Therapeutic Targeting of the NRF2 Signaling Pathway in Cancer
Cancer is one of the most fatal diseases with an increasing incidence and mortality all over the world. Thus, there is an urgent need for novel therapies targeting major cancer-related pathways. Nuclear factor-erythroid 2-related factor 2 (NRF2) and its major negative modulator Kelch-like ECH-associ...
Saved in:
Published in | Molecules Vol. 26; no. 5; p. 1417 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
05.03.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1420-3049 1433-1373 1420-3049 1433-1373 |
DOI | 10.3390/molecules26051417 |
Cover
Abstract | Cancer is one of the most fatal diseases with an increasing incidence and mortality all over the world. Thus, there is an urgent need for novel therapies targeting major cancer-related pathways. Nuclear factor-erythroid 2-related factor 2 (NRF2) and its major negative modulator Kelch-like ECH-associated protein 1 (KEAP1) are main players of the cellular defense mechanisms against internal and external cell stressors. However, NRF2/KEAP1 signaling pathway is dysregulated in various cancers, thus promoting tumor cell survival and metastasis. In the present review, we discuss the mechanisms of normal and deregulated NRF2 signaling pathway focusing on its cancer-related functions. We further explore activators and inhibitors of this pathway as cancer targeting drug candidates in order to provide an extensive background on the subject. |
---|---|
AbstractList | Cancer is one of the most fatal diseases with an increasing incidence and mortality all over the world. Thus, there is an urgent need for novel therapies targeting major cancer-related pathways. Nuclear factor-erythroid 2-related factor 2 (NRF2) and its major negative modulator Kelch-like ECH-associated protein 1 (KEAP1) are main players of the cellular defense mechanisms against internal and external cell stressors. However, NRF2/KEAP1 signaling pathway is dysregulated in various cancers, thus promoting tumor cell survival and metastasis. In the present review, we discuss the mechanisms of normal and deregulated NRF2 signaling pathway focusing on its cancer-related functions. We further explore activators and inhibitors of this pathway as cancer targeting drug candidates in order to provide an extensive background on the subject. Cancer is one of the most fatal diseases with an increasing incidence and mortality all over the world. Thus, there is an urgent need for novel therapies targeting major cancer-related pathways. Nuclear factor-erythroid 2-related factor 2 (NRF2) and its major negative modulator Kelch-like ECH-associated protein 1 (KEAP1) are main players of the cellular defense mechanisms against internal and external cell stressors. However, NRF2/KEAP1 signaling pathway is dysregulated in various cancers, thus promoting tumor cell survival and metastasis. In the present review, we discuss the mechanisms of normal and deregulated NRF2 signaling pathway focusing on its cancer-related functions. We further explore activators and inhibitors of this pathway as cancer targeting drug candidates in order to provide an extensive background on the subject.Cancer is one of the most fatal diseases with an increasing incidence and mortality all over the world. Thus, there is an urgent need for novel therapies targeting major cancer-related pathways. Nuclear factor-erythroid 2-related factor 2 (NRF2) and its major negative modulator Kelch-like ECH-associated protein 1 (KEAP1) are main players of the cellular defense mechanisms against internal and external cell stressors. However, NRF2/KEAP1 signaling pathway is dysregulated in various cancers, thus promoting tumor cell survival and metastasis. In the present review, we discuss the mechanisms of normal and deregulated NRF2 signaling pathway focusing on its cancer-related functions. We further explore activators and inhibitors of this pathway as cancer targeting drug candidates in order to provide an extensive background on the subject. |
Author | Telkoparan-Akillilar, Pelin Panieri, Emiliano Suzen, Sibel Saso, Luciano Cevik, Dilek |
AuthorAffiliation | 1 Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, 06520 Ankara, Turkey; pelintelkoparan@gmail.com (P.T.-A.); cevikdi@gmail.com (D.C.) 2 Department of Physiology and Pharmacology, Faculty of Pharmacy and Medicine, “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; emiliano.panieri@hotmail.it 3 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey; sibel.suzen@pharmacy.ankara.edu.tr |
AuthorAffiliation_xml | – name: 2 Department of Physiology and Pharmacology, Faculty of Pharmacy and Medicine, “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; emiliano.panieri@hotmail.it – name: 1 Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, 06520 Ankara, Turkey; pelintelkoparan@gmail.com (P.T.-A.); cevikdi@gmail.com (D.C.) – name: 3 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey; sibel.suzen@pharmacy.ankara.edu.tr |
Author_xml | – sequence: 1 givenname: Pelin orcidid: 0000-0003-0337-0763 surname: Telkoparan-Akillilar fullname: Telkoparan-Akillilar, Pelin – sequence: 2 givenname: Emiliano orcidid: 0000-0001-7989-7145 surname: Panieri fullname: Panieri, Emiliano – sequence: 3 givenname: Dilek orcidid: 0000-0001-8940-3153 surname: Cevik fullname: Cevik, Dilek – sequence: 4 givenname: Sibel surname: Suzen fullname: Suzen, Sibel – sequence: 5 givenname: Luciano orcidid: 0000-0003-4530-8706 surname: Saso fullname: Saso, Luciano |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33808001$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9vEzEQxS1URP_AB-CCVuLCJTBe27v2AaQqolCpAgThbNne2cSRYwfvLlW-PQ4pVVskxMnWzO89vZk5JUcxRSTkOYXXjCl4s0kB3RRwqBsQlNP2ETmhvIYZA66O7vyPyekwrAHqAokn5JgxCRKAnpC3ixVms8Vp9K5amLzE0cdllfpqXGH16etFXX3zy2jCvvrFjKtrs6t8rOYmOsxPyePehAGf3bxn5PvF-8X84-zq84fL-fnVzAmhxpljDp3sQVkpFLPCSoUd9E0rwQoJDTDLuOUge6Nsx0Bx6GxhuXPMUOjYGbk8-HbJrPU2-43JO52M178LKS-1yWWCgNrxphG8Q2sV8K4B66jrHSIKajqObfGqD15T3JrdtQnh1pCC3u9V_7XXInp3EG0nu8HOYRyzCfeS3O9Ev9LL9FO3qilXoMXg1Y1BTj8mHEa98YPDEEzENA26FiCFVELJgr58gK7TlMsJCsWVahUVTV2oF3cT3Ub5c9oC0APgchqGjP1_jdk-0Dg_mtGn_VA-_EP5Cxt8y5w |
CitedBy_id | crossref_primary_10_23736_S0393_3660_23_05190_2 crossref_primary_10_3390_ph15060692 crossref_primary_10_3390_ijms23010106 crossref_primary_10_1016_j_tips_2024_09_009 crossref_primary_10_56782_pps_329 crossref_primary_10_3389_fphar_2023_1096614 crossref_primary_10_20517_cdr_2024_04 crossref_primary_10_1016_j_lfs_2021_119791 crossref_primary_10_3390_cells11010012 crossref_primary_10_1186_s12859_021_04147_y crossref_primary_10_46373_hafebid_1442953 crossref_primary_10_3390_ijms24119303 crossref_primary_10_1007_s12035_025_04777_w crossref_primary_10_1038_s41598_025_85856_9 crossref_primary_10_3390_molecules28155759 crossref_primary_10_3390_antiox13030344 crossref_primary_10_1007_s11033_022_08126_1 crossref_primary_10_3389_fphar_2022_720076 crossref_primary_10_2147_OTT_S457749 crossref_primary_10_1016_j_ejphar_2024_177210 crossref_primary_10_1016_j_freeradbiomed_2022_09_023 crossref_primary_10_3390_ijms26031098 crossref_primary_10_1080_07391102_2023_2205946 crossref_primary_10_1186_s12860_024_00500_0 crossref_primary_10_2174_1570180820666221028163319 crossref_primary_10_3389_fncel_2021_785057 crossref_primary_10_1186_s40170_024_00352_4 crossref_primary_10_3390_ph14111069 crossref_primary_10_1080_09637486_2024_2397055 crossref_primary_10_2147_BCTT_S457548 crossref_primary_10_3390_ijms22157963 crossref_primary_10_3390_antiox11010098 crossref_primary_10_1186_s13048_025_01639_w crossref_primary_10_1016_j_semcancer_2022_10_005 crossref_primary_10_1111_pcmr_13137 crossref_primary_10_2139_ssrn_4693638 crossref_primary_10_1016_j_fbio_2024_104444 crossref_primary_10_3390_brainsci13111532 crossref_primary_10_1016_j_biopha_2023_115015 crossref_primary_10_3390_cells11182855 crossref_primary_10_1016_j_lungcan_2022_07_004 crossref_primary_10_1016_j_bmc_2024_117681 crossref_primary_10_1186_s12964_022_00906_3 crossref_primary_10_1038_s41389_022_00425_3 crossref_primary_10_1186_s12964_022_00875_7 crossref_primary_10_1089_ars_2022_0077 crossref_primary_10_3390_antiox13060696 crossref_primary_10_1038_s41416_021_01642_0 crossref_primary_10_1016_j_slasd_2023_11_001 crossref_primary_10_1007_s13402_023_00834_5 crossref_primary_10_1089_ars_2022_0213 crossref_primary_10_1093_jb_mvac098 crossref_primary_10_3390_ph16060850 crossref_primary_10_3390_ph17081080 crossref_primary_10_3390_nu16152392 crossref_primary_10_1002_ptr_7940 crossref_primary_10_1002_jcb_30333 crossref_primary_10_1158_0008_5472_CAN_22_2311 crossref_primary_10_3390_antiox13070815 crossref_primary_10_3389_fbioe_2021_745911 crossref_primary_10_1038_s41598_022_26767_x |
Cites_doi | 10.1016/j.niox.2011.06.001 10.1016/j.freeradbiomed.2009.09.006 10.1016/j.freeradbiomed.2013.10.811 10.1074/jbc.M206530200 10.2337/db16-0020 10.1074/jbc.M109.096545 10.1158/1078-0432.CCR-18-2421 10.1038/emboj.2013.173 10.1089/ars.2014.5843 10.1074/jbc.M110.118976 10.1016/B978-0-12-420117-0.00008-6 10.4161/epi.6.3.14408 10.1074/jbc.M111.316471 10.3390/antiox9030193 10.3390/cancers11111755 10.2147/DDDT.S172612 10.1128/MCB.00248-10 10.1159/000494547 10.1073/pnas.0305902101 10.1073/pnas.0709483104 10.1073/pnas.91.21.9926 10.1016/j.jtho.2018.02.002 10.1155/2016/6235641 10.3390/biom10050791 10.1089/ars.2010.3222 10.1038/onc.2012.493 10.1016/j.abb.2010.12.034 10.1046/j.1365-2443.2001.00469.x 10.1038/nrc1840 10.1073/pnas.172398899 10.1016/j.canlet.2012.06.007 10.1016/j.ccell.2016.04.006 10.1016/j.celrep.2016.07.075 10.1073/pnas.0307301101 10.1016/j.cell.2019.06.003 10.2147/DDDT.S227892 10.1083/jcb.201102031 10.1016/j.molmed.2016.05.002 10.1042/CS20150436 10.3892/ijo.2013.2229 10.1038/ng1248 10.1111/j.1365-2559.2012.04178.x 10.1155/2018/2360427 10.1002/jcp.28091 10.18632/oncotarget.12435 10.1021/acs.jmedchem.7b01463 10.1158/1541-7786.MCR-13-0246-T 10.18632/oncotarget.18294 10.1002/cam4.2101 10.1158/0008-5472.CAN-07-5003 10.3892/ol.2015.3468 10.1016/j.freeradbiomed.2015.08.028 10.1038/ncb2021 10.1016/j.freeradbiomed.2011.03.008 10.1371/journal.pone.0152465 10.1016/j.molcel.2006.01.013 10.18632/oncotarget.25497 10.1021/acschembio.6b00651 10.1186/1471-2407-12-66 10.1158/0008-5472.CAN-12-3386 10.1038/ncomms4518 10.1016/j.bbrc.2004.06.112 10.1158/0008-5472.CAN-10-4668 10.1006/bbrc.1997.6943 10.1016/j.cell.2011.02.013 10.1159/000374036 10.1158/0008-5472.CAN-14-1439 10.1002/ijc.31937 10.1038/nature10189 10.1038/onc.2012.388 10.1016/j.molcel.2009.04.029 10.1371/journal.pone.0132978 10.1186/s12885-015-1541-1 10.3322/caac.21492 10.1158/1078-0432.CCR-14-2880 10.1093/carcin/bgn095 10.4161/epi.6.6.15773 10.1038/bjc.2014.380 10.1101/gad.13.1.76 10.1016/j.molmed.2004.09.003 10.3892/or.2013.2278 10.1089/ars.2015.6580 10.1016/j.freeradbiomed.2016.12.041 10.1158/0008-5472.CAN-16-2204 10.15252/embr.201948375 10.1146/annurev.pharmtox.46.120604.141046 10.1096/fj.02-0752rev 10.1002/med.21257 10.1016/j.cub.2014.03.034 10.1016/j.cotox.2016.10.001 10.1016/j.freeradbiomed.2013.06.041 10.1080/15548627.2015.1067362 10.1371/journal.pone.0177227 10.1016/j.bmcl.2019.06.049 10.1089/ars.2020.8146 10.1093/carcin/24.3.461 10.1128/MCB.06271-11 10.1128/MCB.26.1.221-229.2006 10.4062/biomolther.2017.195 10.18632/oncotarget.16622 10.1016/j.ccell.2018.03.022 10.1016/j.pharmthera.2020.107664 10.1084/jem.20190251 10.1128/MCB.25.24.10895-10906.2005 10.1080/10715762.2018.1489132 10.1128/MCB.00065-13 10.1002/ijc.22943 10.1186/s12964-019-0435-2 10.3389/fphys.2013.00246 10.1128/MCB.24.24.10941-10953.2004 10.1371/journal.pmed.0030420 10.1016/j.celrep.2016.08.010 10.1038/onc.2010.118 10.1155/2019/8592348 10.1016/S0027-5107(01)00190-7 10.1128/MCB.01204-10 10.1053/j.gastro.2008.06.082 10.1128/MCB.26.8.2887-2900.2006 10.1016/j.ccr.2012.05.016 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
DOI | 10.3390/molecules26051417 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1420-3049 1433-1373 |
ExternalDocumentID | oai_doaj_org_article_c46654debb904d60bc1cfceee51ad4e7 10.3390/molecules26051417 PMC7961421 33808001 10_3390_molecules26051417 |
Genre | Journal Article Review |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESTFP ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RPM SV3 TR2 TUS UKHRP ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM 6NX ADTOC AGGDS ASPBG AVWKF C1A DL5 IPNFZ KDC LAS QOK QOS RIG RNI RZK SCM SDH TSK UNPAY |
ID | FETCH-LOGICAL-c559t-c3cec8f09b8593b5b89ed0f6780b580603b34b408fa9bd30940dbb854cc3a10d3 |
IEDL.DBID | UNPAY |
ISSN | 1420-3049 1433-1373 |
IngestDate | Wed Aug 27 01:00:27 EDT 2025 Wed Aug 20 00:06:14 EDT 2025 Tue Sep 30 16:59:47 EDT 2025 Fri Sep 05 09:33:16 EDT 2025 Fri Jul 25 20:23:17 EDT 2025 Thu Apr 03 07:07:38 EDT 2025 Thu Apr 24 22:57:51 EDT 2025 Wed Oct 01 02:01:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Keap1 cancer Nrf2 oxidative stress |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c559t-c3cec8f09b8593b5b89ed0f6780b580603b34b408fa9bd30940dbb854cc3a10d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-8940-3153 0000-0003-4530-8706 0000-0001-7989-7145 0000-0003-0337-0763 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1420-3049/26/5/1417/pdf?version=1615271966 |
PMID | 33808001 |
PQID | 2499791562 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c46654debb904d60bc1cfceee51ad4e7 unpaywall_primary_10_3390_molecules26051417 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7961421 proquest_miscellaneous_2508589598 proquest_journals_2499791562 pubmed_primary_33808001 crossref_primary_10_3390_molecules26051417 crossref_citationtrail_10_3390_molecules26051417 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210305 |
PublicationDateYYYYMMDD | 2021-03-05 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210305 day: 5 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules |
PublicationTitleAlternate | Molecules |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Copple (ref_73) 2010; 285 Wang (ref_26) 2013; 73 Seelige (ref_99) 2016; 16 Zarei (ref_104) 2019; 216 Shi (ref_71) 2015; 35 Gambardella (ref_107) 2019; 25 Marengo (ref_5) 2016; 2016 Chapman (ref_6) 2018; 34 ref_17 ref_16 Chen (ref_96) 2018; 50 ref_15 (ref_37) 2002; 26 Rojo (ref_85) 2014; 21 Tsai (ref_98) 2020; 14 Shim (ref_42) 2009; 47 Dolan (ref_34) 2003; 24 Umemura (ref_79) 2016; 29 Holtzclaw (ref_29) 2002; 99 ref_120 Xiang (ref_109) 2018; 2018 Leinonen (ref_19) 2014; 122 Tong (ref_90) 2006; 26 Xiu (ref_122) 2007; 104 Hanada (ref_64) 2012; 12 ref_70 Kuang (ref_93) 2018; 61 Lee (ref_115) 2018; 52 Komatsu (ref_75) 2010; 12 Yang (ref_118) 2020; 19 Chowdhry (ref_87) 2014; 32 Singh (ref_119) 2016; 11 Camp (ref_81) 2012; 287 Arlt (ref_116) 2013; 32 Zhao (ref_50) 2017; 8 Tong (ref_97) 2015; 1 You (ref_41) 2011; 507 Mitsuishi (ref_40) 2012; 22 Ohta (ref_55) 2008; 68 Evans (ref_110) 2018; 9 Jain (ref_74) 2010; 285 Cooke (ref_100) 2003; 17 Valenzuela (ref_121) 2014; 111 Zipper (ref_28) 2002; 277 Kwak (ref_36) 2001; 480–481 Somasekharan (ref_108) 2019; 20 Yamamoto (ref_69) 2014; 12 Lu (ref_83) 2017; 77 Kobayashi (ref_91) 2006; 26 Ferlay (ref_2) 2019; 144 Itoh (ref_33) 2010; 13 Zhang (ref_47) 2016; 7 Osburn (ref_10) 2007; 121 Liao (ref_88) 2012; 27 Goldstein (ref_58) 2016; 16 Tian (ref_60) 2012; 325 Wang (ref_43) 2008; 29 Muscarella (ref_63) 2011; 6 Chen (ref_80) 2009; 34 Motohashi (ref_8) 2004; 10 Wakabayashi (ref_11) 2004; 101 ref_57 Lau (ref_76) 2010; 30 Peifer (ref_62) 2014; 5 Chien (ref_39) 2015; 21 Inami (ref_78) 2011; 193 Itoh (ref_35) 1997; 236 Zhao (ref_67) 2015; 10 Tang (ref_117) 2011; 50 Konstantinopoulos (ref_52) 2011; 71 Sova (ref_123) 2018; 12 Suzuki (ref_14) 2013; 33 Derks (ref_61) 2018; 13 Suzuki (ref_125) 2016; 1 Genschik (ref_77) 2013; 32 Schieber (ref_124) 2014; 24 Zhang (ref_22) 2004; 24 Tao (ref_101) 2015; 89 Bray (ref_1) 2018; 68 Wu (ref_7) 2019; 8 Duong (ref_113) 2014; 44 Yoo (ref_51) 2012; 60 Ma (ref_82) 2012; 32 Hanahan (ref_3) 2011; 144 Slack (ref_68) 2006; 6 Nguyen (ref_114) 2019; 234 Moi (ref_20) 1994; 91 Katoh (ref_24) 2001; 6 ref_111 ref_31 ref_30 Wei (ref_56) 2013; 65 Rada (ref_25) 2011; 31 Zhang (ref_65) 2011; 9 Denicola (ref_84) 2011; 475 Menegon (ref_9) 2016; 22 Yoshino (ref_44) 2018; 8 Gao (ref_106) 2017; 8 Hornsveld (ref_4) 2016; 25 Tao (ref_86) 2014; 74 Magesh (ref_27) 2012; 32 Clarner (ref_102) 2015; 129 Yamamoto (ref_13) 2004; 321 Kang (ref_105) 2019; 29 Kensler (ref_126) 2007; 47 Rachakonda (ref_12) 2010; 29 ref_103 Itoh (ref_32) 1999; 13 Zhang (ref_89) 2013; 29 Tsuchida (ref_112) 2017; 103 Shibata (ref_53) 2008; 135 Padmanabhan (ref_54) 2006; 21 Motohashi (ref_21) 2004; 101 ref_46 Wei (ref_72) 2014; 67 Kong (ref_95) 2013; 4 Qin (ref_94) 2019; 17 ref_49 Nioi (ref_23) 2005; 25 Singh (ref_45) 2006; 3 ref_48 Jasinski (ref_92) 2011; 31 Wakabayashi (ref_38) 2003; 35 Lebovitz (ref_59) 2015; 11 Jung (ref_18) 2018; 26 Muscarella (ref_66) 2011; 6 |
References_xml | – ident: ref_30 doi: 10.1016/j.niox.2011.06.001 – volume: 47 start-page: 1619 year: 2009 ident: ref_42 article-title: Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of the NRF2 pathway publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2009.09.006 – volume: 67 start-page: 91 year: 2014 ident: ref_72 article-title: Aldose reductase regulates miR-200a-3p/141-3p to coordinate Keap1-Nrf2, Tgfβ1/2, and Zeb1/2 signaling in renal mesangial cells and the renal cortex of diabetic mice publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.10.811 – volume: 277 start-page: 36544 year: 2002 ident: ref_28 article-title: The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm publication-title: J. Biol. Chem. doi: 10.1074/jbc.M206530200 – ident: ref_31 doi: 10.2337/db16-0020 – volume: 285 start-page: 16782 year: 2010 ident: ref_73 article-title: Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.096545 – volume: 25 start-page: 1639 year: 2019 ident: ref_107 article-title: NRF2 through RPS6 Activation Is Related to Anti-HER2 Drug Resistance in HER2 -Amplified Gastric Cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-2421 – volume: 32 start-page: 2307 year: 2013 ident: ref_77 article-title: The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): Cellular functions and disease implications publication-title: EMBO J. doi: 10.1038/emboj.2013.173 – volume: 21 start-page: 2498 year: 2014 ident: ref_85 article-title: The PTEN/NRF2 axis promotes human carcinogenesis publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2014.5843 – volume: 285 start-page: 22576 year: 2010 ident: ref_74 article-title: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.118976 – volume: 122 start-page: 281 year: 2014 ident: ref_19 article-title: Role of the keap1-Nrf2 Pathway in Cancer publication-title: Adv. Cancer Res. doi: 10.1016/B978-0-12-420117-0.00008-6 – volume: 6 start-page: 317 year: 2011 ident: ref_66 article-title: Regulation of KEAP1 expression by promoter methylation in malignant gliomas and association with patient’s outcome publication-title: Epigenetics doi: 10.4161/epi.6.3.14408 – volume: 287 start-page: 6539 year: 2012 ident: ref_81 article-title: Wilms Tumor Gene on X Chromosome (WTX) Inhibits Degradation of NRF2 Protein through Competitive Binding to KEAP1 Protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.316471 – ident: ref_57 doi: 10.3390/antiox9030193 – ident: ref_70 doi: 10.3390/cancers11111755 – volume: 12 start-page: 3181 year: 2018 ident: ref_123 article-title: Design and development of Nrf2 modulators for cancer chemoprevention and therapy: A review publication-title: Drug Des. Dev. Ther. doi: 10.2147/DDDT.S172612 – volume: 30 start-page: 3275 year: 2010 ident: ref_76 article-title: A Noncanonical Mechanism of Nrf2 Activation by Autophagy Deficiency: Direct Interaction between Keap1 and p62 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00248-10 – volume: 50 start-page: 1201 year: 2018 ident: ref_96 article-title: Activation of Nrf2 by Sulforaphane Inhibits High Glucose-Induced Progression of Pancreatic Cancer via AMPK Dependent Signaling publication-title: Cell. Physiol. Biochem. doi: 10.1159/000494547 – volume: 101 start-page: 6379 year: 2004 ident: ref_21 article-title: Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0305902101 – volume: 104 start-page: 19589 year: 2007 ident: ref_122 article-title: Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0709483104 – volume: 91 start-page: 9926 year: 1994 ident: ref_20 article-title: Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the β-globin locus control region publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.91.21.9926 – volume: 13 start-page: 752 year: 2018 ident: ref_61 article-title: New Insights into the Molecular Characteristics of Pulmonary Carcinoids and Large Cell Neuroendocrine Carcinomas, and the Impact on Their Clinical Management publication-title: J. Thorac. Oncol. doi: 10.1016/j.jtho.2018.02.002 – volume: 19 start-page: 2179 year: 2020 ident: ref_118 article-title: Luteolin induces mitochondrial apoptosis in HT29 cells by inhibiting the Nrf2/ARE signaling pathway publication-title: Exp. Ther. Med. – volume: 2016 start-page: 6235641 year: 2016 ident: ref_5 article-title: Redox homeostasis and cellular antioxidant systems: Crucial players in cancer growth and therapy publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2016/6235641 – ident: ref_16 doi: 10.3390/biom10050791 – volume: 13 start-page: 1665 year: 2010 ident: ref_33 article-title: Discovery of the negative regulator of Nrf2, keap1: A historical overview publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2010.3222 – volume: 32 start-page: 4825 year: 2013 ident: ref_116 article-title: Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity publication-title: Oncogene doi: 10.1038/onc.2012.493 – volume: 507 start-page: 356 year: 2011 ident: ref_41 article-title: Transcription factor Nrf2 maintains the basal expression of Mdm2: An implication of the regulation of p53 signaling by Nrf2 publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2010.12.034 – volume: 6 start-page: 857 year: 2001 ident: ref_24 article-title: Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription publication-title: Genes Cells doi: 10.1046/j.1365-2443.2001.00469.x – volume: 6 start-page: 259 year: 2006 ident: ref_68 article-title: Oncomirs—MicroRNAs with a role in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1840 – volume: 99 start-page: 11908 year: 2002 ident: ref_29 article-title: Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.172398899 – volume: 325 start-page: 26 year: 2012 ident: ref_60 article-title: Keap1: One stone kills three birds Nrf2, IKKβ and Bcl-2/Bcl-xL publication-title: Cancer Lett. doi: 10.1016/j.canlet.2012.06.007 – volume: 29 start-page: 935 year: 2016 ident: ref_79 article-title: p62, Upregulated during Preneoplasia, Induces Hepatocellular Carcinogenesis by Maintaining Survival of Stressed HCC-Initiating Cells publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.04.006 – volume: 16 start-page: 2348 year: 2016 ident: ref_99 article-title: Nrf2 Induces IL-17D to Mediate Tumor and Virus Surveillance publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.07.075 – volume: 101 start-page: 2040 year: 2004 ident: ref_11 article-title: Protection against electrophile and oxidant stress by induction of the phase 2 response: Fate of cysteines of the Keap1 sensor modified by inducers publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0307301101 – ident: ref_46 doi: 10.1016/j.cell.2019.06.003 – volume: 14 start-page: 1209 year: 2020 ident: ref_98 article-title: Miconazole contributes to NRF2 activation by noncanonical P62-keap1 pathway in bladder cancer cells publication-title: Drug Des. Dev. Ther. doi: 10.2147/DDDT.S227892 – volume: 193 start-page: 275 year: 2011 ident: ref_78 article-title: Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells publication-title: J. Cell Biol. doi: 10.1083/jcb.201102031 – volume: 22 start-page: 578 year: 2016 ident: ref_9 article-title: The Dual Roles of NRF2 in Cancer publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2016.05.002 – volume: 129 start-page: 989 year: 2015 ident: ref_102 article-title: Nrf2 in health and disease: Current and future clinical implications publication-title: Clin. Sci. doi: 10.1042/CS20150436 – volume: 44 start-page: 959 year: 2014 ident: ref_113 article-title: Inhibition of NRF2 by PIK-75 augments sensitivity of pancreatic cancer cells to gemcitabine publication-title: Int. J. Oncol. doi: 10.3892/ijo.2013.2229 – volume: 35 start-page: 238 year: 2003 ident: ref_38 article-title: Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation publication-title: Nat. Genet. doi: 10.1038/ng1248 – volume: 60 start-page: 943 year: 2012 ident: ref_51 article-title: Somatic mutations of the KEAP1 gene in common solid cancers publication-title: Histopathology doi: 10.1111/j.1365-2559.2012.04178.x – volume: 2018 start-page: 2360427 year: 2018 ident: ref_109 article-title: Brusatol enhances the chemotherapy efficacy of gemcitabine in pancreatic cancer via the Nrf2 signalling pathway publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2018/2360427 – volume: 234 start-page: 14040 year: 2019 ident: ref_114 article-title: The Bcl-2 inhibitor venetoclax inhibits Nrf2 antioxidant pathway activation induced by hypomethylating agents in AML publication-title: J. Cell. Physiol. doi: 10.1002/jcp.28091 – volume: 7 start-page: 73593 year: 2016 ident: ref_47 article-title: NRF2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal transduction publication-title: Oncotarget doi: 10.18632/oncotarget.12435 – volume: 61 start-page: 1576 year: 2018 ident: ref_93 article-title: Design and Synthesis of Novel Reactive Oxygen Species Inducers for the Treatment of Pancreatic Ductal Adenocarcinoma publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.7b01463 – volume: 12 start-page: 58 year: 2014 ident: ref_69 article-title: The impact of miRNA-based molecular diagnostics and treatment of NRF2-stabilized tumors publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-13-0246-T – volume: 8 start-page: 82085 year: 2017 ident: ref_106 article-title: Apigenin sensitizes BEL-7402/ADM cells to doxorubicin through inhibiting miR-101/Nrf2 pathway publication-title: Oncotarget doi: 10.18632/oncotarget.18294 – volume: 8 start-page: 2252 year: 2019 ident: ref_7 article-title: Nrf2 in cancers: A double-edged sword publication-title: Cancer Med. doi: 10.1002/cam4.2101 – volume: 68 start-page: 1303 year: 2008 ident: ref_55 article-title: Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-5003 – volume: 8 start-page: 461 year: 2018 ident: ref_44 article-title: Effects of Nrf2 knockdown on the properties of irradiated cell conditioned medium from A549 human lung cancer cells publication-title: Biomed. Reports – volume: 10 start-page: 1287 year: 2015 ident: ref_67 article-title: Promoter demethylation of nuclear factor-erythroid 2-related factor 2 gene in drug-resistant colon cancer cells publication-title: Oncol. Lett. doi: 10.3892/ol.2015.3468 – volume: 89 start-page: 690 year: 2015 ident: ref_101 article-title: Systemic administration of the apocarotenoid bixin protects skin against solar UV-induced damage through activation of NRF2 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.08.028 – volume: 12 start-page: 213 year: 2010 ident: ref_75 article-title: The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2021 – volume: 50 start-page: 1599 year: 2011 ident: ref_117 article-title: Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2011.03.008 – ident: ref_120 doi: 10.1371/journal.pone.0152465 – volume: 21 start-page: 689 year: 2006 ident: ref_54 article-title: Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.01.013 – volume: 26 start-page: 75 year: 2002 ident: ref_37 article-title: Role of NRF2 in Protection against Hyperoxic Lung Injury in Mice publication-title: Free Radic. Biol. Med. – volume: 9 start-page: 27104 year: 2018 ident: ref_110 article-title: The Nrf2 inhibitor brusatol is a potent antitumour agent in an orthotopic mouse model of colorectal cancer publication-title: Oncotarget doi: 10.18632/oncotarget.25497 – volume: 11 start-page: 3214 year: 2016 ident: ref_119 article-title: Small Molecule Inhibitor of NRF2 Selectively Intervenes Therapeutic Resistance in KEAP1-Deficient NSCLC Tumors publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.6b00651 – volume: 12 start-page: 1 year: 2012 ident: ref_64 article-title: Methylation of the KEAP1 gene promoter region in human colorectal cancer publication-title: BMC Cancer doi: 10.1186/1471-2407-12-66 – volume: 73 start-page: 3097 year: 2013 ident: ref_26 article-title: RXRα inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-3386 – volume: 5 start-page: 3518 year: 2014 ident: ref_62 article-title: Frequent mutations in chromatin-remodeling genes in pulmonary carcinoids publication-title: Nat. Commun. doi: 10.1038/ncomms4518 – volume: 321 start-page: 72 year: 2004 ident: ref_13 article-title: Identification of polymorphisms in the promoter region of the human NRF2 gene publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2004.06.112 – volume: 71 start-page: 5081 year: 2011 ident: ref_52 article-title: Keap1 mutations and Nrf2 pathway activation in epithelial ovarian cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-4668 – volume: 236 start-page: 313 year: 1997 ident: ref_35 article-title: An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1997.6943 – volume: 144 start-page: 646 year: 2011 ident: ref_3 article-title: Hallmarks of Cancer: The Next Generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 35 start-page: 2333 year: 2015 ident: ref_71 article-title: MiR-141 activates Nrf2-dependent antioxidant pathway via down-regulating the expression of keap1 conferring the resistance of hepatocellular carcinoma cells to 5-fluorouracil publication-title: Cell. Physiol. Biochem. doi: 10.1159/000374036 – volume: 74 start-page: 7430 year: 2014 ident: ref_86 article-title: Oncogenic KRAS Confers Chemoresistance by Upregulating NRF2 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-1439 – volume: 144 start-page: 1941 year: 2019 ident: ref_2 article-title: Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods publication-title: Int. J. Cancer doi: 10.1002/ijc.31937 – volume: 475 start-page: 106 year: 2011 ident: ref_84 article-title: Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis publication-title: Nature doi: 10.1038/nature10189 – volume: 32 start-page: 3765 year: 2014 ident: ref_87 article-title: Nrf2 is controlled by two distinct β -TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity publication-title: Oncogene doi: 10.1038/onc.2012.388 – volume: 34 start-page: 663 year: 2009 ident: ref_80 article-title: Direct Interaction between Nrf2 and p21Cip1/WAF1 Upregulates the Nrf2-Mediated Antioxidant Response publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.04.029 – ident: ref_49 doi: 10.1371/journal.pone.0132978 – ident: ref_48 doi: 10.1186/s12885-015-1541-1 – volume: 27 start-page: 1918 year: 2012 ident: ref_88 article-title: NRF2 is overexpressed in ovarian epithelial carcinoma and is regulated by gonadotrophin and sex-steroid hormones publication-title: Oncol. Rep. – volume: 68 start-page: 394 year: 2018 ident: ref_1 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21492 – volume: 21 start-page: 4719 year: 2015 ident: ref_39 article-title: Keap1-Nrf2 interaction suppresses cell motility in lung adenocarcinomas by targeting the S100P protein publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-2880 – volume: 29 start-page: 1235 year: 2008 ident: ref_43 article-title: Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2 publication-title: Carcinogenesis doi: 10.1093/carcin/bgn095 – volume: 6 start-page: 710 year: 2011 ident: ref_63 article-title: Frequent epigenetics inactivation of KEAP1 gene in non-small cell lung cancer publication-title: Epigenetics doi: 10.4161/epi.6.6.15773 – volume: 111 start-page: 874 year: 2014 ident: ref_121 article-title: Retinoic acid synergizes ATO-mediated cytotoxicity by precluding Nrf2 activity in AML cells publication-title: Br. J. Cancer doi: 10.1038/bjc.2014.380 – volume: 13 start-page: 76 year: 1999 ident: ref_32 article-title: Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain publication-title: Genes Dev. doi: 10.1101/gad.13.1.76 – volume: 10 start-page: 549 year: 2004 ident: ref_8 article-title: Nrf2–Keap1 defines a physiologically important stress response mechanism publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2004.09.003 – volume: 29 start-page: 1429 year: 2013 ident: ref_89 article-title: AntiReactive oxygen species regulate FSH-induced expression of vascular endothelial growth factor via Nrf2 and HIF1a signaling in human epithelial ovarian cancer publication-title: Oncol. Rep. doi: 10.3892/or.2013.2278 – volume: 25 start-page: 300 year: 2016 ident: ref_4 article-title: The Hallmarks of Cancer from a Redox Perspective publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2015.6580 – volume: 9 start-page: 1 year: 2011 ident: ref_65 article-title: Loss of keap 1 Function in prostate Cancer Cells Causes Chemo- and Radio-resistance and Promotes Tumor Growth publication-title: Mol. Cancer Ther. – volume: 103 start-page: 236 year: 2017 ident: ref_112 article-title: Halofuginone enhances the chemo-sensitivity of cancer cells by suppressing NRF2 accumulation publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2016.12.041 – volume: 77 start-page: 2881 year: 2017 ident: ref_83 article-title: NRF2 induction supporting breast cancer cell survival is enabled by oxidative stress-induced DPP3-KEAP1 interaction publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-2204 – volume: 20 start-page: e48375 year: 2019 ident: ref_108 article-title: Class I HDAC inhibitors enhance YB-1 acetylation and oxidative stress to block sarcoma metastasis publication-title: EMBO Rep. doi: 10.15252/embr.201948375 – volume: 47 start-page: 89 year: 2007 ident: ref_126 article-title: Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev.pharmtox.46.120604.141046 – volume: 17 start-page: 1195 year: 2003 ident: ref_100 article-title: Oxidative DNA damage: Mechanisms, mutation, and disease publication-title: FASEB J. doi: 10.1096/fj.02-0752rev – volume: 32 start-page: 687 year: 2012 ident: ref_27 article-title: Small Molecule Modulators of Keap1-Nrf2-ARE Pathway as Potential Preventive and Therapeutic Agents publication-title: Med. Res. Rev. doi: 10.1002/med.21257 – volume: 24 start-page: R453 year: 2014 ident: ref_124 article-title: ROS function in redox signaling and oxidative stress publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.03.034 – volume: 1 start-page: 29 year: 2016 ident: ref_125 article-title: Overview of redox regulation by Keap1–Nrf2 system in toxicology and cancer publication-title: Curr. Opin. Toxicol. doi: 10.1016/j.cotox.2016.10.001 – volume: 65 start-page: 750 year: 2013 ident: ref_56 article-title: Oncogenic functions of the transcription factor Nrf2 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.06.041 – volume: 11 start-page: 1668 year: 2015 ident: ref_59 article-title: Cross-cancer profiling of molecular alterations within the human autophagy interaction network publication-title: Autophagy doi: 10.1080/15548627.2015.1067362 – ident: ref_111 doi: 10.1371/journal.pone.0177227 – volume: 29 start-page: 2189 year: 2019 ident: ref_105 article-title: Homoharringtonine stabilizes secondary structure of guanine-rich sequence existing in the 5′-untranslated region of Nrf2 publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2019.06.049 – ident: ref_103 doi: 10.1089/ars.2020.8146 – volume: 24 start-page: 461 year: 2003 ident: ref_34 article-title: Interactive effects of nrf2 genotype and oltipraz on benzo[a]pyrene-DNA adducts and tumor yield in mice publication-title: Carcinogenesis doi: 10.1093/carcin/24.3.461 – volume: 32 start-page: 1506 year: 2012 ident: ref_82 article-title: PALB2 Interacts with KEAP1 To Promote NRF2 Nuclear Accumulation and Function publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.06271-11 – volume: 26 start-page: 221 year: 2006 ident: ref_91 article-title: Oxidative and Electrophilic Stresses Activate Nrf2 through Inhibition of Ubiquitination Activity of Keap1 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.26.1.221-229.2006 – volume: 26 start-page: 57 year: 2018 ident: ref_18 article-title: Dysregulation of NRF2 in cancer: From molecular mechanisms to therapeutic opportunities publication-title: Biomol. Ther. doi: 10.4062/biomolther.2017.195 – volume: 8 start-page: 36603 year: 2017 ident: ref_50 article-title: Suppression of radiation-induced migration of non-small cell lung cancer through inhibition of Nrf2-Notch Axis publication-title: Oncotarget doi: 10.18632/oncotarget.16622 – volume: 34 start-page: 21 year: 2018 ident: ref_6 article-title: NRF2 and the Hallmarks of Cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.03.022 – ident: ref_17 doi: 10.1016/j.pharmthera.2020.107664 – volume: 31 start-page: 1181 year: 2011 ident: ref_92 article-title: MT477 acts in tumor cells as an AURKA inhibitor and strongly induces NRF-2 signaling publication-title: Anticancer Res. – volume: 216 start-page: 2635 year: 2019 ident: ref_104 article-title: Tumors with TSC mutations are sensitive to CDK7 inhibition through NRF2 and glutathione depletion publication-title: J. Exp. Med. doi: 10.1084/jem.20190251 – volume: 25 start-page: 10895 year: 2005 ident: ref_23 article-title: The Carboxy-Terminal Neh3 Domain of Nrf2 Is Required for Transcriptional Activation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.24.10895-10906.2005 – volume: 52 start-page: 1416 year: 2018 ident: ref_115 article-title: Suppression of NRF2/ARE by convallatoxin sensitises A549 cells to 5-FU-mediated apoptosis publication-title: Free Radic. Res. doi: 10.1080/10715762.2018.1489132 – volume: 33 start-page: 2402 year: 2013 ident: ref_14 article-title: Regulatory Nexus of Synthesis and Degradation Deciphers Cellular Nrf2 Expression Levels publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00065-13 – volume: 121 start-page: 1883 year: 2007 ident: ref_10 article-title: Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment publication-title: Int. J. Cancer doi: 10.1002/ijc.22943 – volume: 17 start-page: 1 year: 2019 ident: ref_94 article-title: Dual roles and therapeutic potential of Keap1-Nrf2 pathway in pancreatic cancer: A systematic review publication-title: Cell Commun. Signal. doi: 10.1186/s12964-019-0435-2 – volume: 4 start-page: 246 year: 2013 ident: ref_95 article-title: Overview on how oncogenic Kras promotes pancreatic carcinogenesis by inducing low intracellular ROS levels publication-title: Front. Physiol. doi: 10.3389/fphys.2013.00246 – volume: 24 start-page: 10941 year: 2004 ident: ref_22 article-title: Keap1 is aredox-regulated substrate adaptor protein for a Cul3-dependent ubiquitinligase complex publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.24.10941-10953.2004 – volume: 3 start-page: 1865 year: 2006 ident: ref_45 article-title: Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer publication-title: PLoS Med. doi: 10.1371/journal.pmed.0030420 – volume: 16 start-page: 2605 year: 2016 ident: ref_58 article-title: Recurrent Loss of NFE2L2 Exon 2 Is a Mechanism for Nrf2 Pathway Activation in Human Cancers publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.08.010 – volume: 29 start-page: 3703 year: 2010 ident: ref_12 article-title: Increased cell migration and plasticity in Nrf2-deficient cancer cell lines publication-title: Oncogene doi: 10.1038/onc.2010.118 – ident: ref_15 doi: 10.1155/2019/8592348 – volume: 480–481 start-page: 305 year: 2001 ident: ref_36 article-title: Role of phase 2 enzyme induction in chemoprotection by dithiolethiones publication-title: Mutat. Res. Fundam. Mol. Mech. Mutagen. doi: 10.1016/S0027-5107(01)00190-7 – volume: 31 start-page: 1121 year: 2011 ident: ref_25 article-title: SCF/ -TrCP Promotes Glycogen Synthase Kinase 3-Dependent Degradation of the Nrf2 Transcription Factor in a Keap1-Independent Manner publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01204-10 – volume: 135 start-page: 1358 year: 2008 ident: ref_53 article-title: Genetic Alteration of Keap1 Confers Constitutive Nrf2 Activation and Resistance to Chemotherapy in Gallbladder Cancer publication-title: Gastroenterology doi: 10.1053/j.gastro.2008.06.082 – volume: 1 start-page: 175 year: 2015 ident: ref_97 article-title: Keap1–Nrf2 pathway: A promising target towards lung cancer prevention and therapeutics publication-title: Chronic Dis. Transl. Med. – volume: 26 start-page: 2887 year: 2006 ident: ref_90 article-title: Keap1 Recruits Neh2 through Binding to ETGE and DLG Motifs: Characterization of the Two-Site Molecular Recognition Model publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.26.8.2887-2900.2006 – volume: 22 start-page: 66 year: 2012 ident: ref_40 article-title: Nrf2 Redirects Glucose and Glutamine into Anabolic Pathways in Metabolic Reprogramming publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.05.016 |
SSID | ssj0021415 |
Score | 2.5550213 |
SecondaryResourceType | review_article |
Snippet | Cancer is one of the most fatal diseases with an increasing incidence and mortality all over the world. Thus, there is an urgent need for novel therapies... |
SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1417 |
SubjectTerms | Animals Antioxidants Cancer Cell division Epigenesis, Genetic Gene expression Genes, Tumor Suppressor Homeostasis Humans Keap1 Kelch-Like ECH-Associated Protein 1 - genetics Kelch-Like ECH-Associated Protein 1 - metabolism Kinases Metastasis Molecular Targeted Therapy - methods Mutation Neoplasms - drug therapy Neoplasms - genetics Neoplasms - metabolism Neoplasms - pathology NF-E2-Related Factor 2 - antagonists & inhibitors NF-E2-Related Factor 2 - genetics NF-E2-Related Factor 2 - metabolism Nrf2 Oxidative Stress Proteins Review Roles Signal Transduction Transcription factors Tumorigenesis Tumors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYll_RS2vS1bRoU6KlliVaP3dWxNTEmEBNaG3JbNJK2Nbjr4AfG_76jfWGTUF963NUIxMxo55vV6BtCPnuTcm7BxN4wG0sHuKUE6Fjw3EuHMYOb8GvgdpyOpvLmXt3vtfoKNWENPXCjuCsrQ39c5wE0ky5lYBNb4pfdq8Q46et75BjGumSqTbUSjEvNGabApP7qT9Nq1q8Cesex7CAK1WT9TyHMx4WSp5vqwey2Zj7fi0LDl-RFCx_pt2bZr8gzX52R00HXte113Ta-u1BFJ3WZNwYnuigpIj06_jHk9OfsV0Df-PYO4d_W7OisooNg_eUbMh1eTwajuG2REFtMBdaxFdbbvGQaAm8ZKMi1d6zECMRA5SxlAoQEyfLSaHAikOU5QFlprTAJc-ItOakWlX9PKAjnZOmsypyQHKXwES2FOxYSk5QqIqxTWWFb_vDQxmJeYB4RtFw80nJEvvRTHhryjH8Jfw926AUD73X9Ar2haL2hOOYNETnvrFi0m3FVYIapM42JKo_IZT-MdglnI6byiw3KIFBVuVY6j8i7xuj9SjCLD7g6iUh24A4HSz0cqWa_a6ruTCP84Tjza-84xzXx4X9o4iN5zkP5TSiXU-fkZL3c-E-In9ZwUW-VvwauHbA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagHMoF8SZQkJE4gaI6fmziE4IVS4VEhaCVeos8ttOutCTLPlT13zOTF6yKyjH2OEo8M55v7PEMY2-im0jpwaXRCZ_qAKhSCmyqZBF1QJshHW0NfD2eHJ3qL2fmrN9wW_dhlcOa2C7UofG0R36IboLNLXob8v3yV0pVo-h0tS-hcZvdySRKEt0Un30eHa4MrVN3kqnQtT_82RWcjWvC8NiX79iiNmX_v3Dm9XDJ_W29dFeXbrH4yxbN7rN7PYjkHzquP2C3Yv2Q7U-H2m2P2uLxw7UqftIGe6OJ4k3FEe_x4-8zyX_MzwmDY-s3BIGX7orPaz4lGVg9ZqezTyfTo7QvlJB6dAg2qVc--qISFih7GRgobAyiQjskwBRiIhQoDVoUlbMQFKXMC4C02nvlMhHUE7ZXN3V8xjioEHQVvMmD0hKp8BH5hXoLmcsqkzAxTFnp-yziVMxiUaI3QbNcXpvlhL0dhyy7FBo3EX8kPoyElP26bWhW52WvTKXXVDM5RAArdJgI8Jmv0NpHk7mgI77kYOBi2avkuvwjQAl7PXYjX-iExNWx2SINwlVTWGOLhD3tmD5-CfryhK6zhOU74rDzqbs99fyiTdidWwRBEke-GwXn_zPx_OafeMHuSgqvoXA4c8D2NqttfIn4aAOvWiX4DcDlE1k priority: 102 providerName: ProQuest |
Title | Therapeutic Targeting of the NRF2 Signaling Pathway in Cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33808001 https://www.proquest.com/docview/2499791562 https://www.proquest.com/docview/2508589598 https://pubmed.ncbi.nlm.nih.gov/PMC7961421 https://www.mdpi.com/1420-3049/26/5/1417/pdf?version=1615271966 https://doaj.org/article/c46654debb904d60bc1cfceee51ad4e7 |
UnpaywallVersion | publishedVersion |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: HH5 dateStart: 19970101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: KQ8 dateStart: 19970101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: ABDBF dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: DIK dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: GX1 dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: RPM dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEB7RRKi8cBRKDSUyEk8gN-vd9bFPqI0aKiSiqDRSeDJ7uUSkTpSDqvx6Zn1EhCIQ4iWK7VnL9szufLM7-w3AKytjSrWSgZVEB9wo7FJMiYDR1HKDPoNKNzXwYRCfjfj7cTSu65wu67RKDMUn5SAdcre9FzFsl8bdCA_DpDs3-dtv9VSSQys0QRuKd6AduxWmFrRHg-Hxp3JPUd24_M9YELKEVeuaDAP97lVVftYuHaJ3t97yTCWB_-9Q5-3kyd11MZc313I6_ckz9R_A5-adqoSUr0frlTrS33-he_yPl34I92vU6h9XZvYI7thiD3Z7TbG4PbhbZpLq5eOybn2zo8u_KPPM0Tv6s9xHqOkPzvvU_zi5dPAfzw4Rf17LG39S-D1nfosnMOqfXvTOgrpGQ6AxFlkFmmmr05wI5YjTVKRSYQ3J0QUSFaUkJkwxrjhJcymUYY6tzyiU5VozGRLD9qFVzAp7AL5ixvDc6CgxjFOUwkM0FRwyVCjDPPKANPrJdE1g7upoTDMMZJxKs1sq9eD1psm8Yu_4k_CJU_pG0BFvlydmi8us7seZ5q5cs7FKCcJNTJQOdY5Aw0ahNNziTQ4bk8nq0WCZYYgrEoGRMvXg5eYyasgtzsjCztYog0g5SkUkUg-eVha2eRLGHPsnCT1Itmxv61G3rxSTLyVXeCIQf1Fs-WZjpX__Es_-Sfo53KMu0ccl5kWH0Fot1vYFIrWV6sBOMk7wN-2_60D75HQwPO-Usx6dup_-AA8hPYI |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcggXxBuXAkaCC8jqencdew8IQSBKaRshSKXc3H25RAp2moei_Cl-IzN-laionHq0d9ayZ2ZnvvHOzhDy2qkuY0arwClqAmE1LCmuZcBZ4oQFn8EU_ho4GXYHp-LrOBrvkN_NWRhMq2xsYmmobWHwH_kBhAkylhBtsA-ziwC7RuHuatNCo1KLI7dZQ8i2eH_4GeT7hrH-l1FvENRdBQID6HkZGG6cSTIqNZb60pFOpLM0A6NNdZTQLuWaCy1okimpLcf6clYDrTCGq5BaDs-9RW4LTgXW6o_HlwFeCN6w2jnlXNKDX1WDW7fAmAHG4i3fV7YI-BeuvZqe2VnlM7VZq-n0L9_Xv0fu1qDV_1hp2X2y4_IHpNNresU9LJvVN8e4_FGZXA4u0S8yH_ClP_zeZ_6PyTlifrj7DUDnWm38Se73UOfmj8jpjbDwMdnNi9w9Jb7m1orMmii2XDCggkvQD7ATOlRhFnmENixLTV21HJtnTFOIXpDL6RUue-RtO2VWley4jvgTyqElxGrb5Y1ifp7Wizc1Ans0W6e1pMJ2qTahyQBduChUVjh4yH4jxbQ2AYv0UmE98qodBrngjozKXbECGoDHUSIjmXjkSSX09k04x5KfNPRIvKUOW6-6PZJPfpYFwmMJoIvBzHet4vyfE3vXf8RL0hmMTo7T48Ph0TNyh2FqD6biRftkdzlfueeAzZb6RbkgfHJ20yvwDyT-UF8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlEuiDeGAosEF5CV9e469h4QgpSopRBV0Eq5mX25jZQ6IQ9F-Wv8Omb8KlFROfVo79iy5_mNdzxDyGuvu5xbo0OvmQ2lM2BSwqhQ8NRLBzGDa_w08G3Q3T-RX4bxcIv8bv6FwbLKxieWjtpNLH4j70CaoBIF2Qbv5HVZxNFe_8P0V4gTpHCntRmnUanIoV-vIH2bvz_YA1m_4bz_-bi3H9YTBkILSHoRWmG9TXOmDLb9MrFJlXcsBwfOTJyyLhNGSCNZmmtlnMBec84ArbRW6Ig5Afe9QW4mQgosJ0uGF8leBJGx2kUVQrHOeTXs1s8xf4C1ZCMOluMC_oVxL5dq7iyLqV6v9Hj8Vxzs3yV3agBLP1Yad49s-eI-2ek1c-MelIPrm1-66HFZaA7hkU5yCliTDr73Of0xOkX8D2ePAICu9JqOCtpD_Zs9JCfXwsJHZLuYFP4JoUY4J3Nn48QJyYEKDkFXwGeYSEd5HBDWsCyzdQdzHKQxziCTQS5nl7gckLftJdOqfcdVxJ9QDi0hdt4uT0xmp1ltyJmVOK_ZeWMUk67LjI1sDkjDx5F20sNNdhspZrU7mGcXyhuQV-0yyAV3Z3ThJ0ugAagcpypWaUAeV0Jvn0QIbP_JooAkG-qw8aibK8XorGwWnigAYByufNcqzv858fTql3hJboHtZV8PBofPyG2OVT5YlRfvku3FbOmfA0xbmBelPVDy87oN8A-h4lSa |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEB5BKlReOAqFQEFG4gnkZr2H7X1CJSKqkIgqaKTyZPZyiQhOlIOq_Hpm7bVFKAIh3nzMWmvP7M433tlvAJ47lVJqtIqdIibmVuOQYlrGjOaOW_QZVPlfA-_G6fGEvz0TZ6HO6SqkVWIoPq0n6YT77b2IYQc0HQg8TbLBwpavvoVfSR6t0AxtKL0OO6lfYerBzmR8cvSx3lMUGtfHjMUJy1izrskw0B98bcrPupVH9P7RW56pJvD_Heq8mjy5u6kW6vJCzWY_eabRbfjUvlOTkPLlcLPWh-b7L3SP__HSd-BWQK3RUWNmd-Gaq_Zgd9gWi9uDG3UmqVndq-vWtzu6otM6zxy9YzQvI4Sa0fj9iEYfpuce_uPVE8SfF-oymlbR0Jvf8j5MRm9Oh8dxqNEQG4xF1rFhxpm8JFJ74jQtdC6dJSW6QKJFTlLCNOOak7xUUlvm2fqsRlluDFMJsWwfetW8cg8h0sxaXlojMss4RSk8RVPBKUMnKilFH0irn8IEAnNfR2NWYCDjVVpcUWkfXnRNFg17x5-EX3uld4KeeLu-MF-eF2EcF4b7cs3WaS0JtynRJjElAg0nEmW5w4cctCZThNlgVWCIKzOJkTLtw7PuNmrIL86oys03KINIWeRSyLwPDxoL63rCmGf_JEkfsi3b2-rq9p1q-rnmCs8k4i-KLV92Vvr3L_Hon6Qfw03qE318Yp44gN56uXFPEKmt9dMwGn8AFXU5Jg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Therapeutic+Targeting+of+the+NRF2+Signaling+Pathway+in+Cancer&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Telkoparan-Akillilar%2C+Pelin&rft.au=Panieri%2C+Emiliano&rft.au=Cevik%2C+Dilek&rft.au=Suzen%2C+Sibel&rft.date=2021-03-05&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=26&rft.issue=5&rft_id=info:doi/10.3390%2Fmolecules26051417&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |