Pattern identification and classification in gene expression data using an autoassociative neural network model

The application of DNA microarray technology for analysis of gene expression creates enormous opportunities to accelerate the pace in understanding living systems and identification of target genes and pathways for drug development and therapeutic intervention. Parallel monitoring of the expression...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 81; no. 5; pp. 594 - 606
Main Authors Bicciato, Silvio, Pandin, Mario, Didonè, Giuseppe, Di Bello, Carlo
Format Journal Article
LanguageEnglish
Published New York Wiley Subscription Services, Inc., A Wiley Company 05.03.2003
Wiley
Subjects
Online AccessGet full text
ISSN0006-3592
1097-0290
1097-0290
DOI10.1002/bit.10505

Cover

Abstract The application of DNA microarray technology for analysis of gene expression creates enormous opportunities to accelerate the pace in understanding living systems and identification of target genes and pathways for drug development and therapeutic intervention. Parallel monitoring of the expression profiles of thousands of genes seems particularly promising for a deeper understanding of cancer biology and the identification of molecular signatures supporting the histological classification schemes of neoplastic specimens. However, the increasing volume of data generated by microarray experiments poses the challenge of developing equally efficient methods and analysis procedures to extract, interpret, and upgrade the information content of these databases. Herein, a computational procedure for pattern identification, feature extraction, and classification of gene expression data through the analysis of an autoassociative neural network model is described. The identified patterns and features contain critical information about gene–phenotype relationships observed during changes in cell physiology. They represent a rational and dimensionally reduced base for understanding the basic biology of the onset of diseases, defining targets of therapeutic intervention, and developing diagnostic tools for the identification and classification of pathological states. The proposed method has been tested on two different microarray datasets—Golub's analysis of acute human leukemia [Golub et al. (1999) Science 286:531–537], and the human colon adenocarcinoma study presented by Alon et al. [1999; Proc Natl Acad Sci USA 97:10101–10106]. The analysis of the neural network internal structure allows the identification of specific phenotype markers and the extraction of peculiar associations among genes and physiological states. At the same time, the neural network outputs provide assignment to multiple classes, such as different pathological conditions or tissue samples, for previously unseen instances. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 594–606, 2003.
AbstractList The application of DNA microarray technology for analysis of gene expression creates enormous opportunities to accelerate the pace in understanding living systems and identification of target genes and pathways for drug development and therapeutic intervention. Parallel monitoring of the expression profiles of thousands of genes seems particularly promising for a deeper understanding of cancer biology and the identification of molecular signatures supporting the histological classification schemes of neoplastic specimens. However, the increasing volume of data generated by microarray experiments poses the challenge of developing equally efficient methods and analysis procedures to extract, interpret, and upgrade the information content of these databases. Herein, a computational procedure for pattern identification, feature extraction, and classification of gene expression data through the analysis of an autoassociative neural network model is described. The identified patterns and features contain critical information about gene–phenotype relationships observed during changes in cell physiology. They represent a rational and dimensionally reduced base for understanding the basic biology of the onset of diseases, defining targets of therapeutic intervention, and developing diagnostic tools for the identification and classification of pathological states. The proposed method has been tested on two different microarray datasets—Golub's analysis of acute human leukemia [Golub et al. (1999) Science 286:531–537], and the human colon adenocarcinoma study presented by Alon et al. [1999; Proc Natl Acad Sci USA 97:10101–10106]. The analysis of the neural network internal structure allows the identification of specific phenotype markers and the extraction of peculiar associations among genes and physiological states. At the same time, the neural network outputs provide assignment to multiple classes, such as different pathological conditions or tissue samples, for previously unseen instances. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 594–606, 2003.
The application of DNA microarray technology for analysis of gene expression creates enormous opportunities to accelerate the pace in understanding living systems and identification of target genes and pathways for drug development and therapeutic intervention. Parallel monitoring of the expression profiles of thousands of genes seems particularly promising for a deeper understanding of cancer biology and the identification of molecular signatures supporting the histological classification schemes of neoplastic specimens. However, the increasing volume of data generated by microarray experiments poses the challenge of developing equally efficient methods and analysis procedures to extract, interpret, and upgrade the information content of these databases. Herein, a computational procedure for pattern identification, feature extraction, and classification of gene expression data through the analysis of an autoassociative neural network model is described. The identified patterns and features contain critical information about gene-phenotype relationships observed during changes in cell physiology. They represent a rational and dimensionally reduced base for understanding the basic biology of the onset of diseases, defining targets of therapeutic intervention, and developing diagnostic tools for the identification and classification of pathological states. The proposed method has been tested on two different microarray datasets-Golub's analysis of acute human leukemia, and the human colon adenocarcinoma study presented by Alon et al. The analysis of the neural network internal structure allows the identification of specific phenotype markers and the extraction of peculiar associations among genes and physiological states. At the same time, the neural network outputs provide assignment to multiple classes, such as different pathological conditions or tissue samples, for previously unseen instances.
The application of DNA microarray technology for analysis of gene expression creates enormous opportunities to accelerate the pace in understanding living systems and identification of target genes and pathways for drug development and therapeutic intervention. Parallel monitoring of the expression profiles of thousands of genes seems particularly promising for a deeper understanding of cancer biology and the identification of molecular signatures supporting the histological classification schemes of neoplastic specimens. However, the increasing volume of data generated by microarray experiments poses the challenge of developing equally efficient methods and analysis procedures to extract, interpret, and upgrade the information content of these databases. Herein, a computational procedure for pattern identification, feature extraction, and classification of gene expression data through the analysis of an autoassociative neural network model is described. The identified patterns and features contain critical information about gene-phenotype relationships observed during changes in cell physiology. They represent a rational and dimensionally reduced base for understanding the basic biology of the onset of diseases, defining targets of therapeutic intervention, and developing diagnostic tools for the identification and classification of pathological states. The proposed method has been tested on two different microarray datasets-Golub's analysis of acute human leukemia [Golub et al. (1999) Science 286:531-537], and the human colon adenocarcinoma study presented by Alon et al. [1999; Proc Natl Acad Sci USA 97:10101-10106]. The analysis of the neural network internal structure allows the identification of specific phenotype markers and the extraction of peculiar associations among genes and physiological states. At the same time, the neural network outputs provide assignment to multiple classes, such as different pathological conditions or tissue samples, for previously unseen instances.The application of DNA microarray technology for analysis of gene expression creates enormous opportunities to accelerate the pace in understanding living systems and identification of target genes and pathways for drug development and therapeutic intervention. Parallel monitoring of the expression profiles of thousands of genes seems particularly promising for a deeper understanding of cancer biology and the identification of molecular signatures supporting the histological classification schemes of neoplastic specimens. However, the increasing volume of data generated by microarray experiments poses the challenge of developing equally efficient methods and analysis procedures to extract, interpret, and upgrade the information content of these databases. Herein, a computational procedure for pattern identification, feature extraction, and classification of gene expression data through the analysis of an autoassociative neural network model is described. The identified patterns and features contain critical information about gene-phenotype relationships observed during changes in cell physiology. They represent a rational and dimensionally reduced base for understanding the basic biology of the onset of diseases, defining targets of therapeutic intervention, and developing diagnostic tools for the identification and classification of pathological states. The proposed method has been tested on two different microarray datasets-Golub's analysis of acute human leukemia [Golub et al. (1999) Science 286:531-537], and the human colon adenocarcinoma study presented by Alon et al. [1999; Proc Natl Acad Sci USA 97:10101-10106]. The analysis of the neural network internal structure allows the identification of specific phenotype markers and the extraction of peculiar associations among genes and physiological states. At the same time, the neural network outputs provide assignment to multiple classes, such as different pathological conditions or tissue samples, for previously unseen instances.
The application of DNA microarray technology for analysis of gene expression creates enormous opportunities to accelerate the pace in understanding living systems and identification of target genes and pathways for drug development and therapeutic intervention. Parallel monitoring of the expression profiles of thousands of genes seems particularly promising for a deeper understanding of cancer biology and the identification of molecular signatures supporting the histological classification schemes of neoplastic specimens. However, the increasing volume of data generated by microarray experiments poses the challenge of developing equally efficient methods and analysis procedures to extract, interpret, and upgrade the information content of these databases. Herein, a computational procedure for pattern identification, feature extraction, and classification of gene expression data through the analysis of an autoassociative neural network model is described. The identified patterns and features contain critical information about gene-phenotype relationships observed during changes in cell physiology. They represent a rational and dimensionally reduced base for understanding the basic biology of the onset of diseases, defining targets of therapeutic intervention, and developing diagnostic tools for the identification and classification of pathological states. The proposed method has been tested on two different microarray datasets-Golub's analysis of acute human leukemia [Golub et al. (1999) Science 286:531-537], and the human colon adenocarcinoma study presented by Alon et al. [1999; Proc Natl Acad Sci USA 97:10101-10106]. The analysis of the neural network internal structure allows the identification of specific phenotype markers and the extraction of peculiar associations among genes and physiological states. At the same time, the neural network outputs provide assignment to multiple classes, such as different pathological conditions or tissue samples, for previously unseen instances.
Author Di Bello, Carlo
Pandin, Mario
Bicciato, Silvio
Didonè, Giuseppe
Author_xml – sequence: 1
  givenname: Silvio
  surname: Bicciato
  fullname: Bicciato, Silvio
  email: silvio.bicciato@unipd.it
  organization: Department of Chemical Process Engineering, University of Padova, via Marzolo, 9, 35131, Padova, Italy; telephone: +39-049-827-5544; fax: +36-049-827-5555
– sequence: 2
  givenname: Mario
  surname: Pandin
  fullname: Pandin, Mario
  organization: Department of Clinical Diagnosis, Cittadella Hospital, via Riva Ospedale, 8, 35013, Cittadella, Italy
– sequence: 3
  givenname: Giuseppe
  surname: Didonè
  fullname: Didonè, Giuseppe
  organization: Department of Clinical Medicine, Cittadella Hospital, via Riva Ospedale, 8, 35013, Cittadella, Italy
– sequence: 4
  givenname: Carlo
  surname: Di Bello
  fullname: Di Bello, Carlo
  organization: Department of Chemical Process Engineering, University of Padova, via Marzolo, 9, 35131, Padova, Italy; telephone: +39-049-827-5544; fax: +36-049-827-5555
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14513928$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12514809$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhi1URNPCghdAswEJpKG-jD3jZYmgFCroogiJjXVmbFemjifYHtK8PU4TiIS4rI59_P3n8vsIHYQxGIQeE_ySYExPepfLgWN-D80Ilm2NqcQHaIYxFjXjkh6io5S-lmvbCfEAHRLKSdNhOUPjJeRsYqicNiE76wbIbgwVBF0NHlLap1york0wlbldRlMeSkpDhmpKLlwXQQVTHotiHFwRfDdVMFMEX0JejfGmWoza-IfovgWfzKNdPEaf3ry-mr-tLz6enc9PL-qBC8zrztKmDM-1NBT6lgkhGo1NR6zoe2m5FpZqApJRInEjO9vblnBBGks6zYCzY_RiW3cKS1ivwHu1jG4Bca0IVhvXVHFN3blW4GdbeBnHb5NJWS1cGoz3EMw4JdVS2XDJuv-CpBNSUrap-GQHTv3C6H3vnfEFeLoDIA3gbYQwuLTnGk6YpJuOJ1tuiGNK0Vg1uHz3HzmC839c5vlvin8tvqu-ct6s_w6qV-dXPxX1VuFSNre_FBBvlGhZy9XnD2fqy_t3c95dtkqyH9m7zo8
CODEN BIBIAU
CitedBy_id crossref_primary_10_1016_j_asoc_2009_12_018
crossref_primary_10_1214_14_AOAS738
crossref_primary_10_1039_C6EW00172F
crossref_primary_10_1016_S0014_5793_03_00819_6
crossref_primary_10_1517_17460441_2_5_755
crossref_primary_10_1109_TSMCC_2006_879384
crossref_primary_10_1590_0101_7438_2016_036_01_0067
crossref_primary_10_1016_j_saa_2006_01_014
crossref_primary_10_1016_j_ab_2006_07_028
crossref_primary_10_1016_j_compchemeng_2005_02_031
crossref_primary_10_1093_nar_gkr591
crossref_primary_10_1111_j_1533_869X_2003_01104_x
crossref_primary_10_1186_1471_2105_6_76
crossref_primary_10_1016_S1741_8364_04_02427_8
crossref_primary_10_1007_s10910_008_9489_x
crossref_primary_10_35378_gujs_1036394
crossref_primary_10_1093_bib_bbp012
crossref_primary_10_1177_153303461000900204
crossref_primary_10_1252_jcej_08we042
crossref_primary_10_1186_1471_2105_12_340
crossref_primary_10_1016_S1389_1723_02_80196_7
crossref_primary_10_1371_journal_pone_0014579
crossref_primary_10_1186_1471_2105_7_442
crossref_primary_10_1155_2015_415083
crossref_primary_10_35378_gujs_471859
crossref_primary_10_52589_AJMSS_ZOZBNYPR
crossref_primary_10_1016_j_artmed_2009_03_004
crossref_primary_10_1016_j_asoc_2014_10_034
crossref_primary_10_1007_s11814_009_0161_3
Cites_doi 10.1006/geno.2000.6241
10.1152/physiolgenomics.2001.5.2.99
10.1091/mbc.9.12.3273
10.1073/pnas.95.1.334
10.1016/S0303-2647(99)00077-5
10.1021/bp9701372
10.1093/bioinformatics/17.2.126
10.1126/science.278.5338.680
10.1073/pnas.111153698
10.1038/1670
10.1073/pnas.96.16.9212
10.1093/oso/9780198538493.001.0001
10.1309/Q5GV-3K00-WAC6-BBUB
10.1073/pnas.96.6.2907
10.1073/pnas.96.12.6745
10.1089/106652799318274
10.1038/415436a
10.4049/jimmunol.148.5.1526
10.1002/aic.690370209
10.1073/pnas.210134797
10.1093/bioinformatics/16.8.707
10.1073/pnas.150242097
10.1126/science.286.5439.531
10.1006/mben.2000.0151
10.1093/bioinformatics/16.10.906
10.1073/pnas.97.18.10101
10.1073/pnas.97.1.262
10.1016/S0014-5793(99)00524-4
10.1073/pnas.220392197
10.1016/S0014-5793(00)01772-5
10.1152/physiolgenomics.2000.4.2.109
10.1038/ng765
10.1182/blood.V94.11.3730
10.1073/pnas.95.25.14863
10.1038/89044
10.1162/089976600300015691
10.1142/S0218127496001958
10.1089/106652700750050943
10.1101/gr.9.11.1093
10.1006/mben.2000.0154
ContentType Journal Article
Copyright Copyright © 2003 Wiley Periodicals, Inc.
2003 INIST-CNRS
Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 594-606, 2003.
Copyright_xml – notice: Copyright © 2003 Wiley Periodicals, Inc.
– notice: 2003 INIST-CNRS
– notice: Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 594-606, 2003.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
ADTOC
UNPAY
DOI 10.1002/bit.10505
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Engineering Research Database
MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 606
ExternalDocumentID oai:iris.unimore.it:11380/421763
12514809
14513928
10_1002_bit_10505
BIT10505
ark_67375_WNG_ZKJC58P7_9
Genre article
Evaluation Studies
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
CITATION
.GJ
3EH
AAHHS
ABEML
ACCFJ
ACSCC
ADZOD
AEEZP
AEQDE
AGHNM
AI.
AIWBW
AJBDE
BLYAC
EBD
EMOBN
HF~
IQODW
LH6
NDZJH
PALCI
RIWAO
RJQFR
RYL
SAMSI
SV3
VH1
ZGI
ZXP
AEUQT
AFPWT
CGR
CUY
CVF
ECM
EIF
NPM
RBB
RWI
WRC
7QO
8FD
FR3
P64
7X8
ADTOC
AIQQE
UNPAY
ID FETCH-LOGICAL-c5605-8f240065d9e2ab736664d0e81f6bb9f5d6f2d1a932190498fbf715614f18d3a53
IEDL.DBID UNPAY
ISSN 0006-3592
1097-0290
IngestDate Sun Oct 26 04:12:51 EDT 2025
Thu Oct 02 10:26:54 EDT 2025
Mon Oct 06 18:08:14 EDT 2025
Wed Feb 19 01:31:38 EST 2025
Wed Apr 02 07:33:46 EDT 2025
Thu Apr 24 22:53:56 EDT 2025
Thu Oct 16 04:40:17 EDT 2025
Sun Sep 21 06:19:52 EDT 2025
Sun Sep 21 06:22:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Adenocarcinoma
gene expression data
Leukemia
Prediction
Malignant hemopathy
Neural network
Malignant tumor
Gene expression
cancer classification
Modeling
Colonic disease
Phenotype
feature extraction
autoassociative neural networks
Classification
Digestive diseases
Intestinal disease
Extraction
Colon
pattern recognition
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 594-606, 2003.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5605-8f240065d9e2ab736664d0e81f6bb9f5d6f2d1a932190498fbf715614f18d3a53
Notes ArticleID:BIT10505
ark:/67375/WNG-ZKJC58P7-9
istex:78D083A6B2C362A075A008BCA536DB4AEF1C454E
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-1
ObjectType-Feature-3
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/11380/421763
PMID 12514809
PQID 18699235
PQPubID 23462
PageCount 13
ParticipantIDs unpaywall_primary_10_1002_bit_10505
proquest_miscellaneous_72945938
proquest_miscellaneous_18699235
pubmed_primary_12514809
pascalfrancis_primary_14513928
crossref_citationtrail_10_1002_bit_10505
crossref_primary_10_1002_bit_10505
wiley_primary_10_1002_bit_10505_BIT10505
istex_primary_ark_67375_WNG_ZKJC58P7_9
PublicationCentury 2000
PublicationDate 5 March 2003
PublicationDateYYYYMMDD 2003-03-05
PublicationDate_xml – month: 03
  year: 2003
  text: 5 March 2003
  day: 05
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: New York, NY
– name: United States
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol. Bioeng
PublicationYear 2003
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
References Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer SJ. 2002. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukaemia. Nat Genet 30:41-47.
Eisen MB, Spellman PT, Brown PO, Botstein D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863-14868.
Herwig R, Poustka AJ, Muller C, Bull C, Lehrach H, O'Brien J. 1999. Large-scale clustering of cDNA-fingerprinting data. Genome Res 9:1093-1105.
DeRisi JL, Iyer VR, Brown PO. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680-686.
Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ. 1999. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96:6745-6750.
Brazma A, Vilo J. 2000. Gene expression data analysis. FEBS Lett 480:17-24.
Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB, Ross DT, Pergamenschikov A, Williams CF, Zhu SX, Lee JC, Lashkari D, Shalon D, Brown PO, Botstein D. 1999. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 96:9212-9217.
Bishop CM. 1995. Neural networks for pattern recognition. Oxford: Oxford University Press.
Chow ML, Moler EJ, Mian IS. 2001. Identifying marker genes in transcription profiling data using a mixture of feature relevance experts. Physiol Genomics 5:99-111.
Kamimura RT, Bicciato S, Shimizu H, Alford J, Stephanopoulos GN. 2000. Mining of biological data. I. Identifying discriminating features via mean hypothesis testing. Metab Eng 2:218-227.
Brown MP, Grundy WN, Lin D, Sugnet C, Ares M, Haussler D. 2000. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA 97:262-267.
Toronen P, Kolehmainen M, Wong G, Castren E. 1999. Analysis of gene expression data using self-organizing maps. FEBS Lett 451:142-146.
Wen X, Fuhrmanm S, Michaels GS, Carr DB, Smith S, Barker JL, Somogyi R. 1998. Large-scale temporal gene expression mapping of CNS development. Proc Natl Acad Sci USA 95:334-339.
Japkowicz N, Hanson SJ, Gluck M. 2000. Nonlinear autoassociation is not equivalent to PCA. Neural Comput 12:531-545.
Alter O, Brown PO, Botstein D. 2000. Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci USA 97:10101-10106.
Furey TS, Cristiannini N, Duffy N, Bednarski DW, Schummer M, Haussler D. 2000. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16:906-914.
Maitra A, McKenna RW, Weinberg AG, Schneider NR, Kroft SH. 2001. Precursor B-cell lymphoblastic lymphoma. A study of nine cases lacking blood and bone marrow involvement and review of the literature. Am J Clin Pathol 115:868-875.
Kim S, Dougherty ER, Chen Y, Sivakumar K, Meltzer P, Trent JM, Bittner M. 2000. Multivariate measurement of gene expression relationships. Genomics 67:201-209.
Shimizu H, Yasuoka K, Uchiyama K, Shioya S. 1998. Bioprocess fault detection by nonlinear multivariate analysis: application of an artificial autoassociative neural network and wavelet filter bank. Biotechnol Prog 14:79-87.
Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub, TR. 1999. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96:2907-2912.
Park PJ, Pagano M, Bonetti M. 2001. A nonparametric scoring algorithm for identifying informative genes from microarray data. Pac Symp Biocomput 6:52-63.
Ermolaeva O, Rastogi M, Pruitt KD, Schuler GD, Bittner ML, Chen Y, Simon R, Meltzer P, Trent JM, Boguski MS. 1998. Data management and analysis for gene expression arrays. Nat Genet 20:19-23.
Getz G, Levine E, Domany E. 2000. Coupled two-way clustering analysis of gene microarray data. Proc Natl Acad Sci USA 97:12079-12084.
Michaels GS, Carr DB, Askenazi M, Fuhrman S, Wen X, Somogyi R. 1998. Cluster analysis and data visualization of large-scale gene expression data. Pac Symp Biocomput 3:42-53.
D'haeseleer P, Liang S, Somogyi R. 2000. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16:707-726.
Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS. 2001. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673-679.
Ben-Dor A, Shamir R, Yakhini Z. 1999. Clustering gene expression patterns. J Comput Biol 6:281-297.
Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS. 2000. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci USA 97:12182-12186.
Spellman PT, Sherlock G, Iyer VR, Zhang M, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273-3297.
Wong ET, Jenne DE, Zimmer M, Porter SD, Gilks CB. 1999. Changes in the chromatin organization at the neutrophil elastase locus associated with myeloid cell differentiation, Blood 94:3730-3736.
Zhang H, Yu CY, Singer B, Xiong M. 2001. Recursive partitioning for tumor classification with gene expression microarray data. Proc Natl Acad Sci USA 98:6730-6735.
Pandin M, Didonè G. 1996. Chaos in information processing: simulation of a biological learning process by time evolution in an unsupervised neural network. Int J Bifurcat Chaos 6:203-210.
Shailubhai K, Yu HH, Karunanandaa K, Wang JY, Eber SL, Wang Y, Joo NS, Kim HD, Miedema BW, Abbas SZ, Boddupalli SS, Currie MG, Forte LR. 2000. Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP. Cancer Res 60:5151-5157.
Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim JYH, Goumnerovak LC, Blackk PM, Lau C, Allen JC, David Zagzag D, Olson JM, Curran T, Wetmore C, Biegel JA, Poggio T, Mukherjee S, Rifkin R, Califanokk A, Stolovitzkykk G, Louis DN, Mesirov JP, Lander ES, Golub TR. 2002. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415:436-442.
Holter NS, Mitra M, Maritan A, Cieplak M, Banavar JR, Fedoroff NV. 2000. Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc Natl Acad Sci USA 97:8409-8414.
Butte AJ, Kohane IS. 2000. Mutual information relevance networks: functional genomics clustering using pairwise entropy measurements. Pac Symp Biocomput 5:415-426.
Herrero J, Valencia A, Dopazo J. 2001. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17:126-136.
Moler EJ, Chow ML, Mian IS. 2000. Analysis of molecular profile data using generative and discriminative methods. Physiol Genomics 4:109-126.
Rigoutsos I, Floratos A, Parida L, Gao Y, Platt D. 2000. The emergence of pattern discovery techniques in computational biology. Metab Eng 2:159-77.
Fuhrman S, Cunningham MJ, Wen X, Zweiger G, Seihamer JJ, Somogyi R. 2000. The application of Shannon entropy in the identification of putative drug targets. Biosystems 55:5-14.
Ben-Dor A, Bruhn L, Friedman N, Nachman I. 2000. Tissue classification with gene expression profiles. J Comput Biol 7:559-583.
Raychaudhuri S, Stuart JM, Altman RB. 2000. Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput 5:452-463.
Ha HJ, Kubagawa H, Burrows PD. 1992. Molecular cloning and expression pattern of a human gene homologous to the murine mb-1 gene. J Immunol 148:1526-1531.
Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh M, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES. 1999. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531-537.
Mardia KV, Kent JT, Bibby JM. 1979. Multivariate analysis. San Diego: Academic Press.
Kramer MA. 1991. Nonlinear principal component analysis using autoassociative neural networks. AIChE J 37:233-243.
Notterman DA, Alon U, Sierk AJ, Levine AJ. 2001. Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Res 61:3124-3130.
1997; 278
1991; 37
2002; 30
2000; 5
2000; 67
2000; 4
2000; 7
1992; 148
1999; 286
2002; 415
1995
2000; 2
1999; 6
1998; 20
1979
1999; 9
2001; 61
2000; 16
2001; 7
2000
2001; 6
2001; 5
2000; 12
2000; 55
2000; 97
2000; 480
1999; 451
2000; 60
1998; 3
1999; 96
2001; 17
1999; 94
1998; 95
1986; I
2001; 115
1996; 6
1998; 14
1998; 9
2001; 98
Michaels GS (e_1_2_1_33_1) 1998; 3
Shailubhai K (e_1_2_1_43_1) 2000; 60
e_1_2_1_20_1
e_1_2_1_41_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_22_1
e_1_2_1_28_1
e_1_2_1_26_1
e_1_2_1_47_1
Raychaudhuri S (e_1_2_1_40_1) 2000; 5
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_50_1
e_1_2_1_4_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_14_1
e_1_2_1_18_1
Wong ET (e_1_2_1_49_1) 1999; 94
Mardia KV (e_1_2_1_32_1) 1979
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_29_1
Butte AJ (e_1_2_1_10_1) 2000; 5
Park PJ (e_1_2_1_37_1) 2001; 6
Notterman DA (e_1_2_1_35_1) 2001; 61
e_1_2_1_7_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_11_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
Rumelhart DE (e_1_2_1_42_1) 1986
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – reference: Raychaudhuri S, Stuart JM, Altman RB. 2000. Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput 5:452-463.
– reference: Maitra A, McKenna RW, Weinberg AG, Schneider NR, Kroft SH. 2001. Precursor B-cell lymphoblastic lymphoma. A study of nine cases lacking blood and bone marrow involvement and review of the literature. Am J Clin Pathol 115:868-875.
– reference: Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS. 2001. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673-679.
– reference: Ben-Dor A, Bruhn L, Friedman N, Nachman I. 2000. Tissue classification with gene expression profiles. J Comput Biol 7:559-583.
– reference: Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim JYH, Goumnerovak LC, Blackk PM, Lau C, Allen JC, David Zagzag D, Olson JM, Curran T, Wetmore C, Biegel JA, Poggio T, Mukherjee S, Rifkin R, Califanokk A, Stolovitzkykk G, Louis DN, Mesirov JP, Lander ES, Golub TR. 2002. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415:436-442.
– reference: D'haeseleer P, Liang S, Somogyi R. 2000. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16:707-726.
– reference: Wong ET, Jenne DE, Zimmer M, Porter SD, Gilks CB. 1999. Changes in the chromatin organization at the neutrophil elastase locus associated with myeloid cell differentiation, Blood 94:3730-3736.
– reference: Holter NS, Mitra M, Maritan A, Cieplak M, Banavar JR, Fedoroff NV. 2000. Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc Natl Acad Sci USA 97:8409-8414.
– reference: Kim S, Dougherty ER, Chen Y, Sivakumar K, Meltzer P, Trent JM, Bittner M. 2000. Multivariate measurement of gene expression relationships. Genomics 67:201-209.
– reference: Rigoutsos I, Floratos A, Parida L, Gao Y, Platt D. 2000. The emergence of pattern discovery techniques in computational biology. Metab Eng 2:159-77.
– reference: Michaels GS, Carr DB, Askenazi M, Fuhrman S, Wen X, Somogyi R. 1998. Cluster analysis and data visualization of large-scale gene expression data. Pac Symp Biocomput 3:42-53.
– reference: Alter O, Brown PO, Botstein D. 2000. Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci USA 97:10101-10106.
– reference: Ha HJ, Kubagawa H, Burrows PD. 1992. Molecular cloning and expression pattern of a human gene homologous to the murine mb-1 gene. J Immunol 148:1526-1531.
– reference: Toronen P, Kolehmainen M, Wong G, Castren E. 1999. Analysis of gene expression data using self-organizing maps. FEBS Lett 451:142-146.
– reference: Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS. 2000. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci USA 97:12182-12186.
– reference: Herwig R, Poustka AJ, Muller C, Bull C, Lehrach H, O'Brien J. 1999. Large-scale clustering of cDNA-fingerprinting data. Genome Res 9:1093-1105.
– reference: Pandin M, Didonè G. 1996. Chaos in information processing: simulation of a biological learning process by time evolution in an unsupervised neural network. Int J Bifurcat Chaos 6:203-210.
– reference: DeRisi JL, Iyer VR, Brown PO. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680-686.
– reference: Herrero J, Valencia A, Dopazo J. 2001. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17:126-136.
– reference: Shimizu H, Yasuoka K, Uchiyama K, Shioya S. 1998. Bioprocess fault detection by nonlinear multivariate analysis: application of an artificial autoassociative neural network and wavelet filter bank. Biotechnol Prog 14:79-87.
– reference: Brazma A, Vilo J. 2000. Gene expression data analysis. FEBS Lett 480:17-24.
– reference: Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB, Ross DT, Pergamenschikov A, Williams CF, Zhu SX, Lee JC, Lashkari D, Shalon D, Brown PO, Botstein D. 1999. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 96:9212-9217.
– reference: Bishop CM. 1995. Neural networks for pattern recognition. Oxford: Oxford University Press.
– reference: Spellman PT, Sherlock G, Iyer VR, Zhang M, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273-3297.
– reference: Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh M, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES. 1999. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531-537.
– reference: Brown MP, Grundy WN, Lin D, Sugnet C, Ares M, Haussler D. 2000. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA 97:262-267.
– reference: Chow ML, Moler EJ, Mian IS. 2001. Identifying marker genes in transcription profiling data using a mixture of feature relevance experts. Physiol Genomics 5:99-111.
– reference: Zhang H, Yu CY, Singer B, Xiong M. 2001. Recursive partitioning for tumor classification with gene expression microarray data. Proc Natl Acad Sci USA 98:6730-6735.
– reference: Fuhrman S, Cunningham MJ, Wen X, Zweiger G, Seihamer JJ, Somogyi R. 2000. The application of Shannon entropy in the identification of putative drug targets. Biosystems 55:5-14.
– reference: Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub, TR. 1999. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96:2907-2912.
– reference: Moler EJ, Chow ML, Mian IS. 2000. Analysis of molecular profile data using generative and discriminative methods. Physiol Genomics 4:109-126.
– reference: Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ. 1999. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96:6745-6750.
– reference: Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer SJ. 2002. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukaemia. Nat Genet 30:41-47.
– reference: Mardia KV, Kent JT, Bibby JM. 1979. Multivariate analysis. San Diego: Academic Press.
– reference: Wen X, Fuhrmanm S, Michaels GS, Carr DB, Smith S, Barker JL, Somogyi R. 1998. Large-scale temporal gene expression mapping of CNS development. Proc Natl Acad Sci USA 95:334-339.
– reference: Ben-Dor A, Shamir R, Yakhini Z. 1999. Clustering gene expression patterns. J Comput Biol 6:281-297.
– reference: Notterman DA, Alon U, Sierk AJ, Levine AJ. 2001. Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Res 61:3124-3130.
– reference: Kramer MA. 1991. Nonlinear principal component analysis using autoassociative neural networks. AIChE J 37:233-243.
– reference: Park PJ, Pagano M, Bonetti M. 2001. A nonparametric scoring algorithm for identifying informative genes from microarray data. Pac Symp Biocomput 6:52-63.
– reference: Kamimura RT, Bicciato S, Shimizu H, Alford J, Stephanopoulos GN. 2000. Mining of biological data. I. Identifying discriminating features via mean hypothesis testing. Metab Eng 2:218-227.
– reference: Furey TS, Cristiannini N, Duffy N, Bednarski DW, Schummer M, Haussler D. 2000. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16:906-914.
– reference: Getz G, Levine E, Domany E. 2000. Coupled two-way clustering analysis of gene microarray data. Proc Natl Acad Sci USA 97:12079-12084.
– reference: Japkowicz N, Hanson SJ, Gluck M. 2000. Nonlinear autoassociation is not equivalent to PCA. Neural Comput 12:531-545.
– reference: Shailubhai K, Yu HH, Karunanandaa K, Wang JY, Eber SL, Wang Y, Joo NS, Kim HD, Miedema BW, Abbas SZ, Boddupalli SS, Currie MG, Forte LR. 2000. Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP. Cancer Res 60:5151-5157.
– reference: Butte AJ, Kohane IS. 2000. Mutual information relevance networks: functional genomics clustering using pairwise entropy measurements. Pac Symp Biocomput 5:415-426.
– reference: Eisen MB, Spellman PT, Brown PO, Botstein D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863-14868.
– reference: Ermolaeva O, Rastogi M, Pruitt KD, Schuler GD, Bittner ML, Chen Y, Simon R, Meltzer P, Trent JM, Boguski MS. 1998. Data management and analysis for gene expression arrays. Nat Genet 20:19-23.
– volume: 97
  start-page: 10101
  year: 2000
  end-page: 10106
  article-title: Singular value decomposition for genome‐wide expression data processing and modeling
  publication-title: Proc Natl Acad Sci USA
– volume: 37
  start-page: 233
  year: 1991
  end-page: 243
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE J
– volume: 7
  start-page: 559
  year: 2000
  end-page: 583
  article-title: Tissue classification with gene expression profiles
  publication-title: J Comput Biol
– volume: 6
  start-page: 281
  year: 1999
  end-page: 297
  article-title: Clustering gene expression patterns
  publication-title: J Comput Biol
– volume: 97
  start-page: 8409
  year: 2000
  end-page: 8414
  article-title: Fundamental patterns underlying gene expression profiles: simplicity from complexity
  publication-title: Proc Natl Acad Sci USA
– volume: 55
  start-page: 5
  year: 2000
  end-page: 14
  article-title: The application of Shannon entropy in the identification of putative drug targets
  publication-title: Biosystems
– volume: 148
  start-page: 1526
  year: 1992
  end-page: 1531
  article-title: Molecular cloning and expression pattern of a human gene homologous to the murine mb‐1 gene
  publication-title: J Immunol
– volume: 94
  start-page: 3730
  year: 1999
  end-page: 3736
  article-title: Changes in the chromatin organization at the neutrophil elastase locus associated with myeloid cell differentiation
  publication-title: Blood
– volume: 2
  start-page: 218
  year: 2000
  end-page: 227
  article-title: Mining of biological data. I. Identifying discriminating features via mean hypothesis testing
  publication-title: Metab Eng
– volume: 61
  start-page: 3124
  year: 2001
  end-page: 3130
  article-title: Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays
  publication-title: Cancer Res
– volume: I
  start-page: 318
  year: 1986
  end-page: 362
– volume: 278
  start-page: 680
  year: 1997
  end-page: 686
  article-title: Exploring the metabolic and genetic control of gene expression on a genomic scale
  publication-title: Science
– volume: 286
  start-page: 531
  year: 1999
  end-page: 537
  article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
  publication-title: Science
– volume: 480
  start-page: 17
  year: 2000
  end-page: 24
  article-title: Gene expression data analysis
  publication-title: FEBS Lett
– volume: 9
  start-page: 3273
  year: 1998
  end-page: 3297
  article-title: Comprehensive identification of cell cycle‐regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
  publication-title: Mol Biol Cell
– volume: 12
  start-page: 531
  year: 2000
  end-page: 545
  article-title: Nonlinear autoassociation is not equivalent to PCA
  publication-title: Neural Comput
– volume: 451
  start-page: 142
  year: 1999
  end-page: 146
  article-title: Analysis of gene expression data using self‐organizing maps
  publication-title: FEBS Lett
– volume: 30
  start-page: 41
  year: 2002
  end-page: 47
  article-title: translocations specify a distinct gene expression profile that distinguishes a unique leukaemia
  publication-title: Nat Genet
– volume: 6
  start-page: 203
  year: 1996
  end-page: 210
  article-title: Chaos in information processing: simulation of a biological learning process by time evolution in an unsupervised neural network
  publication-title: Int J Bifurcat Chaos
– year: 1979
– volume: 7
  start-page: 673
  year: 2001
  end-page: 679
  article-title: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
  publication-title: Nat Med
– volume: 97
  start-page: 12079
  year: 2000
  end-page: 12084
  article-title: Coupled two‐way clustering analysis of gene microarray data
  publication-title: Proc Natl Acad Sci USA
– volume: 3
  start-page: 42
  year: 1998
  end-page: 53
  article-title: Cluster analysis and data visualization of large‐scale gene expression data
  publication-title: Pac Symp Biocomput
– volume: 16
  start-page: 906
  year: 2000
  end-page: 914
  article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data
  publication-title: Bioinformatics
– volume: 98
  start-page: 6730
  year: 2001
  end-page: 6735
  article-title: Recursive partitioning for tumor classification with gene expression microarray data
  publication-title: Proc Natl Acad Sci USA
– volume: 96
  start-page: 6745
  year: 1999
  end-page: 6750
  article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
  publication-title: Proc Natl Acad Sci USA
– volume: 95
  start-page: 334
  year: 1998
  end-page: 339
  article-title: Large‐scale temporal gene expression mapping of CNS development
  publication-title: Proc Natl Acad Sci USA
– volume: 97
  start-page: 262
  year: 2000
  end-page: 267
  article-title: Knowledge‐based analysis of microarray gene expression data by using support vector machines
  publication-title: Proc Natl Acad Sci USA
– volume: 5
  start-page: 99
  year: 2001
  end-page: 111
  article-title: Identifying marker genes in transcription profiling data using a mixture of feature relevance experts
  publication-title: Physiol Genomics
– volume: 20
  start-page: 19
  year: 1998
  end-page: 23
  article-title: Data management and analysis for gene expression arrays
  publication-title: Nat Genet
– volume: 16
  start-page: 707
  year: 2000
  end-page: 726
  article-title: Genetic network inference: from co‐expression clustering to reverse engineering
  publication-title: Bioinformatics
– volume: 4
  start-page: 109
  year: 2000
  end-page: 126
  article-title: Analysis of molecular profile data using generative and discriminative methods
  publication-title: Physiol Genomics
– volume: 6
  start-page: 52
  year: 2001
  end-page: 63
  article-title: A nonparametric scoring algorithm for identifying informative genes from microarray data
  publication-title: Pac Symp Biocomput
– volume: 14
  start-page: 79
  year: 1998
  end-page: 87
  article-title: Bioprocess fault detection by nonlinear multivariate analysis: application of an artificial autoassociative neural network and wavelet filter bank
  publication-title: Biotechnol Prog
– year: 2000
– volume: 60
  start-page: 5151
  year: 2000
  end-page: 5157
  article-title: Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP
  publication-title: Cancer Res
– volume: 5
  start-page: 415
  year: 2000
  end-page: 426
  article-title: Mutual information relevance networks: functional genomics clustering using pairwise entropy measurements
  publication-title: Pac Symp Biocomput
– volume: 17
  start-page: 126
  year: 2001
  end-page: 136
  article-title: A hierarchical unsupervised growing neural network for clustering gene expression patterns
  publication-title: Bioinformatics
– volume: 415
  start-page: 436
  year: 2002
  end-page: 442
  article-title: Prediction of central nervous system embryonal tumour outcome based on gene expression
  publication-title: Nature
– volume: 5
  start-page: 452
  year: 2000
  end-page: 463
  article-title: Principal components analysis to summarize microarray experiments: application to sporulation time series
  publication-title: Pac Symp Biocomput
– volume: 2
  start-page: 159
  year: 2000
  end-page: 77
  article-title: The emergence of pattern discovery techniques in computational biology
  publication-title: Metab Eng
– volume: 115
  start-page: 868
  year: 2001
  end-page: 875
  article-title: Precursor B‐cell lymphoblastic lymphoma. A study of nine cases lacking blood and bone marrow involvement and review of the literature
  publication-title: Am J Clin Pathol
– volume: 9
  start-page: 1093
  year: 1999
  end-page: 1105
  article-title: Large‐scale clustering of cDNA‐fingerprinting data
  publication-title: Genome Res
– year: 1995
– volume: 96
  start-page: 9212
  year: 1999
  end-page: 9217
  article-title: Distinctive gene expression patterns in human mammary epithelial cells and breast cancers
  publication-title: Proc Natl Acad Sci USA
– volume: 96
  start-page: 2907
  year: 1999
  end-page: 2912
  article-title: Interpreting patterns of gene expression with self‐organizing maps: methods and application to hematopoietic differentiation
  publication-title: Proc Natl Acad Sci USA
– volume: 97
  start-page: 12182
  year: 2000
  end-page: 12186
  article-title: Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks
  publication-title: Proc Natl Acad Sci USA
– volume: 95
  start-page: 14863
  year: 1998
  end-page: 14868
  article-title: Cluster analysis and display of genome‐wide expression patterns
  publication-title: Proc Natl Acad Sci USA
– volume: 67
  start-page: 201
  year: 2000
  end-page: 209
  article-title: Multivariate measurement of gene expression relationships
  publication-title: Genomics
– ident: e_1_2_1_29_1
  doi: 10.1006/geno.2000.6241
– ident: e_1_2_1_12_1
  doi: 10.1152/physiolgenomics.2001.5.2.99
– ident: e_1_2_1_27_1
– volume: 5
  start-page: 452
  year: 2000
  ident: e_1_2_1_40_1
  article-title: Principal components analysis to summarize microarray experiments: application to sporulation time series
  publication-title: Pac Symp Biocomput
– ident: e_1_2_1_45_1
  doi: 10.1091/mbc.9.12.3273
– volume-title: Multivariate analysis
  year: 1979
  ident: e_1_2_1_32_1
– ident: e_1_2_1_48_1
  doi: 10.1073/pnas.95.1.334
– ident: e_1_2_1_17_1
  doi: 10.1016/S0303-2647(99)00077-5
– ident: e_1_2_1_44_1
  doi: 10.1021/bp9701372
– ident: e_1_2_1_22_1
  doi: 10.1093/bioinformatics/17.2.126
– ident: e_1_2_1_13_1
  doi: 10.1126/science.278.5338.680
– ident: e_1_2_1_50_1
  doi: 10.1073/pnas.111153698
– ident: e_1_2_1_16_1
  doi: 10.1038/1670
– ident: e_1_2_1_38_1
  doi: 10.1073/pnas.96.16.9212
– ident: e_1_2_1_7_1
  doi: 10.1093/oso/9780198538493.001.0001
– ident: e_1_2_1_31_1
  doi: 10.1309/Q5GV-3K00-WAC6-BBUB
– ident: e_1_2_1_46_1
  doi: 10.1073/pnas.96.6.2907
– volume: 61
  start-page: 3124
  year: 2001
  ident: e_1_2_1_35_1
  article-title: Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays
  publication-title: Cancer Res
– ident: e_1_2_1_2_1
  doi: 10.1073/pnas.96.12.6745
– start-page: 318
  year: 1986
  ident: e_1_2_1_42_1
– ident: e_1_2_1_5_1
  doi: 10.1089/106652799318274
– ident: e_1_2_1_39_1
  doi: 10.1038/415436a
– volume: 3
  start-page: 42
  year: 1998
  ident: e_1_2_1_33_1
  article-title: Cluster analysis and data visualization of large‐scale gene expression data
  publication-title: Pac Symp Biocomput
– volume: 6
  start-page: 52
  year: 2001
  ident: e_1_2_1_37_1
  article-title: A nonparametric scoring algorithm for identifying informative genes from microarray data
  publication-title: Pac Symp Biocomput
– ident: e_1_2_1_21_1
  doi: 10.4049/jimmunol.148.5.1526
– ident: e_1_2_1_30_1
  doi: 10.1002/aic.690370209
– ident: e_1_2_1_19_1
  doi: 10.1073/pnas.210134797
– ident: e_1_2_1_14_1
  doi: 10.1093/bioinformatics/16.8.707
– ident: e_1_2_1_24_1
  doi: 10.1073/pnas.150242097
– ident: e_1_2_1_20_1
  doi: 10.1126/science.286.5439.531
– ident: e_1_2_1_41_1
  doi: 10.1006/mben.2000.0151
– ident: e_1_2_1_18_1
  doi: 10.1093/bioinformatics/16.10.906
– ident: e_1_2_1_3_1
  doi: 10.1073/pnas.97.18.10101
– ident: e_1_2_1_9_1
  doi: 10.1073/pnas.97.1.262
– ident: e_1_2_1_47_1
  doi: 10.1016/S0014-5793(99)00524-4
– ident: e_1_2_1_11_1
  doi: 10.1073/pnas.220392197
– volume: 60
  start-page: 5151
  year: 2000
  ident: e_1_2_1_43_1
  article-title: Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP
  publication-title: Cancer Res
– ident: e_1_2_1_8_1
  doi: 10.1016/S0014-5793(00)01772-5
– volume: 5
  start-page: 415
  year: 2000
  ident: e_1_2_1_10_1
  article-title: Mutual information relevance networks: functional genomics clustering using pairwise entropy measurements
  publication-title: Pac Symp Biocomput
– ident: e_1_2_1_34_1
  doi: 10.1152/physiolgenomics.2000.4.2.109
– ident: e_1_2_1_4_1
  doi: 10.1038/ng765
– volume: 94
  start-page: 3730
  year: 1999
  ident: e_1_2_1_49_1
  article-title: Changes in the chromatin organization at the neutrophil elastase locus associated with myeloid cell differentiation
  publication-title: Blood
  doi: 10.1182/blood.V94.11.3730
– ident: e_1_2_1_15_1
  doi: 10.1073/pnas.95.25.14863
– ident: e_1_2_1_28_1
  doi: 10.1038/89044
– ident: e_1_2_1_25_1
  doi: 10.1162/089976600300015691
– ident: e_1_2_1_36_1
  doi: 10.1142/S0218127496001958
– ident: e_1_2_1_6_1
  doi: 10.1089/106652700750050943
– ident: e_1_2_1_23_1
  doi: 10.1101/gr.9.11.1093
– ident: e_1_2_1_26_1
  doi: 10.1006/mben.2000.0154
SSID ssj0007866
Score 1.9465609
Snippet The application of DNA microarray technology for analysis of gene expression creates enormous opportunities to accelerate the pace in understanding living...
SourceID unpaywall
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 594
SubjectTerms Adenocarcinoma - classification
Adenocarcinoma - genetics
autoassociative neural networks
Biological and medical sciences
Biotechnology
cancer classification
Colonic Neoplasms - classification
Colonic Neoplasms - genetics
Databases, Nucleic Acid
DNA - classification
DNA - genetics
Feasibility Studies
feature extraction
Fundamental and applied biological sciences. Psychology
gene expression data
Gene Expression Profiling - methods
Gene Expression Regulation, Neoplastic - genetics
Genetic engineering
Genetic technics
Humans
Leukemia - classification
Leukemia - genetics
Methods. Procedures. Technologies
Neoplasms - classification
Neoplasms - genetics
Neural Networks (Computer)
Oligonucleotide Array Sequence Analysis - methods
pattern recognition
Pattern Recognition, Automated
Phenotype
Vectors (cloning, transfer, expression). Insertion sequences and transposons
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD6UitQ-VN16WS81qJS-TLtzycwEn9rFWiuWIi0WEUIySWTpNlu6O9r66z3J3FxpRYR9CMuZ7CbzZfOdybffAXitcMuSTJpAiEgGiTJxILNQYc5DGY20O0tzieLHg3TvONk_oScL8Kb5L0zlD9E-cHMrw_9euwUu5HSrMw2VI-f-TL1_aRinPp361FlHZXl1Tuky5piyqHEVGkRb7ZVze9EtN62XThsppjg9pqprcR3xXIal0p6Lqx9iPJ7ntH5T2r0LX5vhVFqU081yJjeLn384Pf7neO_BSk1WyXaFrvuwoG0PVrctJupnV2SdePmofy7fg9s7TWtp2BSR68Hyb36HqzA59G6eloxULVLyuCDCKlI4Gt-9NbIEoa2JvqyVupY4MStxOv1veAER5WwiGmx918QZc-J3tZWsnfgKPw_gePft0XAvqCs-BAUyLxrkxklaU6qYjoTMYsytEjXQeWhSKZmhKjWRCgVyTuQxCcuNNFnovExNmKtY0PghLNqJ1Y-BpDQ2TDCkMxmSlEIhz8IWTZDiaKmY7MNGc-95Uduhu6ocY14ZOUccJ5z7Ce_Dyzb0vPIAuS5o3QOojRAXp040l1H--eAd__Jhf0jzw4yzPqzNIazrEpcFstW8Dy8ayHG8W-4AR1g9KafclQ9DQk5vjsBUKaEsxj4eVVjtekcim-QD_PhXLXj_NpoNj8WbI_jO-yPfePLvoU_hjtdCuhd9Bouzi1I_R043k2t-8f4Cs_lGVw
  priority: 102
  providerName: Wiley-Blackwell
Title Pattern identification and classification in gene expression data using an autoassociative neural network model
URI https://api.istex.fr/ark:/67375/WNG-ZKJC58P7-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.10505
https://www.ncbi.nlm.nih.gov/pubmed/12514809
https://www.proquest.com/docview/18699235
https://www.proquest.com/docview/72945938
http://hdl.handle.net/11380/421763
UnpaywallVersion submittedVersion
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0290
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0290
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007866
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4ardDYA5eOS7kUC9C0l2y5OYkfu4oxhqgqtIqNl8iObVStuNPWwMav59hJ2g22CSkPVnTqOvZX-Tvx1-8AvJO4ZQkmtMd5KLxY6sgTaSAx56GMhsqepdlE8fMw2RvH-4f0cAWaqmt_2QsEQZT52zHS5iS6A-2EIt9uQXs8HPWPKl6beBFl1ZGmtRUNmd_YB_nhtphYg2hqS9Nd2nTadv7OrQiSn-E86KqAxXUMcw1WS3PCL37x6fQqeXW7z-4DGDT_4alEJ8db5VxsFb__tXS85cEewv2afJJ-hZZHsKJMB9b7BhPvHxdkgzg5qHvP3oG7O01rddAUhevA2iX_wnWYjZw7pyETWYuO3DoTHAEpLC1f3poYglBVRJ3XyltDrDiVWN39d_wA4eV8xhus_FTEGm3iWE0lUyeuYs9jGO--PxjseXUFB69AJkW9TFuJakIlUyEXaYS5Uix9lQU6EYJpKhMdyoAjh0ReErNMC50G1ptUB5mMOI2eQMvMjHoGJKGRZpwhPUmRdBQSeRO2KE4hVUIy0YXNZonzorY3t1U2pnllzBzmiIbcoaELbxahJ5Wnx3VBGw4niwh-emxFcCnNvw4_5N8-7Q9oNkpz1oXeFSAtu0SYI_vMuvC6QVaOq2UPZLhRs_Ist-XAkGDTmyMw9Ykpi7CPpxUkl70jMY0zH7_-7QKjtz3NpkPvzRH5zscD13j-Xx2-gHtO1mgv-hJa89NSvUJ6Nhc9TEy-hL36V_oHrxw0_w
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bahsxEB1CQnHz0IvTi3tJRFtCXjaxd1feFfQlcZs6NxOKQ0OhCMmSiokrh8Ruk359Z7Reuy5JKQU_CDMrW9oj68zq-AzAG4NblhbaRUrFOkqNSyKdNQzmPFzw2NJZGiWKR51m-yTdP-WnC_C2_C9M4Q8xfeBGKyP8XtMCpwfSWzPXUN0n-2dOBqZL2GedMP3u48w8KsuLk0rKmRMu4tJXqB5vTS-d242WaGKvSB2pLnGCXFHZ4ibquQyVsT9X1z_UYDDPasO2tHsfvpQDKtQoZ5vjkd7s_fzD6_F_R_wA7k34KtsuAPYQFqyvwsq2x1z92zVbZ0FBGh7NV-HOTtmqtMo6clVY_s3ycAWGx8HQ07O-meiUAjSY8ob1iMnP3up7hui2zF5NxLqekZ6VkVT_K17A1Hg0VCW8vltG3pz4XX2hbGehyM8jONl93221o0nRh6iH5ItHuSNVa5MbYWOlswTTq9TUbd5wTa2F46bpYtNQSDuRyqQid9plDbIzdY3cJIonj2HRD719CqzJEyeUQEaTIU_pGaRa2OIpshyrjdA12ChvvuxNHNGpMMdAFl7OscQJl2HCa_BqGnpe2IDcFLQeEDSNUBdnpJvLuPzU-SA_H-y3eH6cSVGD1TmIzbrElYGENa_BWok5iXeLznCUt8PxpaQKYsjJ-e0RmC2lXCTYx5MCrLPekcumeR0__vUUvX8bzUYA4-0RcmevGxrP_j10DSrt7tGhPNzrHDyHu0EaSS_-AhZHF2P7EineSK-GlfwLBUlKeA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbhMxEB1VraD0gUvKJVxaC1DVl22T3XV2LfHSpoReIIpQKyokZNmxjaIGJ2oTaPl6ZrzZhKAWIaQ8WNGsE3uP4zPrkzMArw1uWVpoFykV6yg1Lol0VjeY83DBY0tnaZQofmg39k_Sw1N-ugBvyv_CFP4Q0wdutDLC7zUtcDs0bnvmGqp7ZP_MycB0KeUiJ0Hf3seZeVSWFyeVlDMnXMSlr1At3p5eOrcbLdHEXpI6Ul3gBLmissV11HMFlsd-qK5-qH5_ntWGbal1D76UAyrUKGdb45He6v78w-vxf0d8H-5O-CrbKQD2ABasr8Dqjsdc_dsV22BBQRoezVfg1m7ZWm6WdeQqsPKb5eEqDDrB0NOznpnolAI0mPKGdYnJz97qeYbotsxeTsS6npGelZFU_ytewNR4NFAlvL5bRt6c-F19oWxnocjPQzhpvT1u7keTog9RF8kXj3JHqtYGN8LGSmcJplepqdm87hpaC8dNw8WmrpB2IpVJRe60y-pkZ-rquUkUTx7Boh94-wRYgydOKIGMJkOe0jVItbDFU2Q5Vhuhq7BZ3nzZnTiiU2GOviy8nGOJEy7DhFfh5TR0WNiAXBe0ERA0jVDnZ6Sby7j81H4nPx8dNnneyaSowtocxGZd4spAwppXYb3EnMS7RWc4ytvB-EJSBTHk5PzmCMyWcDUk2MfjAqyz3pHLpnkNP_7VFL1_G81mAOPNEXL34Dg0nv576Drc7uy15PuD9tEzuBOUkfTiz2FxdD62L5DhjfRaWMi_AEmdSfw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4ardDYA5eOS7kMC9C0l2zNxUn82FWMMUTVh1UMXiw7tlG14k5bAxu_nmMnaTfYJqQ8WNGp69hf5e_EX78D8E7hliWZNIEQkQwSZeJAZqHCnIcyGml3luYSxc_DdH-cHBzRoxVoqq79ZS8QhnHe20mQNqfxHWinFPl2C9rj4aj_teK1aRBTVh1pOlvRiPUa-6BetCMnziCautJ0lzadtpu_cyeCFGc4D6YqYHEdw1yD1dKeiItfYjq9Sl797rP3AAbNf3gq0cnxdjmX28Xvfy0db3mwh3C_Jp-kX6HlEaxo24H1vsXE-8cF2SReDurfs3fg7m7TWh00ReE6sHbJv3AdZiPvzmnJRNWiI7_OBEdACkfLl7cmliBUNdHntfLWEidOJU53_x0_QEQ5n4kGKz81cUabOFZbydSJr9jzGMZ77w8H-0FdwSEokEnRIDdOoppSxXQkZBZjrpSons5Dk0rJDFWpiVQokEMiL0lYbqTJQudNasJcxYLGT6BlZ1Y_A5LS2DDBkJ5kSDoKhbwJWxSnkGqpmOzCVrPEvKjtzV2VjSmvjJkjjmjgHg1deLMIPak8Pa4L2vQ4WUSI02Mngsso_zL8wL99OhjQfJRx1oWNK0BadokwR_aZd-F1gyyOq-UOZITVs_KMu3JgSLDpzRGY-iSUxdjH0wqSy96RmCZ5D7_-7QKjtz3NlkfvzRF89-Ohbzz_rw5fwD0va3QXfQmt-WmpXyE9m8uN-vf5B3b_NBY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pattern+identification+and+classification+in+gene+expression+data+using+an+autoassociative+neural+network+model&rft.jtitle=Biotechnology+and+bioengineering&rft.au=BICCIATO%2C+Silvio&rft.au=PANDIN%2C+Mario&rft.au=DIDONE%2C+Giuseppe&rft.au=DI+BELLO%2C+Carlo&rft.date=2003-03-05&rft.pub=Wiley&rft.issn=0006-3592&rft.volume=81&rft.issue=5&rft.spage=594&rft.epage=606&rft_id=info:doi/10.1002%2Fbit.10505&rft.externalDBID=n%2Fa&rft.externalDocID=14513928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon