Cellular Senescence in Brain Aging

Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in aging neuroscience Vol. 13; p. 646924
Main Authors Sikora, Ewa, Bielak-Zmijewska, Anna, Dudkowska, Magdalena, Krzystyniak, Adam, Mosieniak, Grazyna, Wesierska, Malgorzata, Wlodarczyk, Jakub
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 25.02.2021
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1663-4365
1663-4365
DOI10.3389/fnagi.2021.646924

Cover

Abstract Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both in vitro and in vivo , and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated in vitro can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics.
AbstractList Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both in vitro and in vivo, and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated in vitro can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics.
Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both and , and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics.
Ageing of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to ageing and a number of ageing-related disorders, its involvement in brain ageing is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the ageing of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal) and epigenetic alterations, including DNA methylation, chromatin remodeling and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both in vitro and in vivo, and they likely participate in neuroinflammation, which is characteristic for the ageing brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated in vitro can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics.
Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both in vitro and in vivo , and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated in vitro can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics.
Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both in vitro and in vivo, and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated in vitro can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics.Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both in vitro and in vivo, and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated in vitro can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics.
Author Dudkowska, Magdalena
Wesierska, Malgorzata
Sikora, Ewa
Wlodarczyk, Jakub
Bielak-Zmijewska, Anna
Krzystyniak, Adam
Mosieniak, Grazyna
AuthorAffiliation 1 Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS , Warsaw , Poland
3 Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, PAS , Warsaw , Poland
2 Laboratory of Neuropsychology, Nencki Institute of Experimental Biology, PAS , Warsaw , Poland
AuthorAffiliation_xml – name: 3 Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, PAS , Warsaw , Poland
– name: 2 Laboratory of Neuropsychology, Nencki Institute of Experimental Biology, PAS , Warsaw , Poland
– name: 1 Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS , Warsaw , Poland
Author_xml – sequence: 1
  givenname: Ewa
  surname: Sikora
  fullname: Sikora, Ewa
– sequence: 2
  givenname: Anna
  surname: Bielak-Zmijewska
  fullname: Bielak-Zmijewska, Anna
– sequence: 3
  givenname: Magdalena
  surname: Dudkowska
  fullname: Dudkowska, Magdalena
– sequence: 4
  givenname: Adam
  surname: Krzystyniak
  fullname: Krzystyniak, Adam
– sequence: 5
  givenname: Grazyna
  surname: Mosieniak
  fullname: Mosieniak, Grazyna
– sequence: 6
  givenname: Malgorzata
  surname: Wesierska
  fullname: Wesierska, Malgorzata
– sequence: 7
  givenname: Jakub
  surname: Wlodarczyk
  fullname: Wlodarczyk, Jakub
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33732142$$D View this record in MEDLINE/PubMed
BookMark eNp1kV9LHDEUxYMoatUP0BdZ9KUvu83_TF4EXWwrCH1ofQ53Msk0SzbRzEyh396sq0UF85BcknN-3NzzCe2mnBxCnwleMNborz5BHxYUU7KQXGrKd9AhkZLNOZNi91V9gE6GYYXrYgxj0eyjA8YUo4TTQ3S2dDFOEcrsl0tusC5ZNwtpdlWg7pd9SP0x2vMQB3fyfB6hu2_Xv5c_5rc_v98sL2_nVgg9zj3HuAWmWhAMtLBS8a5VLW8JkbghvgPhqbdeOqukEr61AB0wrmWnQbuGHaGbLbfLsDL3Jayh_DMZgnm6yKU3UMZgozPCeQxSNUpJyTlV4KETzHvbetl0ICvrYsu6n9q16-q3xgLxDfTtSwp_TJ__GqWFVhJXwJdnQMkPkxtGsw51OjFCcnkaDBWYNlgyQqv0_J10laeS6qgM5ZpRQQgRVXX6uqP_rbxEUQVqK7AlD0Nx3tgwwhjypsEQDcFmk7t5yt1scjfb3KuTvHO-wD_2PALBu6_k
CitedBy_id crossref_primary_10_1016_j_jaim_2022_100636
crossref_primary_10_3389_fnut_2022_1087505
crossref_primary_10_3390_biomedicines10081859
crossref_primary_10_1016_j_jchemneu_2022_102210
crossref_primary_10_1002_mus_28290
crossref_primary_10_1073_pnas_2321408121
crossref_primary_10_4103_AGINGADV_AGINGADV_D_24_00019
crossref_primary_10_1016_j_expneurol_2025_115186
crossref_primary_10_1186_s12979_022_00281_0
crossref_primary_10_1093_mtomcs_mfae008
crossref_primary_10_1038_s41467_023_39786_7
crossref_primary_10_1128_jvi_00560_24
crossref_primary_10_1016_j_eng_2023_04_012
crossref_primary_10_1038_s41598_023_35533_6
crossref_primary_10_3390_ijms24065986
crossref_primary_10_3389_fcell_2022_946678
crossref_primary_10_3390_cells10102790
crossref_primary_10_1016_j_cvsm_2023_08_006
crossref_primary_10_1093_gerona_glae150
crossref_primary_10_1177_15353702231157917
crossref_primary_10_3389_fnagi_2023_1281581
crossref_primary_10_1111_jnc_15827
crossref_primary_10_3390_antiox11081426
crossref_primary_10_1089_ars_2024_0794
crossref_primary_10_1038_s41467_023_43292_1
crossref_primary_10_11005_jbm_2023_30_1_1
crossref_primary_10_1016_j_conb_2021_09_009
crossref_primary_10_3389_fgene_2022_868856
crossref_primary_10_1139_cjpp_2022_0071
crossref_primary_10_3389_fnagi_2024_1476909
crossref_primary_10_1016_j_ymthe_2025_02_030
crossref_primary_10_1016_j_expneurol_2023_114481
crossref_primary_10_1016_j_envpol_2023_121650
crossref_primary_10_1016_j_jnutbio_2025_109862
crossref_primary_10_1016_j_exger_2025_112685
crossref_primary_10_1038_s43587_023_00504_z
crossref_primary_10_3390_antiox13010024
crossref_primary_10_3389_fnagi_2023_1139789
crossref_primary_10_1038_s41586_024_08350_8
crossref_primary_10_3389_fragi_2024_1511370
crossref_primary_10_3390_ijms24054297
crossref_primary_10_3390_cells11213408
crossref_primary_10_1080_0361073X_2025_2476331
crossref_primary_10_1038_s41514_024_00178_w
crossref_primary_10_3389_fragi_2021_761333
crossref_primary_10_1016_j_neuint_2021_105115
crossref_primary_10_1007_s00109_024_02504_x
crossref_primary_10_1016_j_apsb_2023_12_009
crossref_primary_10_1016_j_freeradbiomed_2024_08_031
crossref_primary_10_3389_fnagi_2022_847374
crossref_primary_10_3390_ijms25073881
crossref_primary_10_3389_fnins_2023_1188065
crossref_primary_10_3390_ijms24087364
crossref_primary_10_1152_physiol_00003_2023
crossref_primary_10_1186_s13024_023_00616_5
crossref_primary_10_1016_j_jhazmat_2023_131891
crossref_primary_10_1111_acel_14109
crossref_primary_10_1038_s41467_024_53507_8
crossref_primary_10_1186_s13072_025_00567_9
crossref_primary_10_1111_acel_13817
crossref_primary_10_3389_fnimg_2022_947526
crossref_primary_10_1016_j_bbi_2024_08_022
crossref_primary_10_3389_fnhum_2022_815759
crossref_primary_10_3389_fvets_2024_1369153
crossref_primary_10_3390_neurolint17010006
crossref_primary_10_3390_jcm13237031
crossref_primary_10_1016_j_nbd_2022_105700
crossref_primary_10_15252_embr_202357265
crossref_primary_10_1159_000531422
crossref_primary_10_1152_ajpcell_00072_2022
crossref_primary_10_3390_cells13211775
crossref_primary_10_3389_fnins_2022_824191
crossref_primary_10_1111_joim_13775
crossref_primary_10_3390_foods13152441
crossref_primary_10_1038_s41398_024_02935_7
crossref_primary_10_3390_brainsci13111581
crossref_primary_10_14336_AD_2023_0214
crossref_primary_10_1016_j_expneurol_2024_115135
crossref_primary_10_1016_j_mcn_2024_103919
crossref_primary_10_1016_j_neurobiolaging_2025_02_003
crossref_primary_10_1016_j_brainres_2024_149202
crossref_primary_10_3390_reports5020022
crossref_primary_10_3389_fpsyt_2024_1449526
crossref_primary_10_3389_fragi_2022_1014675
crossref_primary_10_3390_cells10051256
crossref_primary_10_1016_j_celrep_2023_112593
crossref_primary_10_4103_1673_5374_380877
crossref_primary_10_3390_ijms25105467
crossref_primary_10_3389_fnagi_2023_1162747
crossref_primary_10_1007_s11357_025_01563_3
crossref_primary_10_3390_genes14040798
crossref_primary_10_1016_j_neulet_2024_137730
crossref_primary_10_1021_acschemneuro_2c00348
crossref_primary_10_3389_fphys_2021_715443
crossref_primary_10_14336_AD_2022_1022
crossref_primary_10_1002_glia_24287
