DEXOM: Diversity-based enumeration of optimal context-specific metabolic networks

The correct identification of metabolic activity in tissues or cells under different conditions can be extremely elusive due to mechanisms such as post-transcriptional modification of enzymes or different rates in protein degradation, making difficult to perform predictions on the basis of gene expr...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 17; no. 2; p. e1008730
Main Authors Rodríguez-Mier, Pablo, Poupin, Nathalie, de Blasio, Carlo, Le Cam, Laurent, Jourdan, Fabien
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.02.2021
PLOS
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1008730

Cover

Abstract The correct identification of metabolic activity in tissues or cells under different conditions can be extremely elusive due to mechanisms such as post-transcriptional modification of enzymes or different rates in protein degradation, making difficult to perform predictions on the basis of gene expression alone. Context-specific metabolic network reconstruction can overcome some of these limitations by leveraging the integration of multi-omics data into genome-scale metabolic networks (GSMN). Using the experimental information, context-specific models are reconstructed by extracting from the generic GSMN the sub-network most consistent with the data, subject to biochemical constraints. One advantage is that these context-specific models have more predictive power since they are tailored to the specific tissue, cell or condition, containing only the reactions predicted to be active in such context. However, an important limitation is that there are usually many different sub-networks that optimally fit the experimental data. This set of optimal networks represent alternative explanations of the possible metabolic state. Ignoring the set of possible solutions reduces the ability to obtain relevant information about the metabolism and may bias the interpretation of the true metabolic states. In this work we formalize the problem of enumerating optimal metabolic networks and we introduce DEXOM , an unified approach for diversity-based enumeration of context-specific metabolic networks. We developed different strategies for this purpose and we performed an exhaustive analysis using simulated and real data. In order to analyze the extent to which these results are biologically meaningful, we used the alternative solutions obtained with the different methods to measure: 1) the improvement of in silico predictions of essential genes in Saccharomyces cerevisiae using ensembles of metabolic network; and 2) the detection of alternative enriched pathways in different human cancer cell lines. We also provide DEXOM as an open-source library compatible with COBRA Toolbox 3.0, available at https://github.com/MetExplore/dexom .
AbstractList More specifically, post-transcriptional control of mRNA, post-translational modifications of enzymes, as well as biochemical constraints —including for example the laws for mass and charge conservation, cell growth requirements, biomass composition and nutrient availability— make the identification of which pathways are altered between conditions very complicated by the mere observation of changes in gene expression or changes in metabolite concentrations. Several methods were proposed in the literature to automatically reconstruct context-specific metabolic networks from gene or protein expression, mostly based on Linear Programming (LP) or Mixed Integer Linear Programming (MILP) models [7–9, 13–17], as well as benchmarks comparing their capabilities [18, 19]. [...]it cannot recover the whole set of possible optimal metabolic networks, as not all possible combinations of reactions are tested. [...]there is no guarantee that the solution set is representative and diverse of the full space of possible networks.
The correct identification of metabolic activity in tissues or cells under different conditions can be extremely elusive due to mechanisms such as post-transcriptional modification of enzymes or different rates in protein degradation, making difficult to perform predictions on the basis of gene expression alone. Context-specific metabolic network reconstruction can overcome some of these limitations by leveraging the integration of multi-omics data into genome-scale metabolic networks (GSMN). Using the experimental information, context-specific models are reconstructed by extracting from the generic GSMN the sub-network most consistent with the data, subject to biochemical constraints. One advantage is that these context-specific models have more predictive power since they are tailored to the specific tissue, cell or condition, containing only the reactions predicted to be active in such context. However, an important limitation is that there are usually many different sub-networks that optimally fit the experimental data. This set of optimal networks represent alternative explanations of the possible metabolic state. Ignoring the set of possible solutions reduces the ability to obtain relevant information about the metabolism and may bias the interpretation of the true metabolic states. In this work we formalize the problem of enumerating optimal metabolic networks and we introduce DEXOM, an unified approach for diversity-based enumeration of context-specific metabolic networks. We developed different strategies for this purpose and we performed an exhaustive analysis using simulated and real data. In order to analyze the extent to which these results are biologically meaningful, we used the alternative solutions obtained with the different methods to measure: 1) the improvement of in silico predictions of essential genes in Saccharomyces cerevisiae using ensembles of metabolic network; and 2) the detection of alternative enriched pathways in different human cancer cell lines. We also provide DEXOM as an open-source library compatible with COBRA Toolbox 3.0, available at https://github.com/MetExplore/dexom. Understanding deregulations of metabolism based on isolated measures of gene expression or protein or metabolite concentrations is a challenging task due to the interconnection of multiple processes. One solution is to extract, from generic genome-scale metabolic networks, the specific sub-network which is modulated in the studied condition. Many algorithms have been proposed for such context-specific network extraction based on experimental measurements. However, this process is subject to some randomness and variability, since multiple metabolic networks can model the metabolic state in a similarly adequate manner for the same experimental data. This means that for a given data and reconstruction method, there are usually multiple solutions that satisfy the same constraints and with the same quality, but only one solution is returned by the commonly used reconstruction methods. Here, we formalize this problem and we propose and analyze different methods to obtain diverse samples of metabolic sub-networks. We evaluate them by performing an extensive comparison and we show how the different sets of optimal networks discovered by the different methods are biological meaningful by constructing ensembles of networks to improve the prediction of essential genes in Saccharomyces cerevisiae and to detect enriched metabolic pathways in four different human cancer cell lines.
The correct identification of metabolic activity in tissues or cells under different conditions can be extremely elusive due to mechanisms such as post-transcriptional modification of enzymes or different rates in protein degradation, making difficult to perform predictions on the basis of gene expression alone. Context-specific metabolic network reconstruction can overcome some of these limitations by leveraging the integration of multi-omics data into genome-scale metabolic networks (GSMN). Using the experimental information, context-specific models are reconstructed by extracting from the generic GSMN the sub-network most consistent with the data, subject to biochemical constraints. One advantage is that these context-specific models have more predictive power since they are tailored to the specific tissue, cell or condition, containing only the reactions predicted to be active in such context. However, an important limitation is that there are usually many different sub-networks that optimally fit the experimental data. This set of optimal networks represent alternative explanations of the possible metabolic state. Ignoring the set of possible solutions reduces the ability to obtain relevant information about the metabolism and may bias the interpretation of the true metabolic states. In this work we formalize the problem of enumerating optimal metabolic networks and we introduce DEXOM, an unified approach for diversity-based enumeration of context-specific metabolic networks. We developed different strategies for this purpose and we performed an exhaustive analysis using simulated and real data. In order to analyze the extent to which these results are biologically meaningful, we used the alternative solutions obtained with the different methods to measure: 1) the improvement of in silico predictions of essential genes in Saccharomyces cerevisiae using ensembles of metabolic network; and 2) the detection of alternative enriched pathways in different human cancer cell lines. We also provide DEXOM as an open-source library compatible with COBRA Toolbox 3.0, available at https://github.com/MetExplore/dexom.
The correct identification of metabolic activity in tissues or cells under different conditions can be extremely elusive due to mechanisms such as post-transcriptional modification of enzymes or different rates in protein degradation, making difficult to perform predictions on the basis of gene expression alone. Context-specific metabolic network reconstruction can overcome some of these limitations by leveraging the integration of multi-omics data into genome-scale metabolic networks (GSMN). Using the experimental information, context-specific models are reconstructed by extracting from the generic GSMN the sub-network most consistent with the data, subject to biochemical constraints. One advantage is that these context-specific models have more predictive power since they are tailored to the specific tissue, cell or condition, containing only the reactions predicted to be active in such context. However, an important limitation is that there are usually many different sub-networks that optimally fit the experimental data. This set of optimal networks represent alternative explanations of the possible metabolic state. Ignoring the set of possible solutions reduces the ability to obtain relevant information about the metabolism and may bias the interpretation of the true metabolic states. In this work we formalize the problem of enumerating optimal metabolic networks and we introduce DEXOM , an unified approach for diversity-based enumeration of context-specific metabolic networks. We developed different strategies for this purpose and we performed an exhaustive analysis using simulated and real data. In order to analyze the extent to which these results are biologically meaningful, we used the alternative solutions obtained with the different methods to measure: 1) the improvement of in silico predictions of essential genes in Saccharomyces cerevisiae using ensembles of metabolic network; and 2) the detection of alternative enriched pathways in different human cancer cell lines. We also provide DEXOM as an open-source library compatible with COBRA Toolbox 3.0, available at https://github.com/MetExplore/dexom .
The correct identification of metabolic activity in tissues or cells under different conditions can be extremely elusive due to mechanisms such as post-transcriptional modification of enzymes or different rates in protein degradation, making difficult to perform predictions on the basis of gene expression alone. Context-specific metabolic network reconstruction can overcome some of these limitations by leveraging the integration of multi-omics data into genome-scale metabolic networks (GSMN). Using the experimental information, context-specific models are reconstructed by extracting from the generic GSMN the sub-network most consistent with the data, subject to biochemical constraints. One advantage is that these context-specific models have more predictive power since they are tailored to the specific tissue, cell or condition, containing only the reactions predicted to be active in such context. However, an important limitation is that there are usually many different sub-networks that optimally fit the experimental data. This set of optimal networks represent alternative explanations of the possible metabolic state. Ignoring the set of possible solutions reduces the ability to obtain relevant information about the metabolism and may bias the interpretation of the true metabolic states. In this work we formalize the problem of enumerating optimal metabolic networks and we introduce DEXOM, an unified approach for diversity-based enumeration of context-specific metabolic networks. We developed different strategies for this purpose and we performed an exhaustive analysis using simulated and real data. In order to analyze the extent to which these results are biologically meaningful, we used the alternative solutions obtained with the different methods to measure: 1) the improvement of in silico predictions of essential genes in Saccharomyces cerevisiae using ensembles of metabolic network; and 2) the detection of alternative enriched pathways in different human cancer cell lines. We also provide DEXOM as an open-source library compatible with COBRA Toolbox 3.0, available at https://github.com/MetExplore/dexom.The correct identification of metabolic activity in tissues or cells under different conditions can be extremely elusive due to mechanisms such as post-transcriptional modification of enzymes or different rates in protein degradation, making difficult to perform predictions on the basis of gene expression alone. Context-specific metabolic network reconstruction can overcome some of these limitations by leveraging the integration of multi-omics data into genome-scale metabolic networks (GSMN). Using the experimental information, context-specific models are reconstructed by extracting from the generic GSMN the sub-network most consistent with the data, subject to biochemical constraints. One advantage is that these context-specific models have more predictive power since they are tailored to the specific tissue, cell or condition, containing only the reactions predicted to be active in such context. However, an important limitation is that there are usually many different sub-networks that optimally fit the experimental data. This set of optimal networks represent alternative explanations of the possible metabolic state. Ignoring the set of possible solutions reduces the ability to obtain relevant information about the metabolism and may bias the interpretation of the true metabolic states. In this work we formalize the problem of enumerating optimal metabolic networks and we introduce DEXOM, an unified approach for diversity-based enumeration of context-specific metabolic networks. We developed different strategies for this purpose and we performed an exhaustive analysis using simulated and real data. In order to analyze the extent to which these results are biologically meaningful, we used the alternative solutions obtained with the different methods to measure: 1) the improvement of in silico predictions of essential genes in Saccharomyces cerevisiae using ensembles of metabolic network; and 2) the detection of alternative enriched pathways in different human cancer cell lines. We also provide DEXOM as an open-source library compatible with COBRA Toolbox 3.0, available at https://github.com/MetExplore/dexom.
The correct identification of metabolic activity in tissues or cells under different conditions can be extremely elusive due to mechanisms such as post-transcriptional modification of enzymes or different rates in protein degradation, making difficult to perform predictions on the basis of gene expression alone. Context-specific metabolic network reconstruction can overcome some of these limitations by leveraging the integration of multi-omics data into genome-scale metabolic networks (GSMN). Using the experimental information, context-specific models are reconstructed by extracting from the generic GSMN the sub-network most consistent with the data, subject to biochemical constraints. One advantage is that these context-specific models have more predictive power since they are tailored to the specific tissue, cell or condition, containing only the reactions predicted to be active in such context. However, an important limitation is that there are usually many different subnetworks that optimally fit the experimental data. This set of optimal networks represent alternative explanations of the possible metabolic state. Ignoring the set of possible solutions reduces the ability to obtain relevant information about the metabolism and may bias the interpretation of the true metabolic states. In this work we formalize the problem of enumerating optimal metabolic networks and we introduce DEXOM, an unified approach for diversity-based enumeration of context-specific metabolic networks. We developed different strategies for this purpose and we performed an exhaustive analysis using simulated and real data. In order to analyze the extent to which these results are biologically meaningful, we used the alternative solutions obtained with the different methods to measure: 1) the improvement of in silico predictions of essential genes in Saccharomyces cerevisiae using ensembles of metabolic network; and 2) the detection of alternative enriched pathways in different human cancer cell lines. We also provide DEXOM as an open-source library compatible with COBRA Toolbox 3.
More specifically, post-transcriptional control of mRNA, post-translational modifications of enzymes, as well as biochemical constraints —including for example the laws for mass and charge conservation, cell growth requirements, biomass composition and nutrient availability— make the identification of which pathways are altered between conditions very complicated by the mere observation of changes in gene expression or changes in metabolite concentrations. Several methods were proposed in the literature to automatically reconstruct context-specific metabolic networks from gene or protein expression, mostly based on Linear Programming (LP) or Mixed Integer Linear Programming (MILP) models [7–9, 13–17], as well as benchmarks comparing their capabilities [18, 19]. [...]it cannot recover the whole set of possible optimal metabolic networks, as not all possible combinations of reactions are tested. [...]there is no guarantee that the solution set is representative and diverse of the full space of possible networks.
Author de Blasio, Carlo
Rodríguez-Mier, Pablo
Poupin, Nathalie
Le Cam, Laurent
Jourdan, Fabien
AuthorAffiliation 2 IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
Christian Albrechts Universitat zu Kiel, GERMANY
3 Equipe Labellisée par la Ligue contre le Cancer, Paris, France
1 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
AuthorAffiliation_xml – name: 2 IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
– name: Christian Albrechts Universitat zu Kiel, GERMANY
– name: 1 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
– name: 3 Equipe Labellisée par la Ligue contre le Cancer, Paris, France
Author_xml – sequence: 1
  givenname: Pablo
  orcidid: 0000-0002-4938-4418
  surname: Rodríguez-Mier
  fullname: Rodríguez-Mier, Pablo
– sequence: 2
  givenname: Nathalie
  orcidid: 0000-0002-3393-1405
  surname: Poupin
  fullname: Poupin, Nathalie
– sequence: 3
  givenname: Carlo
  orcidid: 0000-0003-2388-2555
  surname: de Blasio
  fullname: de Blasio, Carlo
– sequence: 4
  givenname: Laurent
  surname: Le Cam
  fullname: Le Cam, Laurent
– sequence: 5
  givenname: Fabien
  orcidid: 0000-0001-9401-2894
  surname: Jourdan
  fullname: Jourdan, Fabien
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33571201$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-03154775$$DView record in HAL
BookMark eNqNUl1rFDEUHaRiP_QfiA74Yh9mTSaTSaYPQmmrLawUQcG3kGTutFmzk2mS2br_vtnutrSLiE-5JOece3Lu3c92etdDlr3FaIIJw59mbvS9tJNBKzPBCHFG0ItsD1NKCkYo33lS72b7IcwQSmVTv8p2CaEMlwjvZd9Pz35dfjvKT80CfDBxWSgZoM2hH-fgZTSuz12XuyGaubS5dn2EP7EIA2jTGZ3PIUrlbKp6iLfO_w6vs5edtAHebM6D7OeXsx8n58X08uvFyfG00LRGsaCIcc0ULjkpcSOT04ayCkpAiiEKGpDkbUc6whrVKC07xTsJbUOVqpniFTnI3q91B-uC2KQRREkR5hzXNU2IizWidXImBp9-4JfCSSPuL5y_EtJHoy0IVNVliaoKGOiqIZh3Na9xjWiqUEPapEXXWmM_yOWttPZRECOxGsiDBbEaiNgMJPE-b1yOag6thj56aZ-Zef7Sm2tx5RaCNajCfCVwuBa43qKdH0_F6g4RTCvG6AIn7MdNM-9uRghRzE3QYK3swY0pm4o3JUvWmgT9sAX9e4Lvnrp_7P-wPwlQrQHauxA8dP-bytEWTZt4v2wpA2P_Tb4D5fLvJg
CitedBy_id crossref_primary_10_1287_ijoc_2022_0164
crossref_primary_10_1186_s12859_024_05845_z
crossref_primary_10_1038_s41540_023_00280_x
crossref_primary_10_1371_journal_pcbi_1011814
crossref_primary_10_3389_fsysb_2022_896265
crossref_primary_10_3390_a18030140
Cites_doi 10.1371/journal.pcbi.1005568
10.1371/journal.pcbi.1007764
10.1371/journal.pcbi.1004808
10.1038/msb.2010.56
10.1038/s41596-018-0098-2
10.1016/j.ccr.2012.02.014
10.1093/nar/gkr1029
10.1038/cddis.2013.60
10.1038/msb.2011.51
10.1186/1471-2164-10-461
10.1007/s10732-007-9053-z
10.1371/journal.pcbi.1002518
10.1371/journal.pcbi.1003580
10.1074/jbc.R800048200
10.1007/s10878-007-9123-z
10.1016/j.cels.2017.01.010
10.1186/s12864-015-1984-4
10.1007/11427186_39
10.1126/scisignal.aaz1482
10.1042/BST0381302
10.1038/nbt.1487
10.1371/journal.pcbi.1003424
10.1137/1.9781611972870.15
10.1038/nbt.4072
10.1007/978-3-540-72792-7_22
10.1007/978-3-030-58942-4_26
10.1371/journal.pcbi.1005413
10.1038/nbt.1614
10.1016/j.cell.2016.03.014
10.1002/msb.145122
10.1007/978-3-540-68155-7_22
10.1016/j.ejor.2006.11.024
10.1016/S0925-7721(98)00021-2
10.1073/pnas.0610772104
10.1007/978-3-319-11008-0
10.4155/fmc.14.119
10.1186/1752-0509-6-153
10.1038/nbt0302-243
10.1126/sciadv.1600200
10.1371/journal.pcbi.1002988
10.1093/database/bat059
10.1093/nar/gkq1259
ContentType Journal Article
Copyright 2021 Rodríguez-Mier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
2021 Rodríguez-Mier et al 2021 Rodríguez-Mier et al
Copyright_xml – notice: 2021 Rodríguez-Mier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
– notice: 2021 Rodríguez-Mier et al 2021 Rodríguez-Mier et al
DBID AAYXX
CITATION
NPM
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
RC3
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pcbi.1008730
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
ProQuest Central Advanced Technologies & Aerospace Database (via ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


PubMed
CrossRef
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate DEXOM: Diversity-based enumeration of optimal context-specific metabolic networks
EISSN 1553-7358
ExternalDocumentID 2501881665
oai_doaj_org_article_04622044e7ec49318f686160518f093d
10.1371/journal.pcbi.1008730
PMC7904180
oai:HAL:hal-03154775v1
33571201
10_1371_journal_pcbi_1008730
Genre Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ADRAZ
ALIPV
C1A
H13
IPNFZ
M0N
M~E
NPM
PGMZT
RIG
WOQ
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
-
AAPBV
ABPTK
ADACO
BBAFP
PRINS
ID FETCH-LOGICAL-c560t-5078c7b1283219a5539574e2e0b705ece0a8df3f379b9bcafb8faed95bb67b843
IEDL.DBID UNPAY
ISSN 1553-7358
1553-734X
IngestDate Fri Nov 26 17:12:22 EST 2021
Tue Oct 14 19:08:39 EDT 2025
Sun Oct 26 03:28:09 EDT 2025
Tue Sep 30 16:36:12 EDT 2025
Sat Oct 25 06:44:08 EDT 2025
Thu Sep 04 19:05:22 EDT 2025
Tue Oct 07 06:36:22 EDT 2025
Wed Feb 19 02:29:09 EST 2025
Wed Oct 01 04:45:34 EDT 2025
Thu Apr 24 23:04:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution: http://creativecommons.org/licenses/by
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c560t-5078c7b1283219a5539574e2e0b705ece0a8df3f379b9bcafb8faed95bb67b843
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0003-2388-2555
0000-0002-4938-4418
0000-0001-9401-2894
0000-0002-3393-1405
0000-0003-0325-878X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1371/journal.pcbi.1008730
PMID 33571201
PQID 2501881665
PQPubID 1436340
ParticipantIDs plos_journals_2501881665
doaj_primary_oai_doaj_org_article_04622044e7ec49318f686160518f093d
unpaywall_primary_10_1371_journal_pcbi_1008730
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7904180
hal_primary_oai_HAL_hal_03154775v1
proquest_miscellaneous_2489271009
proquest_journals_2501881665
pubmed_primary_33571201
crossref_primary_10_1371_journal_pcbi_1008730
crossref_citationtrail_10_1371_journal_pcbi_1008730
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2021
Publisher Public Library of Science
PLOS
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: PLOS
– name: Public Library of Science (PLoS)
References R Agren (pcbi.1008730.ref017) 2014; 10
D Machado (pcbi.1008730.ref018) 2014; 10
PS Ward (pcbi.1008730.ref001) 2012; 21
M Behle (pcbi.1008730.ref036) 2008; 16
pcbi.1008730.ref039
T Shlomi (pcbi.1008730.ref007) 2008; 26
A Schultz (pcbi.1008730.ref009) 2016; 12
pcbi.1008730.ref038
Y Wang (pcbi.1008730.ref008) 2012; 6
P Greistorfer (pcbi.1008730.ref042) 2008; 14
H Nam (pcbi.1008730.ref011) 2014; 10
pcbi.1008730.ref035
pcbi.1008730.ref034
N Vlassis (pcbi.1008730.ref015) 2014; 10
JF Tsai (pcbi.1008730.ref041) 2008; 184
IM De Mas (pcbi.1008730.ref004) 2014; 6
BD Heavner (pcbi.1008730.ref046) 2013; 2013
E Rintala (pcbi.1008730.ref026) 2009; 10
T Serra (pcbi.1008730.ref037) 2019
JM Cherry (pcbi.1008730.ref047) 2012; 40
N Poupin (pcbi.1008730.ref020) 2018; 18
L Heirendt (pcbi.1008730.ref027) 2019; 14
BH Junker (pcbi.1008730.ref028) 2011
JL Robinson (pcbi.1008730.ref030) 2020; 13
O Folger (pcbi.1008730.ref010) 2011; 7
M Cascante (pcbi.1008730.ref005) 2002; 20
L Jerby (pcbi.1008730.ref013) 2010; 6
DD Bremner (pcbi.1008730.ref032) 1997
R Agren (pcbi.1008730.ref014) 2012; 8
NC Duarte (pcbi.1008730.ref048) 2007; 104
S Opdam (pcbi.1008730.ref019) 2017; 4
MB Biggs (pcbi.1008730.ref024) 2017; 13
pcbi.1008730.ref025
Y Zhao (pcbi.1008730.ref003) 2013; 4
M Conforti (pcbi.1008730.ref031) 2014
M Cascante (pcbi.1008730.ref012) 2010; 38
S Rossell (pcbi.1008730.ref021) 2013; 9
J Schellenberger (pcbi.1008730.ref023) 2009; 284
E Brunk (pcbi.1008730.ref029) 2018; 36
JD Orth (pcbi.1008730.ref043) 2010; 28
Y Liu (pcbi.1008730.ref006) 2016; 165
S Robaina-Estévez (pcbi.1008730.ref022) 2017; 13
CJ Joshi (pcbi.1008730.ref044) 2020; 16
RJ DeBerardinis (pcbi.1008730.ref002) 2016; 2
MR Bussieck (pcbi.1008730.ref040) 1998; 11
MP Pacheco (pcbi.1008730.ref016) 2015; 16
MN McCall (pcbi.1008730.ref045) 2011; 39
GM Ziegler (pcbi.1008730.ref033) 2000
References_xml – volume: 13
  start-page: e1005568
  issue: 5
  year: 2017
  ident: pcbi.1008730.ref022
  article-title: On the effects of alternative optima in context-specific metabolic model predictions
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1005568
– volume: 16
  start-page: e1007764
  issue: 5
  year: 2020
  ident: pcbi.1008730.ref044
  article-title: StanDep: capturing transcriptomic variability improves context-specific metabolic models
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1007764
– volume: 12
  issue: 3
  year: 2016
  ident: pcbi.1008730.ref009
  article-title: Reconstruction of tissue-specific metabolic networks using CORDA
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1004808
– volume: 6
  issue: 1
  year: 2010
  ident: pcbi.1008730.ref013
  article-title: Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism
  publication-title: Molecular systems biology
  doi: 10.1038/msb.2010.56
– volume: 14
  start-page: 639
  issue: 3
  year: 2019
  ident: pcbi.1008730.ref027
  article-title: Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v. 3.0
  publication-title: Nature protocols
  doi: 10.1038/s41596-018-0098-2
– volume: 21
  start-page: 297
  issue: 3
  year: 2012
  ident: pcbi.1008730.ref001
  article-title: Metabolic reprogramming: a cancer hallmark even warburg did not anticipate
  publication-title: Cancer cell
  doi: 10.1016/j.ccr.2012.02.014
– volume: 40
  start-page: D700
  issue: D1
  year: 2012
  ident: pcbi.1008730.ref047
  article-title: Saccharomyces Genome Database: the genomics resource of budding yeast
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkr1029
– volume: 4
  start-page: e532
  issue: 3
  year: 2013
  ident: pcbi.1008730.ref003
  article-title: Targeting cellular metabolism to improve cancer therapeutics
  publication-title: Cell death & disease
  doi: 10.1038/cddis.2013.60
– volume: 7
  issue: 1
  year: 2011
  ident: pcbi.1008730.ref010
  article-title: Predicting selective drug targets in cancer through metabolic networks
  publication-title: Molecular systems biology
  doi: 10.1038/msb.2011.51
– volume: 10
  start-page: 461
  issue: 1
  year: 2009
  ident: pcbi.1008730.ref026
  article-title: Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae
  publication-title: BMC genomics
  doi: 10.1186/1471-2164-10-461
– volume-title: Analysis of biological networks
  year: 2011
  ident: pcbi.1008730.ref028
– volume: 14
  start-page: 613
  issue: 6
  year: 2008
  ident: pcbi.1008730.ref042
  article-title: Experiments concerning sequential versus simultaneous maximization of objective function and distance
  publication-title: Journal of Heuristics
  doi: 10.1007/s10732-007-9053-z
– volume: 10
  issue: 9
  year: 2014
  ident: pcbi.1008730.ref011
  article-title: A systems approach to predict oncometabolites via context-specific genome-scale metabolic networks
  publication-title: PLoS computational biology
– volume: 8
  issue: 5
  year: 2012
  ident: pcbi.1008730.ref014
  article-title: Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1002518
– volume: 10
  start-page: e1003580
  issue: 4
  year: 2014
  ident: pcbi.1008730.ref018
  article-title: Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003580
– volume: 284
  start-page: 5457
  issue: 9
  year: 2009
  ident: pcbi.1008730.ref023
  article-title: Use of randomized sampling for analysis of metabolic networks
  publication-title: Journal of biological chemistry
  doi: 10.1074/jbc.R800048200
– volume: 16
  start-page: 107
  issue: 2
  year: 2008
  ident: pcbi.1008730.ref036
  article-title: On threshold BDDs and the optimal variable ordering problem
  publication-title: Journal of Combinatorial Optimization
  doi: 10.1007/s10878-007-9123-z
– volume: 4
  start-page: 318
  issue: 3
  year: 2017
  ident: pcbi.1008730.ref019
  article-title: A systematic evaluation of methods for tailoring genome-scale metabolic models
  publication-title: Cell systems
  doi: 10.1016/j.cels.2017.01.010
– volume: 16
  start-page: 809
  issue: 1
  year: 2015
  ident: pcbi.1008730.ref016
  article-title: Integrated metabolic modelling reveals cell-type specific epigenetic control points of the macrophage metabolic network
  publication-title: BMC genomics
  doi: 10.1186/s12864-015-1984-4
– ident: pcbi.1008730.ref034
  doi: 10.1007/11427186_39
– volume: 13
  issue: 624
  year: 2020
  ident: pcbi.1008730.ref030
  article-title: An atlas of human metabolism
  publication-title: Science Signaling
  doi: 10.1126/scisignal.aaz1482
– volume: 38
  start-page: 1302
  issue: 5
  year: 2010
  ident: pcbi.1008730.ref012
  article-title: Metabolic network adaptations in cancer as targets for novel therapies
  publication-title: Biochemical Society Transactions
  doi: 10.1042/BST0381302
– volume: 18
  start-page: 204
  issue: 1
  year: 2018
  ident: pcbi.1008730.ref020
  article-title: Large-Scale Modeling Approach Reveals Functional Metabolic Shifts during Hepatic Differentiation
  publication-title: Journal of proteome research
– volume: 26
  start-page: 1003
  issue: 9
  year: 2008
  ident: pcbi.1008730.ref007
  article-title: Network-based prediction of human tissue-specific metabolism
  publication-title: Nature biotechnology
  doi: 10.1038/nbt.1487
– volume: 10
  issue: 1
  year: 2014
  ident: pcbi.1008730.ref015
  article-title: Fast reconstruction of compact context-specific metabolic network models
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1003424
– ident: pcbi.1008730.ref035
  doi: 10.1137/1.9781611972870.15
– volume: 36
  start-page: 272
  issue: 3
  year: 2018
  ident: pcbi.1008730.ref029
  article-title: Recon3D enables a three-dimensional view of gene variation in human metabolism
  publication-title: Nature biotechnology
  doi: 10.1038/nbt.4072
– start-page: 1
  year: 2019
  ident: pcbi.1008730.ref037
  article-title: Compact representation of near-optimal integer programming solutions
  publication-title: Mathematical Programming
– ident: pcbi.1008730.ref025
  doi: 10.1007/978-3-540-72792-7_22
– ident: pcbi.1008730.ref038
  doi: 10.1007/978-3-030-58942-4_26
– volume: 13
  start-page: e1005413
  issue: 3
  year: 2017
  ident: pcbi.1008730.ref024
  article-title: Managing uncertainty in metabolic network structure and improving predictions using EnsembleFBA
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1005413
– volume: 28
  start-page: 245
  issue: 3
  year: 2010
  ident: pcbi.1008730.ref043
  article-title: What is flux balance analysis?
  publication-title: Nature biotechnology
  doi: 10.1038/nbt.1614
– volume: 165
  start-page: 535
  issue: 3
  year: 2016
  ident: pcbi.1008730.ref006
  article-title: On the dependency of cellular protein levels on mRNA abundance
  publication-title: Cell
  doi: 10.1016/j.cell.2016.03.014
– volume: 10
  issue: 3
  year: 2014
  ident: pcbi.1008730.ref017
  article-title: Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling
  publication-title: Molecular systems biology
  doi: 10.1002/msb.145122
– volume-title: On the complexity of vertex and facet enumeration for convex polytopes
  year: 1997
  ident: pcbi.1008730.ref032
– ident: pcbi.1008730.ref039
  doi: 10.1007/978-3-540-68155-7_22
– volume: 184
  start-page: 802
  issue: 2
  year: 2008
  ident: pcbi.1008730.ref041
  article-title: Finding multiple solutions to general integer linear programs
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.11.024
– volume: 11
  start-page: 103
  issue: 2
  year: 1998
  ident: pcbi.1008730.ref040
  article-title: The vertex set of a 01-polytope is strongly P-enumerable
  publication-title: Computational Geometry
  doi: 10.1016/S0925-7721(98)00021-2
– volume: 104
  start-page: 1777
  issue: 6
  year: 2007
  ident: pcbi.1008730.ref048
  article-title: Global reconstruction of the human metabolic network based on genomic and bibliomic data
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0610772104
– volume-title: Integer programming
  year: 2014
  ident: pcbi.1008730.ref031
  doi: 10.1007/978-3-319-11008-0
– volume: 6
  start-page: 1791
  issue: 16
  year: 2014
  ident: pcbi.1008730.ref004
  article-title: Cancer cell metabolism as new targets for novel designed therapies
  publication-title: Future medicinal chemistry
  doi: 10.4155/fmc.14.119
– volume: 6
  start-page: 153
  issue: 1
  year: 2012
  ident: pcbi.1008730.ref008
  article-title: Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE
  publication-title: BMC systems biology
  doi: 10.1186/1752-0509-6-153
– volume: 20
  start-page: 243
  issue: 3
  year: 2002
  ident: pcbi.1008730.ref005
  article-title: Metabolic control analysis in drug discovery and disease
  publication-title: Nature biotechnology
  doi: 10.1038/nbt0302-243
– volume: 2
  start-page: e1600200
  issue: 5
  year: 2016
  ident: pcbi.1008730.ref002
  article-title: Fundamentals of cancer metabolism
  publication-title: Science advances
  doi: 10.1126/sciadv.1600200
– start-page: 1
  volume-title: Polytopes—combinatorics and computation
  year: 2000
  ident: pcbi.1008730.ref033
– volume: 9
  issue: 3
  year: 2013
  ident: pcbi.1008730.ref021
  article-title: Inferring metabolic states in uncharacterized environments using gene-expression measurements
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1002988
– volume: 2013
  year: 2013
  ident: pcbi.1008730.ref046
  article-title: Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance
  publication-title: Database
  doi: 10.1093/database/bat059
– volume: 39
  start-page: D1011
  issue: suppl_1
  year: 2011
  ident: pcbi.1008730.ref045
  article-title: The Gene Expression Barcode: leveraging public data repositories to begin cataloging the human and murine transcriptomes
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkq1259
SSID ssj0035896
Score 2.393054
Snippet The correct identification of metabolic activity in tissues or cells under different conditions can be extremely elusive due to mechanisms such as...
More specifically, post-transcriptional control of mRNA, post-translational modifications of enzymes, as well as biochemical constraints —including for example...
SourceID plos
doaj
unpaywall
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1008730
SubjectTerms Algorithms
Benchmarks
Biology and Life Sciences
Cancer
Computer and Information Sciences
Context
Enumeration
Enzymes
Gene expression
Human health and pathology
Hypotheses
Integer programming
Life Sciences
Linear programming
Metabolic networks
Metabolism
Metabolites
Mixed integer
Networks
Nutrient availability
Nutrient requirements
Optimization
Post-transcription
Post-translation
Protein expression
Research and Analysis Methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlobSX0nfcpsUtvSqxLNkj9ZY2CUtpWgoN7M1IsswGNvaS3U3Iv--MX-zSQHrozViykGc-aWbQpxnGPmmA0mCYwVPhNVeZV9y4POeglSf77pKKLgqf_cin5-rbLJttlfoiTliXHrgT3CFdnkwTpQIErwwisMp1LtAJxyeMxkvafRNthmCq24NlptvKXFQUh4NUs_7SnARx2OvoYOndBXEENBADessotbn70dTMiRk5WS6a1V3e598kykebemlvb-xisWWhTp-yJ71rGR91v_SMPQj1c_awKzZ5-4L9Oj6Z_Tz7HB8PTAxOFqyMiQsfOhzETRU3uIdc4jDEYaeomK5iEp0ovgxrBMwCn-qOOr56yc5PT35_nfK-oAL36NisOfp-2oMTbXkiY1E4JgMV0pA4SLLgQ2J1WclKgnHGeVs5XdlQmsy5HJxW8hWb1E0d9lgsUQlgbS6EtegTKBzU4VKWOpS5cAARk4NEC99nG6eiF4uiPUIDjDo6qRSkh6LXQ8T4-NWyy7ZxT_8vpKyxL-XKbl8ggooeQcV9CIrYxzmNuzXG9Oh7Qe-oBIYCyK5FxPYICcMsVkVKmRDp0DWL2P6AjrubP4zNuHTpPMbWodlgH6VNStmVTMRed2AaZyFlBgKds4jBDsx2prnbUl_M2_TgYBIlNMrmYATkPwnzzf8Q5lv2OCXWT8tr32eT9dUmvEO3be3etyv0Dyx9O3w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTgheEN8LDBQQr96S2IltJIQ21mlCrHyISX2LbMehk7qkrC1o_z13-SitmIC3KHYt93y-O8e_ux_AKyVlofGYwZLYKSZSJ5i2WcakEo78u41KShQ-HWUnZ-L9OB1vwajPhSFYZW8TG0Nd1I6-ke8nVHmOLrnSt7PvjFij6Ha1p9AwHbVC8aYpMXYDthOqjDWA7cPh6NOX3jbzVDWMXUSWwyQX4y6Zjst4v1u7vZmz54QdUJKQ0WvOqqnpjy5oQojJwWxaz6-LSv8EV95aVjNz9dNMp2ue6_gu3OlCzvCg1ZF7sOWr-3CzJaG8egCfj4bjj6evw6MeocHIsxUhYeR9qx9hXYY12pYLHIaw7XRaphRNghmFF36BijTFp6qFlM8fwtnx8Ou7E9YRLTCHAc-CYUyonLRxQ1ukDQpHp1L4xEdWRql3PjKqKHnJpbbaOlNaVRpf6NTaTFol-CMYVHXldyDkCkMiY7I4NgZjBYGDWtziXPkii62UAfBeornrqpATGcY0b67WJJ5GWqnktA55tw4BsNWvZm0Vjn_0P6TFWvWlGtrNi_ryW95tyZzScpNICC-9ExptW5nh5PF4h0-R5kUALyc07toYJwcfcnpH1BhCyvRHHMAOaUI_i3n-W08D2O214_rmF6tm3NJ0T2MqXy-xj1A6oapLOoDHrTKtZsF5KmMM2gKQG2q2Mc3Nlup80pQNlzoSsULZ7K0U8r-E-eTv_-Mp3E4I59Mg2XdhsLhc-mcYqC3s8273_QL2tTuZ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9RADA_ninpfxPfVO6WKX7v0MdOZEeQ478EiriK4sN_KTDt1D3rtug91_3uTvrjl9tBvZV6ETNIkJJMfwDspRKYwzPDCIJUe4ynzlIljT0iWkn03fk4Phcdf4tGEfZry6R50mK0tA5c7QzvCk5osiuGfn5tjVPgPNWqDCLpNw3lqLinrL1Fq78BdtFWKwBzGrM8rRFyquH1Ad9vOfbgfRVwEYYsT09mquqU_WqAZFUwO5kW13OWU3qytfLAu53rzWxfFNcN18Qgeth6ne9KIyGPYs-UTuNdgUG6ewrez8-nX8Xv3rCvQ8MiwZS6VyNtGPNwqdyv8tVzhMVTaTsEyvdCkKiP3yq5Qjgr8KpuK8uUzmFycfz8deS3Ogpeiv7Py0CWUqTBBjVqkNOeUu2M2tL4RPrep9bXM8iiPhDLKpDo3Mtc2U9yYWBjJoucwKKvSHoAbSfSItI6DQGt0FRgealDDI2mzODBCOBB1HE3Stgk5YWEUSZ1ZExiMNFxJ6EqS9koc8Ppd86YJxz_Wf6TL6tdSC-16oFr8SFqNTOhVbugzZoVNmcJfWx4j8Rjd4ZevosyBtzM699oZo5PPCY0RMgYTgv8KHDggSeioWCYhNUikXCx34KiTjt3Tb_pp1GhK0-jSVmtcw6QKqemScuBFI0w9FZ1kOiC2xGyLzO2Z8nJWdw0XymeBRN4Me4H8L2a-vJWIQ9gPqcKnrmE_gsFqsbav0EVbmde11v0FBms4iQ
  priority: 102
  providerName: Scholars Portal
Title DEXOM: Diversity-based enumeration of optimal context-specific metabolic networks
URI https://www.ncbi.nlm.nih.gov/pubmed/33571201
https://www.proquest.com/docview/2501881665
https://www.proquest.com/docview/2489271009
https://hal.inrae.fr/hal-03154775
https://pubmed.ncbi.nlm.nih.gov/PMC7904180
https://doi.org/10.1371/journal.pcbi.1008730
https://doaj.org/article/04622044e7ec49318f686160518f093d
http://dx.doi.org/10.1371/journal.pcbi.1008730
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: ABDBF
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: GX1
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 8FG
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M48
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9trRC88A0LjCogHklJYie2eWtpS4VoGYhK5SmKE0ed1qXV2oLGX89dPkoLQ4yX1Iqdk3O--M69390BvJRCpAqPGY7vJdLhQcIdpcPQEZInpN-1m1Gg8GgcDif8_TSYHsCrOhZm13_PhPe64mh7mehT8uhLlMhDaIYBWt4NaE7GJ52vRUrUgDmC8emvdiCrSLm_kdnTREXCftQvM4JDNpbzxeoqk_NP5OTNTb6ML7_H8_mOWhrcgVH9QiUa5ay9Wet28uO3XI_XfeO7cLuyT-1OKVD34MDk9-FGWbHy8gF86vWnH0dv7F4N53BIDaY2AepNKUz2IrMXuBGdIxkCwtPRmuI5CZNkn5s1St0cW3mJP189hMmg_-Xt0KmqMjgJWkdrBw1ImQjtFTWOVIzMVoHgxjeuFm5gEuPGMs1YxoTSSidxpmUWm1QFWodCS84eQSNf5OYIbCbRforj0PPiGA0LjkQ17gdMmjT0tBAWsHqFoqRKWU6VM-ZR4YcTeHQpuRIRs6KKWRY426eWZcqOf4zv0uJvx1LC7eIGrkpUfb8RxfD6LudGmIQr3AizECePZ0FsuYqlFryYEd0dGsPOh4juUR0NLkTwzbPgiCSrnsUq8imdInluAwuOa2m7uvv5thu_f3LqxLlZbHAMl8qnFE3KgselcG5nwVggPLTwLBB7Yrs3zf2e_HRW5BgXyuWeRN60twJ-LWY--d8HnsItn2BCBRD-GBrri415hnbeWrfgUEwFXuXgXQuanW6vO8Dfbn988rlV_HeC1xGXrWob-AlDG1Ry
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGERoviO8FBgQEj96S2IltJIQG3dSxdghpk_oWYsehk7KkrC1T_yn-Ru7yRSsm4GVvUeye3PP5PnI_3xHyWgqRKggzaOAbSXloOFU6iqiQ3KB9116GF4VHx9HglH8ah-MN8rO9C4OwylYnVoo6LQ1-I98NsPIcJrnC99PvFLtGYXa1baFRi8WRXV5CyDZ7d9iH_X0TBAf7Jx8HtOkqQA1Y9zkFB0gaof2qR49KwhAzVdwG1tPCC62xXiLTjGVMKK20STIts8SmKtQ6ElpyBnRvkJucgS6B8yPGXYDHQln1A8NWPFQwPm6u6jHh7zaSsTM1-gyRCVIg7nrFFFYdA8DATRCP2Zvm5ewqn_dP6Obmopgmy8skz1fs4sFdcqdxaN29WgLvkQ1b3Ce36haXywfkS39__Hn01u23-A-KdjN1EYFva-lzy8wtQXOdAxlEzmMsjhdAEcTknts5iGkOT0UNWJ89JKfXwvBHpFeUhd0iLpPgcCVJ5PtJAp4IB6IaFAiTNo18LYRDWMvR2DQ1zrHVRh5XiTsBsU7NlRj3IW72wSG0-9W0rvHxj_kfcLO6uVihu3pRXnyLmwMf46XfwOPcCmu4As2ZRbB4CB7hyVMsdcirCdJdoTHYG8b4DhtvcCHCH75DtlAS2lXM4t-nwCHbrXRcPfyyGwaFgVmgpLDlAuZwqQKs6aQc8rgWpm4VjIXCB5fQIWJNzNaWuT5SnE2qouRCedyXwJudTiD_i5lP_v4_XpDNwcloGA8Pj4-ektsBIooqzPw26c0vFvYZuIRz_bw6hy75et0H_xdQ7nKM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGEZcXxH2BAQHBo9ckdmIHCaFBV3XsAkhMyluwHYdO6pKytkz9a_w6zsmNVkzAy96i2Dly7XOtv3MOIS-lEFkMYQYNfCMpDw2nsY4iKiQ3aN-1l2Oi8OFRNDrmH5Iw2SA_21wYhFW2OrFS1Flp8D_yfoCV5_CSK-znDSzi02D4dvqdYgcpvGlt22nULLJvl-cQvs3e7A3grF8FwXD3y_sRbToMUAOWfk7BGZJGaL_q1xOrMMRbK24D62nhhdZYT8ksZzkTsY61UbmWubJZHGodCS05A7pXyFXB4DuQJZF0wR4LZdUbDNvyUMF40qTtMeH3Gy7Znhp9gigFKRCDvWIWq-4BYOzGiM3sTSfl7CL_908Y541FMVXLczWZrNjI4W1yq3Fu3Z2aG--QDVvcJdfqdpfLe-TzYDf5ePjaHbRYEIo2NHMRjW9rTnTL3C1Bi50CGUTRY1yOyaAIaHJP7RxYdgJPRQ1en90nx5ey4Q9IrygLu0lcJsH5UiryfaXAK-FAVIMyYdJmka-FcAhrdzQ1Tb1zbLsxSatLPAFxT70rKZ5D2pyDQ2j31bSu9_GP-e_wsLq5WK27elGefUsb4U8xATjwOLfCGh6DFs0jWDwEkvDkxSxzyIsx0l2hMdo5SPEdNuHgQoQ_fIdsIie0q5ilvyXCIVstd1w8_LwbBuWBN0KqsOUC5nAZB1jfKXbIw5qZulUwFgof3EOHiDU2W1vm-khxMq4KlIvY476EvdnuGPK_NvPR33_HM3IdRD492Dvaf0xuBgguquDzW6Q3P1vYJ-AdzvXTSgxd8vWy5f4X4UZ2zw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTghe-IYFBgqIR1KS2I5t3grbVCE6QGJSeYpsx1EnurSiLWj89dzlo7QwxHizYudkn8--s-53dwDPlZSFxmdGlCZORVw4HmmbZZFU3JF-t3FJgcKj42x4wt-OxXgHXnSxMJv-eyaTly1H-3NnT8mjr1Air8BuJtDy7sHuyfGHwec6JapgkWR8_KstVBsp9zcyW5qoTtiP-mVCcMjefDpbXGRy_omcvLaq5ub8u5lON9TS0U0YdQtq0Chf-qul7bsfv-V6vOyKb8GN1j4NB41A3YYdX92Bq03FyvO78PHgcPx-9Co86OAcEanBIiRAvW-EKZyV4QwvojMkQ0B4elpTPCdhksIzv0Spm2KravDni3twcnT46c0waqsyRA6to2WEBqRy0iZ1jSNtkNlaSO5TH1sZC-98bFRRspJJbbV1prSqNL7QwtpMWsXZfehVs8rvQcgU2k_GZEliDBoWHIlavA-Y8kWWWCkDYN0O5a5NWU6VM6Z57YeT-HRpuJITs_KWWQFE67_mTcqOf4x_TZu_HksJt-sPuCt5e35ziuFNY8699I5rvAjLDCePb0FsxZoVATybEN0NGsPBu5y-UR0NLqX4lgSwR5LVzWKRp5ROkTy3IoD9Ttou7n667sbzT04dU_nZCsdwpVNK0aQDeNAI53oWjAmZoIUXgNwS261pbvdUp5M6x7jUMU8U8qa_FvBLMfPh__7wCK6nBBOqgfD70Ft-XfnHaOct7ZP2eP8Ep-JNyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DEXOM%3A+Diversity-based+enumeration+of+optimal+context-specific+metabolic+networks&rft.jtitle=PLoS+computational+biology&rft.au=Rodr%C3%ADguez-Mier%2C+Pablo&rft.au=Poupin%2C+Nathalie&rft.au=de+Blasio%2C+Carlo&rft.au=Le+Cam%2C+Laurent&rft.date=2021-02-01&rft.eissn=1553-7358&rft.volume=17&rft.issue=2&rft.spage=e1008730&rft_id=info:doi/10.1371%2Fjournal.pcbi.1008730&rft_id=info%3Apmid%2F33571201&rft.externalDocID=33571201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon