Pattern identification and classification in gene expression data using an autoassociative neural network model
The application of DNA microarray technology for analysis of gene expression creates enormous opportunities to accelerate the pace in understanding living systems and identification of target genes and pathways for drug development and therapeutic intervention. Parallel monitoring of the expression...
Saved in:
| Published in | Biotechnology and bioengineering Vol. 81; no. 5; pp. 594 - 606 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Wiley Subscription Services, Inc., A Wiley Company
05.03.2003
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0006-3592 1097-0290 1097-0290 |
| DOI | 10.1002/bit.10505 |
Cover
| Abstract | The application of DNA microarray technology for analysis of gene expression creates enormous opportunities to accelerate the pace in understanding living systems and identification of target genes and pathways for drug development and therapeutic intervention. Parallel monitoring of the expression profiles of thousands of genes seems particularly promising for a deeper understanding of cancer biology and the identification of molecular signatures supporting the histological classification schemes of neoplastic specimens. However, the increasing volume of data generated by microarray experiments poses the challenge of developing equally efficient methods and analysis procedures to extract, interpret, and upgrade the information content of these databases. Herein, a computational procedure for pattern identification, feature extraction, and classification of gene expression data through the analysis of an autoassociative neural network model is described. The identified patterns and features contain critical information about gene–phenotype relationships observed during changes in cell physiology. They represent a rational and dimensionally reduced base for understanding the basic biology of the onset of diseases, defining targets of therapeutic intervention, and developing diagnostic tools for the identification and classification of pathological states. The proposed method has been tested on two different microarray datasets—Golub's analysis of acute human leukemia [Golub et al. (1999) Science 286:531–537], and the human colon adenocarcinoma study presented by Alon et al. [1999; Proc Natl Acad Sci USA 97:10101–10106]. The analysis of the neural network internal structure allows the identification of specific phenotype markers and the extraction of peculiar associations among genes and physiological states. At the same time, the neural network outputs provide assignment to multiple classes, such as different pathological conditions or tissue samples, for previously unseen instances. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 594–606, 2003. |
|---|---|
| AbstractList | The application of DNA microarray technology for analysis of gene expression creates enormous opportunities to accelerate the pace in understanding living systems and identification of target genes and pathways for drug development and therapeutic intervention. Parallel monitoring of the expression profiles of thousands of genes seems particularly promising for a deeper understanding of cancer biology and the identification of molecular signatures supporting the histological classification schemes of neoplastic specimens. However, the increasing volume of data generated by microarray experiments poses the challenge of developing equally efficient methods and analysis procedures to extract, interpret, and upgrade the information content of these databases. Herein, a computational procedure for pattern identification, feature extraction, and classification of gene expression data through the analysis of an autoassociative neural network model is described. The identified patterns and features contain critical information about gene–phenotype relationships observed during changes in cell physiology. They represent a rational and dimensionally reduced base for understanding the basic biology of the onset of diseases, defining targets of therapeutic intervention, and developing diagnostic tools for the identification and classification of pathological states. The proposed method has been tested on two different microarray datasets—Golub's analysis of acute human leukemia [Golub et al. (1999) Science 286:531–537], and the human colon adenocarcinoma study presented by Alon et al. [1999; Proc Natl Acad Sci USA 97:10101–10106]. The analysis of the neural network internal structure allows the identification of specific phenotype markers and the extraction of peculiar associations among genes and physiological states. At the same time, the neural network outputs provide assignment to multiple classes, such as different pathological conditions or tissue samples, for previously unseen instances. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 594–606, 2003. The application of DNA microarray technology for analysis of gene expression creates enormous opportunities to accelerate the pace in understanding living systems and identification of target genes and pathways for drug development and therapeutic intervention. Parallel monitoring of the expression profiles of thousands of genes seems particularly promising for a deeper understanding of cancer biology and the identification of molecular signatures supporting the histological classification schemes of neoplastic specimens. However, the increasing volume of data generated by microarray experiments poses the challenge of developing equally efficient methods and analysis procedures to extract, interpret, and upgrade the information content of these databases. Herein, a computational procedure for pattern identification, feature extraction, and classification of gene expression data through the analysis of an autoassociative neural network model is described. The identified patterns and features contain critical information about gene-phenotype relationships observed during changes in cell physiology. They represent a rational and dimensionally reduced base for understanding the basic biology of the onset of diseases, defining targets of therapeutic intervention, and developing diagnostic tools for the identification and classification of pathological states. The proposed method has been tested on two different microarray datasets-Golub's analysis of acute human leukemia, and the human colon adenocarcinoma study presented by Alon et al. The analysis of the neural network internal structure allows the identification of specific phenotype markers and the extraction of peculiar associations among genes and physiological states. At the same time, the neural network outputs provide assignment to multiple classes, such as different pathological conditions or tissue samples, for previously unseen instances. The application of DNA microarray technology for analysis of gene expression creates enormous opportunities to accelerate the pace in understanding living systems and identification of target genes and pathways for drug development and therapeutic intervention. Parallel monitoring of the expression profiles of thousands of genes seems particularly promising for a deeper understanding of cancer biology and the identification of molecular signatures supporting the histological classification schemes of neoplastic specimens. However, the increasing volume of data generated by microarray experiments poses the challenge of developing equally efficient methods and analysis procedures to extract, interpret, and upgrade the information content of these databases. Herein, a computational procedure for pattern identification, feature extraction, and classification of gene expression data through the analysis of an autoassociative neural network model is described. The identified patterns and features contain critical information about gene-phenotype relationships observed during changes in cell physiology. They represent a rational and dimensionally reduced base for understanding the basic biology of the onset of diseases, defining targets of therapeutic intervention, and developing diagnostic tools for the identification and classification of pathological states. The proposed method has been tested on two different microarray datasets-Golub's analysis of acute human leukemia [Golub et al. (1999) Science 286:531-537], and the human colon adenocarcinoma study presented by Alon et al. [1999; Proc Natl Acad Sci USA 97:10101-10106]. The analysis of the neural network internal structure allows the identification of specific phenotype markers and the extraction of peculiar associations among genes and physiological states. At the same time, the neural network outputs provide assignment to multiple classes, such as different pathological conditions or tissue samples, for previously unseen instances.The application of DNA microarray technology for analysis of gene expression creates enormous opportunities to accelerate the pace in understanding living systems and identification of target genes and pathways for drug development and therapeutic intervention. Parallel monitoring of the expression profiles of thousands of genes seems particularly promising for a deeper understanding of cancer biology and the identification of molecular signatures supporting the histological classification schemes of neoplastic specimens. However, the increasing volume of data generated by microarray experiments poses the challenge of developing equally efficient methods and analysis procedures to extract, interpret, and upgrade the information content of these databases. Herein, a computational procedure for pattern identification, feature extraction, and classification of gene expression data through the analysis of an autoassociative neural network model is described. The identified patterns and features contain critical information about gene-phenotype relationships observed during changes in cell physiology. They represent a rational and dimensionally reduced base for understanding the basic biology of the onset of diseases, defining targets of therapeutic intervention, and developing diagnostic tools for the identification and classification of pathological states. The proposed method has been tested on two different microarray datasets-Golub's analysis of acute human leukemia [Golub et al. (1999) Science 286:531-537], and the human colon adenocarcinoma study presented by Alon et al. [1999; Proc Natl Acad Sci USA 97:10101-10106]. The analysis of the neural network internal structure allows the identification of specific phenotype markers and the extraction of peculiar associations among genes and physiological states. At the same time, the neural network outputs provide assignment to multiple classes, such as different pathological conditions or tissue samples, for previously unseen instances. The application of DNA microarray technology for analysis of gene expression creates enormous opportunities to accelerate the pace in understanding living systems and identification of target genes and pathways for drug development and therapeutic intervention. Parallel monitoring of the expression profiles of thousands of genes seems particularly promising for a deeper understanding of cancer biology and the identification of molecular signatures supporting the histological classification schemes of neoplastic specimens. However, the increasing volume of data generated by microarray experiments poses the challenge of developing equally efficient methods and analysis procedures to extract, interpret, and upgrade the information content of these databases. Herein, a computational procedure for pattern identification, feature extraction, and classification of gene expression data through the analysis of an autoassociative neural network model is described. The identified patterns and features contain critical information about gene-phenotype relationships observed during changes in cell physiology. They represent a rational and dimensionally reduced base for understanding the basic biology of the onset of diseases, defining targets of therapeutic intervention, and developing diagnostic tools for the identification and classification of pathological states. The proposed method has been tested on two different microarray datasets-Golub's analysis of acute human leukemia [Golub et al. (1999) Science 286:531-537], and the human colon adenocarcinoma study presented by Alon et al. [1999; Proc Natl Acad Sci USA 97:10101-10106]. The analysis of the neural network internal structure allows the identification of specific phenotype markers and the extraction of peculiar associations among genes and physiological states. At the same time, the neural network outputs provide assignment to multiple classes, such as different pathological conditions or tissue samples, for previously unseen instances. |
| Author | Di Bello, Carlo Pandin, Mario Bicciato, Silvio Didonè, Giuseppe |