crossref_primary_10_1007_s00018_024_05164_9
crossref_primary_10_3389_fnins_2022_978431
crossref_primary_10_1016_j_mad_2021_111575
crossref_primary_10_1111_jnc_16301
crossref_primary_10_1016_j_jconrel_2025_01_022
crossref_primary_10_3390_brainsci11091121
crossref_primary_10_1038_s41537_024_00443_7
crossref_primary_10_1371_journal_pone_0287646
crossref_primary_10_3389_fncel_2022_999303
crossref_primary_10_1038_s41398_024_03004_9
crossref_primary_10_1007_s00018_023_04832_6
crossref_primary_10_1007_s12264_022_00969_9
crossref_primary_10_3233_JAD_231222
crossref_primary_10_3390_antiox10111715
crossref_primary_10_1007_s11427_023_2305_0
crossref_primary_10_1038_s41392_023_01502_8
crossref_primary_10_1186_s13024_025_00810_7
crossref_primary_10_1016_j_heliyon_2024_e37883
crossref_primary_10_1016_j_ebiom_2025_105612
crossref_primary_10_3390_ijms251910535
crossref_primary_10_3390_cells14020143
crossref_primary_10_1007_s12035_024_04546_1
crossref_primary_10_1080_10408398_2023_2222404
crossref_primary_10_3390_antiox13010076
crossref_primary_10_1016_j_tice_2023_102192
crossref_primary_10_1038_s41556_023_01168_y
crossref_primary_10_1177_25424823241310716
crossref_primary_10_3233_JAD_220269
crossref_primary_10_3390_cimb46030130
crossref_primary_10_3390_biom12070881
crossref_primary_10_1002_adbi_202300097
crossref_primary_10_1007_s10522_025_10199_x
crossref_primary_10_3389_fphar_2022_750507
crossref_primary_10_1038_s43587_023_00373_6
crossref_primary_10_3389_fnagi_2023_1119552
crossref_primary_10_3390_nu15102365
crossref_primary_10_1021_acschemneuro_4c00109
crossref_primary_10_1038_s41514_024_00176_y
crossref_primary_10_1186_s12979_024_00447_y
crossref_primary_10_1007_s00281_024_01016_7
crossref_primary_10_1111_acel_14393
crossref_primary_10_1007_s00418_025_02363_8
crossref_primary_10_1186_s12974_023_02870_2
crossref_primary_10_3390_biomedicines11041151
crossref_primary_10_1021_acschemneuro_3c00531
crossref_primary_10_3390_ijms24010778
crossref_primary_10_3390_ijms242417339
crossref_primary_10_1016_j_conb_2022_102653
crossref_primary_10_3390_ijms23031909
crossref_primary_10_24884_1682_6655_2024_23_2_84_90
crossref_primary_10_1111_acel_13977
crossref_primary_10_1038_s44220_023_00033_z
crossref_primary_10_3390_biomedicines9111635
crossref_primary_10_1038_s41420_024_01816_8
crossref_primary_10_3390_biomedicines11082092
crossref_primary_10_1007_s12035_024_04666_8
crossref_primary_10_1016_j_brainresbull_2023_03_007
crossref_primary_10_1007_s00401_024_02768_0
crossref_primary_10_1016_j_molmed_2024_11_003
crossref_primary_10_1016_j_gene_2023_147437
crossref_primary_10_3389_fphar_2022_1122786
crossref_primary_10_62347_LUAJ9063
crossref_primary_10_31083_j_jin2306118
crossref_primary_10_1038_s41514_024_00187_9
crossref_primary_10_3390_jcm12093190
crossref_primary_10_1016_j_conb_2022_102524
crossref_primary_10_18632_aging_203835
crossref_primary_10_3389_fnagi_2023_1218267
crossref_primary_10_1093_toxres_tfac051
crossref_primary_10_1007_s12291_024_01220_0
crossref_primary_10_3390_ijms251910757
crossref_primary_10_3390_biomedicines11040994
crossref_primary_10_2174_0115680266322320240911194626
crossref_primary_10_1016_j_arr_2022_101574
crossref_primary_10_3390_antiox14030348
crossref_primary_10_1155_2021_6682336
crossref_primary_10_3233_JAD_220203
crossref_primary_10_1016_j_neuroscience_2024_11_004
crossref_primary_10_4103_1673_5374_385845
crossref_primary_10_1016_j_bbi_2023_12_034
crossref_primary_10_1186_s40478_023_01578_x
crossref_primary_10_3390_ijms231810695
crossref_primary_10_3389_fnagi_2022_789190
crossref_primary_10_3389_fphys_2022_864758
crossref_primary_10_1126_science_adp6325
crossref_primary_10_3390_brainsci13030500
crossref_primary_10_3389_fnmol_2023_1249320
crossref_primary_10_3390_ijms26051815
Cites_doi 10.1038/nature13163
10.1016/S0165-5728(01)00496-9
10.1111/acel.13188
10.1111/j.1365-2990.2006.00632.x
10.1093/gerona/glu231
10.12659/MSM.881706
10.4049/jimmunol.179.12.8525
10.1101/gad.519709
10.1113/jphysiol.1980.sp013521
10.1038/s41593-019-0372-9
10.1016/j.neuroscience.2010.09.022
10.1016/j.neurobiolaging.2006.07.022
10.1016/j.tem.2016.09.005
10.1172/JCI95145
10.1080/15548627.2016.1265193
10.1016/j.celrep.2016.12.011
10.1210/clinem/dgaa728
10.1096/fj.09-149997
10.1016/j.neuron.2014.11.018
10.1002/jnr.24436
10.1111/acel.13071
10.1016/j.cmet.2018.12.008
10.1016/j.nurt.2010.05.017
10.1016/0014-4886(85)90171-2
10.1242/jcs.001073
10.1016/j.arr.2019.100941
10.1038/nrn.2017.170
10.1083/jcb.117.2.395
10.1177/1073858418780971
10.1002/glia.23782
10.2174/18715206113139990114
10.1159/000215589
10.1016/j.cub.2018.12.021
10.1091/mbc.e11-10-0884
10.14348/molcells.2018.2333
10.1111/trf.15300
10.1126/science.aag3048
10.1016/j.mad.2020.111256
10.1523/JNEUROSCI.18-08-02974.1998
10.3389/neuro.24.006.2009
10.3389/fnagi.2017.00194
10.18632/aging.102181
10.1523/JNEUROSCI.0193-15.2015
10.1002/glia.20468
10.1016/j.arr.2016.04.010
10.1038/nature10600
10.1126/science.aaa5612
10.1016/j.neuropharm.2014.10.028
10.1155/2013/839535
10.1038/s41598-020-71042-6
10.3389/fnagi.2017.00138
10.3390/genes9050250
10.1016/j.ebiom.2018.09.015
10.4062/biomolther.2018.107
10.3389/fnins.2018.00464
10.1126/sciadv.1600584
10.18632/aging.103008
10.1016/j.neurobiolaging.2007.07.015
10.1016/j.ebiom.2019.08.069
10.1016/j.yexcr.2010.06.021
10.1073/pnas.1800165115
10.1093/brain/awn023
10.1016/j.cger.2013.07.002
10.1016/j.dnarep.2020.102956
10.1038/s41556-020-00579-5
10.3389/fnut.2020.00094
10.1111/joim.13141
10.1097/NEN.0b013e3181a9fc66
10.1172/jci.insight.87732
10.1111/j.1474-9726.2012.00870.x
10.1111/j.1750-3639.2008.00188.x
10.1016/j.cell.2017.02.031
10.1016/j.bbi.2018.07.012
10.1038/nature02661
10.1371/journal.pone.0227887
10.2174/138161210790883507
10.1089/rej.2006.9096
10.1016/j.arr.2016.05.001
10.18632/oncotarget.12752
10.1212/WNL.42.3.631
10.1038/nm.3048
10.3389/fnagi.2015.00057
10.1089/ars.2020.8048
10.1126/science.1090842
10.1016/j.ygcen.2011.02.005
10.1038/nature21029
10.3892/ijmm.2020.4587
10.2741/s425
10.3389/fnagi.2019.00049
10.1016/j.neurobiolaging.2019.02.010
10.1083/jcb.201206006
10.1016/j.neurobiolaging.2011.04.013
10.1016/j.ebiom.2019.01.056
10.1177/2040622320964125
10.1111/acel.12937
10.1073/pnas.1009485107
10.1158/1078-0432.CCR-10-2616
10.1186/s13059-019-1747-7
10.1016/j.ebiom.2018.12.052
10.1016/j.neuroscience.2012.09.077
10.1016/j.tins.2015.10.003
10.1111/j.1460-9568.2011.07738.x
10.1038/nrd.2017.116
10.1016/0304-3940(89)90166-3
10.1046/j.1460-9568.2002.02283.x
10.18632/aging.102682
10.1172/JCI95148
10.1016/j.arr.2013.10.002
10.1038/s41598-019-56133-3
10.1111/j.1474-9726.2010.00660.x
10.1016/j.exger.2012.09.008
10.1038/s41598-020-57663-x
10.1111/j.1471-4159.2006.04369.x
10.1016/j.cell.2014.10.039
10.1016/0197-4580(91)90098-5
10.3389/fgene.2018.00581
10.4062/biomolther.2019.151
10.1016/j.cortex.2018.09.014
10.3389/fncel.2013.00022
10.1016/j.cmet.2018.05.011
10.1146/annurev-pathol-121808-102144
10.1189/jlb.0208108
10.1038/s41586-018-0543-y
10.1038/s41467-020-15287-9
10.3389/fmed.2018.00061
10.1016/j.tiv.2010.08.003
10.1038/s41593-019-0491-3
10.1093/ijnp/pyv002
10.1016/j.mad.2020.111296
10.1155/NP.2000.167
10.1002/glia.22731
10.1007/s10522-017-9685-9
10.1038/nature13193
10.1038/ncomms1708
10.1093/cercor/bhh144
10.1016/j.exger.2020.110876
10.1002/hipo.450020413
10.1089/ars.2012.4901
10.3390/cells8121546
10.1038/s41591-018-0092-9
10.1016/S0531-5565(00)00230-8
10.1016/j.mad.2017.08.004
10.1016/0014-4827(61)90192-6
10.1111/acel.13296
10.1016/j.neuroscience.2003.11.040
10.3390/nu11061251
10.1046/j.1460-9568.1998.00137.x
10.1523/JNEUROSCI.0839-11.2011
10.18632/oncotarget.24158
10.1007/s10522-013-9477-9
10.1038/ncb2466
10.1021/bi00399a010
10.18632/aging.101617
10.1016/0531-5565(92)90068-B
10.1038/s41421-020-0141-7
10.4161/auto.23922
10.1016/j.psyneuen.2007.09.004
10.1152/ajpcell.00250.2019
10.3390/ijms18091865
10.1186/1742-2094-7-62
10.1002/glia.10301
10.1038/nn.2560
10.3389/fnsyn.2019.00020
10.1016/j.nbd.2020.105008
10.1007/s10555-010-9220-9
10.1016/j.devcel.2014.11.012
10.1093/emboj/cdg417
10.1371/journal.pone.0045069
10.1523/JNEUROSCI.1725-04.2004
10.1126/science.1205407
10.1126/science.272.5264.1017
10.1111/acel.12593
10.1016/j.cell.2013.05.039
10.1016/0006-8993(78)90655-8
10.1016/j.celrep.2017.12.092
10.3390/ijms19102937
10.1007/s10522-014-9532-1
10.1016/0197-4580(93)90058-J
10.1016/j.cell.2019.10.005
10.1016/j.arr.2014.01.003
10.1007/s13311-019-00743-2
10.1016/j.arr.2016.02.009
10.1016/j.bbrc.2010.05.011
10.1111/acel.12840
10.1073/pnas.92.20.9363
10.1038/s41467-017-00314-z
10.1111/j.1474-9726.2006.00199.x
10.1093/brain/awaa334
10.1016/j.neuron.2014.12.032
10.1155/2020/1047896
10.7554/eLife.44219
10.1016/j.tips.2017.03.011
ContentType Journal Article
Copyright Copyright © 2021 Sikora, Bielak-Zmijewska, Dudkowska, Krzystyniak, Mosieniak, Wesierska and Wlodarczyk.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2021 Sikora, Bielak-Zmijewska, Dudkowska, Krzystyniak, Mosieniak, Wesierska and Wlodarczyk. 2021 Sikora, Bielak-Zmijewska, Dudkowska, Krzystyniak, Mosieniak, Wesierska and Wlodarczyk
Copyright_xml – notice: Copyright © 2021 Sikora, Bielak-Zmijewska, Dudkowska, Krzystyniak, Mosieniak, Wesierska and Wlodarczyk.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2021 Sikora, Bielak-Zmijewska, Dudkowska, Krzystyniak, Mosieniak, Wesierska and Wlodarczyk. 2021 Sikora, Bielak-Zmijewska, Dudkowska, Krzystyniak, Mosieniak, Wesierska and Wlodarczyk
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnagi.2021.646924
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
Publicly Available Content Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1663-4365
ExternalDocumentID oai_doaj_org_article_5ef0a67877664427afad53ffcbf68da6
PMC7959760
33732142
10_3389_fnagi_2021_646924
Genre Journal Article
Review
GrantInformation_xml – fundername: Narodowe Centrum Nauki
GroupedDBID ---
53G
5VS
7X7
88I
8FE
8FH
8FI
8FJ
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
E3Z
EIHBH
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
UKHRP
IPNFZ
NPM
RIG
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c559t-f400ba37ba53a95c674db7b4b116081fda5f2fcf6ec7675fbcaada3496d9a9e83
IEDL.DBID M48
ISSN 1663-4365
IngestDate Wed Aug 27 01:26:25 EDT 2025
Thu Aug 21 13:20:16 EDT 2025
Fri Sep 05 06:17:42 EDT 2025
Fri Jul 25 11:35:24 EDT 2025
Thu Apr 03 06:52:31 EDT 2025
Thu Apr 24 22:52:32 EDT 2025
Tue Jul 01 04:03:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords neuronal plasticity
brain aging
cognitive impairment
autophagy
cellular senescence
neuroinflammation
Language English
License Copyright © 2021 Sikora, Bielak-Zmijewska, Dudkowska, Krzystyniak, Mosieniak, Wesierska and Wlodarczyk.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c559t-f400ba37ba53a95c674db7b4b116081fda5f2fcf6ec7675fbcaada3496d9a9e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Edited by: Jolanta Dorszewska, Poznan University of Medical Sciences, Poland
Reviewed by: Jose Felix Moruno-Manchon, University of Texas Health Science Center at Houston, United States; Susana Castro-Obregon, National Autonomous University of Mexico, Mexico
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnagi.2021.646924
PMID 33732142
PQID 2493251115
PQPubID 4424411
ParticipantIDs doaj_primary_oai_doaj_org_article_5ef0a67877664427afad53ffcbf68da6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7959760
proquest_miscellaneous_2502806312
proquest_journals_2493251115
pubmed_primary_33732142
crossref_citationtrail_10_3389_fnagi_2021_646924
crossref_primary_10_3389_fnagi_2021_646924
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-25
PublicationDateYYYYMMDD 2021-02-25
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-25
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in aging neuroscience
PublicationTitleAlternate Front Aging Neurosci
PublicationYear 2021
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Groh (B76) 2017; 9
Gorgoulis (B73) 2019; 179
Goshen (B74) 2007; 32
von Zglinicki (B177) 2021; 34
B29
Willis (B180) 2020; 10
Chang (B30) 2005; 15
Maglione (B114) 2019; 9
Togo (B171) 2002; 124
Lopez-Otin (B108) 2013; 153
Glasgow (B69) 2019; 11
Farrall (B54) 2009; 30
Wengerodt (B179) 2019; 8
Spittau (B162) 2017; 9
Cao (B28) 2020; 46
Sokolova (B159) 2009; 19
Lu (B111) 2004; 429
Musi (B127) 2018; 17
Simkin (B157) 2015; 35
Sikora (B155) 2019; 55
Lipinski (B106) 2010; 107
Landfield (B97) 1978; 150
Sierra (B153) 2007; 55
Sikora (B156) 2010; 16
Acklin (B1) 2020; 10
Murray (B126) 1998; 18
Mendizabal (B120) 2019; 20
Marcoux (B116) 2019; 59
Wong (B182) 2013; 7
Geng (B67) 2010; 396
Bigagli (B20) 2016; 71
Andreotti (B3) 2020; 7
Butler (B26) 2004; 124
Loeffler (B107) 2019; 11
Matus (B119) 1987; 26
Jiang (B87) 2020; 2020
Simpson (B158) 2011; 32
Hewitt (B83) 2012; 3
Devine (B46) 2018; 19
Rango (B145) 2018; 9
Bruning (B23) 2013; 13
Tan (B168) 2014; 15
Moreno-Garcia (B125) 2018; 12
Grabowska (B75) 2017; 18
Leal (B98) 2015; 38
Hickson (B84) 2019; 47
Lu (B110) 2014; 507
Martinowich (B117) 2003; 302
Yim (B187) 2020; 6
Dilger (B48) 2008; 84
Young (B189) 2009; 23
Flanary (B57) 2007; 10
Baker (B6) 2018; 128
Stavoe (B163) 2019; 8
Dong (B50) 2011; 17
Collett (B36) 2018; 9
Ojo (B136) 2013; 2013
Wei (B178) 2015; 18
Chinta (B33) 2018; 22
Kiffin (B94) 2007; 120
Low (B109) 2011; 172
Kang (B90) 2015; 349
Yu (B191) 2017; 16
Turner (B173) 1991; 12
Shireby (B151) 2020; 143
Ogrodnik (B135) 2019; 29
Glatigny (B70) 2019; 29
Shimada (B150) 2006; 32
Flood (B59) 1993; 14
Lian (B102) 2015; 85
Piechota (B144) 2016; 7
Wirth (B181) 2018; 109
Salas (B147) 2020; 143
Cheng (B31) 2014; 13
Gomez-Sintes (B71) 2016; 32
Jacome Burbano (B86) 2020; 189
Kritsilis (B96) 2018; 19
Kirkland (B95) 2020; 288
Montagne (B122) 2015; 85
Limbad (B104) 2020; 15
Lindholm (B105) 1992; 117
Schlachetzki (B149) 2020; 133
Miller (B121) 2010; 13
Clarke (B34) 2018; 115
Bhat (B16) 2012; 7
Sikora (B154) 2013; 48
Trompet (B172) 2008; 131
Hashimoto (B80) 2016; 1
Narita (B130) 2011; 332
Nakamura (B129) 1989; 97
Bielak-Zmijewska (B18) 2018; 170
Dickstein (B47) 2013; 251
Doyle (B51) 2010; 7
Bhanu (B15) 2010; 24
Baar (B5) 2017; 169
Bloss (B22) 2011; 31
Souers (B161) 2013; 19
Zhang (B193) 2019; 22
Lupo (B112) 2019; 16
Adams (B2) 2010; 171
Justice (B89) 2019; 40
Uemura (B174) 1985; 87
Bang (B9); 27
Childs (B32) 2017; 16
Arriagada (B4) 1992; 42
de Sampaio e Spohr (B44) 2002; 16
Herranz (B82) 2018; 128
Davalos (B40) 2010; 29
Lee (B99) 2006; 5
Gadecka (B66) 2019; 11
Hayflick (B81) 1961; 25
Zhu (B194) 2020; 11
Negrete-Hurtado (B131) 2020; 11
Zhang (B192) 2020; 12
Dimri (B49) 1995; 92
Evans (B53) 2003; 63
Maher (B115) 2012; 7
Soreq (B160) 2017; 18
Streit (B166) 2020; 68
de Calignon (B43) 2009; 68
Fumagalli (B65) 2012; 14
Tchkonia (B169) 2020; 16
Fonken (B60) 2018; 73
Ojo (B137) 2015; 7
Xu (B184) 2020; 22
Yousefzadeh (B190) 2018; 36
Jurk (B88) 2012; 11
Ogrodnik (B134) 2021
Yang (B186) 2018; 10
Bussian (B25) 2018; 562
Pedrazzi (B141) 2007; 179
Demaria (B45) 2014; 31
Yoshii (B188) 2017; 18
Barnes (B10) 1980; 309
Gewirtz (B68) 2013; 9
Xu (B185) 2018; 24
Short (B152) 2019; 41
Eitan (B52) 2016; 32
Flanary (B58) 2004; 45
Dai (B38) 2020; 12
Bitto (B21) 2010; 316
Coppe (B37) 2010; 5
Moreno-Blas (B124) 2019; 11
Freund (B63) 2012; 23
Burla (B24) 2018; 9
Sunderland (B167) 2020; 190
Harada (B77) 2013; 29
Khan (B93) 2013; 19
Harley (B78) 1992; 27
Montero (B123) 2011; 17
Barnes (B12) 2000; 7
Orr (B138) 2017; 38
Liddelow (B103) 2017; 541
Franceschi (B61) 2018; 5
Gorg (B72) 2015; 63
Franceschi (B62) 2017; 28
Stoka (B165) 2016; 32
Thibault (B170) 1996; 272
de Brabander (B42) 1998; 10
Ritzel (B146) 2019; 77
Harman (B79) 2020; 98
Lee (B100) 2010; 24
Salminen (B148) 2011; 34
Fielder (B55) 2020; 19
Pal (B139) 2016; 2
Bhukel (B17) 2017; 13
Cohen (B35) 2019; 18
Verkhratsky (B176) 2010; 7
Campisi (B27) 2001; 36
Beausejour (B14) 2003; 22
Nakamura (B128) 2018; 41
Katsumi (B91) 2019; 317
Petralia (B143) 2014; 14
Davalos (B41) 2013; 201
Mattson (B118) 2018; 27
Finch (B56) 2009; 2009
Stichel (B164) 2007; 28
Pertusa (B142) 2007; 101
Kennedy (B92) 2014; 159
Panczyszyn (B140) 2020; 95
Ximerakis (B183) 2019; 22
Nicholson (B132) 2004; 24
Baker (B7) 2011; 479
Ishikawa (B85) 2020; 19
van Deursen (B175) 2014; 509
Lynch (B113) 2010; 1
Damani (B39) 2011; 10
Bielak-Zmijewska (B19) 2014; 15
Bang (B8); 27
Barter (B13) 2018; 24
Fuhrmann-Stroissnigg (B64) 2017; 8
Barnes (B11) 1992; 2
Leeman (B101) 2018; 359
Norden (B133) 2015; 96
References_xml – volume: 507
  start-page: 448
  year: 2014
  ident: B110
  article-title: REST and stress resistance in ageing and Alzheimer's disease
  publication-title: Nature
  doi: 10.1038/nature13163
– volume: 124
  start-page: 83
  year: 2002
  ident: B171
  article-title: Occurrence of T cells in the brain of Alzheimer's disease and other neurological diseases
  publication-title: J. Neuroimmunol.
  doi: 10.1016/S0165-5728(01)00496-9
– volume: 19
  start-page: e13188
  year: 2020
  ident: B55
  article-title: Anti-inflammatory treatment rescues memory deficits during aging in nfkb1(-/-) mice
  publication-title: Aging Cell
  doi: 10.1111/acel.13188
– volume: 32
  start-page: 1
  year: 2006
  ident: B150
  article-title: Apical vulnerability to dendritic retraction in prefrontal neurones of ageing SAMP10 mouse: a model of cerebral degeneration
  publication-title: Neuropathol. Appl. Neurobiol.
  doi: 10.1111/j.1365-2990.2006.00632.x
– volume: 71
  start-page: 50
  year: 2016
  ident: B20
  article-title: Long-term neuroglial cocultures as a brain aging model: hallmarks of senescence, MicroRNA expression profiles, and comparison with in vivo models. J. Gerontol. Ser. A
  publication-title: Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/glu231
– volume: 17
  start-page: BR91
  year: 2011
  ident: B50
  article-title: Mitochondrial dysfunction in long-term neuronal cultures mimics changes with aging
  publication-title: Med. Sci. Monit.
  doi: 10.12659/MSM.881706
– ident: B29
– volume: 179
  start-page: 8525
  year: 2007
  ident: B141
  article-title: Selective proinflammatory activation of astrocytes by high-mobility group box 1 protein signaling
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.179.12.8525
– volume: 23
  start-page: 798
  year: 2009
  ident: B189
  article-title: Autophagy mediates the mitotic senescence transition
  publication-title: Genes Dev.
  doi: 10.1101/gad.519709
– volume: 309
  start-page: 473
  year: 1980
  ident: B10
  article-title: Physiological compensation for loss of afferent synapses in rat hippocampal granule cells during senescence
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1980.sp013521
– volume: 22
  start-page: 719
  year: 2019
  ident: B193
  article-title: Senolytic therapy alleviates Abeta-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0372-9
– volume: 171
  start-page: 373
  year: 2010
  ident: B2
  article-title: Age-related synapse loss in hippocampal CA3 is not reversed by caloric restriction
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2010.09.022
– volume: 28
  start-page: 1507
  year: 2007
  ident: B164
  article-title: Inflammatory processes in the aging mouse brain: participation of dendritic cells and T-cells
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2006.07.022
– volume: 28
  start-page: 199
  year: 2017
  ident: B62
  article-title: Inflammaging and 'Garb-aging'
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2016.09.005
– volume: 128
  start-page: 1208
  year: 2018
  ident: B6
  article-title: Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI95145
– volume: 13
  start-page: 444
  year: 2017
  ident: B17
  article-title: Spermidine boosts autophagy to protect from synapse aging
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1265193
– volume: 18
  start-page: 557
  year: 2017
  ident: B160
  article-title: Major shifts in glial regional identity are a transcriptional hallmark of human brain aging
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.12.011
– volume: 16
  start-page: 263
  year: 2020
  ident: B169
  article-title: New horizons: novel approaches to enhance healthspan through targeting cellular senescence and related aging mechanisms. J
  publication-title: Clin. Endocrinol. Metab
  doi: 10.1210/clinem/dgaa728
– volume: 24
  start-page: 2533
  year: 2010
  ident: B100
  article-title: Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases
  publication-title: FASEB J.
  doi: 10.1096/fj.09-149997
– volume: 85
  start-page: 101
  year: 2015
  ident: B102
  article-title: NFkappaB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.11.018
– volume: 98
  start-page: 234
  year: 2020
  ident: B79
  article-title: Epigenetic mechanisms related to cognitive decline during aging
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.24436
– volume: 19
  start-page: e13071
  year: 2020
  ident: B85
  article-title: Proteostasis failure and cellular senescence in long-term cultured postmitotic rat neurons
  publication-title: Aging Cell
  doi: 10.1111/acel.13071
– volume: 29
  start-page: 1061
  year: 2019
  ident: B135
  article-title: Obesity-induced cellular senescence drives anxiety and impairs neurogenesis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.12.008
– volume: 7
  start-page: 399
  year: 2010
  ident: B176
  article-title: Astrocytes in Alzheimer's disease
  publication-title: Neurotherapeutics
  doi: 10.1016/j.nurt.2010.05.017
– volume: 87
  start-page: 403
  year: 1985
  ident: B174
  article-title: Age-related changes in the subiculum of Macaca mulatta: synaptic density
  publication-title: Exp. Neurol.
  doi: 10.1016/0014-4886(85)90171-2
– volume: 120
  start-page: 782
  year: 2007
  ident: B94
  article-title: Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.001073
– volume: 55
  start-page: 100941
  year: 2019
  ident: B155
  article-title: Targeting normal and cancer senescent cells as a strategy of senotherapy
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2019.100941
– volume: 19
  start-page: 63
  year: 2018
  ident: B46
  article-title: Mitochondria at the neuronal presynapse in health and disease
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2017.170
– volume: 117
  start-page: 395
  year: 1992
  ident: B105
  article-title: Transforming growth factor-beta 1 in the rat brain: increase after injury and inhibition of astrocyte proliferation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.117.2.395
– volume: 24
  start-page: 516
  year: 2018
  ident: B13
  article-title: Aging in the brain: new roles of epigenetics in cognitive decline
  publication-title: Neuroscientist
  doi: 10.1177/1073858418780971
– volume: 68
  start-page: 845
  year: 2020
  ident: B166
  article-title: Dystrophic microglia in late-onset Alzheimer's disease
  publication-title: Glia
  doi: 10.1002/glia.23782
– volume: 13
  start-page: 1025
  year: 2013
  ident: B23
  article-title: Inhibition of mTOR signaling by quercetin in cancer treatment and prevention
  publication-title: Anticancer. Agents Med. Chem.
  doi: 10.2174/18715206113139990114
– volume: 2009
  start-page: 307
  year: 2009
  ident: B56
  article-title: Update on slow aging and negligible senescence–a mini-review
  publication-title: Gerontology
  doi: 10.1159/000215589
– volume: 29
  start-page: 435
  year: 2019
  ident: B70
  article-title: Autophagy is required for memory formation and reverses age-related memory decline
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.12.021
– volume: 23
  start-page: 2066
  year: 2012
  ident: B63
  article-title: Lamin B1 loss is a senescence-associated biomarker
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e11-10-0884
– volume: 41
  start-page: 65
  year: 2018
  ident: B128
  article-title: Autophagy and longevity
  publication-title: Mol. Cells
  doi: 10.14348/molcells.2018.2333
– volume: 59
  start-page: 2403
  year: 2019
  ident: B116
  article-title: Platelet-derived extracellular vesicles convey mitochondrial DAMPs in platelet concentrates and their levels are associated with adverse reactions
  publication-title: Transfusion
  doi: 10.1111/trf.15300
– volume: 359
  start-page: 1277
  year: 2018
  ident: B101
  article-title: Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging
  publication-title: Science
  doi: 10.1126/science.aag3048
– volume: 189
  start-page: 111256
  year: 2020
  ident: B86
  article-title: Long-lived post-mitotic cell aging: is a telomere clock at play?
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2020.111256
– volume: 18
  start-page: 2974
  year: 1998
  ident: B126
  article-title: Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age- and stress-induced impairments in long-term potentiation
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.18-08-02974.1998
– volume: 1
  start-page: 6
  year: 2010
  ident: B113
  article-title: Age-related neuroinflammatory changes negatively impact on neuronal function
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/neuro.24.006.2009
– volume: 9
  start-page: 194
  year: 2017
  ident: B162
  article-title: Aging microglia-phenotypes, functions and implications for age-related neurodegenerative diseases
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2017.00194
– volume: 11
  start-page: 6175
  year: 2019
  ident: B124
  article-title: Cortical neurons develop a senescence-like phenotype promoted by dysfunctional autophagy
  publication-title: Aging
  doi: 10.18632/aging.102181
– volume: 35
  start-page: 13206
  year: 2015
  ident: B157
  article-title: Aging-related hyperexcitability in CA3 pyramidal neurons is mediated by enhanced A-Type K+ channel function and expression
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0193-15.2015
– volume: 55
  start-page: 412
  year: 2007
  ident: B153
  article-title: Microglia derived from aging mice exhibit an altered inflammatory profile
  publication-title: Glia
  doi: 10.1002/glia.20468
– volume: 32
  start-page: 22
  year: 2016
  ident: B165
  article-title: Lysosomal cathepsins and their regulation in aging and neurodegeneration
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2016.04.010
– volume: 479
  start-page: 232
  year: 2011
  ident: B7
  article-title: Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders
  publication-title: Nature
  doi: 10.1038/nature10600
– volume: 349
  start-page: aaa5612
  year: 2015
  ident: B90
  article-title: The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4
  publication-title: Science
  doi: 10.1126/science.aaa5612
– volume: 96
  start-page: 29
  year: 2015
  ident: B133
  article-title: Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, neurodegenerative disease
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2014.10.028
– volume: 2013
  start-page: 839535
  year: 2013
  ident: B136
  article-title: Age-induced loss of mossy fibre synapses on CA3 thorns in the CA3 stratum lucidum
  publication-title: Neurosci. J.
  doi: 10.1155/2013/839535
– volume: 10
  start-page: 14170
  year: 2020
  ident: B1
  article-title: Depletion of senescent-like neuronal cells alleviates cisplatin-induced peripheral neuropathy in mice
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71042-6
– volume: 9
  start-page: 138
  year: 2017
  ident: B76
  article-title: Age-dependent protein aggregation initiates amyloid-beta aggregation
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2017.00138
– volume: 9
  start-page: 250
  year: 2018
  ident: B145
  article-title: Brain mitochondria, aging, Parkinson's Disease
  publication-title: Genes
  doi: 10.3390/genes9050250
– volume: 36
  start-page: 18
  year: 2018
  ident: B190
  article-title: Fisetin is a senotherapeutic that extends health and lifespan
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2018.09.015
– volume: 27
  start-page: 283
  ident: B9
  article-title: Tenovin-1 induces senescence and decreases wound-healing activity in cultured rat primary astrocytes
  publication-title: Biomol. Ther.
  doi: 10.4062/biomolther.2018.107
– volume: 12
  start-page: 464
  year: 2018
  ident: B125
  article-title: An overview of the role of lipofuscin in age-related neurodegeneration
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00464
– volume: 2
  start-page: e1600584
  year: 2016
  ident: B139
  article-title: Epigenetics and aging
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600584
– volume: 12
  start-page: 6089
  year: 2020
  ident: B38
  article-title: Estradiol-induced senescence of hypothalamic astrocytes contributes to aging-related reproductive function declines in female mice
  publication-title: Aging
  doi: 10.18632/aging.103008
– volume: 30
  start-page: 337
  year: 2009
  ident: B54
  article-title: Blood-brain barrier: ageing and microvascular disease–systematic review and meta-analysis
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2007.07.015
– volume: 47
  start-page: 446
  year: 2019
  ident: B84
  article-title: Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2019.08.069
– volume: 316
  start-page: 2961
  year: 2010
  ident: B21
  article-title: Stress-induced senescence in human and rodent astrocytes
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2010.06.021
– volume: 115
  start-page: E1896
  year: 2018
  ident: B34
  article-title: Normal aging induces A1-like astrocyte reactivity
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1800165115
– volume: 131
  start-page: 1069
  year: 2008
  ident: B172
  article-title: Genetic variation in the interleukin-1 beta-converting enzyme associates with cognitive function. The PROSPER study
  publication-title: Brain
  doi: 10.1093/brain/awn023
– volume: 29
  start-page: 737
  year: 2013
  ident: B77
  article-title: Normal cognitive aging
  publication-title: Clin. Geriatr. Med.
  doi: 10.1016/j.cger.2013.07.002
– volume: 95
  start-page: 102956
  year: 2020
  ident: B140
  article-title: The role of telomeres and telomerase in the senescence of postmitotic cells
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2020.102956
– volume: 22
  start-page: 1170
  year: 2020
  ident: B184
  article-title: SIRT1 is downregulated by autophagy in senescence and ageing
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-020-00579-5
– volume: 7
  start-page: 94
  year: 2020
  ident: B3
  article-title: Effects of physical exercise on autophagy and apoptosis in aged brain: human and animal studies
  publication-title: Front. Nutr.
  doi: 10.3389/fnut.2020.00094
– volume: 288
  start-page: 518
  year: 2020
  ident: B95
  article-title: Senolytic drugs: from discovery to translation. J
  publication-title: Intern. Med.
  doi: 10.1111/joim.13141
– volume: 68
  start-page: 757
  year: 2009
  ident: B43
  article-title: Tangle-bearing neurons survive despite disruption of membrane integrity in a mouse model of tauopathy
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/NEN.0b013e3181a9fc66
– volume: 1
  start-page: e87732
  year: 2016
  ident: B80
  article-title: Elimination of p19(ARF)-expressing cells enhances pulmonary function in mice
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.87732
– volume: 11
  start-page: 996
  year: 2012
  ident: B88
  article-title: Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2012.00870.x
– volume: 19
  start-page: 392
  year: 2009
  ident: B159
  article-title: Monocyte chemoattractant protein-1 plays a dominant role in the chronic inflammation observed in Alzheimer's disease
  publication-title: Brain Pathol.
  doi: 10.1111/j.1750-3639.2008.00188.x
– volume: 169
  start-page: 132
  year: 2017
  ident: B5
  article-title: Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging
  publication-title: Cell
  doi: 10.1016/j.cell.2017.02.031
– volume: 73
  start-page: 133
  year: 2018
  ident: B60
  article-title: Stress and aging act through common mechanisms to elicit neuroinflammatory priming
  publication-title: Brain Behav. Immun.
  doi: 10.1016/j.bbi.2018.07.012
– volume: 429
  start-page: 883
  year: 2004
  ident: B111
  article-title: Gene regulation and DNA damage in the ageing human brain
  publication-title: Nature
  doi: 10.1038/nature02661
– volume: 15
  start-page: e0227887
  year: 2020
  ident: B104
  article-title: Astrocyte senescence promotes glutamate toxicity in cortical neurons
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0227887
– volume: 16
  start-page: 884
  year: 2010
  ident: B156
  article-title: The promise of slow down ageing may come from curcumin
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/138161210790883507
– volume: 10
  start-page: 61
  year: 2007
  ident: B57
  article-title: Evidence that aging and amyloid promote microglial cell senescence
  publication-title: Rejuvenation Res.
  doi: 10.1089/rej.2006.9096
– volume: 32
  start-page: 65
  year: 2016
  ident: B52
  article-title: Impact of lysosome status on extracellular vesicle content and release
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2016.05.001
– volume: 7
  start-page: 81099
  year: 2016
  ident: B144
  article-title: Is senescence-associated beta-galactosidase a marker of neuronal senescence?
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.12752
– volume: 42
  start-page: 631
  year: 1992
  ident: B4
  article-title: Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease
  publication-title: Neurology
  doi: 10.1212/WNL.42.3.631
– volume: 19
  start-page: 202
  year: 2013
  ident: B161
  article-title: ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets
  publication-title: Nat. Med.
  doi: 10.1038/nm.3048
– volume: 7
  start-page: 57
  year: 2015
  ident: B137
  article-title: Impact of age-related neuroglial cell responses on hippocampal deterioration
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2015.00057
– volume: 34
  start-page: 308
  year: 2021
  ident: B177
  article-title: Senescence in post-mitotic cells: a driver of aging?
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2020.8048
– volume: 302
  start-page: 890
  year: 2003
  ident: B117
  article-title: DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation
  publication-title: Science
  doi: 10.1126/science.1090842
– volume: 172
  start-page: 39
  year: 2011
  ident: B109
  article-title: The role of ubiquitin-proteasome system in ageing
  publication-title: Gen. Comp. Endocrinol.
  doi: 10.1016/j.ygcen.2011.02.005
– volume: 541
  start-page: 481
  year: 2017
  ident: B103
  article-title: Neurotoxic reactive astrocytes are induced by activated microglia
  publication-title: Nature
  doi: 10.1038/nature21029
– volume: 46
  start-page: 415
  year: 2020
  ident: B28
  article-title: Phorbol myristate acetate induces cellular senescence in rat microglia in vitro
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2020.4587
– volume: 7
  start-page: 58
  year: 2012
  ident: B115
  article-title: How fisetin reduces the impact of age and disease on CNS function
  publication-title: Front. Biosci.
  doi: 10.2741/s425
– volume: 11
  start-page: 49
  year: 2019
  ident: B107
  article-title: Influence of normal aging on brain autophagy: a complex scenario
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2019.00049
– volume: 77
  start-page: 194
  year: 2019
  ident: B146
  article-title: Old age increases microglial senescence, exacerbates secondary neuroinflammation, and worsens neurological outcomes after acute traumatic brain injury in mice
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2019.02.010
– volume: 201
  start-page: 613
  year: 2013
  ident: B41
  article-title: p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201206006
– volume: 32
  start-page: 1795
  year: 2011
  ident: B158
  article-title: Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer's pathology and APOE genotype
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2011.04.013
– volume: 41
  start-page: 683
  year: 2019
  ident: B152
  article-title: Senolytics and senostatics as adjuvant tumour therapy
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2019.01.056
– volume: 11
  start-page: 2040622320964125
  year: 2020
  ident: B194
  article-title: Advancements in therapeutic drugs targeting of senescence
  publication-title: Ther. Adv. Chronic Dis.
  doi: 10.1177/2040622320964125
– volume: 18
  start-page: e12937
  year: 2019
  ident: B35
  article-title: Astrocyte senescence: evidence and significance
  publication-title: Aging Cell
  doi: 10.1111/acel.12937
– volume: 107
  start-page: 14164
  year: 2010
  ident: B106
  article-title: Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1009485107
– volume: 17
  start-page: 5546
  year: 2011
  ident: B123
  article-title: Inhibition of SRC family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-10-2616
– volume: 20
  start-page: 135
  year: 2019
  ident: B120
  article-title: Cell type-specific epigenetic links to schizophrenia risk in the brain
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1747-7
– volume: 40
  start-page: 554
  year: 2019
  ident: B89
  article-title: Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2018.12.052
– volume: 251
  start-page: 21
  year: 2013
  ident: B47
  article-title: Dendritic spine changes associated with normal aging
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2012.09.077
– volume: 38
  start-page: 800
  year: 2015
  ident: B98
  article-title: Neurocognitive aging and the hippocampus across species
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2015.10.003
– volume: 34
  start-page: 3
  year: 2011
  ident: B148
  article-title: Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2011.07738.x
– volume: 16
  start-page: 718
  year: 2017
  ident: B32
  article-title: Senescent cells: an emerging target for diseases of ageing
  publication-title: Nat Rev Drug Discov.
  doi: 10.1038/nrd.2017.116
– volume: 97
  start-page: 215
  year: 1989
  ident: B129
  article-title: Lysosome instability in aged rat brain
  publication-title: Neurosci. Lett.
  doi: 10.1016/0304-3940(89)90166-3
– volume: 16
  start-page: 2059
  year: 2002
  ident: B44
  article-title: Neuro-glia interaction effects on GFAP gene: a novel role for transforming growth factor-beta1
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.1460-9568.2002.02283.x
– volume: 12
  start-page: 1272
  year: 2020
  ident: B192
  article-title: FOXO4-DRI alleviates age-related testosterone secretion insufficiency by targeting senescent Leydig cells in aged mice
  publication-title: Aging
  doi: 10.18632/aging.102682
– volume: 128
  start-page: 1238
  year: 2018
  ident: B82
  article-title: Mechanisms and functions of cellular senescence
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI95148
– volume: 13
  start-page: 13
  year: 2014
  ident: B31
  article-title: The behavioral, pathological and therapeutic features of the senescence-accelerated mouse prone 8 strain as an Alzheimer's disease animal model
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2013.10.002
– volume: 9
  start-page: 19616
  year: 2019
  ident: B114
  article-title: Spermidine protects from age-related synaptic alterations at hippocampal mossy fiber-CA3 synapses
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56133-3
– volume: 10
  start-page: 263
  year: 2011
  ident: B39
  article-title: Age-related alterations in the dynamic behavior of microglia
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2010.00660.x
– volume: 48
  start-page: 661
  year: 2013
  ident: B154
  article-title: Rejuvenation of senescent cells-the road to postponing human aging and age-related disease?
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2012.09.008
– volume: 10
  start-page: 828
  year: 2020
  ident: B180
  article-title: Astrocyte support for oligodendrocyte differentiation can be conveyed via extracellular vesicles but diminishes with age
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-57663-x
– volume: 101
  start-page: 794
  year: 2007
  ident: B142
  article-title: Astrocytes aged in vitro show a decreased neuroprotective capacity
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2006.04369.x
– volume: 159
  start-page: 709
  year: 2014
  ident: B92
  article-title: Geroscience: linking aging to chronic disease
  publication-title: Cell
  doi: 10.1016/j.cell.2014.10.039
– volume: 12
  start-page: 201
  year: 1991
  ident: B173
  article-title: Functional elongation of CA1 hippocampal neurons with aging in Fischer 344 rats
  publication-title: Neurobiol. Aging
  doi: 10.1016/0197-4580(91)90098-5
– volume: 9
  start-page: 581
  year: 2018
  ident: B24
  article-title: p53-sensitive epileptic behavior and inflammation in Ft1 hypomorphic Mice
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2018.00581
– volume: 27
  start-page: 530
  ident: B8
  article-title: Etoposide induces mitochondrial dysfunction and cellular senescence in primary cultured rat astrocytes
  publication-title: Biomol. Ther.
  doi: 10.4062/biomolther.2019.151
– volume: 109
  start-page: 181
  year: 2018
  ident: B181
  article-title: The effect of spermidine on memory performance in older adults at risk for dementia: a randomized controlled trial
  publication-title: Cortex
  doi: 10.1016/j.cortex.2018.09.014
– volume: 7
  start-page: 22
  year: 2013
  ident: B182
  article-title: Microglial aging in the healthy CNS: phenotypes, drivers, and rejuvenation
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2013.00022
– volume: 27
  start-page: 1176
  year: 2018
  ident: B118
  article-title: Hallmarks of brain aging: adaptive and pathological modification by metabolic states
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.05.011
– volume: 5
  start-page: 99
  year: 2010
  ident: B37
  article-title: The senescence-associated secretory phenotype: the dark side of tumor suppression
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathol-121808-102144
– volume: 84
  start-page: 932
  year: 2008
  ident: B48
  article-title: Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0208108
– volume: 562
  start-page: 578
  year: 2018
  ident: B25
  article-title: Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline
  publication-title: Nature
  doi: 10.1038/s41586-018-0543-y
– volume: 11
  start-page: 1535
  year: 2020
  ident: B131
  article-title: Autophagy lipidation machinery regulates axonal microtubule dynamics but is dispensable for survival of mammalian neurons
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15287-9
– volume: 5
  start-page: 61
  year: 2018
  ident: B61
  article-title: The continuum of aging and age-related diseases: common mechanisms but different rates
  publication-title: Front. Med.
  doi: 10.3389/fmed.2018.00061
– volume: 24
  start-page: 1935
  year: 2010
  ident: B15
  article-title: Cultured cerebellar granule neurons as an in vitro aging model: topoisomerase IIbeta as an additional biomarker in DNA repair and aging
  publication-title: Toxicol. In Vitro
  doi: 10.1016/j.tiv.2010.08.003
– volume: 22
  start-page: 1696
  year: 2019
  ident: B183
  article-title: Single-cell transcriptomic profiling of the aging mouse brain
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0491-3
– volume: 18
  start-page: pyv002
  year: 2015
  ident: B178
  article-title: Telomerase dysregulation in the hippocampus of a rat model of depression: normalization by lithium
  publication-title: Int. J. Neuropsychopharmacol.
  doi: 10.1093/ijnp/pyv002
– volume: 190
  start-page: 111296
  year: 2020
  ident: B167
  article-title: ATM-deficient neural precursors develop senescence phenotype with disturbances in autophagy
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2020.111296
– volume: 7
  start-page: 167
  year: 2000
  ident: B12
  article-title: Age-related decrease in the Schaffer collateral-evoked EPSP in awake, freely behaving rats
  publication-title: Neural Plast.
  doi: 10.1155/NP.2000.167
– volume: 63
  start-page: 37
  year: 2015
  ident: B72
  article-title: Ammonia-induced senescence in cultured rat astrocytes and in human cerebral cortex in hepatic encephalopathy
  publication-title: Glia
  doi: 10.1002/glia.22731
– volume: 18
  start-page: 447
  year: 2017
  ident: B75
  article-title: Sirtuins, a promising target in slowing down the ageing process
  publication-title: Biogerontology
  doi: 10.1007/s10522-017-9685-9
– volume: 509
  start-page: 439
  year: 2014
  ident: B175
  article-title: The role of senescent cells in ageing
  publication-title: Nature
  doi: 10.1038/nature13193
– volume: 3
  start-page: 708
  year: 2012
  ident: B83
  article-title: Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1708
– volume: 15
  start-page: 409
  year: 2005
  ident: B30
  article-title: Increased action potential firing rates of layer 2/3 pyramidal cells in the prefrontal cortex are significantly related to cognitive performance in aged monkeys
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhh144
– volume: 133
  start-page: 110876
  year: 2020
  ident: B149
  article-title: When function follows form: nuclear compartment structure and the epigenetic landscape of the aging neuron
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2020.110876
– volume: 2
  start-page: 457
  year: 1992
  ident: B11
  article-title: Region-specific age effects on AMPA sensitivity: electrophysiological evidence for loss of synaptic contacts in hippocampal field CA1
  publication-title: Hippocampus
  doi: 10.1002/hipo.450020413
– volume: 19
  start-page: 151
  year: 2013
  ident: B93
  article-title: Fisetin: a dietary antioxidant for health promotion
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2012.4901
– volume: 8
  start-page: 1546
  year: 2019
  ident: B179
  article-title: Amitosenescence and pseudomitosenescence: putative new players in the aging process
  publication-title: Cells
  doi: 10.3390/cells8121546
– volume: 24
  start-page: 1246
  year: 2018
  ident: B185
  article-title: Senolytics improve physical function and increase lifespan in old age
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0092-9
– volume: 36
  start-page: 607
  year: 2001
  ident: B27
  article-title: From cells to organisms: can we learn about aging from cells in culture?
  publication-title: Exp. Gerontol.
  doi: 10.1016/S0531-5565(00)00230-8
– volume: 170
  start-page: 13
  year: 2018
  ident: B18
  article-title: Is DNA damage indispensable for stress-induced senescence?
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2017.08.004
– volume: 25
  start-page: 585
  year: 1961
  ident: B81
  article-title: The serial cultivation of human diploid cell strains
  publication-title: Exp. Cell Res.
  doi: 10.1016/0014-4827(61)90192-6
– year: 2021
  ident: B134
  article-title: Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice
  publication-title: Aging Cell
  doi: 10.1111/acel.13296
– volume: 124
  start-page: 319
  year: 2004
  ident: B26
  article-title: Dissection of tumor-necrosis factor-alpha inhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein kinase-dependent mechanism which maps to early-but not late-phase LTP
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2003.11.040
– volume: 11
  start-page: 1251
  year: 2019
  ident: B66
  article-title: Slowing down ageing: the role of nutrients and microbiota in modulation of the epigenome
  publication-title: Nutrients
  doi: 10.3390/nu11061251
– volume: 10
  start-page: 1261
  year: 1998
  ident: B42
  article-title: Layer-specific dendritic regression of pyramidal cells with ageing in the human prefrontal cortex
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.1460-9568.1998.00137.x
– volume: 31
  start-page: 7831
  year: 2011
  ident: B22
  article-title: Evidence for reduced experience-dependent dendritic spine plasticity in the aging prefrontal cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0839-11.2011
– volume: 9
  start-page: 6707
  year: 2018
  ident: B36
  article-title: Endoplasmic reticulum stress stimulates the release of extracellular vesicles carrying danger-associated molecular pattern (DAMP) molecules
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.24158
– volume: 15
  start-page: 47
  year: 2014
  ident: B19
  article-title: A comparison of replicative senescence and doxorubicin-induced premature senescence of vascular smooth muscle cells isolated from human aorta
  publication-title: Biogerontology
  doi: 10.1007/s10522-013-9477-9
– volume: 14
  start-page: 355
  year: 2012
  ident: B65
  article-title: Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2466
– volume: 26
  start-page: 8083
  year: 1987
  ident: B119
  article-title: Age-related increase in a cathepsin D like protease that degrades brain microtubule-associated proteins
  publication-title: Biochemistry
  doi: 10.1021/bi00399a010
– volume: 10
  start-page: 3590
  year: 2018
  ident: B186
  article-title: The senescent cell epigenome
  publication-title: Aging
  doi: 10.18632/aging.101617
– volume: 27
  start-page: 375
  year: 1992
  ident: B78
  article-title: The telomere hypothesis of cellular aging
  publication-title: Exp. Gerontol.
  doi: 10.1016/0531-5565(92)90068-B
– volume: 6
  start-page: 6
  year: 2020
  ident: B187
  article-title: Lysosome biology in autophagy
  publication-title: Cell Discov.
  doi: 10.1038/s41421-020-0141-7
– volume: 9
  start-page: 808
  year: 2013
  ident: B68
  article-title: Autophagy and senescence: a partnership in search of definition
  publication-title: Autophagy
  doi: 10.4161/auto.23922
– volume: 32
  start-page: 1106
  year: 2007
  ident: B74
  article-title: A dual role for interleukin-1 in hippocampal-dependent memory processes
  publication-title: Psychoneuroendocrinology
  doi: 10.1016/j.psyneuen.2007.09.004
– volume: 317
  start-page: C788
  year: 2019
  ident: B91
  article-title: Activated cholangiocytes release macrophage-polarizing extracellular vesicles bearing the DAMP S100A11
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00250.2019
– volume: 18
  start-page: 1865
  year: 2017
  ident: B188
  article-title: Monitoring and measuring autophagy
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18091865
– volume: 7
  start-page: 62
  year: 2010
  ident: B51
  article-title: TGFbeta signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke
  publication-title: J. Neuroinflammation
  doi: 10.1186/1742-2094-7-62
– volume: 45
  start-page: 75
  year: 2004
  ident: B58
  article-title: Progressive telomere shortening occurs in cultured rat microglia, but not astrocytes
  publication-title: Glia
  doi: 10.1002/glia.10301
– volume: 13
  start-page: 664
  year: 2010
  ident: B121
  article-title: Cortical DNA methylation maintains remote memory
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2560
– volume: 11
  start-page: 20
  year: 2019
  ident: B69
  article-title: Approaches and limitations in the investigation of synaptic transmission and plasticity
  publication-title: Front. Synaptic Neurosci.
  doi: 10.3389/fnsyn.2019.00020
– volume: 143
  start-page: 105008
  year: 2020
  ident: B147
  article-title: Glia: victims or villains of the aging brain?
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2020.105008
– volume: 29
  start-page: 273
  year: 2010
  ident: B40
  article-title: Senescent cells as a source of inflammatory factors for tumor progression
  publication-title: Cancer Metastasis Rev.
  doi: 10.1007/s10555-010-9220-9
– volume: 31
  start-page: 722
  year: 2014
  ident: B45
  article-title: An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2014.11.012
– volume: 22
  start-page: 4212
  year: 2003
  ident: B14
  article-title: Reversal of human cellular senescence: roles of the p53 and p16 pathways
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg417
– volume: 7
  start-page: e45069
  year: 2012
  ident: B16
  article-title: Astrocyte senescence as a component of Alzheimer's disease
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0045069
– volume: 24
  start-page: 7648
  year: 2004
  ident: B132
  article-title: Reduction in size of perforated postsynaptic densities in hippocampal axospinous synapses and age-related spatial learning impairments
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1725-04.2004
– volume: 332
  start-page: 966
  year: 2011
  ident: B130
  article-title: Spatial coupling of mTOR and autophagy augments secretory phenotypes
  publication-title: Science
  doi: 10.1126/science.1205407
– volume: 272
  start-page: 1017
  year: 1996
  ident: B170
  article-title: Increase in single L-type calcium channels in hippocampal neurons during aging
  publication-title: Science
  doi: 10.1126/science.272.5264.1017
– volume: 16
  start-page: 956
  year: 2017
  ident: B191
  article-title: HIV and drug abuse mediate astrocyte senescence in a beta-catenin-dependent manner leading to neuronal toxicity
  publication-title: Aging Cell
  doi: 10.1111/acel.12593
– volume: 153
  start-page: 1194
  year: 2013
  ident: B108
  article-title: The hallmarks of aging
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.039
– volume: 63
  start-page: 4854
  year: 2003
  ident: B53
  article-title: A P53-dependent, telomere-independent proliferative life span barrier in human astrocytes consistent with the molecular genetics of glioma development
  publication-title: Cancer Res.
– volume: 150
  start-page: 85
  year: 1978
  ident: B97
  article-title: Impaired synaptic potentiation processes in the hippocampus of aged, memory-deficient rats
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(78)90655-8
– volume: 22
  start-page: 930
  year: 2018
  ident: B33
  article-title: Cellular Senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to parkinson's disease
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.12.092
– volume: 19
  start-page: 2937
  year: 2018
  ident: B96
  article-title: Ageing cellular senescence and neurodegenerative disease
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19102937
– volume: 15
  start-page: 643
  year: 2014
  ident: B168
  article-title: Are there roles for brain cell senescence in aging and neurodegenerative disorders?
  publication-title: Biogerontology
  doi: 10.1007/s10522-014-9532-1
– volume: 14
  start-page: 649
  year: 1993
  ident: B59
  article-title: Critical issues in the analysis of dendritic extent in aging humans, primates, and rodents
  publication-title: Neurobiol. Aging
  doi: 10.1016/0197-4580(93)90058-J
– volume: 179
  start-page: 813
  year: 2019
  ident: B73
  article-title: Cellular senescence: defining a path forward
  publication-title: Cell
  doi: 10.1016/j.cell.2019.10.005
– volume: 14
  start-page: 31
  year: 2014
  ident: B143
  article-title: Communication breakdown: the impact of ageing on synapse structure
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2014.01.003
– volume: 16
  start-page: 543
  year: 2019
  ident: B112
  article-title: Molecular signatures of the aging brain: finding the links between genes and phenotypes
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-019-00743-2
– volume: 32
  start-page: 150
  year: 2016
  ident: B71
  article-title: Lysosomal cell death mechanisms in aging
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2016.02.009
– volume: 396
  start-page: 866
  year: 2010
  ident: B67
  article-title: Senescence-associated beta-galactosidase activity expression in aging hippocampal neurons
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2010.05.011
– volume: 17
  start-page: e12840
  year: 2018
  ident: B127
  article-title: Tau protein aggregation is associated with cellular senescence in the brain
  publication-title: Aging Cell
  doi: 10.1111/acel.12840
– volume: 92
  start-page: 9363
  year: 1995
  ident: B49
  article-title: A biomarker that identifies senescent human cells in culture and in aging skin in vivo
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.92.20.9363
– volume: 8
  start-page: 422
  year: 2017
  ident: B64
  article-title: Identification of HSP90 inhibitors as a novel class of senolytics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00314-z
– volume: 5
  start-page: 187
  year: 2006
  ident: B99
  article-title: Senescence-associated beta-galactosidase is lysosomal beta-galactosidase
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2006.00199.x
– volume: 143
  start-page: 3763
  year: 2020
  ident: B151
  article-title: Recalibrating the epigenetic clock: implications for assessing biological age in the human cortex
  publication-title: Brain
  doi: 10.1093/brain/awaa334
– volume: 85
  start-page: 296
  year: 2015
  ident: B122
  article-title: Blood-brain barrier breakdown in the aging human hippocampus
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.12.032
– volume: 2020
  start-page: 1047896
  year: 2020
  ident: B87
  article-title: Epigenetic clock: DNA methylation in aging
  publication-title: Stem Cells Int.
  doi: 10.1155/2020/1047896
– volume: 8
  start-page: e44219
  year: 2019
  ident: B163
  article-title: Expression of WIPI2B counteracts age-related decline in autophagosome biogenesis in neurons
  publication-title: Elife
  doi: 10.7554/eLife.44219
– volume: 38
  start-page: 637
  year: 2017
  ident: B138
  article-title: A brief overview of tauopathy: causes, consequences, therapeutic strategies
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2017.03.011
SSID ssj0000330058
Score 2.615188
SecondaryResourceType review_article
Snippet Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity...
Ageing of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 646924
SubjectTerms Age
Aging
Alzheimer's disease
Animal cognition
Animal models
Apoptosis
Autophagy
Brain
brain aging
Cell proliferation
cellular senescence
Chromatin remodeling
Cognitive ability
cognitive impairment
Cytology
Dendritic plasticity
Dendritic spines
Deoxyribonucleic acid
DNA
DNA damage
DNA methylation
Epigenetics
Functional plasticity
Gene expression
Glial cells
Histones
Homeostasis
Inflammation
Memory
Morphology
Motor ability
Neurodegenerative diseases
neuroinflammation
neuronal plasticity
Neuronal-glial interactions
Neuroplasticity
Neuroscience
Phagocytosis
Phenotypes
Post-translation
Proteins
Senescence
Synaptic transmission
β-Galactosidase
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kB_EifhutEsWTEJtks7vJsRVLEfSihd6W_UShRNH2_zuzSUsrohdPgewubN5ksjPM5D1CrhgzWWkLmhQMctVCGIEckC5hlbHCKy60DQ2yj3w0Lu4nbLIi9YU9YQ09cANcjzmfwpJSCA5Hdy6UV5ZR7432vLQqkG2nVbqSTIVvMEUa9rIpY0IWVvU8qv5APphnNxxSwrxYO4gCX_9PQeb3XsmVw2e4Q7bbqDHuN7vdJRuu3iObD21dfJ9c3rrpFBtK4yf8dhl01_i1jgcoABH3UYjogIyHd8-3o6RVP0gMRPmzxIN3aUWFVoyqihkuCquFLnSWcTjHvVXM59547gwSsnhtlLIK-d9tpSpX0kPSqd9qd0xi5QrDS0MN8qMpb7WDqI_mcHEZ9ZWISLqAQpqWGhwVKqYSUgRETwb0JKInG_Qicr1c8t7wYvw2eYD4LicipXW4AYaWraHlX4aOSHdhHdn62aeE5JFikpSxiFwsh8FDsOyhavc2hzkslI9plkfkqDHmcieUClRqghGxZua1ra6P1K8vgYUbRdoFT0_-49lOyRbCFX6VZ13SmX3M3RkEOzN9Ht7rL7S4_UU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB-sQulLqbbaWCtp6VMh9ZL9Sh5K8UQRoUepCr4t-9kKR87a8_93ZvPRnohPgewGltmZ2ZnM7O8H8EkIV9aes4ILzFW5coowIEMhGudVNFJZnxpkZ_L0kp9dias1mA13YaitcvCJyVH7haN_5AeYJjAKh0vx7eZPQaxRVF0dKDRMT63gvyaIsWewgS65Rr3fmB7Pfvwc_7pMGMGzp_txeNQWnEnRlToxU2sOIjEDYc5YlV8kpo0VXzmsEqb_Y4How37K_w6ok1fwso8s88NOFTZhLbRb8Px7Xzt_DR-PwnxOTaf5Ofk3RyadX7f5lEgi8kMiK3oDlyfHF0enRc-QUDjMBJZFRAu0hilrBDONcFJxb5XltiwlnvXRGxGr6KIMjkBbonXGeEMY8b4xTajZNqy3iza8hdwE7mTtmCMMNRO9DRgZsgofoWSxURlMBlFo18OHE4vFXGMaQdLTSXqapKc76WXwefzkpsPOeGrylOQ7TiTY6_RicftL91akRYgT1J9aKYlxXKVMNF6wGJ2NsvZGZrA37I7ubfGv_qc5GXwYh9GKqDRi2rC4wzkilZhZWWWw023muBLGFLE54Yha2eaVpa6OtNe_E1I3EbkrOdl9elnv4AUJIl2UF3uwvry9C-8x1Fna_V5_7wEMsPwm
  priority: 102
  providerName: ProQuest
Title Cellular Senescence in Brain Aging
URI https://www.ncbi.nlm.nih.gov/pubmed/33732142
https://www.proquest.com/docview/2493251115
https://www.proquest.com/docview/2502806312
https://pubmed.ncbi.nlm.nih.gov/PMC7959760
https://doaj.org/article/5ef0a67877664427afad53ffcbf68da6
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFD70AmMvZfd57YI39jRwF1s3-2GMprQrg5axLZA3oWtXCE6bprD--50jO2EZoS82WLIRRzo657Ok7wP4IIQra89ZwQViVa6cIg7IUIjGeRWNVNanDbIX8mzMv03EZAuW8la9AW83QjvSkxrPp4d_bu6_oMN_JsSJ8fZTJEEfhHpVeSgR7VV8G3YxMEnCYud9tp8mZkbc7OlwHMbZgjMpunXOzV9Zi1SJ0H9TFvr_Zsp_otPpE9jr08r8qBsHT2ErtM_g0Xm_cP4c3h-H6ZR2nOY_aXJz5M_5VZuPSCEiPyKlohcwPj35dXxW9PIIhUMYsCgiup81TFkjmGmEk4p7qyy3ZSkx0EdvRKyiizI4YmyJ1hnjDRHE-8Y0oWYvYaedteE15CZwJ2vHHBGomehtwLSQVXgLJYuNymC4NIV2PXc4SVhMNWIIsp5O1tNkPd1ZL4OPq1euO-KMhyqPyL6risR5nR7M5pe6dyEtQhzi4KmVkpjEVcpE4wWL0dkoa29kBgfL3tHLcaQRXTJCUaXI4N2qGF2I1kVMG2Z3WEek9WVWVhm86jpz1RLGFEk5YYla6-a1pq6XtFe_E003qbgrOXzzcLP24TEZIp2SFwews5jfhbeY5yzsALbVRA1gd3Ry8f3HIP0twOvXSTlI4_ov3kb91w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG8CBQKCC1LoJn4lhwp1S6stbVcIWqk34_gBlVbZ0m6F-HP8NmacZGER6q2nSLETWeOxPeOZ-T6AV0LYvHScZVygr8qVVYQB6TNRWaeCkap2MUF2IsdH_MOxOF6BX30tDKVV9nti3KjdzNId-Tq6CYzM4Vy8O_2eEWsURVd7Cg3TUSu4jQgx1hV27PmfP9CFO9_YfY_z_boodrYPt8ZZxzKQWbSm51lALa4NU7URzFTCSsVdrWpe57nE8zI4I0IRbJDeEvBJqK0xzhDOuqtM5UuG_70Gq5wqXAewOtqefPy0uOUZMoKDj_V4eLRnnEnRhlbRM6zWAzERoY9a5G8luqkFXzocI4fA_wzff_M3_zoQd27Drc6STTdb1bsDK765C9cPulj9PXi55adTSnJNP9N-amkLSU-adESkFOkmkSPdh6MrkdUDGDSzxj-C1HhuZWmZJcw2E1zt0RJlBT58zkKlEhj2otC2gysn1oypRreFpKej9DRJT7fSS-DN4pPTFqvjss4jku-iI8Fsxxezs6-6W7Va-DBEfS2Vkmg3FsoE4wQLwdZBls7IBNb62dHd2j_XfzQ1gReLZly1FIoxjZ9dYB8RQ9osLxJ42E7mYiSMKWKPwha1NM1LQ11uaU6-RWRwIo5Xcvj48mE9hxvjw4N9vb872XsCN0kosUhfrMFgfnbhn6KZNa-fdbqcwperXj6_AXE1OzY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQbxJKRAQXJDCbuLYTg4V6rZdtRRWFVCpt9TxAyqtsn1shfiL_CpmHCewCPXWU6S1N7LG43lkxt8H8JpznRYmZ0nOMVfNpZaEAWkTXmojnRKyNr5Bdir2jvIPx_x4BX51d2GorbKzid5Qm7mmb-RDTBMYhcMpH7rQFnG4M3l_dp4QgxRVWjs6DRVoFsymhxsLlzwO7M8fmM5dbu7v4N6_ybLJ7tftvSQwDiQaI-tF4lCja8VkrThTJddC5qaWdV6nqUDf6YziLnPaCasJBMXVWimjCHPdlKq0BcP33oJViV4yH8DqeHd6-Ln_4jNiBA3v7-ahm09yJnhbZsUssRw6YiXCfDVL3wlMWbN8yVF6PoH_BcH_9nL-5Rwnd-FOiGrjrVYN78GKbe7D2qdQt38Ar7btbEYNr_EXsq2azEl82sRjIqiIt4go6SEc3YisHsGgmTf2CcTK5loUmmnCb1PO1BajUpbhw6bMlTKCUSeKSgfocmLQmFWYwpD0Ki-9iqRXtdKL4G3_l7MWt-O6yWOSbz-RILf9D_OLb1U4wRW3boS6W0gpMIbMpHLKcOacrp0ojBIRbHS7UwU7cFn90doIXvbDeIKpLKMaO7_COdyXt1maRfC43cx-JYxJYpLCEbm0zUtLXR5pTr97lHAikZditH79sl7AGh6j6uP-9OAp3CaZ-Pv6fAMGi4sr-wwjrkX9PKhyDCc3fXp-A-HXP2I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cellular+Senescence+in+Brain+Aging&rft.jtitle=Frontiers+in+aging+neuroscience&rft.au=Sikora%2C+Ewa&rft.au=Bielak-Zmijewska%2C+Anna&rft.au=Dudkowska%2C+Magdalena&rft.au=Krzystyniak%2C+Adam&rft.date=2021-02-25&rft.pub=Frontiers+Research+Foundation&rft.issn=1663-4365&rft.eissn=1663-4365&rft_id=info:doi/10.3389%2Ffnagi.2021.646924&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-4365&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-4365&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-4365&client=summon