 Samet, Prather, Benjamin, Lakdawala, Lowe, Reingold (bb0030) 2021; 73 Won, Schwartzenberg, Gray (bb0430) 2018; 208 Prakash, Tripathi, Gautam, Chae, Song, Rigato (bb0290) 2014; 147 Zhang, Chen (bb0375) 2009; 43 Weiss, Carriere, Fusco, Capua, Regla-Nava, Pasquali (bb0470) 2020; 14 Wasa, Land, Gorthy, Krumdieck, Bishop, Godsoe (bb0445) 2021; 368 Hasan, Pyke, Nair, Yarlagadda, Will, Spann (bb0045) 2020; 6 Lilja, Forsgren, Welch, Åstrand, Engqvist, Strømme (bb0400) 2012; 34 Wölfel, Corman, Guggemos, Seilmaier, Zange, Müller (bb0005) 2020; 581 Bai, Liu, Liu, Sun (bb0385) 2013; 19 Prakash, Kumar, Harris, Swart, Neethling, van Vuuren (bb0200) 2016; 27 Reid, Whatley, Spooner, Nevill, Cooper, Ramsden (bb0155) 2018; 39 Kerry, Malik, Redda, Sahoo, Patra, Majhi (bb0460) 2019; 18 Joonaki, Hassanpouryouzband, Heldt, Areo (bb0515) 2020; 6 Pragatisheel, Nanostructures (bb0360) 2020 Verma, Mal, de Oliveira, Janegitz, Prakash, Gupta (bb0260) 2022 Prakash, Kaith, Sun, Bellucci, Swart (bb0365) 2019 Hajkova, Spatenka, Horsky, Horska, Kolouch (bb0170) 2007; 4 Lia, Farrugia, Buccheri, Rappazzo, Zammit, Rizzo (bb0435) 2020; 10 Serrano-Aroca, Takayama, Tuñón-Molina, Seyran, Hassan, Pal Choudhury (bb0450) 2021; 15 Singh, Chen, Dong, Prakash, Kabiraj, Kanjilal (bb0310) 2015; 77 Prakash, Sun, Swart, Gupta (bb0135) 2018; 11 Prather, Marr, Schooley, McDiarmid, Wilson, Milton (bb0035) 2020; 370 Agelidis, Koujah, Suryawanshi, Yadavalli, Mishra, Adelung (bb0120) 2019; 10 Dar, Saeed, Wu (bb0240) 2020 Chen, Zhang, Prakash, Zheng, Sun (bb0250) 2019; 9 Han, Zhang, Cao, Yang, Taira, Okamoto (bb0525) 2004; 31 Kumar, Chandra Mathpal, Prakash, Viljoen, Roos, Swart (bb0265) 2020; 832 Nasir, Awang, Hubadillah, Jaafar, Othman, Wan Salleh (bb0205) 2021; 42 Prakash, Swart, Zhang, Sun (bb0255) 2019; 7 Kumar, Prakash, Singh, Chae, Swart, Ntwaeaborwa (bb0350) 2017; 159 Matsuura, Lo, Wada, Somei, Ochiai, Murakami (bb0510) 2021; 13 Khaiboullina, Uppal, Dhabarde, Subramanian, Verma (bb0520) 2021; 13 Ong, Tan, Chia, Lee, Ng, Wong (bb0050) 2020; 323 Prakash (bb0425) 2019; 38 Hasan, Xu, Yarlagadda, Schuetz, Spann, Yarlagadda (bb0085) 2020; 6 Moongraksathum, Chien, Chen (bb0175) 2019; 19 Balasubramaniam, Singh, Kar, Tyagi, Prakash, Gupta (bb0285) 2019; 4 Zacarías, Satuf, Vaccari, Alfano (bb0440) 2015; 266 Wang, Yu, Wong (bb0390) 2013; 734 Verma, Gangwar, Srivastava (bb0245) 2017; 7 Bono, Ponti, Punta, Candiani (bb0330) 2021; 14 Leyland, Podporska-Carroll, Browne, Hinder, Quilty, Pillai (bb0220) 2016; 6 Yang, Zhang, Prakash, Chen, Gauthier, Sun (bb0280) 2019; 38 Monmaturapoj, Sri-on, Klinsukhon, Boonnak, Prahsarn (bb0480) 2018; 92 Miyauchi, Sunada, Hashimoto (bb0015) 2020; 10 Adel Alijan Darab, Ahmadlouydarab (bb0395) 2019; 7 Ghaffari, Tavakoli, Moradi, Tabarraei, Bokharaei-Salim, Zahmatkeshan (bb0100) 2019; 26 Mishra, Adelung, Röhl, Shukla, Spors, Tiwari (bb0105) 2011; 92 Skocaj, Filipic, Petkovic, Novak (bb0225) 2011; 45 Antoine, Hadigal, Yakoub, Mishra, Bhattacharya, Haddad (bb0115) 2016; 196 Kumar, Chandra Mathpal, Prakash, Jagannath, Roos, Swart (bb0270) 2020; 125 Shirvanimoghaddam, Akbari, Yadav, Al-Tamimi, Naebe (bb0090) 2021; 9 Wang, Chen, Su, Tsai, Shen, Bai, Yu (bb0495) 2021; 34 Prakash, Pivin, Swart (bb0130) 2015; 226 Chung, Lin, Tsou, Shi, He (bb0215) 2008; 85B Rath, Dash, Som, Prakash, Tripathi, Avasthi (bb0320) 2011; 166 Komba, Zhang, Wei, Yang, Prakash, Chenitz (bb0275) 2019; 44 Lin, Ksari, Prakash, Giovanelli, Valmalette, Themlin (bb0315) 2014; 73 Levina, Repkova, Bessudnova, Filippova, Mazurkova, Zarytova (bb0485) 2016; 7 Iserson (bb0060) 2020; 30 Prakash, Samriti, Dai, Janegitz, Krishnan (bb0185) 2021; 13 Luo, Li, Xie, Sokolova, Song, Peijnenburg (bb0235) 2020; 16 Velikova, Georgiev (bb0055) 2021; 41 Grande, Tucci (bb0230) 2016; 16 Le Ouay, Stellacci (bb0340) 2015; 10 Mouritz, Galos, Linklater, Ladani, Kandare, Crawford (bb0505) 2021; 2 Sun, Ostrikov (bb0095) 2020; 25 Akhtar, Shahzad, Mushtaq, Ali, Rafe, Fazal-ul-Karim (bb0080) 2019; 6 Saravanan, Mostafavi, Vincent, Negash, Andavar, Perumal (bb0465) 2021; 156 Vadlamani, Uppal, Verma, Misra (bb0535) 2020; 20 Attia, Moemen, Youns, Ibrahim, Abdou, El Raey (bb0145) 2021; 203 Foster, Ditta, Varghese, Steele (bb0370) 2011; 90 Negrete, Bradfute, Larson, Sinha, Coombes, Goeke (bb0160) 2020 Weng, Zhao, Liu, Guan, Wu, Luo (bb0410) 2018; 29 Hamza, Gobouri, Al-Yasi, Al-Talhi, El-Megharbel (bb0530) 2021; 11 Imani, Ladouceur, Marshall, Maclachlan, Soleymani, Didar (bb0475) 2020; 14 Baraniuk (bb0025) 2021; 373 Singh, Prakash, Gupta (bb0195) 2017; 2 Zeghioud, Assadi, Khellaf, Djelal, Amrane, Rtimi (bb0380) 2019; 12 Hamdi, Abdel-Bar, Elmowafy, El-khouly, Mansour, Awad (bb0140) 2021; 6 Nakano, Ishiguro, Yao, Kajioka, Fujishima, Sunada (bb0075) 2012; 11 Gong, Xiao, Yu, Dong, Ji, Zhang (bb0125) 2019; 9 Gupta, Samriti, Prakash (bb0180) 2021; 20 Prakash, Kumar, Kroon, Asokan, Rigato, Chae (bb0305) 2016; 18 Basak, Packirisamy (bb0455) 2020; 24 Gharaibeh, Smith, Conway (bb0210) 2021; 13 Khaiboullina, Uppal, Dhabarde, Subramanian, Verma (bb0165) 2021; 13 Tao, Bae, Woodruff, Sauer, Cho (bb0190) 2019; 45 Kumar, Chandra Mathpal, Jagannath, Prakash, Maze, Roos (bb0295) 2021; 32 Liu, Sunada, Hashimoto, Miyauchi (bb0420) 2015; 3 Li, Zhou, Qian, Liu, Feng, Jin (bb0415) 2014; 104 Singh, Prakash, Misra, Sharma, Gupta (bb0335) 2017; 9 Qiu, Miyauchi, Sunada, Minoshima, Liu, Lu (bb0490) 2012; 6 Horváth, Rossi, Mercier, Lehmann, Sienkiewicz, Forró (bb0540) 2020; 30 Brankston, Gitterman, Hirji, Lemieux, Gardam (bb0020) 2007; 7 Habibi-Yangjeh, Asadzadeh-Khaneghah, Feizpoor, Rouhi (bb0325) 2020; 580 Kowal, Cronin, Dworniczek, Zeglinski, Tiernan, Wawrzynska (bb0405) 2014; 4 Baraniuk (10.1016/j.mne.2021.100100_bb0025) 2021; 373 Foster (10.1016/j.mne.2021.100100_bb0370) 2011; 90 Pathak (10.1016/j.mne.2021.100100_bb0300) 2016; 247 Haas (10.1016/j.mne.2021.100100_bb0065) 2021; 397 Leyland (10.1016/j.mne.2021.100100_bb0220) 2016; 6 Seaton (10.1016/j.mne.2021.100100_bb0355) 2010; 7 Serrano-Aroca (10.1016/j.mne.2021.100100_bb0450) 2021; 15 Luo (10.1016/j.mne.2021.100100_bb0235) 2020; 16 Khaiboullina (10.1016/j.mne.2021.100100_bb0520) 2021; 13 Chen (10.1016/j.mne.2021.100100_bb0250) 2019; 9 Wölfel (10.1016/j.mne.2021.100100_bb0005) 2020; 581 Singh (10.1016/j.mne.2021.100100_bb0195) 2017; 2 Chung (10.1016/j.mne.2021.100100_bb0215) 2008; 85B Wasa (10.1016/j.mne.2021.100100_bb0445) 2021; 368 Hasan (10.1016/j.mne.2021.100100_bb0045) 2020; 6 Nasir (10.1016/j.mne.2021.100100_bb0205) 2021; 42 Khaiboullina (10.1016/j.mne.2021.100100_bb0165) 2021; 13 Pragatisheel (10.1016/j.mne.2021.100100_bb0360) 2020 Prakash (10.1016/j.mne.2021.100100_bb0365) 2019 Zeghioud (10.1016/j.mne.2021.100100_bb0380) 2019; 12 Prakash (10.1016/j.mne.2021.100100_bb0200) 2016; 27 Antoine (10.1016/j.mne.2021.100100_bb0110) 2012; 96 Kumar (10.1016/j.mne.2021.100100_bb0265) 2020; 832 Verma (10.1016/j.mne.2021.100100_bb0260) 2022 Vincent (10.1016/j.mne.2021.100100_bb0345) 2018; 124 Kumar (10.1016/j.mne.2021.100100_bb0295) 2021; 32 Samet (10.1016/j.mne.2021.100100_bb0030) 2021; 73 Attia (10.1016/j.mne.2021.100100_bb0145) 2021; 203 Li (10.1016/j.mne.2021.100100_bb0415) 2014; 104 Prakash (10.1016/j.mne.2021.100100_bb0135) 2018; 11 Imani (10.1016/j.mne.2021.100100_bb0475) 2020; 14 Mouritz (10.1016/j.mne.2021.100100_bb0505) 2021; 2 Kowal (10.1016/j.mne.2021.100100_bb0405) 2014; 4 Han (10.1016/j.mne.2021.100100_bb0525) 2004; 31 Prakash (10.1016/j.mne.2021.100100_bb0255) 2019; 7 Mishra (10.1016/j.mne.2021.100100_bb0105) 2011; 92 Prakash (10.1016/j.mne.2021.100100_bb0425) 2019; 38 Yang (10.1016/j.mne.2021.100100_bb0280) 2019; 38 Hajkova (10.1016/j.mne.2021.100100_bb0170) 2007; 4 Saravanan (10.1016/j.mne.2021.100100_bb0465) 2021; 156 Wang (10.1016/j.mne.2021.100100_bb0390) 2013; 734 Negrete (10.1016/j.mne.2021.100100_bb0160) 2020 Moongraksathum (10.1016/j.mne.2021.100100_bb0175) 2019; 19 Ghaffari (10.1016/j.mne.2021.100100_bb0100) 2019; 26 Gurunathan (10.1016/j.mne.2021.100100_bb0010) 2020; 10 Bai (10.1016/j.mne.2021.100100_bb0385) 2013; 19 Adel Alijan Darab (10.1016/j.mne.2021.100100_bb0395) 2019; 7 Monmaturapoj (10.1016/j.mne.2021.100100_bb0480) 2018; 92 Park (10.1016/j.mne.2021.100100_bb0070) 2014; 140 Prakash (10.1016/j.mne.2021.100100_bb0290) 2014; 147 Horváth (10.1016/j.mne.2021.100100_bb0540) 2020; 30 Gharaibeh (10.1016/j.mne.2021.100100_bb0210) 2021; 13 Hamdi (10.1016/j.mne.2021.100100_bb0140) 2021; 6 Basak (10.1016/j.mne.2021.100100_bb0455) 2020; 24 Rath (10.1016/j.mne.2021.100100_bb0320) 2011; 166 Shirvanimoghaddam (10.1016/j.mne.2021.100100_bb0090) 2021; 9 Lilja (10.1016/j.mne.2021.100100_bb0400) 2012; 34 Prakash (10.1016/j.mne.2021.100100_bb0185) 2021; 13 Velikova (10.1016/j.mne.2021.100100_bb0055) 2021; 41 Hasan (10.1016/j.mne.2021.100100_bb0085) 2020; 6 Bono (10.1016/j.mne.2021.100100_bb0330) 2021; 14 Reid (10.1016/j.mne.2021.100100_bb0155) 2018; 39 Sun (10.1016/j.mne.2021.100100_bb0095) 2020; 25 Joonaki (10.1016/j.mne.2021.100100_bb0515) 2020; 6 Prakash (10.1016/j.mne.2021.100100_bb0305) 2016; 18 Weiss (10.1016/j.mne.2021.100100_bb0470) 2020; 14 Miyauchi (10.1016/j.mne.2021.100100_bb0015) 2020; 10 Dar (10.1016/j.mne.2021.100100_bb0240) 2020 Verma (10.1016/j.mne.2021.100100_bb0245) 2017; 7 Zacarías (10.1016/j.mne.2021.100100_bb0440) 2015; 266 Iserson (10.1016/j.mne.2021.100100_bb0060) 2020; 30 Singh (10.1016/j.mne.2021.100100_bb0310) 2015; 77 Gupta (10.1016/j.mne.2021.100100_bb0180) 2021; 20 Komba (10.1016/j.mne.2021.100100_bb0275) 2019; 44 Kerry (10.1016/j.mne.2021.100100_bb0460) 2019; 18 Kumar (10.1016/j.mne.2021.100100_bb0350) 2017; 159 Tao (10.1016/j.mne.2021.100100_bb0190) 2019; 45 Wang (10.1016/j.mne.2021.100100_bb0495) 2021; 34 Gong (10.1016/j.mne.2021.100100_bb0125) 2019; 9 Lia (10.1016/j.mne.2021.100100_bb0435) 2020; 10 Prakash (10.1016/j.mne.2021.100100_bb0130) 2015; 226 Matsuura (10.1016/j.mne.2021.100100_bb0510) 2021; 13 Kozlova (10.1016/j.mne.2021.100100_bb0500) 2010; 44 Akhtar (10.1016/j.mne.2021.100100_bb0080) 2019; 6 Kampf (10.1016/j.mne.2021.100100_bb0040) 2020; 104 Grande (10.1016/j.mne.2021.100100_bb0230) 2016; 16 Antoine (10.1016/j.mne.2021.100100_bb0115) 2016; 196 Skocaj (10.1016/j.mne.2021.100100_bb0225) 2011; 45 Qiu (10.1016/j.mne.2021.100100_bb0490) 2012; 6 Weng (10.1016/j.mne.2021.100100_bb0410) 2018; 29 Won (10.1016/j.mne.2021.100100_bb0430) 2018; 208 Micochova (10.1016/j.mne.2021.100100_bb0150) 2021; 6 Balasubramaniam (10.1016/j.mne.2021.100100_bb0285) 2019; 4 Le Ouay (10.1016/j.mne.2021.100100_bb0340) 2015; 10 Singh (10.1016/j.mne.2021.100100_bb0335) 2017; 9 Ong (10.1016/j.mne.2021.100100_bb0050) 2020; 323 Nakano (10.1016/j.mne.2021.100100_bb0075) 2012; 11 Kumar (10.1016/j.mne.2021.100100_bb0270) 2020; 125 Liu (10.1016/j.mne.2021.100100_bb0420) 2015; 3 Vadlamani (10.1016/j.mne.2021.100100_bb0535) 2020; 20 Habibi-Yangjeh (10.1016/j.mne.2021.100100_bb0325) 2020; 580 Brankston (10.1016/j.mne.2021.100100_bb0020) 2007; 7 Lin (10.1016/j.mne.2021.100100_bb0315) 2014; 73 Hamza (10.1016/j.mne.2021.100100_bb0530) 2021; 11 Prather (10.1016/j.mne.2021.100100_bb0035) 2020; 370 Agelidis (10.1016/j.mne.2021.100100_bb0120) 2019; 10 Levina (10.1016/j.mne.2021.100100_bb0485) 2016; 7 Zhang (10.1016/j.mne.2021.100100_bb0375) 2009; 43 |
References_xml | – volume: 226 start-page: 187 year: 2015 end-page: 202 ident: bb0130 article-title: Noble metal nanoparticles embedding into polymeric materials: from fundamentals to applications publication-title: Adv. Colloid Interf. Sci. – volume: 373 year: 2021 ident: bb0025 article-title: Covid-19: what do we know about airborne transmission of SARS-CoV-2? publication-title: BMJ. – volume: 370 start-page: 303 year: 2020 end-page: 304 ident: bb0035 article-title: Airborne transmission of SARS-CoV-2 publication-title: Science. – volume: 13 start-page: 19 year: 2021 ident: bb0520 article-title: Inactivation of human coronavirus by Titania nanoparticle coatings and UVC radiation: throwing light on SARS-CoV-2 publication-title: Viruses. – volume: 16 start-page: 762 year: 2016 end-page: 769 ident: bb0230 article-title: Titanium dioxide nanoparticles: a risk for human health? publication-title: Mini-Rev. Med. Chem. – volume: 19 start-page: 7356 year: 2019 end-page: 7362 ident: bb0175 article-title: Antiviral and antibacterial effects of silver-doped TiO2 prepared by the Peroxo sol-gel method publication-title: J. Nanosci. Nanotechnol. – volume: 124 start-page: 1032 year: 2018 end-page: 1046 ident: bb0345 article-title: Contact killing and antimicrobial properties of copper publication-title: J. Appl. Microbiol. – start-page: 121 year: 2019 end-page: 143 ident: bb0365 article-title: Recent Progress on novel Ag–TiO2 nanocomposites for antibacterial applications publication-title: Microbial Nanobionics: Volume 2, Basic Research and Applications – volume: 140 start-page: 315 year: 2014 end-page: 320 ident: bb0070 article-title: Fluorinated TiO2 as an ambient light-activated virucidal surface coating material for the control of human norovirus publication-title: J. Photochem. Photobiol. B Biol. – volume: 6 year: 2021 ident: bb0150 article-title: Rapid inactivation of SARS-CoV-2 by titanium dioxide surface coating [version 1; peer review: 1 approved with reservations]. Wellcome open publication-title: Research. – volume: 196 start-page: 4566 year: 2016 end-page: 4575 ident: bb0115 article-title: Intravaginal zinc oxide tetrapod nanoparticles as novel immunoprotective agents against genital herpes publication-title: J. Immunol. – volume: 10 year: 2019 ident: bb0120 article-title: An intra-vaginal zinc oxide tetrapod nanoparticles (ZOTEN) and genital herpesvirus cocktail can provide a novel platform for live virus vaccine publication-title: Front. Immunol. – volume: 32 year: 2021 ident: bb0295 article-title: Optical limiting applications of resonating plasmonic au nanoparticles in a dielectric glass medium publication-title: Nanotechnology. – volume: 13 year: 2021 ident: bb0165 article-title: In vitro inactivation of human coronavirus by titania nanoparticle coatings and UVC radiation: throwing light on SARS-CoV-2 publication-title: bioRxiv – volume: 368 year: 2021 ident: bb0445 article-title: Antimicrobial and biofilm-disrupting nanostructured TiO2 coating demonstrating photoactivity and dark activity publication-title: FEMS Microbiol. Lett. – volume: 96 start-page: 363 year: 2012 end-page: 375 ident: bb0110 article-title: Prophylactic, therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection publication-title: Antivir. Res. – volume: 397 start-page: 1819 year: 2021 end-page: 1829 ident: bb0065 article-title: Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data publication-title: Lancet – volume: 19 start-page: 3061 year: 2013 end-page: 3070 ident: bb0385 article-title: Large-scale production of hierarchical TiO2 Nanorod spheres for Photocatalytic elimination of contaminants and killing Bacteria. Chemistry – a publication-title: Eur. J. – volume: 247 start-page: 475 year: 2016 end-page: 481 ident: bb0300 article-title: Fabrication and characterization of nitrogen doped p-ZnO on n-Si heterojunctions publication-title: Sensors Actuators A Phys. – volume: 26 start-page: 70 year: 2019 ident: bb0100 article-title: Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine publication-title: J. Biomed. Sci. – volume: 9 start-page: 1900889 year: 2019 ident: bb0250 article-title: Rational design of novel catalysts with atomic layer deposition for the reduction of carbon dioxide publication-title: Adv. Energy Mater. – volume: 159 start-page: 191 year: 2017 end-page: 199 ident: bb0350 article-title: Role of silver doping on the defects related photoluminescence and antibacterial behaviour of zinc oxide nanoparticles publication-title: Colloids Surf. B: Biointerfaces – volume: 77 start-page: 313 year: 2015 end-page: 324 ident: bb0310 article-title: Role of surface and subsurface defects in MgO thin film: XANES and magnetic investigations publication-title: Superlattice. Microst. – volume: 11 start-page: 680 year: 2021 ident: bb0530 article-title: A new sterilization strategy using TiO2 nanotubes for production of free radicals that eliminate viruses and application of a treatment strategy to combat infections caused by emerging SARS-CoV-2 during the COVID-19 pandemic publication-title: Coatings. – volume: 20 start-page: 5871 year: 2020 ident: bb0535 article-title: Functionalized TiO2 nanotube-based electrochemical biosensor for rapid detection of SARS-CoV-2 publication-title: Sensors. – volume: 30 start-page: 2004615 year: 2020 ident: bb0540 article-title: Photocatalytic nanowires-based air filter: towards reusable protective masks publication-title: Adv. Funct. Mater. – volume: 73 start-page: 216 year: 2014 end-page: 224 ident: bb0315 article-title: Nitrogen-doping processes of graphene by a versatile plasma-based method publication-title: Carbon. – volume: 104 year: 2014 ident: bb0415 article-title: Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application publication-title: Appl. Phys. Lett. – volume: 43 start-page: 2905 year: 2009 end-page: 2910 ident: bb0375 article-title: Potent antibacterial activities of Ag/TiO2 Nanocomposite powders synthesized by a one-pot sol−gel method publication-title: Environ. Sci. Technol. – volume: 11 start-page: 82 year: 2018 end-page: 135 ident: bb0135 article-title: Noble metals-TiO2 nanocomposites: from fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications publication-title: Appl. Mater. Today – volume: 13 start-page: 100066 year: 2021 ident: bb0185 article-title: Novel rare earth metal–doped one-dimensional TiO2 nanostructures: fundamentals and multifunctional applications publication-title: Mater. Today Sustainabil. – volume: 7 start-page: 1447 year: 2019 end-page: 1471 ident: bb0255 article-title: Emerging applications of atomic layer deposition for the rational design of novel nanostructures for surface-enhanced Raman scattering publication-title: J. Mater. Chem. C – volume: 6 start-page: 4858 year: 2020 end-page: 4861 ident: bb0045 article-title: Antiviral nanostructured surfaces reduce the viability of SARS-CoV-2 publication-title: ACS Biomater. Sci. Eng. – volume: 30 start-page: 59 year: 2020 end-page: 68 ident: bb0060 article-title: SARS-CoV-2 (COVID-19) vaccine development and production: an ethical way forward publication-title: Camb. Q. Healthc. Ethics – volume: 15 start-page: 8069 year: 2021 end-page: 8086 ident: bb0450 article-title: Carbon-based nanomaterials: promising antiviral agents to combat COVID-19 in the microbial-resistant era publication-title: ACS Nano – volume: 156 year: 2021 ident: bb0465 article-title: Nanotechnology-based approaches for emerging and re-emerging viruses: special emphasis on COVID-19 publication-title: Microb. Pathog. – volume: 14 start-page: 6383 year: 2020 end-page: 6406 ident: bb0470 article-title: Toward nanotechnology-enabled approaches against the COVID-19 pandemic publication-title: ACS Nano – volume: 16 start-page: 2002019 year: 2020 ident: bb0235 article-title: Rethinking Nano-TiO2 safety: overview of toxic effects in humans and aquatic animals publication-title: Small. – volume: 7 start-page: 1166 year: 2016 end-page: 1173 ident: bb0485 article-title: High antiviral effect of TiO2·PL–DNA nanocomposites targeted to conservative regions of (−)RNA and (+)RNA of influenza a virus in cell culture publication-title: Beilstein J. Nanotechnol. – volume: 34 start-page: 293 year: 2021 end-page: 302 ident: bb0495 article-title: Effectiveness of the nanosilver/TiO2-chitosan antiviral filter on the removal of viral aerosols publication-title: J. Aerosol Med. Pulmonary Drug Deliv. – volume: 7 year: 2019 ident: bb0395 article-title: Application of phosphorescent material in activation of N:Cu:TiO2 photocatalyst as antibacterial and dye removal agent from solid surfaces used in hospitals publication-title: J. Environ. Chem. Eng. – volume: 6 start-page: 3608 year: 2020 end-page: 3618 ident: bb0085 article-title: Antiviral and antibacterial nanostructured surfaces with excellent mechanical properties for hospital applications publication-title: ACS Biomater. Sci. Eng. – volume: 92 start-page: 305 year: 2011 end-page: 312 ident: bb0105 article-title: Virostatic potential of micro–nano filopodia-like ZnO structures against herpes simplex virus-1 publication-title: Antivir. Res. – volume: 10 start-page: 1093 year: 2020 ident: bb0015 article-title: Antiviral effect of visible light-sensitive CuxO/TiO2 Photocatalyst publication-title: Catalysts. – volume: 13 start-page: 58 year: 2021 end-page: 71 ident: bb0210 article-title: Reducing spread of infections with a Photocatalytic reactor—potential applications in control of hospital publication-title: Infect. Dis. Reports. – volume: 20 year: 2021 ident: bb0180 article-title: Hydrothermal synthesis of TiO2 nanorods: formation chemistry, growth mechanism, and tailoring of surface properties for photocatalytic activities publication-title: Mater. Today Chem. – volume: 166 start-page: 571 year: 2011 end-page: 577 ident: bb0320 article-title: Surface evolution of titanium oxide thin film with swift heavy ion irradiation publication-title: Radiat. Effects Defects Solids. – volume: 203 year: 2021 ident: bb0145 article-title: Antiviral zinc oxide nanoparticles mediated by hesperidin and in silico comparison study between antiviral phenolics as anti-SARS-CoV-2 publication-title: Colloids Surf. B: Biointerfaces – volume: 45 start-page: 23216 year: 2019 end-page: 23224 ident: bb0190 article-title: Hydrothermally-grown nanostructured anatase TiO2 coatings tailored for photocatalytic and antibacterial properties publication-title: Ceram. Int. – volume: 104 start-page: 246 year: 2020 end-page: 251 ident: bb0040 article-title: Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents publication-title: J. Hosp. Infect. – volume: 734 start-page: 63 year: 2013 end-page: 89 ident: bb0390 article-title: Photocatalysts for solar-induced water disinfection: new developments and opportunities publication-title: Mater. Sci. Forum – volume: 12 start-page: 412 year: 2019 ident: bb0380 article-title: Photocatalytic performance of CuxO/TiO2 deposited by HiPIMS on polyester under visible light LEDs: oxidants, ions effect, and reactive oxygen species investigation publication-title: Materials. – volume: 42 year: 2021 ident: bb0205 article-title: A review on the potential of photocatalysis in combatting SARS-CoV-2 in wastewater publication-title: J. Water Process Eng. – volume: 6 start-page: 6848 year: 2021 end-page: 6860 ident: bb0140 article-title: Investigating the internalization and COVID-19 antiviral computational analysis of optimized Nanoscale zinc oxide publication-title: ACS Omega. – volume: 9 start-page: 19278 year: 2019 end-page: 19284 ident: bb0125 article-title: Research progress of photocatalytic sterilization over semiconductors publication-title: RSC Adv. – volume: 14 start-page: 12341 year: 2020 end-page: 12369 ident: bb0475 article-title: Antimicrobial nanomaterials and coatings: current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2 publication-title: ACS Nano – volume: 832 year: 2020 ident: bb0265 article-title: Band gap tailoring of cauliflower-shaped CuO nanostructures by Zn doping for antibacterial applications publication-title: J. Alloys Compd. – volume: 147 start-page: 920 year: 2014 end-page: 924 ident: bb0290 article-title: Phenomenological understanding of dewetting and embedding of noble metal nanoparticles in thin films induced by ion irradiation publication-title: Mater. Chem. Phys. – volume: 7 start-page: S119 year: 2010 end-page: S129 ident: bb0355 article-title: Nanoparticles, human health hazard and regulation publication-title: J. R. Soc. Interface – volume: 18 start-page: 196 year: 2019 end-page: 220 ident: bb0460 article-title: Nano-based approach to combat emerging viral (NIPAH virus) infection publication-title: Nanomedicine – volume: 2 start-page: 2061 year: 2021 end-page: 2071 ident: bb0505 article-title: Towards antiviral polymer composites to combat COVID-19 transmission publication-title: Nano Select – volume: 6 start-page: 24770 year: 2016 ident: bb0220 article-title: Highly efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections publication-title: Sci. Rep. – volume: 29 start-page: 50 year: 2018 ident: bb0410 article-title: Synthesis, characterization, antibacterial activity in dark and in vitro cytocompatibility of Ag-incorporated TiO2 microspheres with high specific surface area publication-title: J. Mater. Sci. Mater. Med. – volume: 27 year: 2016 ident: bb0200 article-title: Synthesis, characterization and multifunctional properties of plasmonic Ag–TiO2nanocomposites publication-title: Nanotechnology. – year: 2022 ident: bb0260 article-title: A facile synthesis of novel polyaniline/graphene nanocomposite thin films for enzyme-free electrochemical sensing of hydrogen peroxide publication-title: Mol. Syst. Design Eng. – volume: 580 start-page: 503 year: 2020 end-page: 514 ident: bb0325 article-title: Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: can we win against pathogenic viruses? publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 257 year: 2007 end-page: 265 ident: bb0020 article-title: Transmission of influenza a in human beings publication-title: Lancet Infect. Dis. – volume: 266 start-page: 133 year: 2015 end-page: 140 ident: bb0440 article-title: Photocatalytic inactivation of bacterial spores using TiO2 films with silver deposits publication-title: Chem. Eng. J. – volume: 4 start-page: 19945 year: 2014 end-page: 19952 ident: bb0405 article-title: Biocidal effect and durability of nano-TiO2 coated textiles to combat hospital acquired infections publication-title: RSC Adv. – volume: 4 start-page: S397 year: 2007 end-page: S401 ident: bb0170 article-title: Photocatalytic effect of TiO2 films on viruses and bacteria publication-title: Plasma Process. Polym. – volume: 14 start-page: 1075 year: 2021 ident: bb0330 article-title: Effect of UV irradiation and TiO2-photocatalysis on airborne bacteria and viruses: an overview publication-title: Materials. – volume: 323 start-page: 1610 year: 2020 end-page: 1612 ident: bb0050 article-title: Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient publication-title: JAMA. – volume: 13 start-page: 942 year: 2021 ident: bb0510 article-title: SARS-CoV-2 disinfection of air and surface contamination by TiO2 photocatalyst-mediated damage to viral morphology, RNA, and protein publication-title: Viruses. – volume: 11 start-page: 1293 year: 2012 end-page: 1298 ident: bb0075 article-title: Photocatalytic inactivation of influenza virus by titanium dioxide thin film publication-title: Photochem. Photobiol. Sci. – volume: 38 start-page: 201 year: 2019 end-page: 242 ident: bb0425 article-title: Fundamentals and applications of recyclable SERS substrates publication-title: Int. Rev. Phys. Chem. – volume: 581 start-page: 465 year: 2020 end-page: 469 ident: bb0005 article-title: Virological assessment of hospitalized patients with COVID-2019 publication-title: Nature. – volume: 34 start-page: 2299 year: 2012 end-page: 2305 ident: bb0400 article-title: Photocatalytic and antimicrobial properties of surgical implant coatings of titanium dioxide deposited though cathodic arc evaporation publication-title: Biotechnol. Lett. – volume: 10 start-page: 339 year: 2015 end-page: 354 ident: bb0340 article-title: Antibacterial activity of silver nanoparticles: a surface science insight publication-title: Nano Today – volume: 6 start-page: 1609 year: 2012 end-page: 1618 ident: bb0490 article-title: Hybrid CuxO/TiO2 Nanocomposites as risk-reduction materials in indoor environments publication-title: ACS Nano – volume: 90 start-page: 1847 year: 2011 end-page: 1868 ident: bb0370 article-title: Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity publication-title: Appl. Microbiol. Biotechnol. – volume: 92 start-page: 96 year: 2018 end-page: 102 ident: bb0480 article-title: Antiviral activity of multifunctional composite based on TiO2-modified hydroxyapatite publication-title: Mater. Sci. Eng. C – volume: 6 start-page: 2135 year: 2020 end-page: 2146 ident: bb0515 article-title: Surface chemistry can unlock drivers of surface stability of SARS-CoV-2 in a variety of environmental conditions publication-title: Chem. – start-page: 67 year: 2020 end-page: 103 ident: bb0240 article-title: Toxicity of TiO2 nanoparticles publication-title: TiO2 Nanoparticles – volume: 9 start-page: 28495 year: 2017 end-page: 28507 ident: bb0335 article-title: Dual functional ta-doped electrospun TiO2 Nanofibers with enhanced Photocatalysis and SERS detection for organic compounds publication-title: ACS Appl. Mater. Interfaces – volume: 18 start-page: 2468 year: 2016 end-page: 2480 ident: bb0305 article-title: Optical and surface enhanced Raman scattering properties of au nanoparticles embedded in and located on a carbonaceous matrix publication-title: Phys. Chem. Chem. Phys. – volume: 2 start-page: 422 year: 2017 end-page: 439 ident: bb0195 article-title: Design and engineering of high-performance photocatalytic systems based on metal oxide–graphene–noble metal nanocomposites publication-title: Mol. Syst. Design Eng. – volume: 125 year: 2020 ident: bb0270 article-title: Plasmonic and nonlinear optical behavior of nanostructures in glass matrix for photonics application publication-title: Mater. Res. Bull. – volume: 4 start-page: 804 year: 2019 end-page: 827 ident: bb0285 article-title: Engineering of transition metal dichalcogenide-based 2D nanomaterials through doping for environmental applications publication-title: Mol. Syst. Design Eng. – volume: 7 start-page: 44199 year: 2017 end-page: 44224 ident: bb0245 article-title: Multiphase TiO2 nanostructures: a review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health publication-title: RSC Adv. – volume: 208 start-page: 899 year: 2018 end-page: 906 ident: bb0430 article-title: TiO2-based transparent coatings create self-cleaning surfaces publication-title: Chemosphere. – volume: 31 start-page: 982 year: 2004 end-page: 985 ident: bb0525 article-title: The inactivation effect of photocatalytic titanium apatie filter on SARS virus publication-title: Prog. Biochem. Biophys. – year: 2020 ident: bb0160 article-title: Photocatalytic Material Surfaces for SARS-CoV-2 Virus Inactivation – volume: 3 start-page: 17312 year: 2015 end-page: 17319 ident: bb0420 article-title: Visible-light sensitive cu(ii)–TiO2 with sustained anti-viral activity for efficient indoor environmental remediation publication-title: J. Mater. Chem. A – volume: 25 year: 2020 ident: bb0095 article-title: Future antiviral surfaces: lessons from COVID-19 pandemic publication-title: Sustain. Mater. Technol. – volume: 24 year: 2020 ident: bb0455 article-title: Nano-based antiviral coatings to combat viral infections publication-title: Nano-Struct. Nano-Obj. – volume: 10 start-page: 1645 year: 2020 ident: bb0010 article-title: Antiviral potential of nanoparticles—can nanoparticles fight against coronaviruses? publication-title: Nanomaterials. – volume: 38 start-page: 149 year: 2019 end-page: 199 ident: bb0280 article-title: Chemical vapour deposition of graphene: layer control, the transfer process, characterisation, and related applications publication-title: Int. Rev. Phys. Chem. – volume: 45 start-page: 227 year: 2011 end-page: 247 ident: bb0225 article-title: Titanium dioxide in our everyday life; is it safe? publication-title: Radiol. Oncol. – volume: 39 start-page: 398 year: 2018 end-page: 404 ident: bb0155 article-title: How does a Photocatalytic antimicrobial coating affect environmental bioburden in hospitals? publication-title: Infect. Control Hosp. Epidemiol. – volume: 9 year: 2021 ident: bb0090 article-title: Fight against COVID-19: the case of antiviral surfaces publication-title: APL Mater. – volume: 41 start-page: 509 year: 2021 end-page: 518 ident: bb0055 article-title: SARS-CoV-2 vaccines and autoimmune diseases amidst the COVID-19 crisis publication-title: Rheumatol. Int. – volume: 6 year: 2019 ident: bb0080 article-title: Antibacterial and antiviral potential of colloidal titanium dioxide (TiO2) nanoparticles suitable for biological applications publication-title: Mater. Res. Express. – volume: 44 start-page: 18103 year: 2019 end-page: 18114 ident: bb0275 article-title: Iron (II) phthalocyanine/N-doped graphene: a highly efficient non-precious metal catalyst for oxygen reduction publication-title: Int. J. Hydrog. Energy – volume: 73 start-page: 1924 year: 2021 end-page: 1926 ident: bb0030 article-title: Airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): what we know publication-title: Clin. Infect. Dis. – volume: 85B start-page: 220 year: 2008 end-page: 224 ident: bb0215 article-title: An antimicrobial TiO2 coating for reducing hospital-acquired infection publication-title: J Biomed Mater Res B Appl Biomater – volume: 44 start-page: 5121 year: 2010 end-page: 5126 ident: bb0500 article-title: Inactivation and mineralization of aerosol deposited model pathogenic microorganisms over TiO2 and Pt/TiO2 publication-title: Environ. Sci. Technol. – start-page: 281 year: 2020 end-page: 303 ident: bb0360 article-title: Chemical synthesis methods, and biomedical applications publication-title: Applications of Nanotechnology for Green Synthesis – volume: 10 start-page: 5243 year: 2020 ident: bb0435 article-title: Effect of the surface morphology of TiO2 nanotubes on photocatalytic efficacy using electron-transfer-based assays and antimicrobial tests publication-title: Appl. Sci. – volume: 90 start-page: 1847 year: 2011 ident: 10.1016/j.mne.2021.100100_bb0370 article-title: Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3213-7 – volume: 32 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0295 article-title: Optical limiting applications of resonating plasmonic au nanoparticles in a dielectric glass medium publication-title: Nanotechnology. doi: 10.1088/1361-6528/abfee6 – volume: 14 start-page: 6383 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0470 article-title: Toward nanotechnology-enabled approaches against the COVID-19 pandemic publication-title: ACS Nano doi: 10.1021/acsnano.0c03697 – volume: 203 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0145 article-title: Antiviral zinc oxide nanoparticles mediated by hesperidin and in silico comparison study between antiviral phenolics as anti-SARS-CoV-2 publication-title: Colloids Surf. B: Biointerfaces doi: 10.1016/j.colsurfb.2021.111724 – volume: 34 start-page: 293 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0495 article-title: Effectiveness of the nanosilver/TiO2-chitosan antiviral filter on the removal of viral aerosols publication-title: J. Aerosol Med. Pulmonary Drug Deliv. doi: 10.1089/jamp.2020.1607 – volume: 26 start-page: 70 year: 2019 ident: 10.1016/j.mne.2021.100100_bb0100 article-title: Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine publication-title: J. Biomed. Sci. doi: 10.1186/s12929-019-0563-4 – volume: 397 start-page: 1819 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0065 article-title: Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data publication-title: Lancet doi: 10.1016/S0140-6736(21)00947-8 – volume: 11 start-page: 82 year: 2018 ident: 10.1016/j.mne.2021.100100_bb0135 article-title: Noble metals-TiO2 nanocomposites: from fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2018.02.002 – volume: 208 start-page: 899 year: 2018 ident: 10.1016/j.mne.2021.100100_bb0430 article-title: TiO2-based transparent coatings create self-cleaning surfaces publication-title: Chemosphere. doi: 10.1016/j.chemosphere.2018.06.014 – volume: 6 start-page: 1609 year: 2012 ident: 10.1016/j.mne.2021.100100_bb0490 article-title: Hybrid CuxO/TiO2 Nanocomposites as risk-reduction materials in indoor environments publication-title: ACS Nano doi: 10.1021/nn2045888 – volume: 734 start-page: 63 year: 2013 ident: 10.1016/j.mne.2021.100100_bb0390 article-title: Photocatalysts for solar-induced water disinfection: new developments and opportunities publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.734.63 – volume: 20 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0180 article-title: Hydrothermal synthesis of TiO2 nanorods: formation chemistry, growth mechanism, and tailoring of surface properties for photocatalytic activities publication-title: Mater. Today Chem. – volume: 14 start-page: 1075 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0330 article-title: Effect of UV irradiation and TiO2-photocatalysis on airborne bacteria and viruses: an overview publication-title: Materials. doi: 10.3390/ma14051075 – volume: 9 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0090 article-title: Fight against COVID-19: the case of antiviral surfaces publication-title: APL Mater. doi: 10.1063/5.0043009 – volume: 156 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0465 article-title: Nanotechnology-based approaches for emerging and re-emerging viruses: special emphasis on COVID-19 publication-title: Microb. Pathog. doi: 10.1016/j.micpath.2021.104908 – volume: 7 year: 2019 ident: 10.1016/j.mne.2021.100100_bb0395 article-title: Application of phosphorescent material in activation of N:Cu:TiO2 photocatalyst as antibacterial and dye removal agent from solid surfaces used in hospitals publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2019.102956 – volume: 92 start-page: 305 year: 2011 ident: 10.1016/j.mne.2021.100100_bb0105 article-title: Virostatic potential of micro–nano filopodia-like ZnO structures against herpes simplex virus-1 publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2011.08.017 – volume: 20 start-page: 5871 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0535 article-title: Functionalized TiO2 nanotube-based electrochemical biosensor for rapid detection of SARS-CoV-2 publication-title: Sensors. doi: 10.3390/s20205871 – volume: 6 start-page: 6848 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0140 article-title: Investigating the internalization and COVID-19 antiviral computational analysis of optimized Nanoscale zinc oxide publication-title: ACS Omega. doi: 10.1021/acsomega.0c06046 – volume: 368 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0445 article-title: Antimicrobial and biofilm-disrupting nanostructured TiO2 coating demonstrating photoactivity and dark activity publication-title: FEMS Microbiol. Lett. doi: 10.1093/femsle/fnab039 – volume: 125 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0270 article-title: Plasmonic and nonlinear optical behavior of nanostructures in glass matrix for photonics application publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2020.110799 – volume: 9 start-page: 28495 year: 2017 ident: 10.1016/j.mne.2021.100100_bb0335 article-title: Dual functional ta-doped electrospun TiO2 Nanofibers with enhanced Photocatalysis and SERS detection for organic compounds publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b07571 – volume: 30 start-page: 59 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0060 article-title: SARS-CoV-2 (COVID-19) vaccine development and production: an ethical way forward publication-title: Camb. Q. Healthc. Ethics doi: 10.1017/S096318012000047X – volume: 10 start-page: 339 year: 2015 ident: 10.1016/j.mne.2021.100100_bb0340 article-title: Antibacterial activity of silver nanoparticles: a surface science insight publication-title: Nano Today doi: 10.1016/j.nantod.2015.04.002 – volume: 14 start-page: 12341 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0475 article-title: Antimicrobial nanomaterials and coatings: current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2 publication-title: ACS Nano doi: 10.1021/acsnano.0c05937 – volume: 159 start-page: 191 year: 2017 ident: 10.1016/j.mne.2021.100100_bb0350 article-title: Role of silver doping on the defects related photoluminescence and antibacterial behaviour of zinc oxide nanoparticles publication-title: Colloids Surf. B: Biointerfaces doi: 10.1016/j.colsurfb.2017.07.071 – volume: 13 start-page: 58 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0210 article-title: Reducing spread of infections with a Photocatalytic reactor—potential applications in control of hospital Staphylococcus aureus and Clostridioides difficile infections and inactivation of RNA viruses publication-title: Infect. Dis. Reports. doi: 10.3390/idr13010008 – volume: 6 start-page: 24770 year: 2016 ident: 10.1016/j.mne.2021.100100_bb0220 article-title: Highly efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections publication-title: Sci. Rep. doi: 10.1038/srep24770 – volume: 323 start-page: 1610 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0050 article-title: Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient publication-title: JAMA. doi: 10.1001/jama.2020.3227 – volume: 11 start-page: 1293 year: 2012 ident: 10.1016/j.mne.2021.100100_bb0075 article-title: Photocatalytic inactivation of influenza virus by titanium dioxide thin film publication-title: Photochem. Photobiol. Sci. doi: 10.1039/c2pp05414k – volume: 18 start-page: 2468 year: 2016 ident: 10.1016/j.mne.2021.100100_bb0305 article-title: Optical and surface enhanced Raman scattering properties of au nanoparticles embedded in and located on a carbonaceous matrix publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP06134B – volume: 45 start-page: 23216 year: 2019 ident: 10.1016/j.mne.2021.100100_bb0190 article-title: Hydrothermally-grown nanostructured anatase TiO2 coatings tailored for photocatalytic and antibacterial properties publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.08.017 – volume: 18 start-page: 196 year: 2019 ident: 10.1016/j.mne.2021.100100_bb0460 article-title: Nano-based approach to combat emerging viral (NIPAH virus) infection publication-title: Nanomedicine doi: 10.1016/j.nano.2019.03.004 – volume: 104 start-page: 246 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0040 article-title: Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents publication-title: J. Hosp. Infect. doi: 10.1016/j.jhin.2020.01.022 – volume: 6 start-page: 3608 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0085 article-title: Antiviral and antibacterial nanostructured surfaces with excellent mechanical properties for hospital applications publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.0c00348 – volume: 7 start-page: 1166 year: 2016 ident: 10.1016/j.mne.2021.100100_bb0485 article-title: High antiviral effect of TiO2·PL–DNA nanocomposites targeted to conservative regions of (−)RNA and (+)RNA of influenza a virus in cell culture publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.7.108 – volume: 19 start-page: 3061 year: 2013 ident: 10.1016/j.mne.2021.100100_bb0385 article-title: Large-scale production of hierarchical TiO2 Nanorod spheres for Photocatalytic elimination of contaminants and killing Bacteria. Chemistry – a publication-title: Eur. J. doi: 10.1002/chem.201204013 – volume: 44 start-page: 18103 year: 2019 ident: 10.1016/j.mne.2021.100100_bb0275 article-title: Iron (II) phthalocyanine/N-doped graphene: a highly efficient non-precious metal catalyst for oxygen reduction publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.05.032 – start-page: 281 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0360 article-title: Chemical synthesis methods, and biomedical applications – year: 2022 ident: 10.1016/j.mne.2021.100100_bb0260 article-title: A facile synthesis of novel polyaniline/graphene nanocomposite thin films for enzyme-free electrochemical sensing of hydrogen peroxide publication-title: Mol. Syst. Design Eng. doi: 10.1039/D1ME00130B – volume: 24 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0455 article-title: Nano-based antiviral coatings to combat viral infections publication-title: Nano-Struct. Nano-Obj. – volume: 85B start-page: 220 year: 2008 ident: 10.1016/j.mne.2021.100100_bb0215 article-title: An antimicrobial TiO2 coating for reducing hospital-acquired infection publication-title: J Biomed Mater Res B Appl Biomater doi: 10.1002/jbm.b.30939 – volume: 41 start-page: 509 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0055 article-title: SARS-CoV-2 vaccines and autoimmune diseases amidst the COVID-19 crisis publication-title: Rheumatol. Int. doi: 10.1007/s00296-021-04792-9 – volume: 25 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0095 article-title: Future antiviral surfaces: lessons from COVID-19 pandemic publication-title: Sustain. Mater. Technol. – volume: 9 start-page: 1900889 year: 2019 ident: 10.1016/j.mne.2021.100100_bb0250 article-title: Rational design of novel catalysts with atomic layer deposition for the reduction of carbon dioxide publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900889 – volume: 226 start-page: 187 year: 2015 ident: 10.1016/j.mne.2021.100100_bb0130 article-title: Noble metal nanoparticles embedding into polymeric materials: from fundamentals to applications publication-title: Adv. Colloid Interf. Sci. doi: 10.1016/j.cis.2015.10.010 – volume: 16 start-page: 762 year: 2016 ident: 10.1016/j.mne.2021.100100_bb0230 article-title: Titanium dioxide nanoparticles: a risk for human health? publication-title: Mini-Rev. Med. Chem. doi: 10.2174/1389557516666160321114341 – volume: 96 start-page: 363 year: 2012 ident: 10.1016/j.mne.2021.100100_bb0110 article-title: Prophylactic, therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2012.09.020 – volume: 34 start-page: 2299 year: 2012 ident: 10.1016/j.mne.2021.100100_bb0400 article-title: Photocatalytic and antimicrobial properties of surgical implant coatings of titanium dioxide deposited though cathodic arc evaporation publication-title: Biotechnol. Lett. doi: 10.1007/s10529-012-1040-2 – volume: 10 start-page: 1645 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0010 article-title: Antiviral potential of nanoparticles—can nanoparticles fight against coronaviruses? publication-title: Nanomaterials. doi: 10.3390/nano10091645 – volume: 196 start-page: 4566 year: 2016 ident: 10.1016/j.mne.2021.100100_bb0115 article-title: Intravaginal zinc oxide tetrapod nanoparticles as novel immunoprotective agents against genital herpes publication-title: J. Immunol. doi: 10.4049/jimmunol.1502373 – volume: 29 start-page: 50 year: 2018 ident: 10.1016/j.mne.2021.100100_bb0410 article-title: Synthesis, characterization, antibacterial activity in dark and in vitro cytocompatibility of Ag-incorporated TiO2 microspheres with high specific surface area publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-018-6042-8 – volume: 7 start-page: 257 year: 2007 ident: 10.1016/j.mne.2021.100100_bb0020 article-title: Transmission of influenza a in human beings publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(07)70029-4 – volume: 43 start-page: 2905 year: 2009 ident: 10.1016/j.mne.2021.100100_bb0375 article-title: Potent antibacterial activities of Ag/TiO2 Nanocomposite powders synthesized by a one-pot sol−gel method publication-title: Environ. Sci. Technol. doi: 10.1021/es803450f – volume: 370 start-page: 303 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0035 article-title: Airborne transmission of SARS-CoV-2 publication-title: Science. doi: 10.1126/science.abf0521 – volume: 11 start-page: 680 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0530 article-title: A new sterilization strategy using TiO2 nanotubes for production of free radicals that eliminate viruses and application of a treatment strategy to combat infections caused by emerging SARS-CoV-2 during the COVID-19 pandemic publication-title: Coatings. doi: 10.3390/coatings11060680 – volume: 31 start-page: 982 year: 2004 ident: 10.1016/j.mne.2021.100100_bb0525 article-title: The inactivation effect of photocatalytic titanium apatie filter on SARS virus publication-title: Prog. Biochem. Biophys. – volume: 77 start-page: 313 year: 2015 ident: 10.1016/j.mne.2021.100100_bb0310 article-title: Role of surface and subsurface defects in MgO thin film: XANES and magnetic investigations publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2014.10.035 – volume: 10 start-page: 1093 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0015 article-title: Antiviral effect of visible light-sensitive CuxO/TiO2 Photocatalyst publication-title: Catalysts. doi: 10.3390/catal10091093 – volume: 266 start-page: 133 year: 2015 ident: 10.1016/j.mne.2021.100100_bb0440 article-title: Photocatalytic inactivation of bacterial spores using TiO2 films with silver deposits publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.12.074 – volume: 16 start-page: 2002019 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0235 article-title: Rethinking Nano-TiO2 safety: overview of toxic effects in humans and aquatic animals publication-title: Small. doi: 10.1002/smll.202002019 – volume: 39 start-page: 398 year: 2018 ident: 10.1016/j.mne.2021.100100_bb0155 article-title: How does a Photocatalytic antimicrobial coating affect environmental bioburden in hospitals? publication-title: Infect. Control Hosp. Epidemiol. doi: 10.1017/ice.2017.297 – volume: 19 start-page: 7356 year: 2019 ident: 10.1016/j.mne.2021.100100_bb0175 article-title: Antiviral and antibacterial effects of silver-doped TiO2 prepared by the Peroxo sol-gel method publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2019.16615 – volume: 45 start-page: 227 year: 2011 ident: 10.1016/j.mne.2021.100100_bb0225 article-title: Titanium dioxide in our everyday life; is it safe? publication-title: Radiol. Oncol. doi: 10.2478/v10019-011-0037-0 – volume: 832 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0265 article-title: Band gap tailoring of cauliflower-shaped CuO nanostructures by Zn doping for antibacterial applications publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154968 – volume: 10 year: 2019 ident: 10.1016/j.mne.2021.100100_bb0120 article-title: An intra-vaginal zinc oxide tetrapod nanoparticles (ZOTEN) and genital herpesvirus cocktail can provide a novel platform for live virus vaccine publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00500 – volume: 581 start-page: 465 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0005 article-title: Virological assessment of hospitalized patients with COVID-2019 publication-title: Nature. doi: 10.1038/s41586-020-2196-x – volume: 104 year: 2014 ident: 10.1016/j.mne.2021.100100_bb0415 article-title: Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application publication-title: Appl. Phys. Lett. doi: 10.1063/1.4885401 – volume: 9 start-page: 19278 year: 2019 ident: 10.1016/j.mne.2021.100100_bb0125 article-title: Research progress of photocatalytic sterilization over semiconductors publication-title: RSC Adv. doi: 10.1039/C9RA01826C – volume: 13 start-page: 100066 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0185 article-title: Novel rare earth metal–doped one-dimensional TiO2 nanostructures: fundamentals and multifunctional applications publication-title: Mater. Today Sustainabil. doi: 10.1016/j.mtsust.2021.100066 – volume: 42 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0205 article-title: A review on the potential of photocatalysis in combatting SARS-CoV-2 in wastewater publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2021.102111 – volume: 7 start-page: 44199 year: 2017 ident: 10.1016/j.mne.2021.100100_bb0245 article-title: Multiphase TiO2 nanostructures: a review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health publication-title: RSC Adv. doi: 10.1039/C7RA06925A – volume: 2 start-page: 2061 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0505 article-title: Towards antiviral polymer composites to combat COVID-19 transmission publication-title: Nano Select doi: 10.1002/nano.202100078 – volume: 10 start-page: 5243 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0435 article-title: Effect of the surface morphology of TiO2 nanotubes on photocatalytic efficacy using electron-transfer-based assays and antimicrobial tests publication-title: Appl. Sci. doi: 10.3390/app10155243 – volume: 44 start-page: 5121 year: 2010 ident: 10.1016/j.mne.2021.100100_bb0500 article-title: Inactivation and mineralization of aerosol deposited model pathogenic microorganisms over TiO2 and Pt/TiO2 publication-title: Environ. Sci. Technol. doi: 10.1021/es100156p – volume: 2 start-page: 422 year: 2017 ident: 10.1016/j.mne.2021.100100_bb0195 article-title: Design and engineering of high-performance photocatalytic systems based on metal oxide–graphene–noble metal nanocomposites publication-title: Mol. Syst. Design Eng. doi: 10.1039/C7ME00038C – volume: 124 start-page: 1032 year: 2018 ident: 10.1016/j.mne.2021.100100_bb0345 article-title: Contact killing and antimicrobial properties of copper publication-title: J. Appl. Microbiol. doi: 10.1111/jam.13681 – volume: 166 start-page: 571 year: 2011 ident: 10.1016/j.mne.2021.100100_bb0320 article-title: Surface evolution of titanium oxide thin film with swift heavy ion irradiation publication-title: Radiat. Effects Defects Solids. doi: 10.1080/10420150.2011.559239 – volume: 373 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0025 article-title: Covid-19: what do we know about airborne transmission of SARS-CoV-2? publication-title: BMJ. – volume: 13 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0165 article-title: In vitro inactivation of human coronavirus by titania nanoparticle coatings and UVC radiation: throwing light on SARS-CoV-2 publication-title: bioRxiv – start-page: 121 year: 2019 ident: 10.1016/j.mne.2021.100100_bb0365 article-title: Recent Progress on novel Ag–TiO2 nanocomposites for antibacterial applications – volume: 30 start-page: 2004615 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0540 article-title: Photocatalytic nanowires-based air filter: towards reusable protective masks publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004615 – volume: 7 start-page: S119 year: 2010 ident: 10.1016/j.mne.2021.100100_bb0355 article-title: Nanoparticles, human health hazard and regulation publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2009.0252.focus – volume: 27 year: 2016 ident: 10.1016/j.mne.2021.100100_bb0200 article-title: Synthesis, characterization and multifunctional properties of plasmonic Ag–TiO2nanocomposites publication-title: Nanotechnology. doi: 10.1088/0957-4484/27/35/355707 – volume: 38 start-page: 149 year: 2019 ident: 10.1016/j.mne.2021.100100_bb0280 article-title: Chemical vapour deposition of graphene: layer control, the transfer process, characterisation, and related applications publication-title: Int. Rev. Phys. Chem. doi: 10.1080/0144235X.2019.1634319 – volume: 12 start-page: 412 year: 2019 ident: 10.1016/j.mne.2021.100100_bb0380 article-title: Photocatalytic performance of CuxO/TiO2 deposited by HiPIMS on polyester under visible light LEDs: oxidants, ions effect, and reactive oxygen species investigation publication-title: Materials. doi: 10.3390/ma12030412 – volume: 6 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0150 article-title: Rapid inactivation of SARS-CoV-2 by titanium dioxide surface coating [version 1; peer review: 1 approved with reservations]. Wellcome open publication-title: Research. – volume: 15 start-page: 8069 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0450 article-title: Carbon-based nanomaterials: promising antiviral agents to combat COVID-19 in the microbial-resistant era publication-title: ACS Nano doi: 10.1021/acsnano.1c00629 – volume: 4 start-page: 19945 year: 2014 ident: 10.1016/j.mne.2021.100100_bb0405 article-title: Biocidal effect and durability of nano-TiO2 coated textiles to combat hospital acquired infections publication-title: RSC Adv. doi: 10.1039/c4ra02759k – volume: 6 start-page: 4858 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0045 article-title: Antiviral nanostructured surfaces reduce the viability of SARS-CoV-2 publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.0c01091 – volume: 4 start-page: 804 year: 2019 ident: 10.1016/j.mne.2021.100100_bb0285 article-title: Engineering of transition metal dichalcogenide-based 2D nanomaterials through doping for environmental applications publication-title: Mol. Syst. Design Eng. doi: 10.1039/C8ME00116B – volume: 4 start-page: S397 year: 2007 ident: 10.1016/j.mne.2021.100100_bb0170 article-title: Photocatalytic effect of TiO2 films on viruses and bacteria publication-title: Plasma Process. Polym. doi: 10.1002/ppap.200731007 – volume: 6 start-page: 2135 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0515 article-title: Surface chemistry can unlock drivers of surface stability of SARS-CoV-2 in a variety of environmental conditions publication-title: Chem. doi: 10.1016/j.chempr.2020.08.001 – year: 2020 ident: 10.1016/j.mne.2021.100100_bb0160 – volume: 13 start-page: 942 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0510 article-title: SARS-CoV-2 disinfection of air and surface contamination by TiO2 photocatalyst-mediated damage to viral morphology, RNA, and protein publication-title: Viruses. doi: 10.3390/v13050942 – volume: 3 start-page: 17312 year: 2015 ident: 10.1016/j.mne.2021.100100_bb0420 article-title: Visible-light sensitive cu(ii)–TiO2 with sustained anti-viral activity for efficient indoor environmental remediation publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03756E – start-page: 67 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0240 article-title: Toxicity of TiO2 nanoparticles publication-title: TiO2 Nanoparticles doi: 10.1002/9783527825431.ch2 – volume: 580 start-page: 503 year: 2020 ident: 10.1016/j.mne.2021.100100_bb0325 article-title: Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: can we win against pathogenic viruses? publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.07.047 – volume: 6 year: 2019 ident: 10.1016/j.mne.2021.100100_bb0080 article-title: Antibacterial and antiviral potential of colloidal titanium dioxide (TiO2) nanoparticles suitable for biological applications publication-title: Mater. Res. Express. doi: 10.1088/2053-1591/ab3b27 – volume: 38 start-page: 201 year: 2019 ident: 10.1016/j.mne.2021.100100_bb0425 article-title: Fundamentals and applications of recyclable SERS substrates publication-title: Int. Rev. Phys. Chem. doi: 10.1080/0144235X.2019.1660114 – volume: 92 start-page: 96 year: 2018 ident: 10.1016/j.mne.2021.100100_bb0480 article-title: Antiviral activity of multifunctional composite based on TiO2-modified hydroxyapatite publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2018.06.045 – volume: 13 start-page: 19 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0520 article-title: Inactivation of human coronavirus by Titania nanoparticle coatings and UVC radiation: throwing light on SARS-CoV-2 publication-title: Viruses. doi: 10.3390/v13010019 – volume: 73 start-page: 1924 year: 2021 ident: 10.1016/j.mne.2021.100100_bb0030 article-title: Airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): what we know publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciab039 – volume: 7 start-page: 1447 year: 2019 ident: 10.1016/j.mne.2021.100100_bb0255 article-title: Emerging applications of atomic layer deposition for the rational design of novel nanostructures for surface-enhanced Raman scattering publication-title: J. Mater. Chem. C doi: 10.1039/C8TC06299D – volume: 247 start-page: 475 year: 2016 ident: 10.1016/j.mne.2021.100100_bb0300 article-title: Fabrication and characterization of nitrogen doped p-ZnO on n-Si heterojunctions publication-title: Sensors Actuators A Phys. doi: 10.1016/j.sna.2016.07.002 – volume: 73 start-page: 216 year: 2014 ident: 10.1016/j.mne.2021.100100_bb0315 article-title: Nitrogen-doping processes of graphene by a versatile plasma-based method publication-title: Carbon. doi: 10.1016/j.carbon.2014.02.057 – volume: 147 start-page: 920 year: 2014 ident: 10.1016/j.mne.2021.100100_bb0290 article-title: Phenomenological understanding of dewetting and embedding of noble metal nanoparticles in thin films induced by ion irradiation publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2014.06.038 – volume: 140 start-page: 315 year: 2014 ident: 10.1016/j.mne.2021.100100_bb0070 article-title: Fluorinated TiO2 as an ambient light-activated virucidal surface coating material for the control of human norovirus publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2014.08.009 |
SSID | ssj0002856847 |
Score | 2.5126617 |
SecondaryResourceType | review_article |
Snippet | The whole world is struggling with current coronavirus pandemic that shows urgent need to develop novel technologies, medical innovations or innovative... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 100100 |
SubjectTerms | Antimicrobial Antiviral Nanomaterials Review Paper SARS-CoV-2 TiO2 photocatalysts |
Title | Photocatalytic TiO2 nanomaterials as potential antimicrobial and antiviral agents: Scope against blocking the SARS-COV-2 spread |
URI | https://dx.doi.org/10.1016/j.mne.2021.100100 https://www.proquest.com/docview/3216366939 https://pubmed.ncbi.nlm.nih.gov/PMC8685168 https://doaj.org/article/43ecaa50a0d54a339d0dc5fe33243cd8 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQiCKWl1yJE5KF187D7q1UVBUSFLEt6s3yU01FkxWbHnrirzPjJFVyKReOduzE8Yw1n-2Zbwh5zxNsCkKpWBC1Y4WKnmkZJYs62XWIqao1Bjh__VadXhRfLsvLWaov9Akb6IGHiftYyOitLbnloSyslDrwgB5SEpCA9CGH-XLNZ5up63xkVFYqZxcDeI-h07WYrjSzc9dNixSZYp0piDC6bWaUMnf_wjbNsOfSc3Jmik6ekicjhqRHw9ifkUexfU7-fL_q-i6fxtxBPT1vzgRtbdsBJB20jNod3XY9ugdBb5jR5qbJNEy5FHINuvxCCeOtdod0gyErULINgEjqwO7hwToFzEg3Rz827PjsJxN0twXgGfbJxcnn8-NTNmZXYB5QTs_KCGKKSjkkKOTClbBzUb5SljvvysKtta8d8sOlxEOBwAiwTPKYB7dyNnL5guy1XRtfEgp238s6-aTrdZFsqYVztdI-FkGmGOOK8Gl6jR-pxzEDxi8z-ZhdG5CIQYmYQSIr8uG-y3bg3Xio8SeU2X1DpMzOFaBIZlQk8y9FWpFikrgZ0ceAKuBVzUPfPpi0w8DKxOsW28budmekAKxbVVrqFakXarMY6PJJ21xljm9VARSu1Kv_8WevyWOBQRvZ3-gN2et_38a3AKV69y6vmr9QCR2a |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photocatalytic+TiO2+nanomaterials+as+potential+antimicrobial+and+antiviral+agents%3A+Scope+against+blocking+the+SARS-COV-2+spread&rft.jtitle=Micro+and+Nano+Engineering&rft.au=Prakash%2C+Jai&rft.au=Cho%2C+Junghyun&rft.au=Mishra%2C+Yogendra+Kumar&rft.date=2022-04-01&rft.issn=2590-0072&rft.eissn=2590-0072&rft.volume=14&rft.spage=100100&rft_id=info:doi/10.1016%2Fj.mne.2021.100100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mne_2021_100100 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0072&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0072&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0072&client=summon |