| Author_xml | – sequence: 1 givenname: Silvio surname: Bicciato fullname: Bicciato, Silvio email: silvio.bicciato@unipd.it organization: Department of Chemical Process Engineering, University of Padova, via Marzolo, 9, 35131, Padova, Italy; telephone: +39-049-827-5544; fax: +36-049-827-5555 – sequence: 2 givenname: Mario surname: Pandin fullname: Pandin, Mario organization: Department of Clinical Diagnosis, Cittadella Hospital, via Riva Ospedale, 8, 35013, Cittadella, Italy – sequence: 3 givenname: Giuseppe surname: Didonè fullname: Didonè, Giuseppe organization: Department of Clinical Medicine, Cittadella Hospital, via Riva Ospedale, 8, 35013, Cittadella, Italy – sequence: 4 givenname: Carlo surname: Di Bello fullname: Di Bello, Carlo organization: Department of Chemical Process Engineering, University of Padova, via Marzolo, 9, 35131, Padova, Italy; telephone: +39-049-827-5544; fax: +36-049-827-5555 |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14513928$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/12514809$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctuEzEUhi1URNPCghdAswEJpKG-jD3jZYmgFCroogiJjXVmbFemjifYHtK8PU4TiIS4rI59_P3n8vsIHYQxGIQeE_ySYExPepfLgWN-D80Ilm2NqcQHaIYxFjXjkh6io5S-lmvbCfEAHRLKSdNhOUPjJeRsYqicNiE76wbIbgwVBF0NHlLap1york0wlbldRlMeSkpDhmpKLlwXQQVTHotiHFwRfDdVMFMEX0JejfGmWoza-IfovgWfzKNdPEaf3ry-mr-tLz6enc9PL-qBC8zrztKmDM-1NBT6lgkhGo1NR6zoe2m5FpZqApJRInEjO9vblnBBGks6zYCzY_RiW3cKS1ivwHu1jG4Bca0IVhvXVHFN3blW4GdbeBnHb5NJWS1cGoz3EMw4JdVS2XDJuv-CpBNSUrap-GQHTv3C6H3vnfEFeLoDIA3gbYQwuLTnGk6YpJuOJ1tuiGNK0Vg1uHz3HzmC839c5vlvin8tvqu-ct6s_w6qV-dXPxX1VuFSNre_FBBvlGhZy9XnD2fqy_t3c95dtkqyH9m7zo8 |
| CODEN | BIBIAU |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2009_12_018 crossref_primary_10_1214_14_AOAS738 crossref_primary_10_1039_C6EW00172F crossref_primary_10_1016_S0014_5793_03_00819_6 crossref_primary_10_1517_17460441_2_5_755 crossref_primary_10_1109_TSMCC_2006_879384 crossref_primary_10_1590_0101_7438_2016_036_01_0067 crossref_primary_10_1016_j_saa_2006_01_014 crossref_primary_10_1016_j_ab_2006_07_028 crossref_primary_10_1016_j_compchemeng_2005_02_031 crossref_primary_10_1093_nar_gkr591 crossref_primary_10_1111_j_1533_869X_2003_01104_x crossref_primary_10_1186_1471_2105_6_76 crossref_primary_10_1016_S1741_8364_04_02427_8 crossref_primary_10_1007_s10910_008_9489_x crossref_primary_10_35378_gujs_1036394 crossref_primary_10_1093_bib_bbp012 crossref_primary_10_1177_153303461000900204 crossref_primary_10_1252_jcej_08we042 crossref_primary_10_1186_1471_2105_12_340 crossref_primary_10_1016_S1389_1723_02_80196_7 crossref_primary_10_1371_journal_pone_0014579 crossref_primary_10_1186_1471_2105_7_442 crossref_primary_10_1155_2015_415083 crossref_primary_10_35378_gujs_471859 crossref_primary_10_52589_AJMSS_ZOZBNYPR crossref_primary_10_1016_j_artmed_2009_03_004 crossref_primary_10_1016_j_asoc_2014_10_034 crossref_primary_10_1007_s11814_009_0161_3 |
| Cites_doi | 10.1006/geno.2000.6241 10.1152/physiolgenomics.2001.5.2.99 10.1091/mbc.9.12.3273 10.1073/pnas.95.1.334 10.1016/S0303-2647(99)00077-5 10.1021/bp9701372 10.1093/bioinformatics/17.2.126 10.1126/science.278.5338.680 10.1073/pnas.111153698 10.1038/1670 10.1073/pnas.96.16.9212 10.1093/oso/9780198538493.001.0001 10.1309/Q5GV-3K00-WAC6-BBUB 10.1073/pnas.96.6.2907 10.1073/pnas.96.12.6745 10.1089/106652799318274 10.1038/415436a 10.4049/jimmunol.148.5.1526 10.1002/aic.690370209 10.1073/pnas.210134797 10.1093/bioinformatics/16.8.707 10.1073/pnas.150242097 10.1126/science.286.5439.531 10.1006/mben.2000.0151 10.1093/bioinformatics/16.10.906 10.1073/pnas.97.18.10101 10.1073/pnas.97.1.262 10.1016/S0014-5793(99)00524-4 10.1073/pnas.220392197 10.1016/S0014-5793(00)01772-5 10.1152/physiolgenomics.2000.4.2.109 10.1038/ng765 10.1182/blood.V94.11.3730 10.1073/pnas.95.25.14863 10.1038/89044 10.1162/089976600300015691 10.1142/S0218127496001958 10.1089/106652700750050943 10.1101/gr.9.11.1093 10.1006/mben.2000.0154 |
| ContentType | Journal Article |
| Copyright | Copyright © 2003 Wiley Periodicals, Inc. 2003 INIST-CNRS Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 594-606, 2003. |
| Copyright_xml | – notice: Copyright © 2003 Wiley Periodicals, Inc. – notice: 2003 INIST-CNRS – notice: Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 594-606, 2003. |
| DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 ADTOC UNPAY |
| DOI | 10.1002/bit.10505 |
| DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Engineering Research Database MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Biology Anatomy & Physiology |
| EISSN | 1097-0290 |
| EndPage | 606 |
| ExternalDocumentID | oai:iris.unimore.it:11380/421763 12514809 14513928 10_1002_bit_10505 BIT10505 ark_67375_WNG_ZKJC58P7_9 |
| Genre | article Evaluation Studies Journal Article |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX CITATION .GJ 3EH AAHHS ABEML ACCFJ ACSCC ADZOD AEEZP AEQDE AGHNM AI. AIWBW AJBDE BLYAC EBD EMOBN HF~ IQODW LH6 NDZJH PALCI RIWAO RJQFR RYL SAMSI SV3 VH1 ZGI ZXP AEUQT AFPWT CGR CUY CVF ECM EIF NPM RBB RWI WRC 7QO 8FD FR3 P64 7X8 ADTOC AIQQE UNPAY |
| ID | FETCH-LOGICAL-c5605-8f240065d9e2ab736664d0e81f6bb9f5d6f2d1a932190498fbf715614f18d3a53 |
| IEDL.DBID | UNPAY |
| ISSN | 0006-3592 1097-0290 |
| IngestDate | Sun Oct 26 04:12:51 EDT 2025 Thu Oct 02 10:26:54 EDT 2025 Mon Oct 06 18:08:14 EDT 2025 Wed Feb 19 01:31:38 EST 2025 Wed Apr 02 07:33:46 EDT 2025 Thu Apr 24 22:53:56 EDT 2025 Thu Oct 16 04:40:17 EDT 2025 Sun Sep 21 06:19:52 EDT 2025 Sun Sep 21 06:22:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Adenocarcinoma gene expression data Leukemia Prediction Malignant hemopathy Neural network Malignant tumor Gene expression cancer classification Modeling Colonic disease Phenotype feature extraction autoassociative neural networks Classification Digestive diseases Intestinal disease Extraction Colon pattern recognition |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 594-606, 2003. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5605-8f240065d9e2ab736664d0e81f6bb9f5d6f2d1a932190498fbf715614f18d3a53 |
| Notes | ArticleID:BIT10505 ark:/67375/WNG-ZKJC58P7-9 istex:78D083A6B2C362A075A008BCA536DB4AEF1C454E ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-1 ObjectType-Feature-3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/11380/421763 |
| PMID | 12514809 |
| PQID | 18699235 |
| PQPubID | 23462 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_1002_bit_10505 proquest_miscellaneous_72945938 proquest_miscellaneous_18699235 pubmed_primary_12514809 pascalfrancis_primary_14513928 crossref_citationtrail_10_1002_bit_10505 crossref_primary_10_1002_bit_10505 wiley_primary_10_1002_bit_10505_BIT10505 istex_primary_ark_67375_WNG_ZKJC58P7_9 |
| PublicationCentury | 2000 |
| PublicationDate | 5 March 2003 |
| PublicationDateYYYYMMDD | 2003-03-05 |
| PublicationDate_xml | – month: 03 year: 2003 text: 5 March 2003 day: 05 |
| PublicationDecade | 2000 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: New York, NY – name: United States |
| PublicationTitle | Biotechnology and bioengineering |
| PublicationTitleAlternate | Biotechnol. Bioeng |
| PublicationYear | 2003 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley |
| References | Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer SJ. 2002. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukaemia. Nat Genet 30:41-47. Eisen MB, Spellman PT, Brown PO, Botstein D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863-14868. Herwig R, Poustka AJ, Muller C, Bull C, Lehrach H, O'Brien J. 1999. Large-scale clustering of cDNA-fingerprinting data. Genome Res 9:1093-1105. DeRisi JL, Iyer VR, Brown PO. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680-686. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ. 1999. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96:6745-6750. Brazma A, Vilo J. 2000. Gene expression data analysis. FEBS Lett 480:17-24. Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB, Ross DT, Pergamenschikov A, Williams CF, Zhu SX, Lee JC, Lashkari D, Shalon D, Brown PO, Botstein D. 1999. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 96:9212-9217. Bishop CM. 1995. Neural networks for pattern recognition. Oxford: Oxford University Press. Chow ML, Moler EJ, Mian IS. 2001. Identifying marker genes in transcription profiling data using a mixture of feature relevance experts. Physiol Genomics 5:99-111. Kamimura RT, Bicciato S, Shimizu H, Alford J, Stephanopoulos GN. 2000. Mining of biological data. I. Identifying discriminating features via mean hypothesis testing. Metab Eng 2:218-227. Brown MP, Grundy WN, Lin D, Sugnet C, Ares M, Haussler D. 2000. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA 97:262-267. Toronen P, Kolehmainen M, Wong G, Castren E. 1999. Analysis of gene expression data using self-organizing maps. FEBS Lett 451:142-146. Wen X, Fuhrmanm S, Michaels GS, Carr DB, Smith S, Barker JL, Somogyi R. 1998. Large-scale temporal gene expression mapping of CNS development. Proc Natl Acad Sci USA 95:334-339. Japkowicz N, Hanson SJ, Gluck M. 2000. Nonlinear autoassociation is not equivalent to PCA. Neural Comput 12:531-545. Alter O, Brown PO, Botstein D. 2000. Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci USA 97:10101-10106. Furey TS, Cristiannini N, Duffy N, Bednarski DW, Schummer M, Haussler D. 2000. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16:906-914. Maitra A, McKenna RW, Weinberg AG, Schneider NR, Kroft SH. 2001. Precursor B-cell lymphoblastic lymphoma. A study of nine cases lacking blood and bone marrow involvement and review of the literature. Am J Clin Pathol 115:868-875. Kim S, Dougherty ER, Chen Y, Sivakumar K, Meltzer P, Trent JM, Bittner M. 2000. Multivariate measurement of gene expression relationships. Genomics 67:201-209. Shimizu H, Yasuoka K, Uchiyama K, Shioya S. 1998. Bioprocess fault detection by nonlinear multivariate analysis: application of an artificial autoassociative neural network and wavelet filter bank. Biotechnol Prog 14:79-87. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub, TR. 1999. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96:2907-2912. Park PJ, Pagano M, Bonetti M. 2001. A nonparametric scoring algorithm for identifying informative genes from microarray data. Pac Symp Biocomput 6:52-63. Ermolaeva O, Rastogi M, Pruitt KD, Schuler GD, Bittner ML, Chen Y, Simon R, Meltzer P, Trent JM, Boguski MS. 1998. Data management and analysis for gene expression arrays. Nat Genet 20:19-23. Getz G, Levine E, Domany E. 2000. Coupled two-way clustering analysis of gene microarray data. Proc Natl Acad Sci USA 97:12079-12084. Michaels GS, Carr DB, Askenazi M, Fuhrman S, Wen X, Somogyi R. 1998. Cluster analysis and data visualization of large-scale gene expression data. Pac Symp Biocomput 3:42-53. D'haeseleer P, Liang S, Somogyi R. 2000. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16:707-726. Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS. 2001. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673-679. Ben-Dor A, Shamir R, Yakhini Z. 1999. Clustering gene expression patterns. J Comput Biol 6:281-297. Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS. 2000. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci USA 97:12182-12186. Spellman PT, Sherlock G, Iyer VR, Zhang M, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273-3297. Wong ET, Jenne DE, Zimmer M, Porter SD, Gilks CB. 1999. Changes in the chromatin organization at the neutrophil elastase locus associated with myeloid cell differentiation, Blood 94:3730-3736. Zhang H, Yu CY, Singer B, Xiong M. 2001. Recursive partitioning for tumor classification with gene expression microarray data. Proc Natl Acad Sci USA 98:6730-6735. Pandin M, Didonè G. 1996. Chaos in information processing: simulation of a biological learning process by time evolution in an unsupervised neural network. Int J Bifurcat Chaos 6:203-210. Shailubhai K, Yu HH, Karunanandaa K, Wang JY, Eber SL, Wang Y, Joo NS, Kim HD, Miedema BW, Abbas SZ, Boddupalli SS, Currie MG, Forte LR. 2000. Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP. Cancer Res 60:5151-5157. Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim JYH, Goumnerovak LC, Blackk PM, Lau C, Allen JC, David Zagzag D, Olson JM, Curran T, Wetmore C, Biegel JA, Poggio T, Mukherjee S, Rifkin R, Califanokk A, Stolovitzkykk G, Louis DN, Mesirov JP, Lander ES, Golub TR. 2002. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415:436-442. Holter NS, Mitra M, Maritan A, Cieplak M, Banavar JR, Fedoroff NV. 2000. Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc Natl Acad Sci USA 97:8409-8414. Butte AJ, Kohane IS. 2000. Mutual information relevance networks: functional genomics clustering using pairwise entropy measurements. Pac Symp Biocomput 5:415-426. Herrero J, Valencia A, Dopazo J. 2001. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17:126-136. Moler EJ, Chow ML, Mian IS. 2000. Analysis of molecular profile data using generative and discriminative methods. Physiol Genomics 4:109-126. Rigoutsos I, Floratos A, Parida L, Gao Y, Platt D. 2000. The emergence of pattern discovery techniques in computational biology. Metab Eng 2:159-77. Fuhrman S, Cunningham MJ, Wen X, Zweiger G, Seihamer JJ, Somogyi R. 2000. The application of Shannon entropy in the identification of putative drug targets. Biosystems 55:5-14. Ben-Dor A, Bruhn L, Friedman N, Nachman I. 2000. Tissue classification with gene expression profiles. J Comput Biol 7:559-583. Raychaudhuri S, Stuart JM, Altman RB. 2000. Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput 5:452-463. Ha HJ, Kubagawa H, Burrows PD. 1992. Molecular cloning and expression pattern of a human gene homologous to the murine mb-1 gene. J Immunol 148:1526-1531. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh M, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES. 1999. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531-537. Mardia KV, Kent JT, Bibby JM. 1979. Multivariate analysis. San Diego: Academic Press. Kramer MA. 1991. Nonlinear principal component analysis using autoassociative neural networks. AIChE J 37:233-243. Notterman DA, Alon U, Sierk AJ, Levine AJ. 2001. Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Res 61:3124-3130. 1997; 278 1991; 37 2002; 30 2000; 5 2000; 67 2000; 4 2000; 7 1992; 148 1999; 286 2002; 415 1995 2000; 2 1999; 6 1998; 20 1979 1999; 9 2001; 61 2000; 16 2001; 7 2000 2001; 6 2001; 5 2000; 12 2000; 55 2000; 97 2000; 480 1999; 451 2000; 60 1998; 3 1999; 96 2001; 17 1999; 94 1998; 95 1986; I 2001; 115 1996; 6 1998; 14 1998; 9 2001; 98 Michaels GS (e_1_2_1_33_1) 1998; 3 Shailubhai K (e_1_2_1_43_1) 2000; 60 e_1_2_1_20_1 e_1_2_1_41_1 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_22_1 e_1_2_1_28_1 e_1_2_1_26_1 e_1_2_1_47_1 Raychaudhuri S (e_1_2_1_40_1) 2000; 5 e_1_2_1_31_1 e_1_2_1_8_1 e_1_2_1_6_1 e_1_2_1_12_1 e_1_2_1_50_1 e_1_2_1_4_1 e_1_2_1_2_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_14_1 e_1_2_1_18_1 Wong ET (e_1_2_1_49_1) 1999; 94 Mardia KV (e_1_2_1_32_1) 1979 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_27_1 e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_29_1 Butte AJ (e_1_2_1_10_1) 2000; 5 Park PJ (e_1_2_1_37_1) 2001; 6 Notterman DA (e_1_2_1_35_1) 2001; 61 e_1_2_1_7_1 e_1_2_1_30_1 e_1_2_1_5_1 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_11_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_36_1 Rumelhart DE (e_1_2_1_42_1) 1986 e_1_2_1_9_1 e_1_2_1_19_1 |
| References_xml | – reference: Raychaudhuri S, Stuart JM, Altman RB. 2000. Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput 5:452-463. – reference: Maitra A, McKenna RW, Weinberg AG, Schneider NR, Kroft SH. 2001. Precursor B-cell lymphoblastic lymphoma. A study of nine cases lacking blood and bone marrow involvement and review of the literature. Am J Clin Pathol 115:868-875. – reference: Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS. 2001. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673-679. – reference: Ben-Dor A, Bruhn L, Friedman N, Nachman I. 2000. Tissue classification with gene expression profiles. J Comput Biol 7:559-583. – reference: Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim JYH, Goumnerovak LC, Blackk PM, Lau C, Allen JC, David Zagzag D, Olson JM, Curran T, Wetmore C, Biegel JA, Poggio T, Mukherjee S, Rifkin R, Califanokk A, Stolovitzkykk G, Louis DN, Mesirov JP, Lander ES, Golub TR. 2002. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415:436-442. – reference: D'haeseleer P, Liang S, Somogyi R. 2000. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16:707-726. – reference: Wong ET, Jenne DE, Zimmer M, Porter SD, Gilks CB. 1999. Changes in the chromatin organization at the neutrophil elastase locus associated with myeloid cell differentiation, Blood 94:3730-3736. – reference: Holter NS, Mitra M, Maritan A, Cieplak M, Banavar JR, Fedoroff NV. 2000. Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc Natl Acad Sci USA 97:8409-8414. – reference: Kim S, Dougherty ER, Chen Y, Sivakumar K, Meltzer P, Trent JM, Bittner M. 2000. Multivariate measurement of gene expression relationships. Genomics 67:201-209. – reference: Rigoutsos I, Floratos A, Parida L, Gao Y, Platt D. 2000. The emergence of pattern discovery techniques in computational biology. Metab Eng 2:159-77. – reference: Michaels GS, Carr DB, Askenazi M, Fuhrman S, Wen X, Somogyi R. 1998. Cluster analysis and data visualization of large-scale gene expression data. Pac Symp Biocomput 3:42-53. – reference: Alter O, Brown PO, Botstein D. 2000. Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci USA 97:10101-10106. – reference: Ha HJ, Kubagawa H, Burrows PD. 1992. Molecular cloning and expression pattern of a human gene homologous to the murine mb-1 gene. J Immunol 148:1526-1531. – reference: Toronen P, Kolehmainen M, Wong G, Castren E. 1999. Analysis of gene expression data using self-organizing maps. FEBS Lett 451:142-146. – reference: Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS. 2000. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci USA 97:12182-12186. – reference: Herwig R, Poustka AJ, Muller C, Bull C, Lehrach H, O'Brien J. 1999. Large-scale clustering of cDNA-fingerprinting data. Genome Res 9:1093-1105. – reference: Pandin M, Didonè G. 1996. Chaos in information processing: simulation of a biological learning process by time evolution in an unsupervised neural network. Int J Bifurcat Chaos 6:203-210. – reference: DeRisi JL, Iyer VR, Brown PO. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680-686. – reference: Herrero J, Valencia A, Dopazo J. 2001. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17:126-136. – reference: Shimizu H, Yasuoka K, Uchiyama K, Shioya S. 1998. Bioprocess fault detection by nonlinear multivariate analysis: application of an artificial autoassociative neural network and wavelet filter bank. Biotechnol Prog 14:79-87. – reference: Brazma A, Vilo J. 2000. Gene expression data analysis. FEBS Lett 480:17-24. – reference: Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB, Ross DT, Pergamenschikov A, Williams CF, Zhu SX, Lee JC, Lashkari D, Shalon D, Brown PO, Botstein D. 1999. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 96:9212-9217. – reference: Bishop CM. 1995. Neural networks for pattern recognition. Oxford: Oxford University Press. – reference: Spellman PT, Sherlock G, Iyer VR, Zhang M, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273-3297. – reference: Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh M, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES. 1999. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531-537. – reference: Brown MP, Grundy WN, Lin D, Sugnet C, Ares M, Haussler D. 2000. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA 97:262-267. – reference: Chow ML, Moler EJ, Mian IS. 2001. Identifying marker genes in transcription profiling data using a mixture of feature relevance experts. Physiol Genomics 5:99-111. – reference: Zhang H, Yu CY, Singer B, Xiong M. 2001. Recursive partitioning for tumor classification with gene expression microarray data. Proc Natl Acad Sci USA 98:6730-6735. – reference: Fuhrman S, Cunningham MJ, Wen X, Zweiger G, Seihamer JJ, Somogyi R. 2000. The application of Shannon entropy in the identification of putative drug targets. Biosystems 55:5-14. – reference: Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub, TR. 1999. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96:2907-2912. – reference: Moler EJ, Chow ML, Mian IS. 2000. Analysis of molecular profile data using generative and discriminative methods. Physiol Genomics 4:109-126. – reference: Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ. 1999. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96:6745-6750. – reference: Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer SJ. 2002. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukaemia. Nat Genet 30:41-47. – reference: Mardia KV, Kent JT, Bibby JM. 1979. Multivariate analysis. San Diego: Academic Press. – reference: Wen X, Fuhrmanm S, Michaels GS, Carr DB, Smith S, Barker JL, Somogyi R. 1998. Large-scale temporal gene expression mapping of CNS development. Proc Natl Acad Sci USA 95:334-339. – reference: Ben-Dor A, Shamir R, Yakhini Z. 1999. Clustering gene expression patterns. J Comput Biol 6:281-297. – reference: Notterman DA, Alon U, Sierk AJ, Levine AJ. 2001. Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Res 61:3124-3130. – reference: Kramer MA. 1991. Nonlinear principal component analysis using autoassociative neural networks. AIChE J 37:233-243. – reference: Park PJ, Pagano M, Bonetti M. 2001. A nonparametric scoring algorithm for identifying informative genes from microarray data. Pac Symp Biocomput 6:52-63. – reference: Kamimura RT, Bicciato S, Shimizu H, Alford J, Stephanopoulos GN. 2000. Mining of biological data. I. Identifying discriminating features via mean hypothesis testing. Metab Eng 2:218-227. – reference: Furey TS, Cristiannini N, Duffy N, Bednarski DW, Schummer M, Haussler D. 2000. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16:906-914. – reference: Getz G, Levine E, Domany E. 2000. Coupled two-way clustering analysis of gene microarray data. Proc Natl Acad Sci USA 97:12079-12084. – reference: Japkowicz N, Hanson SJ, Gluck M. 2000. Nonlinear autoassociation is not equivalent to PCA. Neural Comput 12:531-545. – reference: Shailubhai K, Yu HH, Karunanandaa K, Wang JY, Eber SL, Wang Y, Joo NS, Kim HD, Miedema BW, Abbas SZ, Boddupalli SS, Currie MG, Forte LR. 2000. Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP. Cancer Res 60:5151-5157. – reference: Butte AJ, Kohane IS. 2000. Mutual information relevance networks: functional genomics clustering using pairwise entropy measurements. Pac Symp Biocomput 5:415-426. – reference: Eisen MB, Spellman PT, Brown PO, Botstein D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863-14868. – reference: Ermolaeva O, Rastogi M, Pruitt KD, Schuler GD, Bittner ML, Chen Y, Simon R, Meltzer P, Trent JM, Boguski MS. 1998. Data management and analysis for gene expression arrays. Nat Genet 20:19-23. – volume: 97 start-page: 10101 year: 2000 end-page: 10106 article-title: Singular value decomposition for genome‐wide expression data processing and modeling publication-title: Proc Natl Acad Sci USA – volume: 37 start-page: 233 year: 1991 end-page: 243 article-title: Nonlinear principal component analysis using autoassociative neural networks publication-title: AIChE J – volume: 7 start-page: 559 year: 2000 end-page: 583 article-title: Tissue classification with gene expression profiles publication-title: J Comput Biol – volume: 6 start-page: 281 year: 1999 end-page: 297 article-title: Clustering gene expression patterns publication-title: J Comput Biol – volume: 97 start-page: 8409 year: 2000 end-page: 8414 article-title: Fundamental patterns underlying gene expression profiles: simplicity from complexity publication-title: Proc Natl Acad Sci USA – volume: 55 start-page: 5 year: 2000 end-page: 14 article-title: The application of Shannon entropy in the identification of putative drug targets publication-title: Biosystems – volume: 148 start-page: 1526 year: 1992 end-page: 1531 article-title: Molecular cloning and expression pattern of a human gene homologous to the murine mb‐1 gene publication-title: J Immunol – volume: 94 start-page: 3730 year: 1999 end-page: 3736 article-title: Changes in the chromatin organization at the neutrophil elastase locus associated with myeloid cell differentiation publication-title: Blood – volume: 2 start-page: 218 year: 2000 end-page: 227 article-title: Mining of biological data. I. Identifying discriminating features via mean hypothesis testing publication-title: Metab Eng – volume: 61 start-page: 3124 year: 2001 end-page: 3130 article-title: Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays publication-title: Cancer Res – volume: I start-page: 318 year: 1986 end-page: 362 – volume: 278 start-page: 680 year: 1997 end-page: 686 article-title: Exploring the metabolic and genetic control of gene expression on a genomic scale publication-title: Science – volume: 286 start-page: 531 year: 1999 end-page: 537 article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring publication-title: Science – volume: 480 start-page: 17 year: 2000 end-page: 24 article-title: Gene expression data analysis publication-title: FEBS Lett – volume: 9 start-page: 3273 year: 1998 end-page: 3297 article-title: Comprehensive identification of cell cycle‐regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization publication-title: Mol Biol Cell – volume: 12 start-page: 531 year: 2000 end-page: 545 article-title: Nonlinear autoassociation is not equivalent to PCA publication-title: Neural Comput – volume: 451 start-page: 142 year: 1999 end-page: 146 article-title: Analysis of gene expression data using self‐organizing maps publication-title: FEBS Lett – volume: 30 start-page: 41 year: 2002 end-page: 47 article-title: translocations specify a distinct gene expression profile that distinguishes a unique leukaemia publication-title: Nat Genet – volume: 6 start-page: 203 year: 1996 end-page: 210 article-title: Chaos in information processing: simulation of a biological learning process by time evolution in an unsupervised neural network publication-title: Int J Bifurcat Chaos – year: 1979 – volume: 7 start-page: 673 year: 2001 end-page: 679 article-title: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks publication-title: Nat Med – volume: 97 start-page: 12079 year: 2000 end-page: 12084 article-title: Coupled two‐way clustering analysis of gene microarray data publication-title: Proc Natl Acad Sci USA – volume: 3 start-page: 42 year: 1998 end-page: 53 article-title: Cluster analysis and data visualization of large‐scale gene expression data publication-title: Pac Symp Biocomput – volume: 16 start-page: 906 year: 2000 end-page: 914 article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data publication-title: Bioinformatics – volume: 98 start-page: 6730 year: 2001 end-page: 6735 article-title: Recursive partitioning for tumor classification with gene expression microarray data publication-title: Proc Natl Acad Sci USA – volume: 96 start-page: 6745 year: 1999 end-page: 6750 article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays publication-title: Proc Natl Acad Sci USA – volume: 95 start-page: 334 year: 1998 end-page: 339 article-title: Large‐scale temporal gene expression mapping of CNS development publication-title: Proc Natl Acad Sci USA – volume: 97 start-page: 262 year: 2000 end-page: 267 article-title: Knowledge‐based analysis of microarray gene expression data by using support vector machines publication-title: Proc Natl Acad Sci USA – volume: 5 start-page: 99 year: 2001 end-page: 111 article-title: Identifying marker genes in transcription profiling data using a mixture of feature relevance experts publication-title: Physiol Genomics – volume: 20 start-page: 19 year: 1998 end-page: 23 article-title: Data management and analysis for gene expression arrays publication-title: Nat Genet – volume: 16 start-page: 707 year: 2000 end-page: 726 article-title: Genetic network inference: from co‐expression clustering to reverse engineering publication-title: Bioinformatics – volume: 4 start-page: 109 year: 2000 end-page: 126 article-title: Analysis of molecular profile data using generative and discriminative methods publication-title: Physiol Genomics – volume: 6 start-page: 52 year: 2001 end-page: 63 article-title: A nonparametric scoring algorithm for identifying informative genes from microarray data publication-title: Pac Symp Biocomput – volume: 14 start-page: 79 year: 1998 end-page: 87 article-title: Bioprocess fault detection by nonlinear multivariate analysis: application of an artificial autoassociative neural network and wavelet filter bank publication-title: Biotechnol Prog – year: 2000 – volume: 60 start-page: 5151 year: 2000 end-page: 5157 article-title: Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP publication-title: Cancer Res – volume: 5 start-page: 415 year: 2000 end-page: 426 article-title: Mutual information relevance networks: functional genomics clustering using pairwise entropy measurements publication-title: Pac Symp Biocomput – volume: 17 start-page: 126 year: 2001 end-page: 136 article-title: A hierarchical unsupervised growing neural network for clustering gene expression patterns publication-title: Bioinformatics – volume: 415 start-page: 436 year: 2002 end-page: 442 article-title: Prediction of central nervous system embryonal tumour outcome based on gene expression publication-title: Nature – volume: 5 start-page: 452 year: 2000 end-page: 463 article-title: Principal components analysis to summarize microarray experiments: application to sporulation time series publication-title: Pac Symp Biocomput – volume: 2 start-page: 159 year: 2000 end-page: 77 article-title: The emergence of pattern discovery techniques in computational biology publication-title: Metab Eng – volume: 115 start-page: 868 year: 2001 end-page: 875 article-title: Precursor B‐cell lymphoblastic lymphoma. A study of nine cases lacking blood and bone marrow involvement and review of the literature publication-title: Am J Clin Pathol – volume: 9 start-page: 1093 year: 1999 end-page: 1105 article-title: Large‐scale clustering of cDNA‐fingerprinting data publication-title: Genome Res – year: 1995 – volume: 96 start-page: 9212 year: 1999 end-page: 9217 article-title: Distinctive gene expression patterns in human mammary epithelial cells and breast cancers publication-title: Proc Natl Acad Sci USA – volume: 96 start-page: 2907 year: 1999 end-page: 2912 article-title: Interpreting patterns of gene expression with self‐organizing maps: methods and application to hematopoietic differentiation publication-title: Proc Natl Acad Sci USA – volume: 97 start-page: 12182 year: 2000 end-page: 12186 article-title: Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks publication-title: Proc Natl Acad Sci USA – volume: 95 start-page: 14863 year: 1998 end-page: 14868 article-title: Cluster analysis and display of genome‐wide expression patterns publication-title: Proc Natl Acad Sci USA – volume: 67 start-page: 201 year: 2000 end-page: 209 article-title: Multivariate measurement of gene expression relationships publication-title: Genomics – ident: e_1_2_1_29_1 doi: 10.1006/geno.2000.6241 – ident: e_1_2_1_12_1 doi: 10.1152/physiolgenomics.2001.5.2.99 – ident: e_1_2_1_27_1 – volume: 5 start-page: 452 year: 2000 ident: e_1_2_1_40_1 article-title: Principal components analysis to summarize microarray experiments: application to sporulation time series publication-title: Pac Symp Biocomput – ident: e_1_2_1_45_1 doi: 10.1091/mbc.9.12.3273 – volume-title: Multivariate analysis year: 1979 ident: e_1_2_1_32_1 – ident: e_1_2_1_48_1 doi: 10.1073/pnas.95.1.334 – ident: e_1_2_1_17_1 doi: 10.1016/S0303-2647(99)00077-5 – ident: e_1_2_1_44_1 doi: 10.1021/bp9701372 – ident: e_1_2_1_22_1 doi: 10.1093/bioinformatics/17.2.126 – ident: e_1_2_1_13_1 doi: 10.1126/science.278.5338.680 – ident: e_1_2_1_50_1 doi: 10.1073/pnas.111153698 – ident: e_1_2_1_16_1 doi: 10.1038/1670 – ident: e_1_2_1_38_1 doi: 10.1073/pnas.96.16.9212 – ident: e_1_2_1_7_1 doi: 10.1093/oso/9780198538493.001.0001 – ident: e_1_2_1_31_1 doi: 10.1309/Q5GV-3K00-WAC6-BBUB – ident: e_1_2_1_46_1 doi: 10.1073/pnas.96.6.2907 – volume: 61 start-page: 3124 year: 2001 ident: e_1_2_1_35_1 article-title: Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays publication-title: Cancer Res – ident: e_1_2_1_2_1 doi: 10.1073/pnas.96.12.6745 – start-page: 318 year: 1986 ident: e_1_2_1_42_1 – ident: e_1_2_1_5_1 doi: 10.1089/106652799318274 – ident: e_1_2_1_39_1 doi: 10.1038/415436a – volume: 3 start-page: 42 year: 1998 ident: e_1_2_1_33_1 article-title: Cluster analysis and data visualization of large‐scale gene expression data publication-title: Pac Symp Biocomput – volume: 6 start-page: 52 year: 2001 ident: e_1_2_1_37_1 article-title: A nonparametric scoring algorithm for identifying informative genes from microarray data publication-title: Pac Symp Biocomput – ident: e_1_2_1_21_1 doi: 10.4049/jimmunol.148.5.1526 – ident: e_1_2_1_30_1 doi: 10.1002/aic.690370209 – ident: e_1_2_1_19_1 doi: 10.1073/pnas.210134797 – ident: e_1_2_1_14_1 doi: 10.1093/bioinformatics/16.8.707 – ident: e_1_2_1_24_1 doi: 10.1073/pnas.150242097 – ident: e_1_2_1_20_1 doi: 10.1126/science.286.5439.531 – ident: e_1_2_1_41_1 doi: 10.1006/mben.2000.0151 – ident: e_1_2_1_18_1 doi: 10.1093/bioinformatics/16.10.906 – ident: e_1_2_1_3_1 doi: 10.1073/pnas.97.18.10101 – ident: e_1_2_1_9_1 doi: 10.1073/pnas.97.1.262 – ident: e_1_2_1_47_1 doi: 10.1016/S0014-5793(99)00524-4 – ident: e_1_2_1_11_1 doi: 10.1073/pnas.220392197 – volume: 60 start-page: 5151 year: 2000 ident: e_1_2_1_43_1 article-title: Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP publication-title: Cancer Res – ident: e_1_2_1_8_1 doi: 10.1016/S0014-5793(00)01772-5 – volume: 5 start-page: 415 year: 2000 ident: e_1_2_1_10_1 article-title: Mutual information relevance networks: functional genomics clustering using pairwise entropy measurements publication-title: Pac Symp Biocomput – ident: e_1_2_1_34_1 doi: 10.1152/physiolgenomics.2000.4.2.109 – ident: e_1_2_1_4_1 doi: 10.1038/ng765 – volume: 94 start-page: 3730 year: 1999 ident: e_1_2_1_49_1 article-title: Changes in the chromatin organization at the neutrophil elastase locus associated with myeloid cell differentiation publication-title: Blood doi: 10.1182/blood.V94.11.3730 – ident: e_1_2_1_15_1 doi: 10.1073/pnas.95.25.14863 – ident: e_1_2_1_28_1 doi: 10.1038/89044 – ident: e_1_2_1_25_1 doi: 10.1162/089976600300015691 – ident: e_1_2_1_36_1 doi: 10.1142/S0218127496001958 – ident: e_1_2_1_6_1 doi: 10.1089/106652700750050943 – ident: e_1_2_1_23_1 doi: 10.1101/gr.9.11.1093 – ident: e_1_2_1_26_1 doi: 10.1006/mben.2000.0154 |
| SSID | ssj0007866 |
| Score | 1.9465609 |
| Snippet | The application of DNA microarray technology for analysis of gene expression creates enormous opportunities to accelerate the pace in understanding living... |
| SourceID | unpaywall proquest pubmed pascalfrancis crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 594 |
| SubjectTerms | Adenocarcinoma - classification Adenocarcinoma - genetics autoassociative neural networks Biological and medical sciences Biotechnology cancer classification Colonic Neoplasms - classification Colonic Neoplasms - genetics Databases, Nucleic Acid DNA - classification DNA - genetics Feasibility Studies feature extraction Fundamental and applied biological sciences. Psychology gene expression data Gene Expression Profiling - methods Gene Expression Regulation, Neoplastic - genetics Genetic engineering Genetic technics Humans Leukemia - classification Leukemia - genetics Methods. Procedures. Technologies Neoplasms - classification Neoplasms - genetics Neural Networks (Computer) Oligonucleotide Array Sequence Analysis - methods pattern recognition Pattern Recognition, Automated Phenotype Vectors (cloning, transfer, expression). Insertion sequences and transposons |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD6UitQ-VN16WS81qJS-TLtzycwEn9rFWiuWIi0WEUIySWTpNlu6O9r66z3J3FxpRYR9CMuZ7CbzZfOdybffAXitcMuSTJpAiEgGiTJxILNQYc5DGY20O0tzieLHg3TvONk_oScL8Kb5L0zlD9E-cHMrw_9euwUu5HSrMw2VI-f-TL1_aRinPp361FlHZXl1Tuky5piyqHEVGkRb7ZVze9EtN62XThsppjg9pqprcR3xXIal0p6Lqx9iPJ7ntH5T2r0LX5vhVFqU081yJjeLn384Pf7neO_BSk1WyXaFrvuwoG0PVrctJupnV2SdePmofy7fg9s7TWtp2BSR68Hyb36HqzA59G6eloxULVLyuCDCKlI4Gt-9NbIEoa2JvqyVupY4MStxOv1veAER5WwiGmx918QZc-J3tZWsnfgKPw_gePft0XAvqCs-BAUyLxrkxklaU6qYjoTMYsytEjXQeWhSKZmhKjWRCgVyTuQxCcuNNFnovExNmKtY0PghLNqJ1Y-BpDQ2TDCkMxmSlEIhz8IWTZDiaKmY7MNGc-95Uduhu6ocY14ZOUccJ5z7Ce_Dyzb0vPIAuS5o3QOojRAXp040l1H--eAd__Jhf0jzw4yzPqzNIazrEpcFstW8Dy8ayHG8W-4AR1g9KafclQ9DQk5vjsBUKaEsxj4eVVjtekcim-QD_PhXLXj_NpoNj8WbI_jO-yPfePLvoU_hjtdCuhd9Bouzi1I_R043k2t-8f4Cs_lGVw priority: 102 providerName: Wiley-Blackwell |
| Title | Pattern identification and classification in gene expression data using an autoassociative neural network model |
| URI | https://api.istex.fr/ark:/67375/WNG-ZKJC58P7-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.10505 https://www.ncbi.nlm.nih.gov/pubmed/12514809 https://www.proquest.com/docview/18699235 https://www.proquest.com/docview/72945938 http://hdl.handle.net/11380/421763 |
| UnpaywallVersion | submittedVersion |
| Volume | 81 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-0290 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0290 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007866 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4ardDYA5eOS7kUC9C0l2y5OYkfu4oxhqgqtIqNl8iObVStuNPWwMav59hJ2g22CSkPVnTqOvZX-Tvx1-8AvJO4ZQkmtMd5KLxY6sgTaSAx56GMhsqepdlE8fMw2RvH-4f0cAWaqmt_2QsEQZT52zHS5iS6A-2EIt9uQXs8HPWPKl6beBFl1ZGmtRUNmd_YB_nhtphYg2hqS9Nd2nTadv7OrQiSn-E86KqAxXUMcw1WS3PCL37x6fQqeXW7z-4DGDT_4alEJ8db5VxsFb__tXS85cEewv2afJJ-hZZHsKJMB9b7BhPvHxdkgzg5qHvP3oG7O01rddAUhevA2iX_wnWYjZw7pyETWYuO3DoTHAEpLC1f3poYglBVRJ3XyltDrDiVWN39d_wA4eV8xhus_FTEGm3iWE0lUyeuYs9jGO--PxjseXUFB69AJkW9TFuJakIlUyEXaYS5Uix9lQU6EYJpKhMdyoAjh0ReErNMC50G1ptUB5mMOI2eQMvMjHoGJKGRZpwhPUmRdBQSeRO2KE4hVUIy0YXNZonzorY3t1U2pnllzBzmiIbcoaELbxahJ5Wnx3VBGw4niwh-emxFcCnNvw4_5N8-7Q9oNkpz1oXeFSAtu0SYI_vMuvC6QVaOq2UPZLhRs_Ist-XAkGDTmyMw9Ykpi7CPpxUkl70jMY0zH7_-7QKjtz3NpkPvzRH5zscD13j-Xx2-gHtO1mgv-hJa89NSvUJ6Nhc9TEy-hL36V_oHrxw0_w |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bahsxEB1CQnHz0IvTi3tJRFtCXjaxd1feFfQlcZs6NxOKQ0OhCMmSiokrh8Ruk359Z7Reuy5JKQU_CDMrW9oj68zq-AzAG4NblhbaRUrFOkqNSyKdNQzmPFzw2NJZGiWKR51m-yTdP-WnC_C2_C9M4Q8xfeBGKyP8XtMCpwfSWzPXUN0n-2dOBqZL2GedMP3u48w8KsuLk0rKmRMu4tJXqB5vTS-d242WaGKvSB2pLnGCXFHZ4ibquQyVsT9X1z_UYDDPasO2tHsfvpQDKtQoZ5vjkd7s_fzD6_F_R_wA7k34KtsuAPYQFqyvwsq2x1z92zVbZ0FBGh7NV-HOTtmqtMo6clVY_s3ycAWGx8HQ07O-meiUAjSY8ob1iMnP3up7hui2zF5NxLqekZ6VkVT_K17A1Hg0VCW8vltG3pz4XX2hbGehyM8jONl93221o0nRh6iH5ItHuSNVa5MbYWOlswTTq9TUbd5wTa2F46bpYtNQSDuRyqQid9plDbIzdY3cJIonj2HRD719CqzJEyeUQEaTIU_pGaRa2OIpshyrjdA12ChvvuxNHNGpMMdAFl7OscQJl2HCa_BqGnpe2IDcFLQeEDSNUBdnpJvLuPzU-SA_H-y3eH6cSVGD1TmIzbrElYGENa_BWok5iXeLznCUt8PxpaQKYsjJ-e0RmC2lXCTYx5MCrLPekcumeR0__vUUvX8bzUYA4-0RcmevGxrP_j10DSrt7tGhPNzrHDyHu0EaSS_-AhZHF2P7EineSK-GlfwLBUlKeA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbhMxEB1VraD0gUvKJVxaC1DVl22T3XV2LfHSpoReIIpQKyokZNmxjaIGJ2oTaPl6ZrzZhKAWIaQ8WNGsE3uP4zPrkzMArw1uWVpoFykV6yg1Lol0VjeY83DBY0tnaZQofmg39k_Sw1N-ugBvyv_CFP4Q0wdutDLC7zUtcDs0bnvmGqp7ZP_MycB0KeUiJ0Hf3seZeVSWFyeVlDMnXMSlr1At3p5eOrcbLdHEXpI6Ul3gBLmissV11HMFlsd-qK5-qH5_ntWGbal1D76UAyrUKGdb45He6v78w-vxf0d8H-5O-CrbKQD2ABasr8Dqjsdc_dsV22BBQRoezVfg1m7ZWm6WdeQqsPKb5eEqDDrB0NOznpnolAI0mPKGdYnJz97qeYbotsxeTsS6npGelZFU_ytewNR4NFAlvL5bRt6c-F19oWxnocjPQzhpvT1u7keTog9RF8kXj3JHqtYGN8LGSmcJplepqdm87hpaC8dNw8WmrpB2IpVJRe60y-pkZ-rquUkUTx7Boh94-wRYgydOKIGMJkOe0jVItbDFU2Q5Vhuhq7BZ3nzZnTiiU2GOviy8nGOJEy7DhFfh5TR0WNiAXBe0ERA0jVDnZ6Sby7j81H4nPx8dNnneyaSowtocxGZd4spAwppXYb3EnMS7RWc4ytvB-EJSBTHk5PzmCMyWcDUk2MfjAqyz3pHLpnkNP_7VFL1_G81mAOPNEXL34Dg0nv576Drc7uy15PuD9tEzuBOUkfTiz2FxdD62L5DhjfRaWMi_AEmdSfw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4ardDYA5eOS7kMC9C0l2zNxUn82FWMMUTVh1UMXiw7tlG14k5bAxu_nmMnaTfYJqQ8WNGp69hf5e_EX78D8E7hliWZNIEQkQwSZeJAZqHCnIcyGml3luYSxc_DdH-cHBzRoxVoqq79ZS8QhnHe20mQNqfxHWinFPl2C9rj4aj_teK1aRBTVh1pOlvRiPUa-6BetCMnziCautJ0lzadtpu_cyeCFGc4D6YqYHEdw1yD1dKeiItfYjq9Sl797rP3AAbNf3gq0cnxdjmX28Xvfy0db3mwh3C_Jp-kX6HlEaxo24H1vsXE-8cF2SReDurfs3fg7m7TWh00ReE6sHbJv3AdZiPvzmnJRNWiI7_OBEdACkfLl7cmliBUNdHntfLWEidOJU53_x0_QEQ5n4kGKz81cUabOFZbydSJr9jzGMZ77w8H-0FdwSEokEnRIDdOoppSxXQkZBZjrpSons5Dk0rJDFWpiVQokEMiL0lYbqTJQudNasJcxYLGT6BlZ1Y_A5LS2DDBkJ5kSDoKhbwJWxSnkGqpmOzCVrPEvKjtzV2VjSmvjJkjjmjgHg1deLMIPak8Pa4L2vQ4WUSI02Mngsso_zL8wL99OhjQfJRx1oWNK0BadokwR_aZd-F1gyyOq-UOZITVs_KMu3JgSLDpzRGY-iSUxdjH0wqSy96RmCZ5D7_-7QKjtz3NlkfvzRF89-Ohbzz_rw5fwD0va3QXfQmt-WmpXyE9m8uN-vf5B3b_NBY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pattern+identification+and+classification+in+gene+expression+data+using+an+autoassociative+neural+network+model&rft.jtitle=Biotechnology+and+bioengineering&rft.au=BICCIATO%2C+Silvio&rft.au=PANDIN%2C+Mario&rft.au=DIDONE%2C+Giuseppe&rft.au=DI+BELLO%2C+Carlo&rft.date=2003-03-05&rft.pub=Wiley&rft.issn=0006-3592&rft.volume=81&rft.issue=5&rft.spage=594&rft.epage=606&rft_id=info:doi/10.1002%2Fbit.10505&rft.externalDBID=n%2Fa&rft.externalDocID=14513928 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |