Cellular Senescence in Brain Aging
Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may...
Saved in:
Published in | Frontiers in aging neuroscience Vol. 13; p. 646924 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
25.02.2021
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1663-4365 1663-4365 |
DOI | 10.3389/fnagi.2021.646924 |
Cover
Abstract | Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both
in vitro
and
in vivo
, and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated
in vitro
can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics. |
---|---|
AbstractList | Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both in vitro and in vivo, and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated in vitro can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics. Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both and , and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics. Ageing of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to ageing and a number of ageing-related disorders, its involvement in brain ageing is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the ageing of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal) and epigenetic alterations, including DNA methylation, chromatin remodeling and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both in vitro and in vivo, and they likely participate in neuroinflammation, which is characteristic for the ageing brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated in vitro can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics. Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both in vitro and in vivo , and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated in vitro can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics. Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both in vitro and in vivo, and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated in vitro can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics.Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both in vitro and in vivo, and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated in vitro can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics. |
Author | Dudkowska, Magdalena Wesierska, Malgorzata Sikora, Ewa Wlodarczyk, Jakub Bielak-Zmijewska, Anna Krzystyniak, Adam Mosieniak, Grazyna |
AuthorAffiliation | 1 Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS , Warsaw , Poland 3 Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, PAS , Warsaw , Poland 2 Laboratory of Neuropsychology, Nencki Institute of Experimental Biology, PAS , Warsaw , Poland |
AuthorAffiliation_xml | – name: 3 Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, PAS , Warsaw , Poland – name: 2 Laboratory of Neuropsychology, Nencki Institute of Experimental Biology, PAS , Warsaw , Poland – name: 1 Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS , Warsaw , Poland |
Author_xml | – sequence: 1 givenname: Ewa surname: Sikora fullname: Sikora, Ewa – sequence: 2 givenname: Anna surname: Bielak-Zmijewska fullname: Bielak-Zmijewska, Anna – sequence: 3 givenname: Magdalena surname: Dudkowska fullname: Dudkowska, Magdalena – sequence: 4 givenname: Adam surname: Krzystyniak fullname: Krzystyniak, Adam – sequence: 5 givenname: Grazyna surname: Mosieniak fullname: Mosieniak, Grazyna – sequence: 6 givenname: Malgorzata surname: Wesierska fullname: Wesierska, Malgorzata – sequence: 7 givenname: Jakub surname: Wlodarczyk fullname: Wlodarczyk, Jakub |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33732142$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV9LHDEUxYMoatUP0BdZ9KUvu83_TF4EXWwrCH1ofQ53Msk0SzbRzEyh396sq0UF85BcknN-3NzzCe2mnBxCnwleMNborz5BHxYUU7KQXGrKd9AhkZLNOZNi91V9gE6GYYXrYgxj0eyjA8YUo4TTQ3S2dDFOEcrsl0tusC5ZNwtpdlWg7pd9SP0x2vMQB3fyfB6hu2_Xv5c_5rc_v98sL2_nVgg9zj3HuAWmWhAMtLBS8a5VLW8JkbghvgPhqbdeOqukEr61AB0wrmWnQbuGHaGbLbfLsDL3Jayh_DMZgnm6yKU3UMZgozPCeQxSNUpJyTlV4KETzHvbetl0ICvrYsu6n9q16-q3xgLxDfTtSwp_TJ__GqWFVhJXwJdnQMkPkxtGsw51OjFCcnkaDBWYNlgyQqv0_J10laeS6qgM5ZpRQQgRVXX6uqP_rbxEUQVqK7AlD0Nx3tgwwhjypsEQDcFmk7t5yt1scjfb3KuTvHO-wD_2PALBu6_k |
CitedBy_id | crossref_primary_10_1016_j_jaim_2022_100636 crossref_primary_10_3389_fnut_2022_1087505 crossref_primary_10_3390_biomedicines10081859 crossref_primary_10_1016_j_jchemneu_2022_102210 crossref_primary_10_1002_mus_28290 crossref_primary_10_1073_pnas_2321408121 crossref_primary_10_4103_AGINGADV_AGINGADV_D_24_00019 crossref_primary_10_1016_j_expneurol_2025_115186 crossref_primary_10_1186_s12979_022_00281_0 crossref_primary_10_1093_mtomcs_mfae008 crossref_primary_10_1038_s41467_023_39786_7 crossref_primary_10_1128_jvi_00560_24 crossref_primary_10_1016_j_eng_2023_04_012 crossref_primary_10_1038_s41598_023_35533_6 crossref_primary_10_3390_ijms24065986 crossref_primary_10_3389_fcell_2022_946678 crossref_primary_10_3390_cells10102790 crossref_primary_10_1016_j_cvsm_2023_08_006 crossref_primary_10_1093_gerona_glae150 crossref_primary_10_1177_15353702231157917 crossref_primary_10_3389_fnagi_2023_1281581 crossref_primary_10_1111_jnc_15827 crossref_primary_10_3390_antiox11081426 crossref_primary_10_1089_ars_2024_0794 crossref_primary_10_1038_s41467_023_43292_1 crossref_primary_10_11005_jbm_2023_30_1_1 crossref_primary_10_1016_j_conb_2021_09_009 crossref_primary_10_3389_fgene_2022_868856 crossref_primary_10_1139_cjpp_2022_0071 crossref_primary_10_3389_fnagi_2024_1476909 crossref_primary_10_1016_j_ymthe_2025_02_030 crossref_primary_10_1016_j_expneurol_2023_114481 crossref_primary_10_1016_j_envpol_2023_121650 crossref_primary_10_1016_j_jnutbio_2025_109862 crossref_primary_10_1016_j_exger_2025_112685 crossref_primary_10_1038_s43587_023_00504_z crossref_primary_10_3390_antiox13010024 crossref_primary_10_3389_fnagi_2023_1139789 crossref_primary_10_1038_s41586_024_08350_8 crossref_primary_10_3389_fragi_2024_1511370 crossref_primary_10_3390_ijms24054297 crossref_primary_10_3390_cells11213408 crossref_primary_10_1080_0361073X_2025_2476331 crossref_primary_10_1038_s41514_024_00178_w crossref_primary_10_3389_fragi_2021_761333 crossref_primary_10_1016_j_neuint_2021_105115 crossref_primary_10_1007_s00109_024_02504_x crossref_primary_10_1016_j_apsb_2023_12_009 crossref_primary_10_1016_j_freeradbiomed_2024_08_031 crossref_primary_10_3389_fnagi_2022_847374 crossref_primary_10_3390_ijms25073881 crossref_primary_10_3389_fnins_2023_1188065 crossref_primary_10_3390_ijms24087364 crossref_primary_10_1152_physiol_00003_2023 crossref_primary_10_1186_s13024_023_00616_5 crossref_primary_10_1016_j_jhazmat_2023_131891 crossref_primary_10_1111_acel_14109 crossref_primary_10_1038_s41467_024_53507_8 crossref_primary_10_1186_s13072_025_00567_9 crossref_primary_10_1111_acel_13817 crossref_primary_10_3389_fnimg_2022_947526 crossref_primary_10_1016_j_bbi_2024_08_022 crossref_primary_10_3389_fnhum_2022_815759 crossref_primary_10_3389_fvets_2024_1369153 crossref_primary_10_3390_neurolint17010006 crossref_primary_10_3390_jcm13237031 crossref_primary_10_1016_j_nbd_2022_105700 crossref_primary_10_15252_embr_202357265 crossref_primary_10_1159_000531422 crossref_primary_10_1152_ajpcell_00072_2022 crossref_primary_10_3390_cells13211775 crossref_primary_10_3389_fnins_2022_824191 crossref_primary_10_1111_joim_13775 crossref_primary_10_3390_foods13152441 crossref_primary_10_1038_s41398_024_02935_7 crossref_primary_10_3390_brainsci13111581 crossref_primary_10_14336_AD_2023_0214 crossref_primary_10_1016_j_expneurol_2024_115135 crossref_primary_10_1016_j_mcn_2024_103919 crossref_primary_10_1016_j_neurobiolaging_2025_02_003 crossref_primary_10_1016_j_brainres_2024_149202 crossref_primary_10_3390_reports5020022 crossref_primary_10_3389_fpsyt_2024_1449526 crossref_primary_10_3389_fragi_2022_1014675 crossref_primary_10_3390_cells10051256 crossref_primary_10_1016_j_celrep_2023_112593 crossref_primary_10_4103_1673_5374_380877 crossref_primary_10_3390_ijms25105467 crossref_primary_10_3389_fnagi_2023_1162747 crossref_primary_10_1007_s11357_025_01563_3 crossref_primary_10_3390_genes14040798 crossref_primary_10_1016_j_neulet_2024_137730 crossref_primary_10_1021_acschemneuro_2c00348 crossref_primary_10_3389_fphys_2021_715443 crossref_primary_10_14336_AD_2022_1022 crossref_primary_10_1002_glia_24287 crossref_primary_10_1007_s00018_024_05164_9 crossref_primary_10_3389_fnins_2022_978431 crossref_primary_10_1016_j_mad_2021_111575 crossref_primary_10_1111_jnc_16301 crossref_primary_10_1016_j_jconrel_2025_01_022 crossref_primary_10_3390_brainsci11091121 crossref_primary_10_1038_s41537_024_00443_7 crossref_primary_10_1371_journal_pone_0287646 crossref_primary_10_3389_fncel_2022_999303 crossref_primary_10_1038_s41398_024_03004_9 crossref_primary_10_1007_s00018_023_04832_6 crossref_primary_10_1007_s12264_022_00969_9 crossref_primary_10_3233_JAD_231222 crossref_primary_10_3390_antiox10111715 crossref_primary_10_1007_s11427_023_2305_0 crossref_primary_10_1038_s41392_023_01502_8 crossref_primary_10_1186_s13024_025_00810_7 crossref_primary_10_1016_j_heliyon_2024_e37883 crossref_primary_10_1016_j_ebiom_2025_105612 crossref_primary_10_3390_ijms251910535 crossref_primary_10_3390_cells14020143 crossref_primary_10_1007_s12035_024_04546_1 crossref_primary_10_1080_10408398_2023_2222404 crossref_primary_10_3390_antiox13010076 crossref_primary_10_1016_j_tice_2023_102192 crossref_primary_10_1038_s41556_023_01168_y crossref_primary_10_1177_25424823241310716 crossref_primary_10_3233_JAD_220269 crossref_primary_10_3390_cimb46030130 crossref_primary_10_3390_biom12070881 crossref_primary_10_1002_adbi_202300097 crossref_primary_10_1007_s10522_025_10199_x crossref_primary_10_3389_fphar_2022_750507 crossref_primary_10_1038_s43587_023_00373_6 crossref_primary_10_3389_fnagi_2023_1119552 crossref_primary_10_3390_nu15102365 crossref_primary_10_1021_acschemneuro_4c00109 crossref_primary_10_1038_s41514_024_00176_y crossref_primary_10_1186_s12979_024_00447_y crossref_primary_10_1007_s00281_024_01016_7 crossref_primary_10_1111_acel_14393 crossref_primary_10_1007_s00418_025_02363_8 crossref_primary_10_1186_s12974_023_02870_2 crossref_primary_10_3390_biomedicines11041151 crossref_primary_10_1021_acschemneuro_3c00531 crossref_primary_10_3390_ijms24010778 crossref_primary_10_3390_ijms242417339 crossref_primary_10_1016_j_conb_2022_102653 crossref_primary_10_3390_ijms23031909 crossref_primary_10_24884_1682_6655_2024_23_2_84_90 crossref_primary_10_1111_acel_13977 crossref_primary_10_1038_s44220_023_00033_z crossref_primary_10_3390_biomedicines9111635 crossref_primary_10_1038_s41420_024_01816_8 crossref_primary_10_3390_biomedicines11082092 crossref_primary_10_1007_s12035_024_04666_8 crossref_primary_10_1016_j_brainresbull_2023_03_007 crossref_primary_10_1007_s00401_024_02768_0 crossref_primary_10_1016_j_molmed_2024_11_003 crossref_primary_10_1016_j_gene_2023_147437 crossref_primary_10_3389_fphar_2022_1122786 crossref_primary_10_62347_LUAJ9063 crossref_primary_10_31083_j_jin2306118 crossref_primary_10_1038_s41514_024_00187_9 crossref_primary_10_3390_jcm12093190 crossref_primary_10_1016_j_conb_2022_102524 crossref_primary_10_18632_aging_203835 crossref_primary_10_3389_fnagi_2023_1218267 crossref_primary_10_1093_toxres_tfac051 crossref_primary_10_1007_s12291_024_01220_0 crossref_primary_10_3390_ijms251910757 crossref_primary_10_3390_biomedicines11040994 crossref_primary_10_2174_0115680266322320240911194626 crossref_primary_10_1016_j_arr_2022_101574 crossref_primary_10_3390_antiox14030348 crossref_primary_10_1155_2021_6682336 crossref_primary_10_3233_JAD_220203 crossref_primary_10_1016_j_neuroscience_2024_11_004 crossref_primary_10_4103_1673_5374_385845 crossref_primary_10_1016_j_bbi_2023_12_034 crossref_primary_10_1186_s40478_023_01578_x crossref_primary_10_3390_ijms231810695 crossref_primary_10_3389_fnagi_2022_789190 crossref_primary_10_3389_fphys_2022_864758 crossref_primary_10_1126_science_adp6325 crossref_primary_10_3390_brainsci13030500 crossref_primary_10_3389_fnmol_2023_1249320 crossref_primary_10_3390_ijms26051815 |
Cites_doi | 10.1038/nature13163 10.1016/S0165-5728(01)00496-9 10.1111/acel.13188 10.1111/j.1365-2990.2006.00632.x 10.1093/gerona/glu231 10.12659/MSM.881706 10.4049/jimmunol.179.12.8525 10.1101/gad.519709 10.1113/jphysiol.1980.sp013521 10.1038/s41593-019-0372-9 10.1016/j.neuroscience.2010.09.022 10.1016/j.neurobiolaging.2006.07.022 10.1016/j.tem.2016.09.005 10.1172/JCI95145 10.1080/15548627.2016.1265193 10.1016/j.celrep.2016.12.011 10.1210/clinem/dgaa728 10.1096/fj.09-149997 10.1016/j.neuron.2014.11.018 10.1002/jnr.24436 10.1111/acel.13071 10.1016/j.cmet.2018.12.008 10.1016/j.nurt.2010.05.017 10.1016/0014-4886(85)90171-2 10.1242/jcs.001073 10.1016/j.arr.2019.100941 10.1038/nrn.2017.170 10.1083/jcb.117.2.395 10.1177/1073858418780971 10.1002/glia.23782 10.2174/18715206113139990114 10.1159/000215589 10.1016/j.cub.2018.12.021 10.1091/mbc.e11-10-0884 10.14348/molcells.2018.2333 10.1111/trf.15300 10.1126/science.aag3048 10.1016/j.mad.2020.111256 10.1523/JNEUROSCI.18-08-02974.1998 10.3389/neuro.24.006.2009 10.3389/fnagi.2017.00194 10.18632/aging.102181 10.1523/JNEUROSCI.0193-15.2015 10.1002/glia.20468 10.1016/j.arr.2016.04.010 10.1038/nature10600 10.1126/science.aaa5612 10.1016/j.neuropharm.2014.10.028 10.1155/2013/839535 10.1038/s41598-020-71042-6 10.3389/fnagi.2017.00138 10.3390/genes9050250 10.1016/j.ebiom.2018.09.015 10.4062/biomolther.2018.107 10.3389/fnins.2018.00464 10.1126/sciadv.1600584 10.18632/aging.103008 10.1016/j.neurobiolaging.2007.07.015 10.1016/j.ebiom.2019.08.069 10.1016/j.yexcr.2010.06.021 10.1073/pnas.1800165115 10.1093/brain/awn023 10.1016/j.cger.2013.07.002 10.1016/j.dnarep.2020.102956 10.1038/s41556-020-00579-5 10.3389/fnut.2020.00094 10.1111/joim.13141 10.1097/NEN.0b013e3181a9fc66 10.1172/jci.insight.87732 10.1111/j.1474-9726.2012.00870.x 10.1111/j.1750-3639.2008.00188.x 10.1016/j.cell.2017.02.031 10.1016/j.bbi.2018.07.012 10.1038/nature02661 10.1371/journal.pone.0227887 10.2174/138161210790883507 10.1089/rej.2006.9096 10.1016/j.arr.2016.05.001 10.18632/oncotarget.12752 10.1212/WNL.42.3.631 10.1038/nm.3048 10.3389/fnagi.2015.00057 10.1089/ars.2020.8048 10.1126/science.1090842 10.1016/j.ygcen.2011.02.005 10.1038/nature21029 10.3892/ijmm.2020.4587 10.2741/s425 10.3389/fnagi.2019.00049 10.1016/j.neurobiolaging.2019.02.010 10.1083/jcb.201206006 10.1016/j.neurobiolaging.2011.04.013 10.1016/j.ebiom.2019.01.056 10.1177/2040622320964125 10.1111/acel.12937 10.1073/pnas.1009485107 10.1158/1078-0432.CCR-10-2616 10.1186/s13059-019-1747-7 10.1016/j.ebiom.2018.12.052 10.1016/j.neuroscience.2012.09.077 10.1016/j.tins.2015.10.003 10.1111/j.1460-9568.2011.07738.x 10.1038/nrd.2017.116 10.1016/0304-3940(89)90166-3 10.1046/j.1460-9568.2002.02283.x 10.18632/aging.102682 10.1172/JCI95148 10.1016/j.arr.2013.10.002 10.1038/s41598-019-56133-3 10.1111/j.1474-9726.2010.00660.x 10.1016/j.exger.2012.09.008 10.1038/s41598-020-57663-x 10.1111/j.1471-4159.2006.04369.x 10.1016/j.cell.2014.10.039 10.1016/0197-4580(91)90098-5 10.3389/fgene.2018.00581 10.4062/biomolther.2019.151 10.1016/j.cortex.2018.09.014 10.3389/fncel.2013.00022 10.1016/j.cmet.2018.05.011 10.1146/annurev-pathol-121808-102144 10.1189/jlb.0208108 10.1038/s41586-018-0543-y 10.1038/s41467-020-15287-9 10.3389/fmed.2018.00061 10.1016/j.tiv.2010.08.003 10.1038/s41593-019-0491-3 10.1093/ijnp/pyv002 10.1016/j.mad.2020.111296 10.1155/NP.2000.167 10.1002/glia.22731 10.1007/s10522-017-9685-9 10.1038/nature13193 10.1038/ncomms1708 10.1093/cercor/bhh144 10.1016/j.exger.2020.110876 10.1002/hipo.450020413 10.1089/ars.2012.4901 10.3390/cells8121546 10.1038/s41591-018-0092-9 10.1016/S0531-5565(00)00230-8 10.1016/j.mad.2017.08.004 10.1016/0014-4827(61)90192-6 10.1111/acel.13296 10.1016/j.neuroscience.2003.11.040 10.3390/nu11061251 10.1046/j.1460-9568.1998.00137.x 10.1523/JNEUROSCI.0839-11.2011 10.18632/oncotarget.24158 10.1007/s10522-013-9477-9 10.1038/ncb2466 10.1021/bi00399a010 10.18632/aging.101617 10.1016/0531-5565(92)90068-B 10.1038/s41421-020-0141-7 10.4161/auto.23922 10.1016/j.psyneuen.2007.09.004 10.1152/ajpcell.00250.2019 10.3390/ijms18091865 10.1186/1742-2094-7-62 10.1002/glia.10301 10.1038/nn.2560 10.3389/fnsyn.2019.00020 10.1016/j.nbd.2020.105008 10.1007/s10555-010-9220-9 10.1016/j.devcel.2014.11.012 10.1093/emboj/cdg417 10.1371/journal.pone.0045069 10.1523/JNEUROSCI.1725-04.2004 10.1126/science.1205407 10.1126/science.272.5264.1017 10.1111/acel.12593 10.1016/j.cell.2013.05.039 10.1016/0006-8993(78)90655-8 10.1016/j.celrep.2017.12.092 10.3390/ijms19102937 10.1007/s10522-014-9532-1 10.1016/0197-4580(93)90058-J 10.1016/j.cell.2019.10.005 10.1016/j.arr.2014.01.003 10.1007/s13311-019-00743-2 10.1016/j.arr.2016.02.009 10.1016/j.bbrc.2010.05.011 10.1111/acel.12840 10.1073/pnas.92.20.9363 10.1038/s41467-017-00314-z 10.1111/j.1474-9726.2006.00199.x 10.1093/brain/awaa334 10.1016/j.neuron.2014.12.032 10.1155/2020/1047896 10.7554/eLife.44219 10.1016/j.tips.2017.03.011 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Sikora, Bielak-Zmijewska, Dudkowska, Krzystyniak, Mosieniak, Wesierska and Wlodarczyk. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2021 Sikora, Bielak-Zmijewska, Dudkowska, Krzystyniak, Mosieniak, Wesierska and Wlodarczyk. 2021 Sikora, Bielak-Zmijewska, Dudkowska, Krzystyniak, Mosieniak, Wesierska and Wlodarczyk |
Copyright_xml | – notice: Copyright © 2021 Sikora, Bielak-Zmijewska, Dudkowska, Krzystyniak, Mosieniak, Wesierska and Wlodarczyk. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2021 Sikora, Bielak-Zmijewska, Dudkowska, Krzystyniak, Mosieniak, Wesierska and Wlodarczyk. 2021 Sikora, Bielak-Zmijewska, Dudkowska, Krzystyniak, Mosieniak, Wesierska and Wlodarczyk |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnagi.2021.646924 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1663-4365 |
ExternalDocumentID | oai_doaj_org_article_5ef0a67877664427afad53ffcbf68da6 PMC7959760 33732142 10_3389_fnagi_2021_646924 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Narodowe Centrum Nauki |
GroupedDBID | --- 53G 5VS 7X7 88I 8FE 8FH 8FI 8FJ 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO E3Z EIHBH F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 UKHRP IPNFZ NPM RIG 3V. 7XB 8FK K9. PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c559t-f400ba37ba53a95c674db7b4b116081fda5f2fcf6ec7675fbcaada3496d9a9e83 |
IEDL.DBID | M48 |
ISSN | 1663-4365 |
IngestDate | Wed Aug 27 01:26:25 EDT 2025 Thu Aug 21 13:20:16 EDT 2025 Fri Sep 05 06:17:42 EDT 2025 Fri Jul 25 11:35:24 EDT 2025 Thu Apr 03 06:52:31 EDT 2025 Thu Apr 24 22:52:32 EDT 2025 Tue Jul 01 04:03:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | neuronal plasticity brain aging cognitive impairment autophagy cellular senescence neuroinflammation |
Language | English |
License | Copyright © 2021 Sikora, Bielak-Zmijewska, Dudkowska, Krzystyniak, Mosieniak, Wesierska and Wlodarczyk. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c559t-f400ba37ba53a95c674db7b4b116081fda5f2fcf6ec7675fbcaada3496d9a9e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Edited by: Jolanta Dorszewska, Poznan University of Medical Sciences, Poland Reviewed by: Jose Felix Moruno-Manchon, University of Texas Health Science Center at Houston, United States; Susana Castro-Obregon, National Autonomous University of Mexico, Mexico |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnagi.2021.646924 |
PMID | 33732142 |
PQID | 2493251115 |
PQPubID | 4424411 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5ef0a67877664427afad53ffcbf68da6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7959760 proquest_miscellaneous_2502806312 proquest_journals_2493251115 pubmed_primary_33732142 crossref_citationtrail_10_3389_fnagi_2021_646924 crossref_primary_10_3389_fnagi_2021_646924 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-25 |
PublicationDateYYYYMMDD | 2021-02-25 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in aging neuroscience |
PublicationTitleAlternate | Front Aging Neurosci |
PublicationYear | 2021 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Groh (B76) 2017; 9 Gorgoulis (B73) 2019; 179 Goshen (B74) 2007; 32 von Zglinicki (B177) 2021; 34 B29 Willis (B180) 2020; 10 Chang (B30) 2005; 15 Maglione (B114) 2019; 9 Togo (B171) 2002; 124 Lopez-Otin (B108) 2013; 153 Glasgow (B69) 2019; 11 Farrall (B54) 2009; 30 Wengerodt (B179) 2019; 8 Spittau (B162) 2017; 9 Cao (B28) 2020; 46 Sokolova (B159) 2009; 19 Lu (B111) 2004; 429 Musi (B127) 2018; 17 Simkin (B157) 2015; 35 Sikora (B155) 2019; 55 Lipinski (B106) 2010; 107 Landfield (B97) 1978; 150 Sierra (B153) 2007; 55 Sikora (B156) 2010; 16 Acklin (B1) 2020; 10 Murray (B126) 1998; 18 Mendizabal (B120) 2019; 20 Marcoux (B116) 2019; 59 Wong (B182) 2013; 7 Geng (B67) 2010; 396 Bigagli (B20) 2016; 71 Andreotti (B3) 2020; 7 Butler (B26) 2004; 124 Loeffler (B107) 2019; 11 Matus (B119) 1987; 26 Jiang (B87) 2020; 2020 Simpson (B158) 2011; 32 Hewitt (B83) 2012; 3 Devine (B46) 2018; 19 Rango (B145) 2018; 9 Bruning (B23) 2013; 13 Tan (B168) 2014; 15 Moreno-Garcia (B125) 2018; 12 Grabowska (B75) 2017; 18 Leal (B98) 2015; 38 Hickson (B84) 2019; 47 Lu (B110) 2014; 507 Martinowich (B117) 2003; 302 Yim (B187) 2020; 6 Dilger (B48) 2008; 84 Young (B189) 2009; 23 Flanary (B57) 2007; 10 Baker (B6) 2018; 128 Stavoe (B163) 2019; 8 Dong (B50) 2011; 17 Collett (B36) 2018; 9 Ojo (B136) 2013; 2013 Wei (B178) 2015; 18 Chinta (B33) 2018; 22 Kiffin (B94) 2007; 120 Low (B109) 2011; 172 Kang (B90) 2015; 349 Yu (B191) 2017; 16 Turner (B173) 1991; 12 Shireby (B151) 2020; 143 Ogrodnik (B135) 2019; 29 Glatigny (B70) 2019; 29 Shimada (B150) 2006; 32 Flood (B59) 1993; 14 Lian (B102) 2015; 85 Piechota (B144) 2016; 7 Wirth (B181) 2018; 109 Salas (B147) 2020; 143 Cheng (B31) 2014; 13 Gomez-Sintes (B71) 2016; 32 Jacome Burbano (B86) 2020; 189 Kritsilis (B96) 2018; 19 Kirkland (B95) 2020; 288 Montagne (B122) 2015; 85 Limbad (B104) 2020; 15 Lindholm (B105) 1992; 117 Schlachetzki (B149) 2020; 133 Miller (B121) 2010; 13 Clarke (B34) 2018; 115 Bhat (B16) 2012; 7 Sikora (B154) 2013; 48 Trompet (B172) 2008; 131 Hashimoto (B80) 2016; 1 Narita (B130) 2011; 332 Nakamura (B129) 1989; 97 Bielak-Zmijewska (B18) 2018; 170 Dickstein (B47) 2013; 251 Doyle (B51) 2010; 7 Bhanu (B15) 2010; 24 Baar (B5) 2017; 169 Bloss (B22) 2011; 31 Souers (B161) 2013; 19 Zhang (B193) 2019; 22 Lupo (B112) 2019; 16 Adams (B2) 2010; 171 Justice (B89) 2019; 40 Uemura (B174) 1985; 87 Bang (B9); 27 Childs (B32) 2017; 16 Arriagada (B4) 1992; 42 de Sampaio e Spohr (B44) 2002; 16 Herranz (B82) 2018; 128 Davalos (B40) 2010; 29 Lee (B99) 2006; 5 Gadecka (B66) 2019; 11 Hayflick (B81) 1961; 25 Zhu (B194) 2020; 11 Negrete-Hurtado (B131) 2020; 11 Zhang (B192) 2020; 12 Dimri (B49) 1995; 92 Evans (B53) 2003; 63 Maher (B115) 2012; 7 Soreq (B160) 2017; 18 Streit (B166) 2020; 68 de Calignon (B43) 2009; 68 Fumagalli (B65) 2012; 14 Tchkonia (B169) 2020; 16 Fonken (B60) 2018; 73 Ojo (B137) 2015; 7 Xu (B184) 2020; 22 Yousefzadeh (B190) 2018; 36 Jurk (B88) 2012; 11 Ogrodnik (B134) 2021 Yang (B186) 2018; 10 Bussian (B25) 2018; 562 Pedrazzi (B141) 2007; 179 Demaria (B45) 2014; 31 Yoshii (B188) 2017; 18 Barnes (B10) 1980; 309 Gewirtz (B68) 2013; 9 Xu (B185) 2018; 24 Short (B152) 2019; 41 Eitan (B52) 2016; 32 Flanary (B58) 2004; 45 Dai (B38) 2020; 12 Bitto (B21) 2010; 316 Coppe (B37) 2010; 5 Moreno-Blas (B124) 2019; 11 Freund (B63) 2012; 23 Burla (B24) 2018; 9 Sunderland (B167) 2020; 190 Harada (B77) 2013; 29 Khan (B93) 2013; 19 Harley (B78) 1992; 27 Montero (B123) 2011; 17 Barnes (B12) 2000; 7 Orr (B138) 2017; 38 Liddelow (B103) 2017; 541 Franceschi (B61) 2018; 5 Gorg (B72) 2015; 63 Franceschi (B62) 2017; 28 Stoka (B165) 2016; 32 Thibault (B170) 1996; 272 de Brabander (B42) 1998; 10 Ritzel (B146) 2019; 77 Harman (B79) 2020; 98 Lee (B100) 2010; 24 Salminen (B148) 2011; 34 Fielder (B55) 2020; 19 Pal (B139) 2016; 2 Bhukel (B17) 2017; 13 Cohen (B35) 2019; 18 Verkhratsky (B176) 2010; 7 Campisi (B27) 2001; 36 Beausejour (B14) 2003; 22 Nakamura (B128) 2018; 41 Katsumi (B91) 2019; 317 Petralia (B143) 2014; 14 Davalos (B41) 2013; 201 Mattson (B118) 2018; 27 Finch (B56) 2009; 2009 Stichel (B164) 2007; 28 Pertusa (B142) 2007; 101 Kennedy (B92) 2014; 159 Panczyszyn (B140) 2020; 95 Ximerakis (B183) 2019; 22 Nicholson (B132) 2004; 24 Baker (B7) 2011; 479 Ishikawa (B85) 2020; 19 van Deursen (B175) 2014; 509 Lynch (B113) 2010; 1 Damani (B39) 2011; 10 Bielak-Zmijewska (B19) 2014; 15 Bang (B8); 27 Barter (B13) 2018; 24 Fuhrmann-Stroissnigg (B64) 2017; 8 Barnes (B11) 1992; 2 Leeman (B101) 2018; 359 Norden (B133) 2015; 96 |
References_xml | – volume: 507 start-page: 448 year: 2014 ident: B110 article-title: REST and stress resistance in ageing and Alzheimer's disease publication-title: Nature doi: 10.1038/nature13163 – volume: 124 start-page: 83 year: 2002 ident: B171 article-title: Occurrence of T cells in the brain of Alzheimer's disease and other neurological diseases publication-title: J. Neuroimmunol. doi: 10.1016/S0165-5728(01)00496-9 – volume: 19 start-page: e13188 year: 2020 ident: B55 article-title: Anti-inflammatory treatment rescues memory deficits during aging in nfkb1(-/-) mice publication-title: Aging Cell doi: 10.1111/acel.13188 – volume: 32 start-page: 1 year: 2006 ident: B150 article-title: Apical vulnerability to dendritic retraction in prefrontal neurones of ageing SAMP10 mouse: a model of cerebral degeneration publication-title: Neuropathol. Appl. Neurobiol. doi: 10.1111/j.1365-2990.2006.00632.x – volume: 71 start-page: 50 year: 2016 ident: B20 article-title: Long-term neuroglial cocultures as a brain aging model: hallmarks of senescence, MicroRNA expression profiles, and comparison with in vivo models. J. Gerontol. Ser. A publication-title: Biol. Sci. Med. Sci. doi: 10.1093/gerona/glu231 – volume: 17 start-page: BR91 year: 2011 ident: B50 article-title: Mitochondrial dysfunction in long-term neuronal cultures mimics changes with aging publication-title: Med. Sci. Monit. doi: 10.12659/MSM.881706 – ident: B29 – volume: 179 start-page: 8525 year: 2007 ident: B141 article-title: Selective proinflammatory activation of astrocytes by high-mobility group box 1 protein signaling publication-title: J. Immunol. doi: 10.4049/jimmunol.179.12.8525 – volume: 23 start-page: 798 year: 2009 ident: B189 article-title: Autophagy mediates the mitotic senescence transition publication-title: Genes Dev. doi: 10.1101/gad.519709 – volume: 309 start-page: 473 year: 1980 ident: B10 article-title: Physiological compensation for loss of afferent synapses in rat hippocampal granule cells during senescence publication-title: J. Physiol. doi: 10.1113/jphysiol.1980.sp013521 – volume: 22 start-page: 719 year: 2019 ident: B193 article-title: Senolytic therapy alleviates Abeta-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0372-9 – volume: 171 start-page: 373 year: 2010 ident: B2 article-title: Age-related synapse loss in hippocampal CA3 is not reversed by caloric restriction publication-title: Neuroscience doi: 10.1016/j.neuroscience.2010.09.022 – volume: 28 start-page: 1507 year: 2007 ident: B164 article-title: Inflammatory processes in the aging mouse brain: participation of dendritic cells and T-cells publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2006.07.022 – volume: 28 start-page: 199 year: 2017 ident: B62 article-title: Inflammaging and 'Garb-aging' publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2016.09.005 – volume: 128 start-page: 1208 year: 2018 ident: B6 article-title: Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives publication-title: J. Clin. Invest. doi: 10.1172/JCI95145 – volume: 13 start-page: 444 year: 2017 ident: B17 article-title: Spermidine boosts autophagy to protect from synapse aging publication-title: Autophagy doi: 10.1080/15548627.2016.1265193 – volume: 18 start-page: 557 year: 2017 ident: B160 article-title: Major shifts in glial regional identity are a transcriptional hallmark of human brain aging publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.12.011 – volume: 16 start-page: 263 year: 2020 ident: B169 article-title: New horizons: novel approaches to enhance healthspan through targeting cellular senescence and related aging mechanisms. J publication-title: Clin. Endocrinol. Metab doi: 10.1210/clinem/dgaa728 – volume: 24 start-page: 2533 year: 2010 ident: B100 article-title: Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases publication-title: FASEB J. doi: 10.1096/fj.09-149997 – volume: 85 start-page: 101 year: 2015 ident: B102 article-title: NFkappaB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease publication-title: Neuron doi: 10.1016/j.neuron.2014.11.018 – volume: 98 start-page: 234 year: 2020 ident: B79 article-title: Epigenetic mechanisms related to cognitive decline during aging publication-title: J. Neurosci. Res. doi: 10.1002/jnr.24436 – volume: 19 start-page: e13071 year: 2020 ident: B85 article-title: Proteostasis failure and cellular senescence in long-term cultured postmitotic rat neurons publication-title: Aging Cell doi: 10.1111/acel.13071 – volume: 29 start-page: 1061 year: 2019 ident: B135 article-title: Obesity-induced cellular senescence drives anxiety and impairs neurogenesis publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.12.008 – volume: 7 start-page: 399 year: 2010 ident: B176 article-title: Astrocytes in Alzheimer's disease publication-title: Neurotherapeutics doi: 10.1016/j.nurt.2010.05.017 – volume: 87 start-page: 403 year: 1985 ident: B174 article-title: Age-related changes in the subiculum of Macaca mulatta: synaptic density publication-title: Exp. Neurol. doi: 10.1016/0014-4886(85)90171-2 – volume: 120 start-page: 782 year: 2007 ident: B94 article-title: Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age publication-title: J. Cell Sci. doi: 10.1242/jcs.001073 – volume: 55 start-page: 100941 year: 2019 ident: B155 article-title: Targeting normal and cancer senescent cells as a strategy of senotherapy publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2019.100941 – volume: 19 start-page: 63 year: 2018 ident: B46 article-title: Mitochondria at the neuronal presynapse in health and disease publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2017.170 – volume: 117 start-page: 395 year: 1992 ident: B105 article-title: Transforming growth factor-beta 1 in the rat brain: increase after injury and inhibition of astrocyte proliferation publication-title: J. Cell Biol. doi: 10.1083/jcb.117.2.395 – volume: 24 start-page: 516 year: 2018 ident: B13 article-title: Aging in the brain: new roles of epigenetics in cognitive decline publication-title: Neuroscientist doi: 10.1177/1073858418780971 – volume: 68 start-page: 845 year: 2020 ident: B166 article-title: Dystrophic microglia in late-onset Alzheimer's disease publication-title: Glia doi: 10.1002/glia.23782 – volume: 13 start-page: 1025 year: 2013 ident: B23 article-title: Inhibition of mTOR signaling by quercetin in cancer treatment and prevention publication-title: Anticancer. Agents Med. Chem. doi: 10.2174/18715206113139990114 – volume: 2009 start-page: 307 year: 2009 ident: B56 article-title: Update on slow aging and negligible senescence–a mini-review publication-title: Gerontology doi: 10.1159/000215589 – volume: 29 start-page: 435 year: 2019 ident: B70 article-title: Autophagy is required for memory formation and reverses age-related memory decline publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.12.021 – volume: 23 start-page: 2066 year: 2012 ident: B63 article-title: Lamin B1 loss is a senescence-associated biomarker publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-10-0884 – volume: 41 start-page: 65 year: 2018 ident: B128 article-title: Autophagy and longevity publication-title: Mol. Cells doi: 10.14348/molcells.2018.2333 – volume: 59 start-page: 2403 year: 2019 ident: B116 article-title: Platelet-derived extracellular vesicles convey mitochondrial DAMPs in platelet concentrates and their levels are associated with adverse reactions publication-title: Transfusion doi: 10.1111/trf.15300 – volume: 359 start-page: 1277 year: 2018 ident: B101 article-title: Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging publication-title: Science doi: 10.1126/science.aag3048 – volume: 189 start-page: 111256 year: 2020 ident: B86 article-title: Long-lived post-mitotic cell aging: is a telomere clock at play? publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2020.111256 – volume: 18 start-page: 2974 year: 1998 ident: B126 article-title: Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age- and stress-induced impairments in long-term potentiation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.18-08-02974.1998 – volume: 1 start-page: 6 year: 2010 ident: B113 article-title: Age-related neuroinflammatory changes negatively impact on neuronal function publication-title: Front. Aging Neurosci. doi: 10.3389/neuro.24.006.2009 – volume: 9 start-page: 194 year: 2017 ident: B162 article-title: Aging microglia-phenotypes, functions and implications for age-related neurodegenerative diseases publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2017.00194 – volume: 11 start-page: 6175 year: 2019 ident: B124 article-title: Cortical neurons develop a senescence-like phenotype promoted by dysfunctional autophagy publication-title: Aging doi: 10.18632/aging.102181 – volume: 35 start-page: 13206 year: 2015 ident: B157 article-title: Aging-related hyperexcitability in CA3 pyramidal neurons is mediated by enhanced A-Type K+ channel function and expression publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0193-15.2015 – volume: 55 start-page: 412 year: 2007 ident: B153 article-title: Microglia derived from aging mice exhibit an altered inflammatory profile publication-title: Glia doi: 10.1002/glia.20468 – volume: 32 start-page: 22 year: 2016 ident: B165 article-title: Lysosomal cathepsins and their regulation in aging and neurodegeneration publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2016.04.010 – volume: 479 start-page: 232 year: 2011 ident: B7 article-title: Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders publication-title: Nature doi: 10.1038/nature10600 – volume: 349 start-page: aaa5612 year: 2015 ident: B90 article-title: The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4 publication-title: Science doi: 10.1126/science.aaa5612 – volume: 96 start-page: 29 year: 2015 ident: B133 article-title: Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, neurodegenerative disease publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2014.10.028 – volume: 2013 start-page: 839535 year: 2013 ident: B136 article-title: Age-induced loss of mossy fibre synapses on CA3 thorns in the CA3 stratum lucidum publication-title: Neurosci. J. doi: 10.1155/2013/839535 – volume: 10 start-page: 14170 year: 2020 ident: B1 article-title: Depletion of senescent-like neuronal cells alleviates cisplatin-induced peripheral neuropathy in mice publication-title: Sci. Rep. doi: 10.1038/s41598-020-71042-6 – volume: 9 start-page: 138 year: 2017 ident: B76 article-title: Age-dependent protein aggregation initiates amyloid-beta aggregation publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2017.00138 – volume: 9 start-page: 250 year: 2018 ident: B145 article-title: Brain mitochondria, aging, Parkinson's Disease publication-title: Genes doi: 10.3390/genes9050250 – volume: 36 start-page: 18 year: 2018 ident: B190 article-title: Fisetin is a senotherapeutic that extends health and lifespan publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.09.015 – volume: 27 start-page: 283 ident: B9 article-title: Tenovin-1 induces senescence and decreases wound-healing activity in cultured rat primary astrocytes publication-title: Biomol. Ther. doi: 10.4062/biomolther.2018.107 – volume: 12 start-page: 464 year: 2018 ident: B125 article-title: An overview of the role of lipofuscin in age-related neurodegeneration publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00464 – volume: 2 start-page: e1600584 year: 2016 ident: B139 article-title: Epigenetics and aging publication-title: Sci. Adv. doi: 10.1126/sciadv.1600584 – volume: 12 start-page: 6089 year: 2020 ident: B38 article-title: Estradiol-induced senescence of hypothalamic astrocytes contributes to aging-related reproductive function declines in female mice publication-title: Aging doi: 10.18632/aging.103008 – volume: 30 start-page: 337 year: 2009 ident: B54 article-title: Blood-brain barrier: ageing and microvascular disease–systematic review and meta-analysis publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2007.07.015 – volume: 47 start-page: 446 year: 2019 ident: B84 article-title: Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.08.069 – volume: 316 start-page: 2961 year: 2010 ident: B21 article-title: Stress-induced senescence in human and rodent astrocytes publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2010.06.021 – volume: 115 start-page: E1896 year: 2018 ident: B34 article-title: Normal aging induces A1-like astrocyte reactivity publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1800165115 – volume: 131 start-page: 1069 year: 2008 ident: B172 article-title: Genetic variation in the interleukin-1 beta-converting enzyme associates with cognitive function. The PROSPER study publication-title: Brain doi: 10.1093/brain/awn023 – volume: 29 start-page: 737 year: 2013 ident: B77 article-title: Normal cognitive aging publication-title: Clin. Geriatr. Med. doi: 10.1016/j.cger.2013.07.002 – volume: 95 start-page: 102956 year: 2020 ident: B140 article-title: The role of telomeres and telomerase in the senescence of postmitotic cells publication-title: DNA Repair doi: 10.1016/j.dnarep.2020.102956 – volume: 22 start-page: 1170 year: 2020 ident: B184 article-title: SIRT1 is downregulated by autophagy in senescence and ageing publication-title: Nat. Cell Biol. doi: 10.1038/s41556-020-00579-5 – volume: 7 start-page: 94 year: 2020 ident: B3 article-title: Effects of physical exercise on autophagy and apoptosis in aged brain: human and animal studies publication-title: Front. Nutr. doi: 10.3389/fnut.2020.00094 – volume: 288 start-page: 518 year: 2020 ident: B95 article-title: Senolytic drugs: from discovery to translation. J publication-title: Intern. Med. doi: 10.1111/joim.13141 – volume: 68 start-page: 757 year: 2009 ident: B43 article-title: Tangle-bearing neurons survive despite disruption of membrane integrity in a mouse model of tauopathy publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/NEN.0b013e3181a9fc66 – volume: 1 start-page: e87732 year: 2016 ident: B80 article-title: Elimination of p19(ARF)-expressing cells enhances pulmonary function in mice publication-title: JCI Insight doi: 10.1172/jci.insight.87732 – volume: 11 start-page: 996 year: 2012 ident: B88 article-title: Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response publication-title: Aging Cell doi: 10.1111/j.1474-9726.2012.00870.x – volume: 19 start-page: 392 year: 2009 ident: B159 article-title: Monocyte chemoattractant protein-1 plays a dominant role in the chronic inflammation observed in Alzheimer's disease publication-title: Brain Pathol. doi: 10.1111/j.1750-3639.2008.00188.x – volume: 169 start-page: 132 year: 2017 ident: B5 article-title: Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging publication-title: Cell doi: 10.1016/j.cell.2017.02.031 – volume: 73 start-page: 133 year: 2018 ident: B60 article-title: Stress and aging act through common mechanisms to elicit neuroinflammatory priming publication-title: Brain Behav. Immun. doi: 10.1016/j.bbi.2018.07.012 – volume: 429 start-page: 883 year: 2004 ident: B111 article-title: Gene regulation and DNA damage in the ageing human brain publication-title: Nature doi: 10.1038/nature02661 – volume: 15 start-page: e0227887 year: 2020 ident: B104 article-title: Astrocyte senescence promotes glutamate toxicity in cortical neurons publication-title: PLoS ONE doi: 10.1371/journal.pone.0227887 – volume: 16 start-page: 884 year: 2010 ident: B156 article-title: The promise of slow down ageing may come from curcumin publication-title: Curr. Pharm. Des. doi: 10.2174/138161210790883507 – volume: 10 start-page: 61 year: 2007 ident: B57 article-title: Evidence that aging and amyloid promote microglial cell senescence publication-title: Rejuvenation Res. doi: 10.1089/rej.2006.9096 – volume: 32 start-page: 65 year: 2016 ident: B52 article-title: Impact of lysosome status on extracellular vesicle content and release publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2016.05.001 – volume: 7 start-page: 81099 year: 2016 ident: B144 article-title: Is senescence-associated beta-galactosidase a marker of neuronal senescence? publication-title: Oncotarget doi: 10.18632/oncotarget.12752 – volume: 42 start-page: 631 year: 1992 ident: B4 article-title: Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease publication-title: Neurology doi: 10.1212/WNL.42.3.631 – volume: 19 start-page: 202 year: 2013 ident: B161 article-title: ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets publication-title: Nat. Med. doi: 10.1038/nm.3048 – volume: 7 start-page: 57 year: 2015 ident: B137 article-title: Impact of age-related neuroglial cell responses on hippocampal deterioration publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2015.00057 – volume: 34 start-page: 308 year: 2021 ident: B177 article-title: Senescence in post-mitotic cells: a driver of aging? publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2020.8048 – volume: 302 start-page: 890 year: 2003 ident: B117 article-title: DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation publication-title: Science doi: 10.1126/science.1090842 – volume: 172 start-page: 39 year: 2011 ident: B109 article-title: The role of ubiquitin-proteasome system in ageing publication-title: Gen. Comp. Endocrinol. doi: 10.1016/j.ygcen.2011.02.005 – volume: 541 start-page: 481 year: 2017 ident: B103 article-title: Neurotoxic reactive astrocytes are induced by activated microglia publication-title: Nature doi: 10.1038/nature21029 – volume: 46 start-page: 415 year: 2020 ident: B28 article-title: Phorbol myristate acetate induces cellular senescence in rat microglia in vitro publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2020.4587 – volume: 7 start-page: 58 year: 2012 ident: B115 article-title: How fisetin reduces the impact of age and disease on CNS function publication-title: Front. Biosci. doi: 10.2741/s425 – volume: 11 start-page: 49 year: 2019 ident: B107 article-title: Influence of normal aging on brain autophagy: a complex scenario publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2019.00049 – volume: 77 start-page: 194 year: 2019 ident: B146 article-title: Old age increases microglial senescence, exacerbates secondary neuroinflammation, and worsens neurological outcomes after acute traumatic brain injury in mice publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2019.02.010 – volume: 201 start-page: 613 year: 2013 ident: B41 article-title: p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes publication-title: J. Cell Biol. doi: 10.1083/jcb.201206006 – volume: 32 start-page: 1795 year: 2011 ident: B158 article-title: Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer's pathology and APOE genotype publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2011.04.013 – volume: 41 start-page: 683 year: 2019 ident: B152 article-title: Senolytics and senostatics as adjuvant tumour therapy publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.01.056 – volume: 11 start-page: 2040622320964125 year: 2020 ident: B194 article-title: Advancements in therapeutic drugs targeting of senescence publication-title: Ther. Adv. Chronic Dis. doi: 10.1177/2040622320964125 – volume: 18 start-page: e12937 year: 2019 ident: B35 article-title: Astrocyte senescence: evidence and significance publication-title: Aging Cell doi: 10.1111/acel.12937 – volume: 107 start-page: 14164 year: 2010 ident: B106 article-title: Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1009485107 – volume: 17 start-page: 5546 year: 2011 ident: B123 article-title: Inhibition of SRC family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-10-2616 – volume: 20 start-page: 135 year: 2019 ident: B120 article-title: Cell type-specific epigenetic links to schizophrenia risk in the brain publication-title: Genome Biol. doi: 10.1186/s13059-019-1747-7 – volume: 40 start-page: 554 year: 2019 ident: B89 article-title: Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.12.052 – volume: 251 start-page: 21 year: 2013 ident: B47 article-title: Dendritic spine changes associated with normal aging publication-title: Neuroscience doi: 10.1016/j.neuroscience.2012.09.077 – volume: 38 start-page: 800 year: 2015 ident: B98 article-title: Neurocognitive aging and the hippocampus across species publication-title: Trends Neurosci. doi: 10.1016/j.tins.2015.10.003 – volume: 34 start-page: 3 year: 2011 ident: B148 article-title: Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2011.07738.x – volume: 16 start-page: 718 year: 2017 ident: B32 article-title: Senescent cells: an emerging target for diseases of ageing publication-title: Nat Rev Drug Discov. doi: 10.1038/nrd.2017.116 – volume: 97 start-page: 215 year: 1989 ident: B129 article-title: Lysosome instability in aged rat brain publication-title: Neurosci. Lett. doi: 10.1016/0304-3940(89)90166-3 – volume: 16 start-page: 2059 year: 2002 ident: B44 article-title: Neuro-glia interaction effects on GFAP gene: a novel role for transforming growth factor-beta1 publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.2002.02283.x – volume: 12 start-page: 1272 year: 2020 ident: B192 article-title: FOXO4-DRI alleviates age-related testosterone secretion insufficiency by targeting senescent Leydig cells in aged mice publication-title: Aging doi: 10.18632/aging.102682 – volume: 128 start-page: 1238 year: 2018 ident: B82 article-title: Mechanisms and functions of cellular senescence publication-title: J. Clin. Invest. doi: 10.1172/JCI95148 – volume: 13 start-page: 13 year: 2014 ident: B31 article-title: The behavioral, pathological and therapeutic features of the senescence-accelerated mouse prone 8 strain as an Alzheimer's disease animal model publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2013.10.002 – volume: 9 start-page: 19616 year: 2019 ident: B114 article-title: Spermidine protects from age-related synaptic alterations at hippocampal mossy fiber-CA3 synapses publication-title: Sci. Rep. doi: 10.1038/s41598-019-56133-3 – volume: 10 start-page: 263 year: 2011 ident: B39 article-title: Age-related alterations in the dynamic behavior of microglia publication-title: Aging Cell doi: 10.1111/j.1474-9726.2010.00660.x – volume: 48 start-page: 661 year: 2013 ident: B154 article-title: Rejuvenation of senescent cells-the road to postponing human aging and age-related disease? publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2012.09.008 – volume: 10 start-page: 828 year: 2020 ident: B180 article-title: Astrocyte support for oligodendrocyte differentiation can be conveyed via extracellular vesicles but diminishes with age publication-title: Sci. Rep. doi: 10.1038/s41598-020-57663-x – volume: 101 start-page: 794 year: 2007 ident: B142 article-title: Astrocytes aged in vitro show a decreased neuroprotective capacity publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2006.04369.x – volume: 159 start-page: 709 year: 2014 ident: B92 article-title: Geroscience: linking aging to chronic disease publication-title: Cell doi: 10.1016/j.cell.2014.10.039 – volume: 12 start-page: 201 year: 1991 ident: B173 article-title: Functional elongation of CA1 hippocampal neurons with aging in Fischer 344 rats publication-title: Neurobiol. Aging doi: 10.1016/0197-4580(91)90098-5 – volume: 9 start-page: 581 year: 2018 ident: B24 article-title: p53-sensitive epileptic behavior and inflammation in Ft1 hypomorphic Mice publication-title: Front. Genet. doi: 10.3389/fgene.2018.00581 – volume: 27 start-page: 530 ident: B8 article-title: Etoposide induces mitochondrial dysfunction and cellular senescence in primary cultured rat astrocytes publication-title: Biomol. Ther. doi: 10.4062/biomolther.2019.151 – volume: 109 start-page: 181 year: 2018 ident: B181 article-title: The effect of spermidine on memory performance in older adults at risk for dementia: a randomized controlled trial publication-title: Cortex doi: 10.1016/j.cortex.2018.09.014 – volume: 7 start-page: 22 year: 2013 ident: B182 article-title: Microglial aging in the healthy CNS: phenotypes, drivers, and rejuvenation publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2013.00022 – volume: 27 start-page: 1176 year: 2018 ident: B118 article-title: Hallmarks of brain aging: adaptive and pathological modification by metabolic states publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.05.011 – volume: 5 start-page: 99 year: 2010 ident: B37 article-title: The senescence-associated secretory phenotype: the dark side of tumor suppression publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-121808-102144 – volume: 84 start-page: 932 year: 2008 ident: B48 article-title: Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0208108 – volume: 562 start-page: 578 year: 2018 ident: B25 article-title: Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline publication-title: Nature doi: 10.1038/s41586-018-0543-y – volume: 11 start-page: 1535 year: 2020 ident: B131 article-title: Autophagy lipidation machinery regulates axonal microtubule dynamics but is dispensable for survival of mammalian neurons publication-title: Nat. Commun. doi: 10.1038/s41467-020-15287-9 – volume: 5 start-page: 61 year: 2018 ident: B61 article-title: The continuum of aging and age-related diseases: common mechanisms but different rates publication-title: Front. Med. doi: 10.3389/fmed.2018.00061 – volume: 24 start-page: 1935 year: 2010 ident: B15 article-title: Cultured cerebellar granule neurons as an in vitro aging model: topoisomerase IIbeta as an additional biomarker in DNA repair and aging publication-title: Toxicol. In Vitro doi: 10.1016/j.tiv.2010.08.003 – volume: 22 start-page: 1696 year: 2019 ident: B183 article-title: Single-cell transcriptomic profiling of the aging mouse brain publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0491-3 – volume: 18 start-page: pyv002 year: 2015 ident: B178 article-title: Telomerase dysregulation in the hippocampus of a rat model of depression: normalization by lithium publication-title: Int. J. Neuropsychopharmacol. doi: 10.1093/ijnp/pyv002 – volume: 190 start-page: 111296 year: 2020 ident: B167 article-title: ATM-deficient neural precursors develop senescence phenotype with disturbances in autophagy publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2020.111296 – volume: 7 start-page: 167 year: 2000 ident: B12 article-title: Age-related decrease in the Schaffer collateral-evoked EPSP in awake, freely behaving rats publication-title: Neural Plast. doi: 10.1155/NP.2000.167 – volume: 63 start-page: 37 year: 2015 ident: B72 article-title: Ammonia-induced senescence in cultured rat astrocytes and in human cerebral cortex in hepatic encephalopathy publication-title: Glia doi: 10.1002/glia.22731 – volume: 18 start-page: 447 year: 2017 ident: B75 article-title: Sirtuins, a promising target in slowing down the ageing process publication-title: Biogerontology doi: 10.1007/s10522-017-9685-9 – volume: 509 start-page: 439 year: 2014 ident: B175 article-title: The role of senescent cells in ageing publication-title: Nature doi: 10.1038/nature13193 – volume: 3 start-page: 708 year: 2012 ident: B83 article-title: Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence publication-title: Nat. Commun. doi: 10.1038/ncomms1708 – volume: 15 start-page: 409 year: 2005 ident: B30 article-title: Increased action potential firing rates of layer 2/3 pyramidal cells in the prefrontal cortex are significantly related to cognitive performance in aged monkeys publication-title: Cereb. Cortex doi: 10.1093/cercor/bhh144 – volume: 133 start-page: 110876 year: 2020 ident: B149 article-title: When function follows form: nuclear compartment structure and the epigenetic landscape of the aging neuron publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2020.110876 – volume: 2 start-page: 457 year: 1992 ident: B11 article-title: Region-specific age effects on AMPA sensitivity: electrophysiological evidence for loss of synaptic contacts in hippocampal field CA1 publication-title: Hippocampus doi: 10.1002/hipo.450020413 – volume: 19 start-page: 151 year: 2013 ident: B93 article-title: Fisetin: a dietary antioxidant for health promotion publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.4901 – volume: 8 start-page: 1546 year: 2019 ident: B179 article-title: Amitosenescence and pseudomitosenescence: putative new players in the aging process publication-title: Cells doi: 10.3390/cells8121546 – volume: 24 start-page: 1246 year: 2018 ident: B185 article-title: Senolytics improve physical function and increase lifespan in old age publication-title: Nat. Med. doi: 10.1038/s41591-018-0092-9 – volume: 36 start-page: 607 year: 2001 ident: B27 article-title: From cells to organisms: can we learn about aging from cells in culture? publication-title: Exp. Gerontol. doi: 10.1016/S0531-5565(00)00230-8 – volume: 170 start-page: 13 year: 2018 ident: B18 article-title: Is DNA damage indispensable for stress-induced senescence? publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2017.08.004 – volume: 25 start-page: 585 year: 1961 ident: B81 article-title: The serial cultivation of human diploid cell strains publication-title: Exp. Cell Res. doi: 10.1016/0014-4827(61)90192-6 – year: 2021 ident: B134 article-title: Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice publication-title: Aging Cell doi: 10.1111/acel.13296 – volume: 124 start-page: 319 year: 2004 ident: B26 article-title: Dissection of tumor-necrosis factor-alpha inhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein kinase-dependent mechanism which maps to early-but not late-phase LTP publication-title: Neuroscience doi: 10.1016/j.neuroscience.2003.11.040 – volume: 11 start-page: 1251 year: 2019 ident: B66 article-title: Slowing down ageing: the role of nutrients and microbiota in modulation of the epigenome publication-title: Nutrients doi: 10.3390/nu11061251 – volume: 10 start-page: 1261 year: 1998 ident: B42 article-title: Layer-specific dendritic regression of pyramidal cells with ageing in the human prefrontal cortex publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.1998.00137.x – volume: 31 start-page: 7831 year: 2011 ident: B22 article-title: Evidence for reduced experience-dependent dendritic spine plasticity in the aging prefrontal cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0839-11.2011 – volume: 9 start-page: 6707 year: 2018 ident: B36 article-title: Endoplasmic reticulum stress stimulates the release of extracellular vesicles carrying danger-associated molecular pattern (DAMP) molecules publication-title: Oncotarget doi: 10.18632/oncotarget.24158 – volume: 15 start-page: 47 year: 2014 ident: B19 article-title: A comparison of replicative senescence and doxorubicin-induced premature senescence of vascular smooth muscle cells isolated from human aorta publication-title: Biogerontology doi: 10.1007/s10522-013-9477-9 – volume: 14 start-page: 355 year: 2012 ident: B65 article-title: Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation publication-title: Nat. Cell Biol. doi: 10.1038/ncb2466 – volume: 26 start-page: 8083 year: 1987 ident: B119 article-title: Age-related increase in a cathepsin D like protease that degrades brain microtubule-associated proteins publication-title: Biochemistry doi: 10.1021/bi00399a010 – volume: 10 start-page: 3590 year: 2018 ident: B186 article-title: The senescent cell epigenome publication-title: Aging doi: 10.18632/aging.101617 – volume: 27 start-page: 375 year: 1992 ident: B78 article-title: The telomere hypothesis of cellular aging publication-title: Exp. Gerontol. doi: 10.1016/0531-5565(92)90068-B – volume: 6 start-page: 6 year: 2020 ident: B187 article-title: Lysosome biology in autophagy publication-title: Cell Discov. doi: 10.1038/s41421-020-0141-7 – volume: 9 start-page: 808 year: 2013 ident: B68 article-title: Autophagy and senescence: a partnership in search of definition publication-title: Autophagy doi: 10.4161/auto.23922 – volume: 32 start-page: 1106 year: 2007 ident: B74 article-title: A dual role for interleukin-1 in hippocampal-dependent memory processes publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2007.09.004 – volume: 317 start-page: C788 year: 2019 ident: B91 article-title: Activated cholangiocytes release macrophage-polarizing extracellular vesicles bearing the DAMP S100A11 publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00250.2019 – volume: 18 start-page: 1865 year: 2017 ident: B188 article-title: Monitoring and measuring autophagy publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18091865 – volume: 7 start-page: 62 year: 2010 ident: B51 article-title: TGFbeta signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke publication-title: J. Neuroinflammation doi: 10.1186/1742-2094-7-62 – volume: 45 start-page: 75 year: 2004 ident: B58 article-title: Progressive telomere shortening occurs in cultured rat microglia, but not astrocytes publication-title: Glia doi: 10.1002/glia.10301 – volume: 13 start-page: 664 year: 2010 ident: B121 article-title: Cortical DNA methylation maintains remote memory publication-title: Nat. Neurosci. doi: 10.1038/nn.2560 – volume: 11 start-page: 20 year: 2019 ident: B69 article-title: Approaches and limitations in the investigation of synaptic transmission and plasticity publication-title: Front. Synaptic Neurosci. doi: 10.3389/fnsyn.2019.00020 – volume: 143 start-page: 105008 year: 2020 ident: B147 article-title: Glia: victims or villains of the aging brain? publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2020.105008 – volume: 29 start-page: 273 year: 2010 ident: B40 article-title: Senescent cells as a source of inflammatory factors for tumor progression publication-title: Cancer Metastasis Rev. doi: 10.1007/s10555-010-9220-9 – volume: 31 start-page: 722 year: 2014 ident: B45 article-title: An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.11.012 – volume: 22 start-page: 4212 year: 2003 ident: B14 article-title: Reversal of human cellular senescence: roles of the p53 and p16 pathways publication-title: EMBO J. doi: 10.1093/emboj/cdg417 – volume: 7 start-page: e45069 year: 2012 ident: B16 article-title: Astrocyte senescence as a component of Alzheimer's disease publication-title: PLoS ONE doi: 10.1371/journal.pone.0045069 – volume: 24 start-page: 7648 year: 2004 ident: B132 article-title: Reduction in size of perforated postsynaptic densities in hippocampal axospinous synapses and age-related spatial learning impairments publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1725-04.2004 – volume: 332 start-page: 966 year: 2011 ident: B130 article-title: Spatial coupling of mTOR and autophagy augments secretory phenotypes publication-title: Science doi: 10.1126/science.1205407 – volume: 272 start-page: 1017 year: 1996 ident: B170 article-title: Increase in single L-type calcium channels in hippocampal neurons during aging publication-title: Science doi: 10.1126/science.272.5264.1017 – volume: 16 start-page: 956 year: 2017 ident: B191 article-title: HIV and drug abuse mediate astrocyte senescence in a beta-catenin-dependent manner leading to neuronal toxicity publication-title: Aging Cell doi: 10.1111/acel.12593 – volume: 153 start-page: 1194 year: 2013 ident: B108 article-title: The hallmarks of aging publication-title: Cell doi: 10.1016/j.cell.2013.05.039 – volume: 63 start-page: 4854 year: 2003 ident: B53 article-title: A P53-dependent, telomere-independent proliferative life span barrier in human astrocytes consistent with the molecular genetics of glioma development publication-title: Cancer Res. – volume: 150 start-page: 85 year: 1978 ident: B97 article-title: Impaired synaptic potentiation processes in the hippocampus of aged, memory-deficient rats publication-title: Brain Res. doi: 10.1016/0006-8993(78)90655-8 – volume: 22 start-page: 930 year: 2018 ident: B33 article-title: Cellular Senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to parkinson's disease publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.12.092 – volume: 19 start-page: 2937 year: 2018 ident: B96 article-title: Ageing cellular senescence and neurodegenerative disease publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19102937 – volume: 15 start-page: 643 year: 2014 ident: B168 article-title: Are there roles for brain cell senescence in aging and neurodegenerative disorders? publication-title: Biogerontology doi: 10.1007/s10522-014-9532-1 – volume: 14 start-page: 649 year: 1993 ident: B59 article-title: Critical issues in the analysis of dendritic extent in aging humans, primates, and rodents publication-title: Neurobiol. Aging doi: 10.1016/0197-4580(93)90058-J – volume: 179 start-page: 813 year: 2019 ident: B73 article-title: Cellular senescence: defining a path forward publication-title: Cell doi: 10.1016/j.cell.2019.10.005 – volume: 14 start-page: 31 year: 2014 ident: B143 article-title: Communication breakdown: the impact of ageing on synapse structure publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2014.01.003 – volume: 16 start-page: 543 year: 2019 ident: B112 article-title: Molecular signatures of the aging brain: finding the links between genes and phenotypes publication-title: Neurotherapeutics doi: 10.1007/s13311-019-00743-2 – volume: 32 start-page: 150 year: 2016 ident: B71 article-title: Lysosomal cell death mechanisms in aging publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2016.02.009 – volume: 396 start-page: 866 year: 2010 ident: B67 article-title: Senescence-associated beta-galactosidase activity expression in aging hippocampal neurons publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.05.011 – volume: 17 start-page: e12840 year: 2018 ident: B127 article-title: Tau protein aggregation is associated with cellular senescence in the brain publication-title: Aging Cell doi: 10.1111/acel.12840 – volume: 92 start-page: 9363 year: 1995 ident: B49 article-title: A biomarker that identifies senescent human cells in culture and in aging skin in vivo publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.92.20.9363 – volume: 8 start-page: 422 year: 2017 ident: B64 article-title: Identification of HSP90 inhibitors as a novel class of senolytics publication-title: Nat. Commun. doi: 10.1038/s41467-017-00314-z – volume: 5 start-page: 187 year: 2006 ident: B99 article-title: Senescence-associated beta-galactosidase is lysosomal beta-galactosidase publication-title: Aging Cell doi: 10.1111/j.1474-9726.2006.00199.x – volume: 143 start-page: 3763 year: 2020 ident: B151 article-title: Recalibrating the epigenetic clock: implications for assessing biological age in the human cortex publication-title: Brain doi: 10.1093/brain/awaa334 – volume: 85 start-page: 296 year: 2015 ident: B122 article-title: Blood-brain barrier breakdown in the aging human hippocampus publication-title: Neuron doi: 10.1016/j.neuron.2014.12.032 – volume: 2020 start-page: 1047896 year: 2020 ident: B87 article-title: Epigenetic clock: DNA methylation in aging publication-title: Stem Cells Int. doi: 10.1155/2020/1047896 – volume: 8 start-page: e44219 year: 2019 ident: B163 article-title: Expression of WIPI2B counteracts age-related decline in autophagosome biogenesis in neurons publication-title: Elife doi: 10.7554/eLife.44219 – volume: 38 start-page: 637 year: 2017 ident: B138 article-title: A brief overview of tauopathy: causes, consequences, therapeutic strategies publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2017.03.011 |
SSID | ssj0000330058 |
Score | 2.615188 |
SecondaryResourceType | review_article |
Snippet | Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity... Ageing of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 646924 |
SubjectTerms | Age Aging Alzheimer's disease Animal cognition Animal models Apoptosis Autophagy Brain brain aging Cell proliferation cellular senescence Chromatin remodeling Cognitive ability cognitive impairment Cytology Dendritic plasticity Dendritic spines Deoxyribonucleic acid DNA DNA damage DNA methylation Epigenetics Functional plasticity Gene expression Glial cells Histones Homeostasis Inflammation Memory Morphology Motor ability Neurodegenerative diseases neuroinflammation neuronal plasticity Neuronal-glial interactions Neuroplasticity Neuroscience Phagocytosis Phenotypes Post-translation Proteins Senescence Synaptic transmission β-Galactosidase |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kB_EifhutEsWTEJtks7vJsRVLEfSihd6W_UShRNH2_zuzSUsrohdPgewubN5ksjPM5D1CrhgzWWkLmhQMctVCGIEckC5hlbHCKy60DQ2yj3w0Lu4nbLIi9YU9YQ09cANcjzmfwpJSCA5Hdy6UV5ZR7432vLQqkG2nVbqSTIVvMEUa9rIpY0IWVvU8qv5APphnNxxSwrxYO4gCX_9PQeb3XsmVw2e4Q7bbqDHuN7vdJRuu3iObD21dfJ9c3rrpFBtK4yf8dhl01_i1jgcoABH3UYjogIyHd8-3o6RVP0gMRPmzxIN3aUWFVoyqihkuCquFLnSWcTjHvVXM59547gwSsnhtlLIK-d9tpSpX0kPSqd9qd0xi5QrDS0MN8qMpb7WDqI_mcHEZ9ZWISLqAQpqWGhwVKqYSUgRETwb0JKInG_Qicr1c8t7wYvw2eYD4LicipXW4AYaWraHlX4aOSHdhHdn62aeE5JFikpSxiFwsh8FDsOyhavc2hzkslI9plkfkqDHmcieUClRqghGxZua1ra6P1K8vgYUbRdoFT0_-49lOyRbCFX6VZ13SmX3M3RkEOzN9Ht7rL7S4_UU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB-sQulLqbbaWCtp6VMh9ZL9Sh5K8UQRoUepCr4t-9kKR87a8_93ZvPRnohPgewGltmZ2ZnM7O8H8EkIV9aes4ILzFW5coowIEMhGudVNFJZnxpkZ_L0kp9dias1mA13YaitcvCJyVH7haN_5AeYJjAKh0vx7eZPQaxRVF0dKDRMT63gvyaIsWewgS65Rr3fmB7Pfvwc_7pMGMGzp_txeNQWnEnRlToxU2sOIjEDYc5YlV8kpo0VXzmsEqb_Y4How37K_w6ok1fwso8s88NOFTZhLbRb8Px7Xzt_DR-PwnxOTaf5Ofk3RyadX7f5lEgi8kMiK3oDlyfHF0enRc-QUDjMBJZFRAu0hilrBDONcFJxb5XltiwlnvXRGxGr6KIMjkBbonXGeEMY8b4xTajZNqy3iza8hdwE7mTtmCMMNRO9DRgZsgofoWSxURlMBlFo18OHE4vFXGMaQdLTSXqapKc76WXwefzkpsPOeGrylOQ7TiTY6_RicftL91akRYgT1J9aKYlxXKVMNF6wGJ2NsvZGZrA37I7ubfGv_qc5GXwYh9GKqDRi2rC4wzkilZhZWWWw023muBLGFLE54Yha2eaVpa6OtNe_E1I3EbkrOdl9elnv4AUJIl2UF3uwvry9C-8x1Fna_V5_7wEMsPwm priority: 102 providerName: ProQuest |
Title | Cellular Senescence in Brain Aging |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33732142 https://www.proquest.com/docview/2493251115 https://www.proquest.com/docview/2502806312 https://pubmed.ncbi.nlm.nih.gov/PMC7959760 https://doaj.org/article/5ef0a67877664427afad53ffcbf68da6 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFD70AmMvZfd57YI39jRwF1s3-2GMprQrg5axLZA3oWtXCE6bprD--50jO2EZoS82WLIRRzo657Ok7wP4IIQra89ZwQViVa6cIg7IUIjGeRWNVNanDbIX8mzMv03EZAuW8la9AW83QjvSkxrPp4d_bu6_oMN_JsSJ8fZTJEEfhHpVeSgR7VV8G3YxMEnCYud9tp8mZkbc7OlwHMbZgjMpunXOzV9Zi1SJ0H9TFvr_Zsp_otPpE9jr08r8qBsHT2ErtM_g0Xm_cP4c3h-H6ZR2nOY_aXJz5M_5VZuPSCEiPyKlohcwPj35dXxW9PIIhUMYsCgiup81TFkjmGmEk4p7qyy3ZSkx0EdvRKyiizI4YmyJ1hnjDRHE-8Y0oWYvYaedteE15CZwJ2vHHBGomehtwLSQVXgLJYuNymC4NIV2PXc4SVhMNWIIsp5O1tNkPd1ZL4OPq1euO-KMhyqPyL6risR5nR7M5pe6dyEtQhzi4KmVkpjEVcpE4wWL0dkoa29kBgfL3tHLcaQRXTJCUaXI4N2qGF2I1kVMG2Z3WEek9WVWVhm86jpz1RLGFEk5YYla6-a1pq6XtFe_E003qbgrOXzzcLP24TEZIp2SFwews5jfhbeY5yzsALbVRA1gd3Ry8f3HIP0twOvXSTlI4_ov3kb91w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG8CBQKCC1LoJn4lhwp1S6stbVcIWqk34_gBlVbZ0m6F-HP8NmacZGER6q2nSLETWeOxPeOZ-T6AV0LYvHScZVygr8qVVYQB6TNRWaeCkap2MUF2IsdH_MOxOF6BX30tDKVV9nti3KjdzNId-Tq6CYzM4Vy8O_2eEWsURVd7Cg3TUSu4jQgx1hV27PmfP9CFO9_YfY_z_boodrYPt8ZZxzKQWbSm51lALa4NU7URzFTCSsVdrWpe57nE8zI4I0IRbJDeEvBJqK0xzhDOuqtM5UuG_70Gq5wqXAewOtqefPy0uOUZMoKDj_V4eLRnnEnRhlbRM6zWAzERoY9a5G8luqkFXzocI4fA_wzff_M3_zoQd27Drc6STTdb1bsDK765C9cPulj9PXi55adTSnJNP9N-amkLSU-adESkFOkmkSPdh6MrkdUDGDSzxj-C1HhuZWmZJcw2E1zt0RJlBT58zkKlEhj2otC2gysn1oypRreFpKej9DRJT7fSS-DN4pPTFqvjss4jku-iI8Fsxxezs6-6W7Va-DBEfS2Vkmg3FsoE4wQLwdZBls7IBNb62dHd2j_XfzQ1gReLZly1FIoxjZ9dYB8RQ9osLxJ42E7mYiSMKWKPwha1NM1LQ11uaU6-RWRwIo5Xcvj48mE9hxvjw4N9vb872XsCN0kosUhfrMFgfnbhn6KZNa-fdbqcwperXj6_AXE1OzY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQbxJKRAQXJDCbuLYTg4V6rZdtRRWFVCpt9TxAyqtsn1shfiL_CpmHCewCPXWU6S1N7LG43lkxt8H8JpznRYmZ0nOMVfNpZaEAWkTXmojnRKyNr5Bdir2jvIPx_x4BX51d2GorbKzid5Qm7mmb-RDTBMYhcMpH7rQFnG4M3l_dp4QgxRVWjs6DRVoFsymhxsLlzwO7M8fmM5dbu7v4N6_ybLJ7tftvSQwDiQaI-tF4lCja8VkrThTJddC5qaWdV6nqUDf6YziLnPaCasJBMXVWimjCHPdlKq0BcP33oJViV4yH8DqeHd6-Ln_4jNiBA3v7-ahm09yJnhbZsUssRw6YiXCfDVL3wlMWbN8yVF6PoH_BcH_9nL-5Rwnd-FOiGrjrVYN78GKbe7D2qdQt38Ar7btbEYNr_EXsq2azEl82sRjIqiIt4go6SEc3YisHsGgmTf2CcTK5loUmmnCb1PO1BajUpbhw6bMlTKCUSeKSgfocmLQmFWYwpD0Ki-9iqRXtdKL4G3_l7MWt-O6yWOSbz-RILf9D_OLb1U4wRW3boS6W0gpMIbMpHLKcOacrp0ojBIRbHS7UwU7cFn90doIXvbDeIKpLKMaO7_COdyXt1maRfC43cx-JYxJYpLCEbm0zUtLXR5pTr97lHAikZditH79sl7AGh6j6uP-9OAp3CaZ-Pv6fAMGi4sr-wwjrkX9PKhyDCc3fXp-A-HXP2I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cellular+Senescence+in+Brain+Aging&rft.jtitle=Frontiers+in+aging+neuroscience&rft.au=Sikora%2C+Ewa&rft.au=Bielak-Zmijewska%2C+Anna&rft.au=Dudkowska%2C+Magdalena&rft.au=Krzystyniak%2C+Adam&rft.date=2021-02-25&rft.pub=Frontiers+Research+Foundation&rft.issn=1663-4365&rft.eissn=1663-4365&rft_id=info:doi/10.3389%2Ffnagi.2021.646924&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-4365&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-4365&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-4365&client=summon |