Photocatalytic TiO2 nanomaterials as potential antimicrobial and antiviral agents: Scope against blocking the SARS-COV-2 spread

The whole world is struggling with current coronavirus pandemic that shows urgent need to develop novel technologies, medical innovations or innovative materials for controlling SARS-CoV-2 infection. The mode of infection of SARS-CoV-2 is still not well known and seems to spread through surface, air...

Full description

Saved in:
Bibliographic Details
Published inMicro and Nano Engineering Vol. 14; p. 100100
Main Authors Prakash, Jai, Cho, Junghyun, Mishra, Yogendra Kumar
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2022
The Authors. Published by Elsevier B.V
Elsevier
Subjects
Online AccessGet full text
ISSN2590-0072
2590-0072
DOI10.1016/j.mne.2021.100100

Cover

Abstract The whole world is struggling with current coronavirus pandemic that shows urgent need to develop novel technologies, medical innovations or innovative materials for controlling SARS-CoV-2 infection. The mode of infection of SARS-CoV-2 is still not well known and seems to spread through surface, air, and water. Therefore, the whole surrounding environment needs to be disinfected with continuous function. For that purpose, materials with excellent antiviral properties, cost effective, environmental friendly and practically applicable should be researched. Titanium dioxide (TiO2) under ultraviolet light produces strong oxidative effect and is utilized as photocatalytic disinfectant in biomedical field. TiO2 based photocatalysts are effective antimicrobial/antiviral agents under ambient conditions with potential to be used even in indoor environment for inactivation of bacteria/viruses. Interestingly, recent studies highlight the effective disinfection of SARS-CoV-2 using TiO2 photocatalysts. Here, scope of TiO2 photocatalysts as emerging disinfectant against SARS-CoV-2 infection has been discussed in view of their excellent antibacterial and antiviral activities against various bacteria and viruses (e.g. H1N1, MNV, HSV, NDV, HCoV etc.). The current state of development of TiO2 based nano-photocatalysts as disinfectant shows their potential to combat with SARS-CoV-2 viral infection and are promising for any other such variants or viruses, bacteria in future studies. [Display omitted] •Development of TiO2 based photocatalysts with excellent anti-bacterial/viral activities.•Emerging application of TiO2 based photocatalysts in fighting against SARS-CoV-2.•TiO2 based photocatalyst nanomaterials are effective for ambient and dark conditions.•TiO2 photocatalysts based nano-coating can be applied to the surface of objects and common places.•TiO2 photocatalysts nano coating could stop the spreading/transmission of SARS-CoV-2 and other viruses.
AbstractList The whole world is struggling with current coronavirus pandemic that shows urgent need to develop novel technologies, medical innovations or innovative materials for controlling SARS-CoV-2 infection. The mode of infection of SARS-CoV-2 is still not well known and seems to spread through surface, air, and water. Therefore, the whole surrounding environment needs to be disinfected with continuous function. For that purpose, materials with excellent antiviral properties, cost effective, environmental friendly and practically applicable should be researched. Titanium dioxide (TiO2) under ultraviolet light produces strong oxidative effect and is utilized as photocatalytic disinfectant in biomedical field. TiO2 based photocatalysts are effective antimicrobial/antiviral agents under ambient conditions with potential to be used even in indoor environment for inactivation of bacteria/viruses. Interestingly, recent studies highlight the effective disinfection of SARS-CoV-2 using TiO2 photocatalysts. Here, scope of TiO2 photocatalysts as emerging disinfectant against SARS-CoV-2 infection has been discussed in view of their excellent antibacterial and antiviral activities against various bacteria and viruses (e.g. H1N1, MNV, HSV, NDV, HCoV etc.). The current state of development of TiO2 based nano-photocatalysts as disinfectant shows their potential to combat with SARS-CoV-2 viral infection and are promising for any other such variants or viruses, bacteria in future studies.The whole world is struggling with current coronavirus pandemic that shows urgent need to develop novel technologies, medical innovations or innovative materials for controlling SARS-CoV-2 infection. The mode of infection of SARS-CoV-2 is still not well known and seems to spread through surface, air, and water. Therefore, the whole surrounding environment needs to be disinfected with continuous function. For that purpose, materials with excellent antiviral properties, cost effective, environmental friendly and practically applicable should be researched. Titanium dioxide (TiO2) under ultraviolet light produces strong oxidative effect and is utilized as photocatalytic disinfectant in biomedical field. TiO2 based photocatalysts are effective antimicrobial/antiviral agents under ambient conditions with potential to be used even in indoor environment for inactivation of bacteria/viruses. Interestingly, recent studies highlight the effective disinfection of SARS-CoV-2 using TiO2 photocatalysts. Here, scope of TiO2 photocatalysts as emerging disinfectant against SARS-CoV-2 infection has been discussed in view of their excellent antibacterial and antiviral activities against various bacteria and viruses (e.g. H1N1, MNV, HSV, NDV, HCoV etc.). The current state of development of TiO2 based nano-photocatalysts as disinfectant shows their potential to combat with SARS-CoV-2 viral infection and are promising for any other such variants or viruses, bacteria in future studies.
The whole world is struggling with current coronavirus pandemic that shows urgent need to develop novel technologies, medical innovations or innovative materials for controlling SARS-CoV-2 infection. The mode of infection of SARS-CoV-2 is still not well known and seems to spread through surface, air, and water. Therefore, the whole surrounding environment needs to be disinfected with continuous function. For that purpose, materials with excellent antiviral properties, cost effective, environmental friendly and practically applicable should be researched. Titanium dioxide (TiO 2 ) under ultraviolet light produces strong oxidative effect and is utilized as photocatalytic disinfectant in biomedical field. TiO 2 based photocatalysts are effective antimicrobial/antiviral agents under ambient conditions with potential to be used even in indoor environment for inactivation of bacteria/viruses. Interestingly, recent studies highlight the effective disinfection of SARS-CoV-2 using TiO 2 photocatalysts. Here, scope of TiO 2 photocatalysts as emerging disinfectant against SARS-CoV-2 infection has been discussed in view of their excellent antibacterial and antiviral activities against various bacteria and viruses (e.g. H1N1, MNV, HSV, NDV, HCoV etc.). The current state of development of TiO 2 based nano-photocatalysts as disinfectant shows their potential to combat with SARS-CoV-2 viral infection and are promising for any other such variants or viruses, bacteria in future studies. Unlabelled Image
The whole world is struggling with current coronavirus pandemic that shows urgent need to develop novel technologies, medical innovations or innovative materials for controlling SARS-CoV-2 infection. The mode of infection of SARS-CoV-2 is still not well known and seems to spread through surface, air, and water. Therefore, the whole surrounding environment needs to be disinfected with continuous function. For that purpose, materials with excellent antiviral properties, cost effective, environmental friendly and practically applicable should be researched. Titanium dioxide (TiO2) under ultraviolet light produces strong oxidative effect and is utilized as photocatalytic disinfectant in biomedical field. TiO2 based photocatalysts are effective antimicrobial/antiviral agents under ambient conditions with potential to be used even in indoor environment for inactivation of bacteria/viruses. Interestingly, recent studies highlight the effective disinfection of SARS-CoV-2 using TiO2 photocatalysts. Here, scope of TiO2 photocatalysts as emerging disinfectant against SARS-CoV-2 infection has been discussed in view of their excellent antibacterial and antiviral activities against various bacteria and viruses (e.g. H1N1, MNV, HSV, NDV, HCoV etc.). The current state of development of TiO2 based nano-photocatalysts as disinfectant shows their potential to combat with SARS-CoV-2 viral infection and are promising for any other such variants or viruses, bacteria in future studies.
The whole world is struggling with current coronavirus pandemic that shows urgent need to develop novel technologies, medical innovations or innovative materials for controlling SARS-CoV-2 infection. The mode of infection of SARS-CoV-2 is still not well known and seems to spread through surface, air, and water. Therefore, the whole surrounding environment needs to be disinfected with continuous function. For that purpose, materials with excellent antiviral properties, cost effective, environmental friendly and practically applicable should be researched. Titanium dioxide (TiO2) under ultraviolet light produces strong oxidative effect and is utilized as photocatalytic disinfectant in biomedical field. TiO2 based photocatalysts are effective antimicrobial/antiviral agents under ambient conditions with potential to be used even in indoor environment for inactivation of bacteria/viruses. Interestingly, recent studies highlight the effective disinfection of SARS-CoV-2 using TiO2 photocatalysts. Here, scope of TiO2 photocatalysts as emerging disinfectant against SARS-CoV-2 infection has been discussed in view of their excellent antibacterial and antiviral activities against various bacteria and viruses (e.g. H1N1, MNV, HSV, NDV, HCoV etc.). The current state of development of TiO2 based nano-photocatalysts as disinfectant shows their potential to combat with SARS-CoV-2 viral infection and are promising for any other such variants or viruses, bacteria in future studies. [Display omitted] •Development of TiO2 based photocatalysts with excellent anti-bacterial/viral activities.•Emerging application of TiO2 based photocatalysts in fighting against SARS-CoV-2.•TiO2 based photocatalyst nanomaterials are effective for ambient and dark conditions.•TiO2 photocatalysts based nano-coating can be applied to the surface of objects and common places.•TiO2 photocatalysts nano coating could stop the spreading/transmission of SARS-CoV-2 and other viruses.
ArticleNumber 100100
Author Cho, Junghyun
Mishra, Yogendra Kumar
Prakash, Jai
Author_xml – sequence: 1
  givenname: Jai
  surname: Prakash
  fullname: Prakash, Jai
  email: jaip@nith.ac.in
  organization: Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur 177005 H.P., India
– sequence: 2
  givenname: Junghyun
  surname: Cho
  fullname: Cho, Junghyun
  email: jcho@binghamton.edu
  organization: Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York (SUNY), Binghamton, NY 13902-6000, USA
– sequence: 3
  givenname: Yogendra Kumar
  surname: Mishra
  fullname: Mishra, Yogendra Kumar
  email: mishra@mci.sdu.dk
  organization: Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
BookMark eNp9UU1r3DAQNSWFpml-QG8-9uKtPixbbqEQln4EAlu6aa9iLI93tbUlV9Iu5NS_XjkOpekhIBi90bw3mnkvszPrLGbZa0pWlNDq7WE1WlwxwmjCJJ1n2TkTDSkIqdnZP_cX2WUIB0IIk6KSZX2e_f66d9FpiDDcRaPzW7NhuQXrRojoDQwhh5BPLqKNCeWQwmi0d-2CuvvMyfgZ7VJReJdvtZswITA2xLwdnP5p7C6Pe8y3V9-2xXrzo2B5mDxC9yp73qcmePkQL7Lvnz7err8UN5vP1-urm0KLisRCYE8FStlSXjaEtULWQupKAml1K8qWNrpuqSSs70lXJgrhTdNrRgWrWkDCL7LrRbdzcFCTNyP4O-XAqPuE8zsFPi1gQFVy1ACCAOlECZw3Hem06JFzVnLdyaT1YdGaju2InU5Tp_EfiT5-sWavdu6kZCUFrWaBNw8C3v06YohqNEHjMIBFdwyKM1rxqmp4k0rpUppWHoLH_m8bStRsvjqoZL6azVeL-YlT_8fRJkI0bv6NGZ5kvl-YmKw4GfQqaINWY2c86ph2ZZ5g_wE3X8yJ
CitedBy_id crossref_primary_10_1016_j_jece_2024_115201
crossref_primary_10_1016_j_mseb_2022_116018
crossref_primary_10_1016_j_optmat_2023_113974
crossref_primary_10_3390_catal12080829
crossref_primary_10_1039_D4TB00184B
crossref_primary_10_3390_catal12091047
crossref_primary_10_1016_j_nanoms_2024_02_006
crossref_primary_10_1007_s11356_023_31492_7
crossref_primary_10_1016_j_ijpharm_2023_123018
crossref_primary_10_1016_j_cocis_2023_101720
crossref_primary_10_1021_acsomega_3c08883
crossref_primary_10_1007_s42247_023_00520_0
crossref_primary_10_1016_j_physb_2023_415297
crossref_primary_10_3390_polym14112238
crossref_primary_10_3390_catal13030620
crossref_primary_10_3390_ijms231810541
crossref_primary_10_1007_s42250_023_00688_2
crossref_primary_10_1016_j_ceramint_2023_08_080
crossref_primary_10_1002_admt_202200208
crossref_primary_10_1007_s00339_022_06303_4
crossref_primary_10_1016_j_kjs_2024_100256
crossref_primary_10_1016_j_fuel_2024_131289
crossref_primary_10_1021_acsestwater_2c00402
crossref_primary_10_1007_s10853_024_10229_y
crossref_primary_10_1007_s10529_023_03361_3
crossref_primary_10_3390_hygiene3030020
crossref_primary_10_3390_nano12234345
crossref_primary_10_1016_j_jwpe_2022_103077
crossref_primary_10_1016_j_jece_2024_113975
crossref_primary_10_1016_j_ceramint_2024_09_221
crossref_primary_10_1016_j_ecmx_2022_100323
crossref_primary_10_1039_D3TA00396E
crossref_primary_10_3390_catal13050861
crossref_primary_10_3390_catal13071141
crossref_primary_10_1016_j_arabjc_2022_104388
crossref_primary_10_1080_09205063_2024_2365047
crossref_primary_10_3390_foods13101527
crossref_primary_10_1016_j_coesh_2024_100552
crossref_primary_10_1021_acs_langmuir_4c01727
crossref_primary_10_1016_j_tsf_2023_140195
crossref_primary_10_1016_j_mtcomm_2024_108662
crossref_primary_10_1016_j_cis_2024_103304
crossref_primary_10_1016_j_susmat_2022_e00544
crossref_primary_10_1016_j_mseb_2023_116636
crossref_primary_10_3389_fnano_2022_1064615
crossref_primary_10_1039_D4RA03259D
crossref_primary_10_1186_s12934_024_02609_5
crossref_primary_10_1186_s11671_024_04117_2
crossref_primary_10_1016_j_envres_2022_113761
crossref_primary_10_3390_polym15030602
crossref_primary_10_1016_j_coesh_2023_100497
crossref_primary_10_1016_j_solidstatesciences_2022_107104
crossref_primary_10_1016_j_matchemphys_2023_128108
crossref_primary_10_1021_acsami_4c07151
crossref_primary_10_3389_fmicb_2024_1391345
crossref_primary_10_1002_jccs_202400303
crossref_primary_10_1016_j_mne_2024_100239
crossref_primary_10_1038_s41598_022_13444_2
crossref_primary_10_1016_j_jiec_2022_09_045
crossref_primary_10_1016_j_mne_2023_100237
crossref_primary_10_1039_D1ME00179E
crossref_primary_10_1021_acsomega_3c10310
crossref_primary_10_1063_5_0132929
crossref_primary_10_4265_bio_27_217
crossref_primary_10_1021_acsomega_4c07515
crossref_primary_10_1016_j_enmm_2025_101049
crossref_primary_10_1016_j_bcab_2023_102710
crossref_primary_10_1007_s11356_022_24639_5
crossref_primary_10_1371_journal_pone_0294972
crossref_primary_10_3390_catal13020423
crossref_primary_10_1021_acsinfecdis_4c00115
crossref_primary_10_15251_DJNB_2024_192_953
crossref_primary_10_1016_j_optmat_2024_115071
crossref_primary_10_1038_s41598_024_58660_0
crossref_primary_10_1039_D2SD00133K
crossref_primary_10_1007_s11708_024_0939_3
crossref_primary_10_1016_j_inoche_2024_113419
crossref_primary_10_1007_s12088_024_01239_0
crossref_primary_10_2109_jcersj2_22160
crossref_primary_10_1016_j_materresbull_2024_113046
crossref_primary_10_17533_udea_redin_20250365
crossref_primary_10_1016_j_chemosphere_2024_141525
crossref_primary_10_15407_microbiolj85_03_061
crossref_primary_10_1016_j_fpsl_2024_101348
Cites_doi 10.1007/s00253-011-3213-7
10.1088/1361-6528/abfee6
10.1021/acsnano.0c03697
10.1016/j.colsurfb.2021.111724
10.1089/jamp.2020.1607
10.1186/s12929-019-0563-4
10.1016/S0140-6736(21)00947-8
10.1016/j.apmt.2018.02.002
10.1016/j.chemosphere.2018.06.014
10.1021/nn2045888
10.4028/www.scientific.net/MSF.734.63
10.3390/ma14051075
10.1063/5.0043009
10.1016/j.micpath.2021.104908
10.1016/j.jece.2019.102956
10.1016/j.antiviral.2011.08.017
10.3390/s20205871
10.1021/acsomega.0c06046
10.1093/femsle/fnab039
10.1016/j.materresbull.2020.110799
10.1021/acsami.7b07571
10.1017/S096318012000047X
10.1016/j.nantod.2015.04.002
10.1021/acsnano.0c05937
10.1016/j.colsurfb.2017.07.071
10.3390/idr13010008
10.1038/srep24770
10.1001/jama.2020.3227
10.1039/c2pp05414k
10.1039/C5CP06134B
10.1016/j.ceramint.2019.08.017
10.1016/j.nano.2019.03.004
10.1016/j.jhin.2020.01.022
10.1021/acsbiomaterials.0c00348
10.3762/bjnano.7.108
10.1002/chem.201204013
10.1016/j.ijhydene.2019.05.032
10.1039/D1ME00130B
10.1002/jbm.b.30939
10.1007/s00296-021-04792-9
10.1002/aenm.201900889
10.1016/j.cis.2015.10.010
10.2174/1389557516666160321114341
10.1016/j.antiviral.2012.09.020
10.1007/s10529-012-1040-2
10.3390/nano10091645
10.4049/jimmunol.1502373
10.1007/s10856-018-6042-8
10.1016/S1473-3099(07)70029-4
10.1021/es803450f
10.1126/science.abf0521
10.3390/coatings11060680
10.1016/j.spmi.2014.10.035
10.3390/catal10091093
10.1016/j.cej.2014.12.074
10.1002/smll.202002019
10.1017/ice.2017.297
10.1166/jnn.2019.16615
10.2478/v10019-011-0037-0
10.1016/j.jallcom.2020.154968
10.3389/fimmu.2019.00500
10.1038/s41586-020-2196-x
10.1063/1.4885401
10.1039/C9RA01826C
10.1016/j.mtsust.2021.100066
10.1016/j.jwpe.2021.102111
10.1039/C7RA06925A
10.1002/nano.202100078
10.3390/app10155243
10.1021/es100156p
10.1039/C7ME00038C
10.1111/jam.13681
10.1080/10420150.2011.559239
10.1002/adfm.202004615
10.1098/rsif.2009.0252.focus
10.1088/0957-4484/27/35/355707
10.1080/0144235X.2019.1634319
10.3390/ma12030412
10.1021/acsnano.1c00629
10.1039/c4ra02759k
10.1021/acsbiomaterials.0c01091
10.1039/C8ME00116B
10.1002/ppap.200731007
10.1016/j.chempr.2020.08.001
10.3390/v13050942
10.1039/C5TA03756E
10.1002/9783527825431.ch2
10.1016/j.jcis.2020.07.047
10.1088/2053-1591/ab3b27
10.1080/0144235X.2019.1660114
10.1016/j.msec.2018.06.045
10.3390/v13010019
10.1093/cid/ciab039
10.1039/C8TC06299D
10.1016/j.sna.2016.07.002
10.1016/j.carbon.2014.02.057
10.1016/j.matchemphys.2014.06.038
10.1016/j.jphotobiol.2014.08.009
ContentType Journal Article
Copyright 2021 The Authors
2021 The Authors.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.mne.2021.100100
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2590-0072
EndPage 100100
ExternalDocumentID oai_doaj_org_article_43ecaa50a0d54a339d0dc5fe33243cd8
PMC8685168
10_1016_j_mne_2021_100100
S2590007221000216
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
SSZ
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
7X8
5PM
ID FETCH-LOGICAL-c560t-5ef15e88b134902b58758c68a0bcb54b19c7b1802ff0d45600399fc21526bae03
IEDL.DBID DOA
ISSN 2590-0072
IngestDate Wed Aug 27 01:19:32 EDT 2025
Thu Aug 21 17:41:24 EDT 2025
Wed Jul 02 02:48:04 EDT 2025
Thu Apr 24 23:09:00 EDT 2025
Tue Jul 01 00:35:31 EDT 2025
Tue Jul 25 20:59:22 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Antimicrobial
Nanomaterials
Antiviral
SARS-CoV-2
TiO2 photocatalysts
Language English
License This is an open access article under the CC BY-NC-ND license.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c560t-5ef15e88b134902b58758c68a0bcb54b19c7b1802ff0d45600399fc21526bae03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/43ecaa50a0d54a339d0dc5fe33243cd8
PQID 3216366939
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_43ecaa50a0d54a339d0dc5fe33243cd8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8685168
proquest_miscellaneous_3216366939
crossref_primary_10_1016_j_mne_2021_100100
crossref_citationtrail_10_1016_j_mne_2021_100100
elsevier_sciencedirect_doi_10_1016_j_mne_2021_100100
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Micro and Nano Engineering
PublicationYear 2022
Publisher Elsevier B.V
The Authors. Published by Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: The Authors. Published by Elsevier B.V
– name: Elsevier
References Micochova, Chadha, Hesseloj, Fraternali, Ramsden, Gupta (bb0150) 2021; 6
Antoine, Mishra, Trigilio, Tiwari, Adelung, Shukla (bb0110) 2012; 96
Kampf, Todt, Pfaender, Steinmann (bb0040) 2020; 104
Vincent, Duval, Hartemann, Engels-Deutsch (bb0345) 2018; 124
Park, Cho, Cates, Lee, Oh, Vinjé (bb0070) 2014; 140
Seaton, Tran, Aitken, Donaldson (bb0355) 2010; 7
Gurunathan, Qasim, Choi, Do, Park, Hong (bb0010) 2020; 10
Haas, Angulo, McLaughlin, Anis, Singer, Khan (bb0065) 2021; 397
Kozlova, Safatov, Kiselev, Marchenko, Sergeev, Skarnovich (bb0500) 2010; 44
Pathak, Kumar, Prakash, Purohit, Swart, Kroon (bb0300) 2016; 247
Samet, Prather, Benjamin, Lakdawala, Lowe, Reingold (bb0030) 2021; 73
Won, Schwartzenberg, Gray (bb0430) 2018; 208
Prakash, Tripathi, Gautam, Chae, Song, Rigato (bb0290) 2014; 147
Zhang, Chen (bb0375) 2009; 43
Weiss, Carriere, Fusco, Capua, Regla-Nava, Pasquali (bb0470) 2020; 14
Wasa, Land, Gorthy, Krumdieck, Bishop, Godsoe (bb0445) 2021; 368
Hasan, Pyke, Nair, Yarlagadda, Will, Spann (bb0045) 2020; 6
Lilja, Forsgren, Welch, Åstrand, Engqvist, Strømme (bb0400) 2012; 34
Wölfel, Corman, Guggemos, Seilmaier, Zange, Müller (bb0005) 2020; 581
Bai, Liu, Liu, Sun (bb0385) 2013; 19
Prakash, Kumar, Harris, Swart, Neethling, van Vuuren (bb0200) 2016; 27
Reid, Whatley, Spooner, Nevill, Cooper, Ramsden (bb0155) 2018; 39
Kerry, Malik, Redda, Sahoo, Patra, Majhi (bb0460) 2019; 18
Joonaki, Hassanpouryouzband, Heldt, Areo (bb0515) 2020; 6
Pragatisheel, Nanostructures (bb0360) 2020
Verma, Mal, de Oliveira, Janegitz, Prakash, Gupta (bb0260) 2022
Prakash, Kaith, Sun, Bellucci, Swart (bb0365) 2019
Hajkova, Spatenka, Horsky, Horska, Kolouch (bb0170) 2007; 4
Lia, Farrugia, Buccheri, Rappazzo, Zammit, Rizzo (bb0435) 2020; 10
Serrano-Aroca, Takayama, Tuñón-Molina, Seyran, Hassan, Pal Choudhury (bb0450) 2021; 15
Singh, Chen, Dong, Prakash, Kabiraj, Kanjilal (bb0310) 2015; 77
Prakash, Sun, Swart, Gupta (bb0135) 2018; 11
Prather, Marr, Schooley, McDiarmid, Wilson, Milton (bb0035) 2020; 370
Agelidis, Koujah, Suryawanshi, Yadavalli, Mishra, Adelung (bb0120) 2019; 10
Dar, Saeed, Wu (bb0240) 2020
Chen, Zhang, Prakash, Zheng, Sun (bb0250) 2019; 9
Han, Zhang, Cao, Yang, Taira, Okamoto (bb0525) 2004; 31
Kumar, Chandra Mathpal, Prakash, Viljoen, Roos, Swart (bb0265) 2020; 832
Nasir, Awang, Hubadillah, Jaafar, Othman, Wan Salleh (bb0205) 2021; 42
Prakash, Swart, Zhang, Sun (bb0255) 2019; 7
Kumar, Prakash, Singh, Chae, Swart, Ntwaeaborwa (bb0350) 2017; 159
Matsuura, Lo, Wada, Somei, Ochiai, Murakami (bb0510) 2021; 13
Khaiboullina, Uppal, Dhabarde, Subramanian, Verma (bb0520) 2021; 13
Ong, Tan, Chia, Lee, Ng, Wong (bb0050) 2020; 323
Prakash (bb0425) 2019; 38
Hasan, Xu, Yarlagadda, Schuetz, Spann, Yarlagadda (bb0085) 2020; 6
Moongraksathum, Chien, Chen (bb0175) 2019; 19
Balasubramaniam, Singh, Kar, Tyagi, Prakash, Gupta (bb0285) 2019; 4
Zacarías, Satuf, Vaccari, Alfano (bb0440) 2015; 266
Wang, Yu, Wong (bb0390) 2013; 734
Verma, Gangwar, Srivastava (bb0245) 2017; 7
Bono, Ponti, Punta, Candiani (bb0330) 2021; 14
Leyland, Podporska-Carroll, Browne, Hinder, Quilty, Pillai (bb0220) 2016; 6
Yang, Zhang, Prakash, Chen, Gauthier, Sun (bb0280) 2019; 38
Monmaturapoj, Sri-on, Klinsukhon, Boonnak, Prahsarn (bb0480) 2018; 92
Miyauchi, Sunada, Hashimoto (bb0015) 2020; 10
Adel Alijan Darab, Ahmadlouydarab (bb0395) 2019; 7
Ghaffari, Tavakoli, Moradi, Tabarraei, Bokharaei-Salim, Zahmatkeshan (bb0100) 2019; 26
Mishra, Adelung, Röhl, Shukla, Spors, Tiwari (bb0105) 2011; 92
Skocaj, Filipic, Petkovic, Novak (bb0225) 2011; 45
Antoine, Hadigal, Yakoub, Mishra, Bhattacharya, Haddad (bb0115) 2016; 196
Kumar, Chandra Mathpal, Prakash, Jagannath, Roos, Swart (bb0270) 2020; 125
Shirvanimoghaddam, Akbari, Yadav, Al-Tamimi, Naebe (bb0090) 2021; 9
Wang, Chen, Su, Tsai, Shen, Bai, Yu (bb0495) 2021; 34
Prakash, Pivin, Swart (bb0130) 2015; 226
Chung, Lin, Tsou, Shi, He (bb0215) 2008; 85B
Rath, Dash, Som, Prakash, Tripathi, Avasthi (bb0320) 2011; 166
Komba, Zhang, Wei, Yang, Prakash, Chenitz (bb0275) 2019; 44
Lin, Ksari, Prakash, Giovanelli, Valmalette, Themlin (bb0315) 2014; 73
Levina, Repkova, Bessudnova, Filippova, Mazurkova, Zarytova (bb0485) 2016; 7
Iserson (bb0060) 2020; 30
Prakash, Samriti, Dai, Janegitz, Krishnan (bb0185) 2021; 13
Luo, Li, Xie, Sokolova, Song, Peijnenburg (bb0235) 2020; 16
Velikova, Georgiev (bb0055) 2021; 41
Grande, Tucci (bb0230) 2016; 16
Le Ouay, Stellacci (bb0340) 2015; 10
Mouritz, Galos, Linklater, Ladani, Kandare, Crawford (bb0505) 2021; 2
Sun, Ostrikov (bb0095) 2020; 25
Akhtar, Shahzad, Mushtaq, Ali, Rafe, Fazal-ul-Karim (bb0080) 2019; 6
Saravanan, Mostafavi, Vincent, Negash, Andavar, Perumal (bb0465) 2021; 156
Vadlamani, Uppal, Verma, Misra (bb0535) 2020; 20
Attia, Moemen, Youns, Ibrahim, Abdou, El Raey (bb0145) 2021; 203
Foster, Ditta, Varghese, Steele (bb0370) 2011; 90
Negrete, Bradfute, Larson, Sinha, Coombes, Goeke (bb0160) 2020
Weng, Zhao, Liu, Guan, Wu, Luo (bb0410) 2018; 29
Hamza, Gobouri, Al-Yasi, Al-Talhi, El-Megharbel (bb0530) 2021; 11
Imani, Ladouceur, Marshall, Maclachlan, Soleymani, Didar (bb0475) 2020; 14
Baraniuk (bb0025) 2021; 373
Singh, Prakash, Gupta (bb0195) 2017; 2
Zeghioud, Assadi, Khellaf, Djelal, Amrane, Rtimi (bb0380) 2019; 12
Hamdi, Abdel-Bar, Elmowafy, El-khouly, Mansour, Awad (bb0140) 2021; 6
Nakano, Ishiguro, Yao, Kajioka, Fujishima, Sunada (bb0075) 2012; 11
Gong, Xiao, Yu, Dong, Ji, Zhang (bb0125) 2019; 9
Gupta, Samriti, Prakash (bb0180) 2021; 20
Prakash, Kumar, Kroon, Asokan, Rigato, Chae (bb0305) 2016; 18
Basak, Packirisamy (bb0455) 2020; 24
Gharaibeh, Smith, Conway (bb0210) 2021; 13
Khaiboullina, Uppal, Dhabarde, Subramanian, Verma (bb0165) 2021; 13
Tao, Bae, Woodruff, Sauer, Cho (bb0190) 2019; 45
Kumar, Chandra Mathpal, Jagannath, Prakash, Maze, Roos (bb0295) 2021; 32
Liu, Sunada, Hashimoto, Miyauchi (bb0420) 2015; 3
Li, Zhou, Qian, Liu, Feng, Jin (bb0415) 2014; 104
Singh, Prakash, Misra, Sharma, Gupta (bb0335) 2017; 9
Qiu, Miyauchi, Sunada, Minoshima, Liu, Lu (bb0490) 2012; 6
Horváth, Rossi, Mercier, Lehmann, Sienkiewicz, Forró (bb0540) 2020; 30
Brankston, Gitterman, Hirji, Lemieux, Gardam (bb0020) 2007; 7
Habibi-Yangjeh, Asadzadeh-Khaneghah, Feizpoor, Rouhi (bb0325) 2020; 580
Kowal, Cronin, Dworniczek, Zeglinski, Tiernan, Wawrzynska (bb0405) 2014; 4
Baraniuk (10.1016/j.mne.2021.100100_bb0025) 2021; 373
Foster (10.1016/j.mne.2021.100100_bb0370) 2011; 90
Pathak (10.1016/j.mne.2021.100100_bb0300) 2016; 247
Haas (10.1016/j.mne.2021.100100_bb0065) 2021; 397
Leyland (10.1016/j.mne.2021.100100_bb0220) 2016; 6
Seaton (10.1016/j.mne.2021.100100_bb0355) 2010; 7
Serrano-Aroca (10.1016/j.mne.2021.100100_bb0450) 2021; 15
Luo (10.1016/j.mne.2021.100100_bb0235) 2020; 16
Khaiboullina (10.1016/j.mne.2021.100100_bb0520) 2021; 13
Chen (10.1016/j.mne.2021.100100_bb0250) 2019; 9
Wölfel (10.1016/j.mne.2021.100100_bb0005) 2020; 581
Singh (10.1016/j.mne.2021.100100_bb0195) 2017; 2
Chung (10.1016/j.mne.2021.100100_bb0215) 2008; 85B
Wasa (10.1016/j.mne.2021.100100_bb0445) 2021; 368
Hasan (10.1016/j.mne.2021.100100_bb0045) 2020; 6
Nasir (10.1016/j.mne.2021.100100_bb0205) 2021; 42
Khaiboullina (10.1016/j.mne.2021.100100_bb0165) 2021; 13
Pragatisheel (10.1016/j.mne.2021.100100_bb0360) 2020
Prakash (10.1016/j.mne.2021.100100_bb0365) 2019
Zeghioud (10.1016/j.mne.2021.100100_bb0380) 2019; 12
Prakash (10.1016/j.mne.2021.100100_bb0200) 2016; 27
Antoine (10.1016/j.mne.2021.100100_bb0110) 2012; 96
Kumar (10.1016/j.mne.2021.100100_bb0265) 2020; 832
Verma (10.1016/j.mne.2021.100100_bb0260) 2022
Vincent (10.1016/j.mne.2021.100100_bb0345) 2018; 124
Kumar (10.1016/j.mne.2021.100100_bb0295) 2021; 32
Samet (10.1016/j.mne.2021.100100_bb0030) 2021; 73
Attia (10.1016/j.mne.2021.100100_bb0145) 2021; 203
Li (10.1016/j.mne.2021.100100_bb0415) 2014; 104
Prakash (10.1016/j.mne.2021.100100_bb0135) 2018; 11
Imani (10.1016/j.mne.2021.100100_bb0475) 2020; 14
Mouritz (10.1016/j.mne.2021.100100_bb0505) 2021; 2
Kowal (10.1016/j.mne.2021.100100_bb0405) 2014; 4
Han (10.1016/j.mne.2021.100100_bb0525) 2004; 31
Prakash (10.1016/j.mne.2021.100100_bb0255) 2019; 7
Mishra (10.1016/j.mne.2021.100100_bb0105) 2011; 92
Prakash (10.1016/j.mne.2021.100100_bb0425) 2019; 38
Yang (10.1016/j.mne.2021.100100_bb0280) 2019; 38
Hajkova (10.1016/j.mne.2021.100100_bb0170) 2007; 4
Saravanan (10.1016/j.mne.2021.100100_bb0465) 2021; 156
Wang (10.1016/j.mne.2021.100100_bb0390) 2013; 734
Negrete (10.1016/j.mne.2021.100100_bb0160) 2020
Moongraksathum (10.1016/j.mne.2021.100100_bb0175) 2019; 19
Ghaffari (10.1016/j.mne.2021.100100_bb0100) 2019; 26
Gurunathan (10.1016/j.mne.2021.100100_bb0010) 2020; 10
Bai (10.1016/j.mne.2021.100100_bb0385) 2013; 19
Adel Alijan Darab (10.1016/j.mne.2021.100100_bb0395) 2019; 7
Monmaturapoj (10.1016/j.mne.2021.100100_bb0480) 2018; 92
Park (10.1016/j.mne.2021.100100_bb0070) 2014; 140
Prakash (10.1016/j.mne.2021.100100_bb0290) 2014; 147
Horváth (10.1016/j.mne.2021.100100_bb0540) 2020; 30
Gharaibeh (10.1016/j.mne.2021.100100_bb0210) 2021; 13
Hamdi (10.1016/j.mne.2021.100100_bb0140) 2021; 6
Basak (10.1016/j.mne.2021.100100_bb0455) 2020; 24
Rath (10.1016/j.mne.2021.100100_bb0320) 2011; 166
Shirvanimoghaddam (10.1016/j.mne.2021.100100_bb0090) 2021; 9
Lilja (10.1016/j.mne.2021.100100_bb0400) 2012; 34
Prakash (10.1016/j.mne.2021.100100_bb0185) 2021; 13
Velikova (10.1016/j.mne.2021.100100_bb0055) 2021; 41
Hasan (10.1016/j.mne.2021.100100_bb0085) 2020; 6
Bono (10.1016/j.mne.2021.100100_bb0330) 2021; 14
Reid (10.1016/j.mne.2021.100100_bb0155) 2018; 39
Sun (10.1016/j.mne.2021.100100_bb0095) 2020; 25
Joonaki (10.1016/j.mne.2021.100100_bb0515) 2020; 6
Prakash (10.1016/j.mne.2021.100100_bb0305) 2016; 18
Weiss (10.1016/j.mne.2021.100100_bb0470) 2020; 14
Miyauchi (10.1016/j.mne.2021.100100_bb0015) 2020; 10
Dar (10.1016/j.mne.2021.100100_bb0240) 2020
Verma (10.1016/j.mne.2021.100100_bb0245) 2017; 7
Zacarías (10.1016/j.mne.2021.100100_bb0440) 2015; 266
Iserson (10.1016/j.mne.2021.100100_bb0060) 2020; 30
Singh (10.1016/j.mne.2021.100100_bb0310) 2015; 77
Gupta (10.1016/j.mne.2021.100100_bb0180) 2021; 20
Komba (10.1016/j.mne.2021.100100_bb0275) 2019; 44
Kerry (10.1016/j.mne.2021.100100_bb0460) 2019; 18
Kumar (10.1016/j.mne.2021.100100_bb0350) 2017; 159
Tao (10.1016/j.mne.2021.100100_bb0190) 2019; 45
Wang (10.1016/j.mne.2021.100100_bb0495) 2021; 34
Gong (10.1016/j.mne.2021.100100_bb0125) 2019; 9
Lia (10.1016/j.mne.2021.100100_bb0435) 2020; 10
Prakash (10.1016/j.mne.2021.100100_bb0130) 2015; 226
Matsuura (10.1016/j.mne.2021.100100_bb0510) 2021; 13
Kozlova (10.1016/j.mne.2021.100100_bb0500) 2010; 44
Akhtar (10.1016/j.mne.2021.100100_bb0080) 2019; 6
Kampf (10.1016/j.mne.2021.100100_bb0040) 2020; 104
Grande (10.1016/j.mne.2021.100100_bb0230) 2016; 16
Antoine (10.1016/j.mne.2021.100100_bb0115) 2016; 196
Skocaj (10.1016/j.mne.2021.100100_bb0225) 2011; 45
Qiu (10.1016/j.mne.2021.100100_bb0490) 2012; 6
Weng (10.1016/j.mne.2021.100100_bb0410) 2018; 29
Won (10.1016/j.mne.2021.100100_bb0430) 2018; 208
Micochova (10.1016/j.mne.2021.100100_bb0150) 2021; 6
Balasubramaniam (10.1016/j.mne.2021.100100_bb0285) 2019; 4
Le Ouay (10.1016/j.mne.2021.100100_bb0340) 2015; 10
Singh (10.1016/j.mne.2021.100100_bb0335) 2017; 9
Ong (10.1016/j.mne.2021.100100_bb0050) 2020; 323
Nakano (10.1016/j.mne.2021.100100_bb0075) 2012; 11
Kumar (10.1016/j.mne.2021.100100_bb0270) 2020; 125
Liu (10.1016/j.mne.2021.100100_bb0420) 2015; 3
Vadlamani (10.1016/j.mne.2021.100100_bb0535) 2020; 20
Habibi-Yangjeh (10.1016/j.mne.2021.100100_bb0325) 2020; 580
Brankston (10.1016/j.mne.2021.100100_bb0020) 2007; 7
Lin (10.1016/j.mne.2021.100100_bb0315) 2014; 73
Hamza (10.1016/j.mne.2021.100100_bb0530) 2021; 11
Prather (10.1016/j.mne.2021.100100_bb0035) 2020; 370
Agelidis (10.1016/j.mne.2021.100100_bb0120) 2019; 10
Levina (10.1016/j.mne.2021.100100_bb0485) 2016; 7
Zhang (10.1016/j.mne.2021.100100_bb0375) 2009; 43
References_xml – volume: 226
  start-page: 187
  year: 2015
  end-page: 202
  ident: bb0130
  article-title: Noble metal nanoparticles embedding into polymeric materials: from fundamentals to applications
  publication-title: Adv. Colloid Interf. Sci.
– volume: 373
  year: 2021
  ident: bb0025
  article-title: Covid-19: what do we know about airborne transmission of SARS-CoV-2?
  publication-title: BMJ.
– volume: 370
  start-page: 303
  year: 2020
  end-page: 304
  ident: bb0035
  article-title: Airborne transmission of SARS-CoV-2
  publication-title: Science.
– volume: 13
  start-page: 19
  year: 2021
  ident: bb0520
  article-title: Inactivation of human coronavirus by Titania nanoparticle coatings and UVC radiation: throwing light on SARS-CoV-2
  publication-title: Viruses.
– volume: 16
  start-page: 762
  year: 2016
  end-page: 769
  ident: bb0230
  article-title: Titanium dioxide nanoparticles: a risk for human health?
  publication-title: Mini-Rev. Med. Chem.
– volume: 19
  start-page: 7356
  year: 2019
  end-page: 7362
  ident: bb0175
  article-title: Antiviral and antibacterial effects of silver-doped TiO2 prepared by the Peroxo sol-gel method
  publication-title: J. Nanosci. Nanotechnol.
– volume: 124
  start-page: 1032
  year: 2018
  end-page: 1046
  ident: bb0345
  article-title: Contact killing and antimicrobial properties of copper
  publication-title: J. Appl. Microbiol.
– start-page: 121
  year: 2019
  end-page: 143
  ident: bb0365
  article-title: Recent Progress on novel Ag–TiO2 nanocomposites for antibacterial applications
  publication-title: Microbial Nanobionics: Volume 2, Basic Research and Applications
– volume: 140
  start-page: 315
  year: 2014
  end-page: 320
  ident: bb0070
  article-title: Fluorinated TiO2 as an ambient light-activated virucidal surface coating material for the control of human norovirus
  publication-title: J. Photochem. Photobiol. B Biol.
– volume: 6
  year: 2021
  ident: bb0150
  article-title: Rapid inactivation of SARS-CoV-2 by titanium dioxide surface coating [version 1; peer review: 1 approved with reservations]. Wellcome open
  publication-title: Research.
– volume: 196
  start-page: 4566
  year: 2016
  end-page: 4575
  ident: bb0115
  article-title: Intravaginal zinc oxide tetrapod nanoparticles as novel immunoprotective agents against genital herpes
  publication-title: J. Immunol.
– volume: 10
  year: 2019
  ident: bb0120
  article-title: An intra-vaginal zinc oxide tetrapod nanoparticles (ZOTEN) and genital herpesvirus cocktail can provide a novel platform for live virus vaccine
  publication-title: Front. Immunol.
– volume: 32
  year: 2021
  ident: bb0295
  article-title: Optical limiting applications of resonating plasmonic au nanoparticles in a dielectric glass medium
  publication-title: Nanotechnology.
– volume: 13
  year: 2021
  ident: bb0165
  article-title: In vitro inactivation of human coronavirus by titania nanoparticle coatings and UVC radiation: throwing light on SARS-CoV-2
  publication-title: bioRxiv
– volume: 368
  year: 2021
  ident: bb0445
  article-title: Antimicrobial and biofilm-disrupting nanostructured TiO2 coating demonstrating photoactivity and dark activity
  publication-title: FEMS Microbiol. Lett.
– volume: 96
  start-page: 363
  year: 2012
  end-page: 375
  ident: bb0110
  article-title: Prophylactic, therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection
  publication-title: Antivir. Res.
– volume: 397
  start-page: 1819
  year: 2021
  end-page: 1829
  ident: bb0065
  article-title: Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data
  publication-title: Lancet
– volume: 19
  start-page: 3061
  year: 2013
  end-page: 3070
  ident: bb0385
  article-title: Large-scale production of hierarchical TiO2 Nanorod spheres for Photocatalytic elimination of contaminants and killing Bacteria. Chemistry – a
  publication-title: Eur. J.
– volume: 247
  start-page: 475
  year: 2016
  end-page: 481
  ident: bb0300
  article-title: Fabrication and characterization of nitrogen doped p-ZnO on n-Si heterojunctions
  publication-title: Sensors Actuators A Phys.
– volume: 26
  start-page: 70
  year: 2019
  ident: bb0100
  article-title: Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine
  publication-title: J. Biomed. Sci.
– volume: 9
  start-page: 1900889
  year: 2019
  ident: bb0250
  article-title: Rational design of novel catalysts with atomic layer deposition for the reduction of carbon dioxide
  publication-title: Adv. Energy Mater.
– volume: 159
  start-page: 191
  year: 2017
  end-page: 199
  ident: bb0350
  article-title: Role of silver doping on the defects related photoluminescence and antibacterial behaviour of zinc oxide nanoparticles
  publication-title: Colloids Surf. B: Biointerfaces
– volume: 77
  start-page: 313
  year: 2015
  end-page: 324
  ident: bb0310
  article-title: Role of surface and subsurface defects in MgO thin film: XANES and magnetic investigations
  publication-title: Superlattice. Microst.
– volume: 11
  start-page: 680
  year: 2021
  ident: bb0530
  article-title: A new sterilization strategy using TiO2 nanotubes for production of free radicals that eliminate viruses and application of a treatment strategy to combat infections caused by emerging SARS-CoV-2 during the COVID-19 pandemic
  publication-title: Coatings.
– volume: 20
  start-page: 5871
  year: 2020
  ident: bb0535
  article-title: Functionalized TiO2 nanotube-based electrochemical biosensor for rapid detection of SARS-CoV-2
  publication-title: Sensors.
– volume: 30
  start-page: 2004615
  year: 2020
  ident: bb0540
  article-title: Photocatalytic nanowires-based air filter: towards reusable protective masks
  publication-title: Adv. Funct. Mater.
– volume: 73
  start-page: 216
  year: 2014
  end-page: 224
  ident: bb0315
  article-title: Nitrogen-doping processes of graphene by a versatile plasma-based method
  publication-title: Carbon.
– volume: 104
  year: 2014
  ident: bb0415
  article-title: Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application
  publication-title: Appl. Phys. Lett.
– volume: 43
  start-page: 2905
  year: 2009
  end-page: 2910
  ident: bb0375
  article-title: Potent antibacterial activities of Ag/TiO2 Nanocomposite powders synthesized by a one-pot sol−gel method
  publication-title: Environ. Sci. Technol.
– volume: 11
  start-page: 82
  year: 2018
  end-page: 135
  ident: bb0135
  article-title: Noble metals-TiO2 nanocomposites: from fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications
  publication-title: Appl. Mater. Today
– volume: 13
  start-page: 100066
  year: 2021
  ident: bb0185
  article-title: Novel rare earth metal–doped one-dimensional TiO2 nanostructures: fundamentals and multifunctional applications
  publication-title: Mater. Today Sustainabil.
– volume: 7
  start-page: 1447
  year: 2019
  end-page: 1471
  ident: bb0255
  article-title: Emerging applications of atomic layer deposition for the rational design of novel nanostructures for surface-enhanced Raman scattering
  publication-title: J. Mater. Chem. C
– volume: 6
  start-page: 4858
  year: 2020
  end-page: 4861
  ident: bb0045
  article-title: Antiviral nanostructured surfaces reduce the viability of SARS-CoV-2
  publication-title: ACS Biomater. Sci. Eng.
– volume: 30
  start-page: 59
  year: 2020
  end-page: 68
  ident: bb0060
  article-title: SARS-CoV-2 (COVID-19) vaccine development and production: an ethical way forward
  publication-title: Camb. Q. Healthc. Ethics
– volume: 15
  start-page: 8069
  year: 2021
  end-page: 8086
  ident: bb0450
  article-title: Carbon-based nanomaterials: promising antiviral agents to combat COVID-19 in the microbial-resistant era
  publication-title: ACS Nano
– volume: 156
  year: 2021
  ident: bb0465
  article-title: Nanotechnology-based approaches for emerging and re-emerging viruses: special emphasis on COVID-19
  publication-title: Microb. Pathog.
– volume: 14
  start-page: 6383
  year: 2020
  end-page: 6406
  ident: bb0470
  article-title: Toward nanotechnology-enabled approaches against the COVID-19 pandemic
  publication-title: ACS Nano
– volume: 16
  start-page: 2002019
  year: 2020
  ident: bb0235
  article-title: Rethinking Nano-TiO2 safety: overview of toxic effects in humans and aquatic animals
  publication-title: Small.
– volume: 7
  start-page: 1166
  year: 2016
  end-page: 1173
  ident: bb0485
  article-title: High antiviral effect of TiO2·PL–DNA nanocomposites targeted to conservative regions of (−)RNA and (+)RNA of influenza a virus in cell culture
  publication-title: Beilstein J. Nanotechnol.
– volume: 34
  start-page: 293
  year: 2021
  end-page: 302
  ident: bb0495
  article-title: Effectiveness of the nanosilver/TiO2-chitosan antiviral filter on the removal of viral aerosols
  publication-title: J. Aerosol Med. Pulmonary Drug Deliv.
– volume: 7
  year: 2019
  ident: bb0395
  article-title: Application of phosphorescent material in activation of N:Cu:TiO2 photocatalyst as antibacterial and dye removal agent from solid surfaces used in hospitals
  publication-title: J. Environ. Chem. Eng.
– volume: 6
  start-page: 3608
  year: 2020
  end-page: 3618
  ident: bb0085
  article-title: Antiviral and antibacterial nanostructured surfaces with excellent mechanical properties for hospital applications
  publication-title: ACS Biomater. Sci. Eng.
– volume: 92
  start-page: 305
  year: 2011
  end-page: 312
  ident: bb0105
  article-title: Virostatic potential of micro–nano filopodia-like ZnO structures against herpes simplex virus-1
  publication-title: Antivir. Res.
– volume: 10
  start-page: 1093
  year: 2020
  ident: bb0015
  article-title: Antiviral effect of visible light-sensitive CuxO/TiO2 Photocatalyst
  publication-title: Catalysts.
– volume: 13
  start-page: 58
  year: 2021
  end-page: 71
  ident: bb0210
  article-title: Reducing spread of infections with a Photocatalytic reactor—potential applications in control of hospital
  publication-title: Infect. Dis. Reports.
– volume: 20
  year: 2021
  ident: bb0180
  article-title: Hydrothermal synthesis of TiO2 nanorods: formation chemistry, growth mechanism, and tailoring of surface properties for photocatalytic activities
  publication-title: Mater. Today Chem.
– volume: 166
  start-page: 571
  year: 2011
  end-page: 577
  ident: bb0320
  article-title: Surface evolution of titanium oxide thin film with swift heavy ion irradiation
  publication-title: Radiat. Effects Defects Solids.
– volume: 203
  year: 2021
  ident: bb0145
  article-title: Antiviral zinc oxide nanoparticles mediated by hesperidin and in silico comparison study between antiviral phenolics as anti-SARS-CoV-2
  publication-title: Colloids Surf. B: Biointerfaces
– volume: 45
  start-page: 23216
  year: 2019
  end-page: 23224
  ident: bb0190
  article-title: Hydrothermally-grown nanostructured anatase TiO2 coatings tailored for photocatalytic and antibacterial properties
  publication-title: Ceram. Int.
– volume: 104
  start-page: 246
  year: 2020
  end-page: 251
  ident: bb0040
  article-title: Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents
  publication-title: J. Hosp. Infect.
– volume: 734
  start-page: 63
  year: 2013
  end-page: 89
  ident: bb0390
  article-title: Photocatalysts for solar-induced water disinfection: new developments and opportunities
  publication-title: Mater. Sci. Forum
– volume: 12
  start-page: 412
  year: 2019
  ident: bb0380
  article-title: Photocatalytic performance of CuxO/TiO2 deposited by HiPIMS on polyester under visible light LEDs: oxidants, ions effect, and reactive oxygen species investigation
  publication-title: Materials.
– volume: 42
  year: 2021
  ident: bb0205
  article-title: A review on the potential of photocatalysis in combatting SARS-CoV-2 in wastewater
  publication-title: J. Water Process Eng.
– volume: 6
  start-page: 6848
  year: 2021
  end-page: 6860
  ident: bb0140
  article-title: Investigating the internalization and COVID-19 antiviral computational analysis of optimized Nanoscale zinc oxide
  publication-title: ACS Omega.
– volume: 9
  start-page: 19278
  year: 2019
  end-page: 19284
  ident: bb0125
  article-title: Research progress of photocatalytic sterilization over semiconductors
  publication-title: RSC Adv.
– volume: 14
  start-page: 12341
  year: 2020
  end-page: 12369
  ident: bb0475
  article-title: Antimicrobial nanomaterials and coatings: current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2
  publication-title: ACS Nano
– volume: 832
  year: 2020
  ident: bb0265
  article-title: Band gap tailoring of cauliflower-shaped CuO nanostructures by Zn doping for antibacterial applications
  publication-title: J. Alloys Compd.
– volume: 147
  start-page: 920
  year: 2014
  end-page: 924
  ident: bb0290
  article-title: Phenomenological understanding of dewetting and embedding of noble metal nanoparticles in thin films induced by ion irradiation
  publication-title: Mater. Chem. Phys.
– volume: 7
  start-page: S119
  year: 2010
  end-page: S129
  ident: bb0355
  article-title: Nanoparticles, human health hazard and regulation
  publication-title: J. R. Soc. Interface
– volume: 18
  start-page: 196
  year: 2019
  end-page: 220
  ident: bb0460
  article-title: Nano-based approach to combat emerging viral (NIPAH virus) infection
  publication-title: Nanomedicine
– volume: 2
  start-page: 2061
  year: 2021
  end-page: 2071
  ident: bb0505
  article-title: Towards antiviral polymer composites to combat COVID-19 transmission
  publication-title: Nano Select
– volume: 6
  start-page: 24770
  year: 2016
  ident: bb0220
  article-title: Highly efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections
  publication-title: Sci. Rep.
– volume: 29
  start-page: 50
  year: 2018
  ident: bb0410
  article-title: Synthesis, characterization, antibacterial activity in dark and in vitro cytocompatibility of Ag-incorporated TiO2 microspheres with high specific surface area
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 27
  year: 2016
  ident: bb0200
  article-title: Synthesis, characterization and multifunctional properties of plasmonic Ag–TiO2nanocomposites
  publication-title: Nanotechnology.
– year: 2022
  ident: bb0260
  article-title: A facile synthesis of novel polyaniline/graphene nanocomposite thin films for enzyme-free electrochemical sensing of hydrogen peroxide
  publication-title: Mol. Syst. Design Eng.
– volume: 580
  start-page: 503
  year: 2020
  end-page: 514
  ident: bb0325
  article-title: Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: can we win against pathogenic viruses?
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 257
  year: 2007
  end-page: 265
  ident: bb0020
  article-title: Transmission of influenza a in human beings
  publication-title: Lancet Infect. Dis.
– volume: 266
  start-page: 133
  year: 2015
  end-page: 140
  ident: bb0440
  article-title: Photocatalytic inactivation of bacterial spores using TiO2 films with silver deposits
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 19945
  year: 2014
  end-page: 19952
  ident: bb0405
  article-title: Biocidal effect and durability of nano-TiO2 coated textiles to combat hospital acquired infections
  publication-title: RSC Adv.
– volume: 4
  start-page: S397
  year: 2007
  end-page: S401
  ident: bb0170
  article-title: Photocatalytic effect of TiO2 films on viruses and bacteria
  publication-title: Plasma Process. Polym.
– volume: 14
  start-page: 1075
  year: 2021
  ident: bb0330
  article-title: Effect of UV irradiation and TiO2-photocatalysis on airborne bacteria and viruses: an overview
  publication-title: Materials.
– volume: 323
  start-page: 1610
  year: 2020
  end-page: 1612
  ident: bb0050
  article-title: Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient
  publication-title: JAMA.
– volume: 13
  start-page: 942
  year: 2021
  ident: bb0510
  article-title: SARS-CoV-2 disinfection of air and surface contamination by TiO2 photocatalyst-mediated damage to viral morphology, RNA, and protein
  publication-title: Viruses.
– volume: 11
  start-page: 1293
  year: 2012
  end-page: 1298
  ident: bb0075
  article-title: Photocatalytic inactivation of influenza virus by titanium dioxide thin film
  publication-title: Photochem. Photobiol. Sci.
– volume: 38
  start-page: 201
  year: 2019
  end-page: 242
  ident: bb0425
  article-title: Fundamentals and applications of recyclable SERS substrates
  publication-title: Int. Rev. Phys. Chem.
– volume: 581
  start-page: 465
  year: 2020
  end-page: 469
  ident: bb0005
  article-title: Virological assessment of hospitalized patients with COVID-2019
  publication-title: Nature.
– volume: 34
  start-page: 2299
  year: 2012
  end-page: 2305
  ident: bb0400
  article-title: Photocatalytic and antimicrobial properties of surgical implant coatings of titanium dioxide deposited though cathodic arc evaporation
  publication-title: Biotechnol. Lett.
– volume: 10
  start-page: 339
  year: 2015
  end-page: 354
  ident: bb0340
  article-title: Antibacterial activity of silver nanoparticles: a surface science insight
  publication-title: Nano Today
– volume: 6
  start-page: 1609
  year: 2012
  end-page: 1618
  ident: bb0490
  article-title: Hybrid CuxO/TiO2 Nanocomposites as risk-reduction materials in indoor environments
  publication-title: ACS Nano
– volume: 90
  start-page: 1847
  year: 2011
  end-page: 1868
  ident: bb0370
  article-title: Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 92
  start-page: 96
  year: 2018
  end-page: 102
  ident: bb0480
  article-title: Antiviral activity of multifunctional composite based on TiO2-modified hydroxyapatite
  publication-title: Mater. Sci. Eng. C
– volume: 6
  start-page: 2135
  year: 2020
  end-page: 2146
  ident: bb0515
  article-title: Surface chemistry can unlock drivers of surface stability of SARS-CoV-2 in a variety of environmental conditions
  publication-title: Chem.
– start-page: 67
  year: 2020
  end-page: 103
  ident: bb0240
  article-title: Toxicity of TiO2 nanoparticles
  publication-title: TiO2 Nanoparticles
– volume: 9
  start-page: 28495
  year: 2017
  end-page: 28507
  ident: bb0335
  article-title: Dual functional ta-doped electrospun TiO2 Nanofibers with enhanced Photocatalysis and SERS detection for organic compounds
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  start-page: 2468
  year: 2016
  end-page: 2480
  ident: bb0305
  article-title: Optical and surface enhanced Raman scattering properties of au nanoparticles embedded in and located on a carbonaceous matrix
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 422
  year: 2017
  end-page: 439
  ident: bb0195
  article-title: Design and engineering of high-performance photocatalytic systems based on metal oxide–graphene–noble metal nanocomposites
  publication-title: Mol. Syst. Design Eng.
– volume: 125
  year: 2020
  ident: bb0270
  article-title: Plasmonic and nonlinear optical behavior of nanostructures in glass matrix for photonics application
  publication-title: Mater. Res. Bull.
– volume: 4
  start-page: 804
  year: 2019
  end-page: 827
  ident: bb0285
  article-title: Engineering of transition metal dichalcogenide-based 2D nanomaterials through doping for environmental applications
  publication-title: Mol. Syst. Design Eng.
– volume: 7
  start-page: 44199
  year: 2017
  end-page: 44224
  ident: bb0245
  article-title: Multiphase TiO2 nanostructures: a review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health
  publication-title: RSC Adv.
– volume: 208
  start-page: 899
  year: 2018
  end-page: 906
  ident: bb0430
  article-title: TiO2-based transparent coatings create self-cleaning surfaces
  publication-title: Chemosphere.
– volume: 31
  start-page: 982
  year: 2004
  end-page: 985
  ident: bb0525
  article-title: The inactivation effect of photocatalytic titanium apatie filter on SARS virus
  publication-title: Prog. Biochem. Biophys.
– year: 2020
  ident: bb0160
  article-title: Photocatalytic Material Surfaces for SARS-CoV-2 Virus Inactivation
– volume: 3
  start-page: 17312
  year: 2015
  end-page: 17319
  ident: bb0420
  article-title: Visible-light sensitive cu(ii)–TiO2 with sustained anti-viral activity for efficient indoor environmental remediation
  publication-title: J. Mater. Chem. A
– volume: 25
  year: 2020
  ident: bb0095
  article-title: Future antiviral surfaces: lessons from COVID-19 pandemic
  publication-title: Sustain. Mater. Technol.
– volume: 24
  year: 2020
  ident: bb0455
  article-title: Nano-based antiviral coatings to combat viral infections
  publication-title: Nano-Struct. Nano-Obj.
– volume: 10
  start-page: 1645
  year: 2020
  ident: bb0010
  article-title: Antiviral potential of nanoparticles—can nanoparticles fight against coronaviruses?
  publication-title: Nanomaterials.
– volume: 38
  start-page: 149
  year: 2019
  end-page: 199
  ident: bb0280
  article-title: Chemical vapour deposition of graphene: layer control, the transfer process, characterisation, and related applications
  publication-title: Int. Rev. Phys. Chem.
– volume: 45
  start-page: 227
  year: 2011
  end-page: 247
  ident: bb0225
  article-title: Titanium dioxide in our everyday life; is it safe?
  publication-title: Radiol. Oncol.
– volume: 39
  start-page: 398
  year: 2018
  end-page: 404
  ident: bb0155
  article-title: How does a Photocatalytic antimicrobial coating affect environmental bioburden in hospitals?
  publication-title: Infect. Control Hosp. Epidemiol.
– volume: 9
  year: 2021
  ident: bb0090
  article-title: Fight against COVID-19: the case of antiviral surfaces
  publication-title: APL Mater.
– volume: 41
  start-page: 509
  year: 2021
  end-page: 518
  ident: bb0055
  article-title: SARS-CoV-2 vaccines and autoimmune diseases amidst the COVID-19 crisis
  publication-title: Rheumatol. Int.
– volume: 6
  year: 2019
  ident: bb0080
  article-title: Antibacterial and antiviral potential of colloidal titanium dioxide (TiO2) nanoparticles suitable for biological applications
  publication-title: Mater. Res. Express.
– volume: 44
  start-page: 18103
  year: 2019
  end-page: 18114
  ident: bb0275
  article-title: Iron (II) phthalocyanine/N-doped graphene: a highly efficient non-precious metal catalyst for oxygen reduction
  publication-title: Int. J. Hydrog. Energy
– volume: 73
  start-page: 1924
  year: 2021
  end-page: 1926
  ident: bb0030
  article-title: Airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): what we know
  publication-title: Clin. Infect. Dis.
– volume: 85B
  start-page: 220
  year: 2008
  end-page: 224
  ident: bb0215
  article-title: An antimicrobial TiO2 coating for reducing hospital-acquired infection
  publication-title: J Biomed Mater Res B Appl Biomater
– volume: 44
  start-page: 5121
  year: 2010
  end-page: 5126
  ident: bb0500
  article-title: Inactivation and mineralization of aerosol deposited model pathogenic microorganisms over TiO2 and Pt/TiO2
  publication-title: Environ. Sci. Technol.
– start-page: 281
  year: 2020
  end-page: 303
  ident: bb0360
  article-title: Chemical synthesis methods, and biomedical applications
  publication-title: Applications of Nanotechnology for Green Synthesis
– volume: 10
  start-page: 5243
  year: 2020
  ident: bb0435
  article-title: Effect of the surface morphology of TiO2 nanotubes on photocatalytic efficacy using electron-transfer-based assays and antimicrobial tests
  publication-title: Appl. Sci.
– volume: 90
  start-page: 1847
  year: 2011
  ident: 10.1016/j.mne.2021.100100_bb0370
  article-title: Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3213-7
– volume: 32
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0295
  article-title: Optical limiting applications of resonating plasmonic au nanoparticles in a dielectric glass medium
  publication-title: Nanotechnology.
  doi: 10.1088/1361-6528/abfee6
– volume: 14
  start-page: 6383
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0470
  article-title: Toward nanotechnology-enabled approaches against the COVID-19 pandemic
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03697
– volume: 203
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0145
  article-title: Antiviral zinc oxide nanoparticles mediated by hesperidin and in silico comparison study between antiviral phenolics as anti-SARS-CoV-2
  publication-title: Colloids Surf. B: Biointerfaces
  doi: 10.1016/j.colsurfb.2021.111724
– volume: 34
  start-page: 293
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0495
  article-title: Effectiveness of the nanosilver/TiO2-chitosan antiviral filter on the removal of viral aerosols
  publication-title: J. Aerosol Med. Pulmonary Drug Deliv.
  doi: 10.1089/jamp.2020.1607
– volume: 26
  start-page: 70
  year: 2019
  ident: 10.1016/j.mne.2021.100100_bb0100
  article-title: Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine
  publication-title: J. Biomed. Sci.
  doi: 10.1186/s12929-019-0563-4
– volume: 397
  start-page: 1819
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0065
  article-title: Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00947-8
– volume: 11
  start-page: 82
  year: 2018
  ident: 10.1016/j.mne.2021.100100_bb0135
  article-title: Noble metals-TiO2 nanocomposites: from fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2018.02.002
– volume: 208
  start-page: 899
  year: 2018
  ident: 10.1016/j.mne.2021.100100_bb0430
  article-title: TiO2-based transparent coatings create self-cleaning surfaces
  publication-title: Chemosphere.
  doi: 10.1016/j.chemosphere.2018.06.014
– volume: 6
  start-page: 1609
  year: 2012
  ident: 10.1016/j.mne.2021.100100_bb0490
  article-title: Hybrid CuxO/TiO2 Nanocomposites as risk-reduction materials in indoor environments
  publication-title: ACS Nano
  doi: 10.1021/nn2045888
– volume: 734
  start-page: 63
  year: 2013
  ident: 10.1016/j.mne.2021.100100_bb0390
  article-title: Photocatalysts for solar-induced water disinfection: new developments and opportunities
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.734.63
– volume: 20
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0180
  article-title: Hydrothermal synthesis of TiO2 nanorods: formation chemistry, growth mechanism, and tailoring of surface properties for photocatalytic activities
  publication-title: Mater. Today Chem.
– volume: 14
  start-page: 1075
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0330
  article-title: Effect of UV irradiation and TiO2-photocatalysis on airborne bacteria and viruses: an overview
  publication-title: Materials.
  doi: 10.3390/ma14051075
– volume: 9
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0090
  article-title: Fight against COVID-19: the case of antiviral surfaces
  publication-title: APL Mater.
  doi: 10.1063/5.0043009
– volume: 156
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0465
  article-title: Nanotechnology-based approaches for emerging and re-emerging viruses: special emphasis on COVID-19
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2021.104908
– volume: 7
  year: 2019
  ident: 10.1016/j.mne.2021.100100_bb0395
  article-title: Application of phosphorescent material in activation of N:Cu:TiO2 photocatalyst as antibacterial and dye removal agent from solid surfaces used in hospitals
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2019.102956
– volume: 92
  start-page: 305
  year: 2011
  ident: 10.1016/j.mne.2021.100100_bb0105
  article-title: Virostatic potential of micro–nano filopodia-like ZnO structures against herpes simplex virus-1
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2011.08.017
– volume: 20
  start-page: 5871
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0535
  article-title: Functionalized TiO2 nanotube-based electrochemical biosensor for rapid detection of SARS-CoV-2
  publication-title: Sensors.
  doi: 10.3390/s20205871
– volume: 6
  start-page: 6848
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0140
  article-title: Investigating the internalization and COVID-19 antiviral computational analysis of optimized Nanoscale zinc oxide
  publication-title: ACS Omega.
  doi: 10.1021/acsomega.0c06046
– volume: 368
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0445
  article-title: Antimicrobial and biofilm-disrupting nanostructured TiO2 coating demonstrating photoactivity and dark activity
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1093/femsle/fnab039
– volume: 125
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0270
  article-title: Plasmonic and nonlinear optical behavior of nanostructures in glass matrix for photonics application
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2020.110799
– volume: 9
  start-page: 28495
  year: 2017
  ident: 10.1016/j.mne.2021.100100_bb0335
  article-title: Dual functional ta-doped electrospun TiO2 Nanofibers with enhanced Photocatalysis and SERS detection for organic compounds
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b07571
– volume: 30
  start-page: 59
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0060
  article-title: SARS-CoV-2 (COVID-19) vaccine development and production: an ethical way forward
  publication-title: Camb. Q. Healthc. Ethics
  doi: 10.1017/S096318012000047X
– volume: 10
  start-page: 339
  year: 2015
  ident: 10.1016/j.mne.2021.100100_bb0340
  article-title: Antibacterial activity of silver nanoparticles: a surface science insight
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2015.04.002
– volume: 14
  start-page: 12341
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0475
  article-title: Antimicrobial nanomaterials and coatings: current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05937
– volume: 159
  start-page: 191
  year: 2017
  ident: 10.1016/j.mne.2021.100100_bb0350
  article-title: Role of silver doping on the defects related photoluminescence and antibacterial behaviour of zinc oxide nanoparticles
  publication-title: Colloids Surf. B: Biointerfaces
  doi: 10.1016/j.colsurfb.2017.07.071
– volume: 13
  start-page: 58
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0210
  article-title: Reducing spread of infections with a Photocatalytic reactor—potential applications in control of hospital Staphylococcus aureus and Clostridioides difficile infections and inactivation of RNA viruses
  publication-title: Infect. Dis. Reports.
  doi: 10.3390/idr13010008
– volume: 6
  start-page: 24770
  year: 2016
  ident: 10.1016/j.mne.2021.100100_bb0220
  article-title: Highly efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections
  publication-title: Sci. Rep.
  doi: 10.1038/srep24770
– volume: 323
  start-page: 1610
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0050
  article-title: Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient
  publication-title: JAMA.
  doi: 10.1001/jama.2020.3227
– volume: 11
  start-page: 1293
  year: 2012
  ident: 10.1016/j.mne.2021.100100_bb0075
  article-title: Photocatalytic inactivation of influenza virus by titanium dioxide thin film
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/c2pp05414k
– volume: 18
  start-page: 2468
  year: 2016
  ident: 10.1016/j.mne.2021.100100_bb0305
  article-title: Optical and surface enhanced Raman scattering properties of au nanoparticles embedded in and located on a carbonaceous matrix
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP06134B
– volume: 45
  start-page: 23216
  year: 2019
  ident: 10.1016/j.mne.2021.100100_bb0190
  article-title: Hydrothermally-grown nanostructured anatase TiO2 coatings tailored for photocatalytic and antibacterial properties
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.08.017
– volume: 18
  start-page: 196
  year: 2019
  ident: 10.1016/j.mne.2021.100100_bb0460
  article-title: Nano-based approach to combat emerging viral (NIPAH virus) infection
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2019.03.004
– volume: 104
  start-page: 246
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0040
  article-title: Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents
  publication-title: J. Hosp. Infect.
  doi: 10.1016/j.jhin.2020.01.022
– volume: 6
  start-page: 3608
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0085
  article-title: Antiviral and antibacterial nanostructured surfaces with excellent mechanical properties for hospital applications
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.0c00348
– volume: 7
  start-page: 1166
  year: 2016
  ident: 10.1016/j.mne.2021.100100_bb0485
  article-title: High antiviral effect of TiO2·PL–DNA nanocomposites targeted to conservative regions of (−)RNA and (+)RNA of influenza a virus in cell culture
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.7.108
– volume: 19
  start-page: 3061
  year: 2013
  ident: 10.1016/j.mne.2021.100100_bb0385
  article-title: Large-scale production of hierarchical TiO2 Nanorod spheres for Photocatalytic elimination of contaminants and killing Bacteria. Chemistry – a
  publication-title: Eur. J.
  doi: 10.1002/chem.201204013
– volume: 44
  start-page: 18103
  year: 2019
  ident: 10.1016/j.mne.2021.100100_bb0275
  article-title: Iron (II) phthalocyanine/N-doped graphene: a highly efficient non-precious metal catalyst for oxygen reduction
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.05.032
– start-page: 281
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0360
  article-title: Chemical synthesis methods, and biomedical applications
– year: 2022
  ident: 10.1016/j.mne.2021.100100_bb0260
  article-title: A facile synthesis of novel polyaniline/graphene nanocomposite thin films for enzyme-free electrochemical sensing of hydrogen peroxide
  publication-title: Mol. Syst. Design Eng.
  doi: 10.1039/D1ME00130B
– volume: 24
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0455
  article-title: Nano-based antiviral coatings to combat viral infections
  publication-title: Nano-Struct. Nano-Obj.
– volume: 85B
  start-page: 220
  year: 2008
  ident: 10.1016/j.mne.2021.100100_bb0215
  article-title: An antimicrobial TiO2 coating for reducing hospital-acquired infection
  publication-title: J Biomed Mater Res B Appl Biomater
  doi: 10.1002/jbm.b.30939
– volume: 41
  start-page: 509
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0055
  article-title: SARS-CoV-2 vaccines and autoimmune diseases amidst the COVID-19 crisis
  publication-title: Rheumatol. Int.
  doi: 10.1007/s00296-021-04792-9
– volume: 25
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0095
  article-title: Future antiviral surfaces: lessons from COVID-19 pandemic
  publication-title: Sustain. Mater. Technol.
– volume: 9
  start-page: 1900889
  year: 2019
  ident: 10.1016/j.mne.2021.100100_bb0250
  article-title: Rational design of novel catalysts with atomic layer deposition for the reduction of carbon dioxide
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900889
– volume: 226
  start-page: 187
  year: 2015
  ident: 10.1016/j.mne.2021.100100_bb0130
  article-title: Noble metal nanoparticles embedding into polymeric materials: from fundamentals to applications
  publication-title: Adv. Colloid Interf. Sci.
  doi: 10.1016/j.cis.2015.10.010
– volume: 16
  start-page: 762
  year: 2016
  ident: 10.1016/j.mne.2021.100100_bb0230
  article-title: Titanium dioxide nanoparticles: a risk for human health?
  publication-title: Mini-Rev. Med. Chem.
  doi: 10.2174/1389557516666160321114341
– volume: 96
  start-page: 363
  year: 2012
  ident: 10.1016/j.mne.2021.100100_bb0110
  article-title: Prophylactic, therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2012.09.020
– volume: 34
  start-page: 2299
  year: 2012
  ident: 10.1016/j.mne.2021.100100_bb0400
  article-title: Photocatalytic and antimicrobial properties of surgical implant coatings of titanium dioxide deposited though cathodic arc evaporation
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-012-1040-2
– volume: 10
  start-page: 1645
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0010
  article-title: Antiviral potential of nanoparticles—can nanoparticles fight against coronaviruses?
  publication-title: Nanomaterials.
  doi: 10.3390/nano10091645
– volume: 196
  start-page: 4566
  year: 2016
  ident: 10.1016/j.mne.2021.100100_bb0115
  article-title: Intravaginal zinc oxide tetrapod nanoparticles as novel immunoprotective agents against genital herpes
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1502373
– volume: 29
  start-page: 50
  year: 2018
  ident: 10.1016/j.mne.2021.100100_bb0410
  article-title: Synthesis, characterization, antibacterial activity in dark and in vitro cytocompatibility of Ag-incorporated TiO2 microspheres with high specific surface area
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-018-6042-8
– volume: 7
  start-page: 257
  year: 2007
  ident: 10.1016/j.mne.2021.100100_bb0020
  article-title: Transmission of influenza a in human beings
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(07)70029-4
– volume: 43
  start-page: 2905
  year: 2009
  ident: 10.1016/j.mne.2021.100100_bb0375
  article-title: Potent antibacterial activities of Ag/TiO2 Nanocomposite powders synthesized by a one-pot sol−gel method
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803450f
– volume: 370
  start-page: 303
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0035
  article-title: Airborne transmission of SARS-CoV-2
  publication-title: Science.
  doi: 10.1126/science.abf0521
– volume: 11
  start-page: 680
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0530
  article-title: A new sterilization strategy using TiO2 nanotubes for production of free radicals that eliminate viruses and application of a treatment strategy to combat infections caused by emerging SARS-CoV-2 during the COVID-19 pandemic
  publication-title: Coatings.
  doi: 10.3390/coatings11060680
– volume: 31
  start-page: 982
  year: 2004
  ident: 10.1016/j.mne.2021.100100_bb0525
  article-title: The inactivation effect of photocatalytic titanium apatie filter on SARS virus
  publication-title: Prog. Biochem. Biophys.
– volume: 77
  start-page: 313
  year: 2015
  ident: 10.1016/j.mne.2021.100100_bb0310
  article-title: Role of surface and subsurface defects in MgO thin film: XANES and magnetic investigations
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2014.10.035
– volume: 10
  start-page: 1093
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0015
  article-title: Antiviral effect of visible light-sensitive CuxO/TiO2 Photocatalyst
  publication-title: Catalysts.
  doi: 10.3390/catal10091093
– volume: 266
  start-page: 133
  year: 2015
  ident: 10.1016/j.mne.2021.100100_bb0440
  article-title: Photocatalytic inactivation of bacterial spores using TiO2 films with silver deposits
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.12.074
– volume: 16
  start-page: 2002019
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0235
  article-title: Rethinking Nano-TiO2 safety: overview of toxic effects in humans and aquatic animals
  publication-title: Small.
  doi: 10.1002/smll.202002019
– volume: 39
  start-page: 398
  year: 2018
  ident: 10.1016/j.mne.2021.100100_bb0155
  article-title: How does a Photocatalytic antimicrobial coating affect environmental bioburden in hospitals?
  publication-title: Infect. Control Hosp. Epidemiol.
  doi: 10.1017/ice.2017.297
– volume: 19
  start-page: 7356
  year: 2019
  ident: 10.1016/j.mne.2021.100100_bb0175
  article-title: Antiviral and antibacterial effects of silver-doped TiO2 prepared by the Peroxo sol-gel method
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2019.16615
– volume: 45
  start-page: 227
  year: 2011
  ident: 10.1016/j.mne.2021.100100_bb0225
  article-title: Titanium dioxide in our everyday life; is it safe?
  publication-title: Radiol. Oncol.
  doi: 10.2478/v10019-011-0037-0
– volume: 832
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0265
  article-title: Band gap tailoring of cauliflower-shaped CuO nanostructures by Zn doping for antibacterial applications
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154968
– volume: 10
  year: 2019
  ident: 10.1016/j.mne.2021.100100_bb0120
  article-title: An intra-vaginal zinc oxide tetrapod nanoparticles (ZOTEN) and genital herpesvirus cocktail can provide a novel platform for live virus vaccine
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00500
– volume: 581
  start-page: 465
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0005
  article-title: Virological assessment of hospitalized patients with COVID-2019
  publication-title: Nature.
  doi: 10.1038/s41586-020-2196-x
– volume: 104
  year: 2014
  ident: 10.1016/j.mne.2021.100100_bb0415
  article-title: Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4885401
– volume: 9
  start-page: 19278
  year: 2019
  ident: 10.1016/j.mne.2021.100100_bb0125
  article-title: Research progress of photocatalytic sterilization over semiconductors
  publication-title: RSC Adv.
  doi: 10.1039/C9RA01826C
– volume: 13
  start-page: 100066
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0185
  article-title: Novel rare earth metal–doped one-dimensional TiO2 nanostructures: fundamentals and multifunctional applications
  publication-title: Mater. Today Sustainabil.
  doi: 10.1016/j.mtsust.2021.100066
– volume: 42
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0205
  article-title: A review on the potential of photocatalysis in combatting SARS-CoV-2 in wastewater
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2021.102111
– volume: 7
  start-page: 44199
  year: 2017
  ident: 10.1016/j.mne.2021.100100_bb0245
  article-title: Multiphase TiO2 nanostructures: a review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health
  publication-title: RSC Adv.
  doi: 10.1039/C7RA06925A
– volume: 2
  start-page: 2061
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0505
  article-title: Towards antiviral polymer composites to combat COVID-19 transmission
  publication-title: Nano Select
  doi: 10.1002/nano.202100078
– volume: 10
  start-page: 5243
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0435
  article-title: Effect of the surface morphology of TiO2 nanotubes on photocatalytic efficacy using electron-transfer-based assays and antimicrobial tests
  publication-title: Appl. Sci.
  doi: 10.3390/app10155243
– volume: 44
  start-page: 5121
  year: 2010
  ident: 10.1016/j.mne.2021.100100_bb0500
  article-title: Inactivation and mineralization of aerosol deposited model pathogenic microorganisms over TiO2 and Pt/TiO2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es100156p
– volume: 2
  start-page: 422
  year: 2017
  ident: 10.1016/j.mne.2021.100100_bb0195
  article-title: Design and engineering of high-performance photocatalytic systems based on metal oxide–graphene–noble metal nanocomposites
  publication-title: Mol. Syst. Design Eng.
  doi: 10.1039/C7ME00038C
– volume: 124
  start-page: 1032
  year: 2018
  ident: 10.1016/j.mne.2021.100100_bb0345
  article-title: Contact killing and antimicrobial properties of copper
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.13681
– volume: 166
  start-page: 571
  year: 2011
  ident: 10.1016/j.mne.2021.100100_bb0320
  article-title: Surface evolution of titanium oxide thin film with swift heavy ion irradiation
  publication-title: Radiat. Effects Defects Solids.
  doi: 10.1080/10420150.2011.559239
– volume: 373
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0025
  article-title: Covid-19: what do we know about airborne transmission of SARS-CoV-2?
  publication-title: BMJ.
– volume: 13
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0165
  article-title: In vitro inactivation of human coronavirus by titania nanoparticle coatings and UVC radiation: throwing light on SARS-CoV-2
  publication-title: bioRxiv
– start-page: 121
  year: 2019
  ident: 10.1016/j.mne.2021.100100_bb0365
  article-title: Recent Progress on novel Ag–TiO2 nanocomposites for antibacterial applications
– volume: 30
  start-page: 2004615
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0540
  article-title: Photocatalytic nanowires-based air filter: towards reusable protective masks
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004615
– volume: 7
  start-page: S119
  year: 2010
  ident: 10.1016/j.mne.2021.100100_bb0355
  article-title: Nanoparticles, human health hazard and regulation
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2009.0252.focus
– volume: 27
  year: 2016
  ident: 10.1016/j.mne.2021.100100_bb0200
  article-title: Synthesis, characterization and multifunctional properties of plasmonic Ag–TiO2nanocomposites
  publication-title: Nanotechnology.
  doi: 10.1088/0957-4484/27/35/355707
– volume: 38
  start-page: 149
  year: 2019
  ident: 10.1016/j.mne.2021.100100_bb0280
  article-title: Chemical vapour deposition of graphene: layer control, the transfer process, characterisation, and related applications
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/0144235X.2019.1634319
– volume: 12
  start-page: 412
  year: 2019
  ident: 10.1016/j.mne.2021.100100_bb0380
  article-title: Photocatalytic performance of CuxO/TiO2 deposited by HiPIMS on polyester under visible light LEDs: oxidants, ions effect, and reactive oxygen species investigation
  publication-title: Materials.
  doi: 10.3390/ma12030412
– volume: 6
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0150
  article-title: Rapid inactivation of SARS-CoV-2 by titanium dioxide surface coating [version 1; peer review: 1 approved with reservations]. Wellcome open
  publication-title: Research.
– volume: 15
  start-page: 8069
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0450
  article-title: Carbon-based nanomaterials: promising antiviral agents to combat COVID-19 in the microbial-resistant era
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c00629
– volume: 4
  start-page: 19945
  year: 2014
  ident: 10.1016/j.mne.2021.100100_bb0405
  article-title: Biocidal effect and durability of nano-TiO2 coated textiles to combat hospital acquired infections
  publication-title: RSC Adv.
  doi: 10.1039/c4ra02759k
– volume: 6
  start-page: 4858
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0045
  article-title: Antiviral nanostructured surfaces reduce the viability of SARS-CoV-2
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.0c01091
– volume: 4
  start-page: 804
  year: 2019
  ident: 10.1016/j.mne.2021.100100_bb0285
  article-title: Engineering of transition metal dichalcogenide-based 2D nanomaterials through doping for environmental applications
  publication-title: Mol. Syst. Design Eng.
  doi: 10.1039/C8ME00116B
– volume: 4
  start-page: S397
  year: 2007
  ident: 10.1016/j.mne.2021.100100_bb0170
  article-title: Photocatalytic effect of TiO2 films on viruses and bacteria
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.200731007
– volume: 6
  start-page: 2135
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0515
  article-title: Surface chemistry can unlock drivers of surface stability of SARS-CoV-2 in a variety of environmental conditions
  publication-title: Chem.
  doi: 10.1016/j.chempr.2020.08.001
– year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0160
– volume: 13
  start-page: 942
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0510
  article-title: SARS-CoV-2 disinfection of air and surface contamination by TiO2 photocatalyst-mediated damage to viral morphology, RNA, and protein
  publication-title: Viruses.
  doi: 10.3390/v13050942
– volume: 3
  start-page: 17312
  year: 2015
  ident: 10.1016/j.mne.2021.100100_bb0420
  article-title: Visible-light sensitive cu(ii)–TiO2 with sustained anti-viral activity for efficient indoor environmental remediation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03756E
– start-page: 67
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0240
  article-title: Toxicity of TiO2 nanoparticles
  publication-title: TiO2 Nanoparticles
  doi: 10.1002/9783527825431.ch2
– volume: 580
  start-page: 503
  year: 2020
  ident: 10.1016/j.mne.2021.100100_bb0325
  article-title: Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: can we win against pathogenic viruses?
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.07.047
– volume: 6
  year: 2019
  ident: 10.1016/j.mne.2021.100100_bb0080
  article-title: Antibacterial and antiviral potential of colloidal titanium dioxide (TiO2) nanoparticles suitable for biological applications
  publication-title: Mater. Res. Express.
  doi: 10.1088/2053-1591/ab3b27
– volume: 38
  start-page: 201
  year: 2019
  ident: 10.1016/j.mne.2021.100100_bb0425
  article-title: Fundamentals and applications of recyclable SERS substrates
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/0144235X.2019.1660114
– volume: 92
  start-page: 96
  year: 2018
  ident: 10.1016/j.mne.2021.100100_bb0480
  article-title: Antiviral activity of multifunctional composite based on TiO2-modified hydroxyapatite
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2018.06.045
– volume: 13
  start-page: 19
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0520
  article-title: Inactivation of human coronavirus by Titania nanoparticle coatings and UVC radiation: throwing light on SARS-CoV-2
  publication-title: Viruses.
  doi: 10.3390/v13010019
– volume: 73
  start-page: 1924
  year: 2021
  ident: 10.1016/j.mne.2021.100100_bb0030
  article-title: Airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): what we know
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciab039
– volume: 7
  start-page: 1447
  year: 2019
  ident: 10.1016/j.mne.2021.100100_bb0255
  article-title: Emerging applications of atomic layer deposition for the rational design of novel nanostructures for surface-enhanced Raman scattering
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC06299D
– volume: 247
  start-page: 475
  year: 2016
  ident: 10.1016/j.mne.2021.100100_bb0300
  article-title: Fabrication and characterization of nitrogen doped p-ZnO on n-Si heterojunctions
  publication-title: Sensors Actuators A Phys.
  doi: 10.1016/j.sna.2016.07.002
– volume: 73
  start-page: 216
  year: 2014
  ident: 10.1016/j.mne.2021.100100_bb0315
  article-title: Nitrogen-doping processes of graphene by a versatile plasma-based method
  publication-title: Carbon.
  doi: 10.1016/j.carbon.2014.02.057
– volume: 147
  start-page: 920
  year: 2014
  ident: 10.1016/j.mne.2021.100100_bb0290
  article-title: Phenomenological understanding of dewetting and embedding of noble metal nanoparticles in thin films induced by ion irradiation
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2014.06.038
– volume: 140
  start-page: 315
  year: 2014
  ident: 10.1016/j.mne.2021.100100_bb0070
  article-title: Fluorinated TiO2 as an ambient light-activated virucidal surface coating material for the control of human norovirus
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2014.08.009
SSID ssj0002856847
Score 2.5126617
SecondaryResourceType review_article
Snippet The whole world is struggling with current coronavirus pandemic that shows urgent need to develop novel technologies, medical innovations or innovative...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100100
SubjectTerms Antimicrobial
Antiviral
Nanomaterials
Review Paper
SARS-CoV-2
TiO2 photocatalysts
Title Photocatalytic TiO2 nanomaterials as potential antimicrobial and antiviral agents: Scope against blocking the SARS-COV-2 spread
URI https://dx.doi.org/10.1016/j.mne.2021.100100
https://www.proquest.com/docview/3216366939
https://pubmed.ncbi.nlm.nih.gov/PMC8685168
https://doaj.org/article/43ecaa50a0d54a339d0dc5fe33243cd8
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQiCKWl1yJE5KF187D7q1UVBUSFLEt6s3yU01FkxWbHnrirzPjJFVyKReOduzE8Yw1n-2Zbwh5zxNsCkKpWBC1Y4WKnmkZJYs62XWIqao1Bjh__VadXhRfLsvLWaov9Akb6IGHiftYyOitLbnloSyslDrwgB5SEpCA9CGH-XLNZ5up63xkVFYqZxcDeI-h07WYrjSzc9dNixSZYp0piDC6bWaUMnf_wjbNsOfSc3Jmik6ekicjhqRHw9ifkUexfU7-fL_q-i6fxtxBPT1vzgRtbdsBJB20jNod3XY9ugdBb5jR5qbJNEy5FHINuvxCCeOtdod0gyErULINgEjqwO7hwToFzEg3Rz827PjsJxN0twXgGfbJxcnn8-NTNmZXYB5QTs_KCGKKSjkkKOTClbBzUb5SljvvysKtta8d8sOlxEOBwAiwTPKYB7dyNnL5guy1XRtfEgp238s6-aTrdZFsqYVztdI-FkGmGOOK8Gl6jR-pxzEDxi8z-ZhdG5CIQYmYQSIr8uG-y3bg3Xio8SeU2X1DpMzOFaBIZlQk8y9FWpFikrgZ0ceAKuBVzUPfPpi0w8DKxOsW28budmekAKxbVVrqFakXarMY6PJJ21xljm9VARSu1Kv_8WevyWOBQRvZ3-gN2et_38a3AKV69y6vmr9QCR2a
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photocatalytic+TiO2+nanomaterials+as+potential+antimicrobial+and+antiviral+agents%3A+Scope+against+blocking+the+SARS-COV-2+spread&rft.jtitle=Micro+and+Nano+Engineering&rft.au=Prakash%2C+Jai&rft.au=Cho%2C+Junghyun&rft.au=Mishra%2C+Yogendra+Kumar&rft.date=2022-04-01&rft.issn=2590-0072&rft.eissn=2590-0072&rft.volume=14&rft.spage=100100&rft_id=info:doi/10.1016%2Fj.mne.2021.100100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mne_2021_100100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0072&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0072&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0072&client=summon