Therapeutic Targeting of the NRF2 Signaling Pathway in Cancer

Cancer is one of the most fatal diseases with an increasing incidence and mortality all over the world. Thus, there is an urgent need for novel therapies targeting major cancer-related pathways. Nuclear factor-erythroid 2-related factor 2 (NRF2) and its major negative modulator Kelch-like ECH-associ...

Full description

Saved in:
Bibliographic Details
Published inMolecules Vol. 26; no. 5; p. 1417
Main Authors Telkoparan-Akillilar, Pelin, Panieri, Emiliano, Cevik, Dilek, Suzen, Sibel, Saso, Luciano
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 05.03.2021
MDPI
Subjects
Online AccessGet full text
ISSN1420-3049
1433-1373
1420-3049
1433-1373
DOI10.3390/molecules26051417

Cover

Abstract Cancer is one of the most fatal diseases with an increasing incidence and mortality all over the world. Thus, there is an urgent need for novel therapies targeting major cancer-related pathways. Nuclear factor-erythroid 2-related factor 2 (NRF2) and its major negative modulator Kelch-like ECH-associated protein 1 (KEAP1) are main players of the cellular defense mechanisms against internal and external cell stressors. However, NRF2/KEAP1 signaling pathway is dysregulated in various cancers, thus promoting tumor cell survival and metastasis. In the present review, we discuss the mechanisms of normal and deregulated NRF2 signaling pathway focusing on its cancer-related functions. We further explore activators and inhibitors of this pathway as cancer targeting drug candidates in order to provide an extensive background on the subject.
AbstractList Cancer is one of the most fatal diseases with an increasing incidence and mortality all over the world. Thus, there is an urgent need for novel therapies targeting major cancer-related pathways. Nuclear factor-erythroid 2-related factor 2 (NRF2) and its major negative modulator Kelch-like ECH-associated protein 1 (KEAP1) are main players of the cellular defense mechanisms against internal and external cell stressors. However, NRF2/KEAP1 signaling pathway is dysregulated in various cancers, thus promoting tumor cell survival and metastasis. In the present review, we discuss the mechanisms of normal and deregulated NRF2 signaling pathway focusing on its cancer-related functions. We further explore activators and inhibitors of this pathway as cancer targeting drug candidates in order to provide an extensive background on the subject.
Cancer is one of the most fatal diseases with an increasing incidence and mortality all over the world. Thus, there is an urgent need for novel therapies targeting major cancer-related pathways. Nuclear factor-erythroid 2-related factor 2 (NRF2) and its major negative modulator Kelch-like ECH-associated protein 1 (KEAP1) are main players of the cellular defense mechanisms against internal and external cell stressors. However, NRF2/KEAP1 signaling pathway is dysregulated in various cancers, thus promoting tumor cell survival and metastasis. In the present review, we discuss the mechanisms of normal and deregulated NRF2 signaling pathway focusing on its cancer-related functions. We further explore activators and inhibitors of this pathway as cancer targeting drug candidates in order to provide an extensive background on the subject.Cancer is one of the most fatal diseases with an increasing incidence and mortality all over the world. Thus, there is an urgent need for novel therapies targeting major cancer-related pathways. Nuclear factor-erythroid 2-related factor 2 (NRF2) and its major negative modulator Kelch-like ECH-associated protein 1 (KEAP1) are main players of the cellular defense mechanisms against internal and external cell stressors. However, NRF2/KEAP1 signaling pathway is dysregulated in various cancers, thus promoting tumor cell survival and metastasis. In the present review, we discuss the mechanisms of normal and deregulated NRF2 signaling pathway focusing on its cancer-related functions. We further explore activators and inhibitors of this pathway as cancer targeting drug candidates in order to provide an extensive background on the subject.
Author Telkoparan-Akillilar, Pelin
Panieri, Emiliano
Suzen, Sibel
Saso, Luciano
Cevik, Dilek
AuthorAffiliation 1 Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, 06520 Ankara, Turkey; pelintelkoparan@gmail.com (P.T.-A.); cevikdi@gmail.com (D.C.)
2 Department of Physiology and Pharmacology, Faculty of Pharmacy and Medicine, “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; emiliano.panieri@hotmail.it
3 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey; sibel.suzen@pharmacy.ankara.edu.tr
AuthorAffiliation_xml – name: 2 Department of Physiology and Pharmacology, Faculty of Pharmacy and Medicine, “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; emiliano.panieri@hotmail.it
– name: 1 Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, 06520 Ankara, Turkey; pelintelkoparan@gmail.com (P.T.-A.); cevikdi@gmail.com (D.C.)
– name: 3 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey; sibel.suzen@pharmacy.ankara.edu.tr
Author_xml – sequence: 1
  givenname: Pelin
  orcidid: 0000-0003-0337-0763
  surname: Telkoparan-Akillilar
  fullname: Telkoparan-Akillilar, Pelin
– sequence: 2
  givenname: Emiliano
  orcidid: 0000-0001-7989-7145
  surname: Panieri
  fullname: Panieri, Emiliano
– sequence: 3
  givenname: Dilek
  orcidid: 0000-0001-8940-3153
  surname: Cevik
  fullname: Cevik, Dilek
– sequence: 4
  givenname: Sibel
  surname: Suzen
  fullname: Suzen, Sibel
– sequence: 5
  givenname: Luciano
  orcidid: 0000-0003-4530-8706
  surname: Saso
  fullname: Saso, Luciano
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33808001$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9vEzEQxS1URP_AB-CCVuLCJTBe27v2AaQqolCpAgThbNne2cSRYwfvLlW-PQ4pVVskxMnWzO89vZk5JUcxRSTkOYXXjCl4s0kB3RRwqBsQlNP2ETmhvIYZA66O7vyPyekwrAHqAokn5JgxCRKAnpC3ixVms8Vp9K5amLzE0cdllfpqXGH16etFXX3zy2jCvvrFjKtrs6t8rOYmOsxPyePehAGf3bxn5PvF-8X84-zq84fL-fnVzAmhxpljDp3sQVkpFLPCSoUd9E0rwQoJDTDLuOUge6Nsx0Bx6GxhuXPMUOjYGbk8-HbJrPU2-43JO52M178LKS-1yWWCgNrxphG8Q2sV8K4B66jrHSIKajqObfGqD15T3JrdtQnh1pCC3u9V_7XXInp3EG0nu8HOYRyzCfeS3O9Ev9LL9FO3qilXoMXg1Y1BTj8mHEa98YPDEEzENA26FiCFVELJgr58gK7TlMsJCsWVahUVTV2oF3cT3Ub5c9oC0APgchqGjP1_jdk-0Dg_mtGn_VA-_EP5Cxt8y5w
CitedBy_id crossref_primary_10_23736_S0393_3660_23_05190_2
crossref_primary_10_3390_ph15060692
crossref_primary_10_3390_ijms23010106
crossref_primary_10_1016_j_tips_2024_09_009
crossref_primary_10_56782_pps_329
crossref_primary_10_3389_fphar_2023_1096614
crossref_primary_10_20517_cdr_2024_04
crossref_primary_10_1016_j_lfs_2021_119791
crossref_primary_10_3390_cells11010012
crossref_primary_10_1186_s12859_021_04147_y
crossref_primary_10_46373_hafebid_1442953
crossref_primary_10_3390_ijms24119303
crossref_primary_10_1007_s12035_025_04777_w
crossref_primary_10_1038_s41598_025_85856_9
crossref_primary_10_3390_molecules28155759
crossref_primary_10_3390_antiox13030344
crossref_primary_10_1007_s11033_022_08126_1
crossref_primary_10_3389_fphar_2022_720076
crossref_primary_10_2147_OTT_S457749
crossref_primary_10_1016_j_ejphar_2024_177210
crossref_primary_10_1016_j_freeradbiomed_2022_09_023
crossref_primary_10_3390_ijms26031098
crossref_primary_10_1080_07391102_2023_2205946
crossref_primary_10_1186_s12860_024_00500_0
crossref_primary_10_2174_1570180820666221028163319
crossref_primary_10_3389_fncel_2021_785057
crossref_primary_10_1186_s40170_024_00352_4
crossref_primary_10_3390_ph14111069
crossref_primary_10_1080_09637486_2024_2397055
crossref_primary_10_2147_BCTT_S457548
crossref_primary_10_3390_ijms22157963
crossref_primary_10_3390_antiox11010098
crossref_primary_10_1186_s13048_025_01639_w
crossref_primary_10_1016_j_semcancer_2022_10_005
crossref_primary_10_1111_pcmr_13137
crossref_primary_10_2139_ssrn_4693638
crossref_primary_10_1016_j_fbio_2024_104444
crossref_primary_10_3390_brainsci13111532
crossref_primary_10_1016_j_biopha_2023_115015
crossref_primary_10_3390_cells11182855
crossref_primary_10_1016_j_lungcan_2022_07_004
crossref_primary_10_1016_j_bmc_2024_117681
crossref_primary_10_1186_s12964_022_00906_3
crossref_primary_10_1038_s41389_022_00425_3
crossref_primary_10_1186_s12964_022_00875_7
crossref_primary_10_1089_ars_2022_0077
crossref_primary_10_3390_antiox13060696
crossref_primary_10_1038_s41416_021_01642_0
crossref_primary_10_1016_j_slasd_2023_11_001
crossref_primary_10_1007_s13402_023_00834_5
crossref_primary_10_1089_ars_2022_0213
crossref_primary_10_1093_jb_mvac098
crossref_primary_10_3390_ph16060850
crossref_primary_10_3390_ph17081080
crossref_primary_10_3390_nu16152392
crossref_primary_10_1002_ptr_7940
crossref_primary_10_1002_jcb_30333
crossref_primary_10_1158_0008_5472_CAN_22_2311
crossref_primary_10_3390_antiox13070815
crossref_primary_10_3389_fbioe_2021_745911
crossref_primary_10_1038_s41598_022_26767_x
Cites_doi 10.1016/j.niox.2011.06.001
10.1016/j.freeradbiomed.2009.09.006
10.1016/j.freeradbiomed.2013.10.811
10.1074/jbc.M206530200
10.2337/db16-0020
10.1074/jbc.M109.096545
10.1158/1078-0432.CCR-18-2421
10.1038/emboj.2013.173
10.1089/ars.2014.5843
10.1074/jbc.M110.118976
10.1016/B978-0-12-420117-0.00008-6
10.4161/epi.6.3.14408
10.1074/jbc.M111.316471
10.3390/antiox9030193
10.3390/cancers11111755
10.2147/DDDT.S172612
10.1128/MCB.00248-10
10.1159/000494547
10.1073/pnas.0305902101
10.1073/pnas.0709483104
10.1073/pnas.91.21.9926
10.1016/j.jtho.2018.02.002
10.1155/2016/6235641
10.3390/biom10050791
10.1089/ars.2010.3222
10.1038/onc.2012.493
10.1016/j.abb.2010.12.034
10.1046/j.1365-2443.2001.00469.x
10.1038/nrc1840
10.1073/pnas.172398899
10.1016/j.canlet.2012.06.007
10.1016/j.ccell.2016.04.006
10.1016/j.celrep.2016.07.075
10.1073/pnas.0307301101
10.1016/j.cell.2019.06.003
10.2147/DDDT.S227892
10.1083/jcb.201102031
10.1016/j.molmed.2016.05.002
10.1042/CS20150436
10.3892/ijo.2013.2229
10.1038/ng1248
10.1111/j.1365-2559.2012.04178.x
10.1155/2018/2360427
10.1002/jcp.28091
10.18632/oncotarget.12435
10.1021/acs.jmedchem.7b01463
10.1158/1541-7786.MCR-13-0246-T
10.18632/oncotarget.18294
10.1002/cam4.2101
10.1158/0008-5472.CAN-07-5003
10.3892/ol.2015.3468
10.1016/j.freeradbiomed.2015.08.028
10.1038/ncb2021
10.1016/j.freeradbiomed.2011.03.008
10.1371/journal.pone.0152465
10.1016/j.molcel.2006.01.013
10.18632/oncotarget.25497
10.1021/acschembio.6b00651
10.1186/1471-2407-12-66
10.1158/0008-5472.CAN-12-3386
10.1038/ncomms4518
10.1016/j.bbrc.2004.06.112
10.1158/0008-5472.CAN-10-4668
10.1006/bbrc.1997.6943
10.1016/j.cell.2011.02.013
10.1159/000374036
10.1158/0008-5472.CAN-14-1439
10.1002/ijc.31937
10.1038/nature10189
10.1038/onc.2012.388
10.1016/j.molcel.2009.04.029
10.1371/journal.pone.0132978
10.1186/s12885-015-1541-1
10.3322/caac.21492
10.1158/1078-0432.CCR-14-2880
10.1093/carcin/bgn095
10.4161/epi.6.6.15773
10.1038/bjc.2014.380
10.1101/gad.13.1.76
10.1016/j.molmed.2004.09.003
10.3892/or.2013.2278
10.1089/ars.2015.6580
10.1016/j.freeradbiomed.2016.12.041
10.1158/0008-5472.CAN-16-2204
10.15252/embr.201948375
10.1146/annurev.pharmtox.46.120604.141046
10.1096/fj.02-0752rev
10.1002/med.21257
10.1016/j.cub.2014.03.034
10.1016/j.cotox.2016.10.001
10.1016/j.freeradbiomed.2013.06.041
10.1080/15548627.2015.1067362
10.1371/journal.pone.0177227
10.1016/j.bmcl.2019.06.049
10.1089/ars.2020.8146
10.1093/carcin/24.3.461
10.1128/MCB.06271-11
10.1128/MCB.26.1.221-229.2006
10.4062/biomolther.2017.195
10.18632/oncotarget.16622
10.1016/j.ccell.2018.03.022
10.1016/j.pharmthera.2020.107664
10.1084/jem.20190251
10.1128/MCB.25.24.10895-10906.2005
10.1080/10715762.2018.1489132
10.1128/MCB.00065-13
10.1002/ijc.22943
10.1186/s12964-019-0435-2
10.3389/fphys.2013.00246
10.1128/MCB.24.24.10941-10953.2004
10.1371/journal.pmed.0030420
10.1016/j.celrep.2016.08.010
10.1038/onc.2010.118
10.1155/2019/8592348
10.1016/S0027-5107(01)00190-7
10.1128/MCB.01204-10
10.1053/j.gastro.2008.06.082
10.1128/MCB.26.8.2887-2900.2006
10.1016/j.ccr.2012.05.016
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/molecules26051417
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Publicly Available Content Database
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1420-3049
1433-1373
ExternalDocumentID oai_doaj_org_article_c46654debb904d60bc1cfceee51ad4e7
10.3390/molecules26051417
PMC7961421
33808001
10_3390_molecules26051417
Genre Journal Article
Review
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESTFP
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RPM
SV3
TR2
TUS
UKHRP
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
6NX
ADTOC
AGGDS
ASPBG
AVWKF
C1A
DL5
IPNFZ
KDC
LAS
QOK
QOS
RIG
RNI
RZK
SCM
SDH
TSK
UNPAY
ID FETCH-LOGICAL-c559t-c3cec8f09b8593b5b89ed0f6780b580603b34b408fa9bd30940dbb854cc3a10d3
IEDL.DBID UNPAY
ISSN 1420-3049
1433-1373
IngestDate Wed Aug 27 01:00:27 EDT 2025
Wed Aug 20 00:06:14 EDT 2025
Tue Sep 30 16:59:47 EDT 2025
Fri Sep 05 09:33:16 EDT 2025
Fri Jul 25 20:23:17 EDT 2025
Thu Apr 03 07:07:38 EDT 2025
Thu Apr 24 22:57:51 EDT 2025
Wed Oct 01 02:01:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Keap1
cancer
Nrf2
oxidative stress
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c559t-c3cec8f09b8593b5b89ed0f6780b580603b34b408fa9bd30940dbb854cc3a10d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8940-3153
0000-0003-4530-8706
0000-0001-7989-7145
0000-0003-0337-0763
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1420-3049/26/5/1417/pdf?version=1615271966
PMID 33808001
PQID 2499791562
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_c46654debb904d60bc1cfceee51ad4e7
unpaywall_primary_10_3390_molecules26051417
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7961421
proquest_miscellaneous_2508589598
proquest_journals_2499791562
pubmed_primary_33808001
crossref_primary_10_3390_molecules26051417
crossref_citationtrail_10_3390_molecules26051417
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210305
PublicationDateYYYYMMDD 2021-03-05
PublicationDate_xml – month: 3
  year: 2021
  text: 20210305
  day: 5
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules
PublicationTitleAlternate Molecules
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Copple (ref_73) 2010; 285
Wang (ref_26) 2013; 73
Seelige (ref_99) 2016; 16
Zarei (ref_104) 2019; 216
Shi (ref_71) 2015; 35
Gambardella (ref_107) 2019; 25
Marengo (ref_5) 2016; 2016
Chapman (ref_6) 2018; 34
ref_17
ref_16
Chen (ref_96) 2018; 50
ref_15
(ref_37) 2002; 26
Rojo (ref_85) 2014; 21
Tsai (ref_98) 2020; 14
Shim (ref_42) 2009; 47
Dolan (ref_34) 2003; 24
Umemura (ref_79) 2016; 29
Holtzclaw (ref_29) 2002; 99
ref_120
Xiang (ref_109) 2018; 2018
Leinonen (ref_19) 2014; 122
Tong (ref_90) 2006; 26
Xiu (ref_122) 2007; 104
Hanada (ref_64) 2012; 12
ref_70
Kuang (ref_93) 2018; 61
Lee (ref_115) 2018; 52
Komatsu (ref_75) 2010; 12
Yang (ref_118) 2020; 19
Chowdhry (ref_87) 2014; 32
Singh (ref_119) 2016; 11
Camp (ref_81) 2012; 287
Arlt (ref_116) 2013; 32
Zhao (ref_50) 2017; 8
Tong (ref_97) 2015; 1
You (ref_41) 2011; 507
Mitsuishi (ref_40) 2012; 22
Ohta (ref_55) 2008; 68
Evans (ref_110) 2018; 9
Jain (ref_74) 2010; 285
Cooke (ref_100) 2003; 17
Valenzuela (ref_121) 2014; 111
Zipper (ref_28) 2002; 277
Kwak (ref_36) 2001; 480–481
Somasekharan (ref_108) 2019; 20
Yamamoto (ref_69) 2014; 12
Lu (ref_83) 2017; 77
Kobayashi (ref_91) 2006; 26
Ferlay (ref_2) 2019; 144
Itoh (ref_33) 2010; 13
Zhang (ref_47) 2016; 7
Osburn (ref_10) 2007; 121
Liao (ref_88) 2012; 27
Goldstein (ref_58) 2016; 16
Tian (ref_60) 2012; 325
Wang (ref_43) 2008; 29
Muscarella (ref_63) 2011; 6
Chen (ref_80) 2009; 34
Motohashi (ref_8) 2004; 10
Wakabayashi (ref_11) 2004; 101
ref_57
Lau (ref_76) 2010; 30
Peifer (ref_62) 2014; 5
Chien (ref_39) 2015; 21
Inami (ref_78) 2011; 193
Itoh (ref_35) 1997; 236
Zhao (ref_67) 2015; 10
Tang (ref_117) 2011; 50
Konstantinopoulos (ref_52) 2011; 71
Sova (ref_123) 2018; 12
Suzuki (ref_14) 2013; 33
Derks (ref_61) 2018; 13
Suzuki (ref_125) 2016; 1
Genschik (ref_77) 2013; 32
Schieber (ref_124) 2014; 24
Zhang (ref_22) 2004; 24
Tao (ref_101) 2015; 89
Bray (ref_1) 2018; 68
Wu (ref_7) 2019; 8
Duong (ref_113) 2014; 44
Yoo (ref_51) 2012; 60
Ma (ref_82) 2012; 32
Hanahan (ref_3) 2011; 144
Slack (ref_68) 2006; 6
Nguyen (ref_114) 2019; 234
Moi (ref_20) 1994; 91
Katoh (ref_24) 2001; 6
ref_111
ref_31
ref_30
Wei (ref_56) 2013; 65
Rada (ref_25) 2011; 31
Zhang (ref_65) 2011; 9
Denicola (ref_84) 2011; 475
Menegon (ref_9) 2016; 22
Yoshino (ref_44) 2018; 8
Gao (ref_106) 2017; 8
Hornsveld (ref_4) 2016; 25
Tao (ref_86) 2014; 74
Magesh (ref_27) 2012; 32
Clarner (ref_102) 2015; 129
Yamamoto (ref_13) 2004; 321
Kang (ref_105) 2019; 29
Kensler (ref_126) 2007; 47
Rachakonda (ref_12) 2010; 29
ref_103
Itoh (ref_32) 1999; 13
Zhang (ref_89) 2013; 29
Tsuchida (ref_112) 2017; 103
Shibata (ref_53) 2008; 135
Padmanabhan (ref_54) 2006; 21
Motohashi (ref_21) 2004; 101
ref_46
Wei (ref_72) 2014; 67
Kong (ref_95) 2013; 4
Qin (ref_94) 2019; 17
ref_49
Nioi (ref_23) 2005; 25
Singh (ref_45) 2006; 3
ref_48
Jasinski (ref_92) 2011; 31
Wakabayashi (ref_38) 2003; 35
Lebovitz (ref_59) 2015; 11
Jung (ref_18) 2018; 26
Muscarella (ref_66) 2011; 6
References_xml – ident: ref_30
  doi: 10.1016/j.niox.2011.06.001
– volume: 47
  start-page: 1619
  year: 2009
  ident: ref_42
  article-title: Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of the NRF2 pathway
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2009.09.006
– volume: 67
  start-page: 91
  year: 2014
  ident: ref_72
  article-title: Aldose reductase regulates miR-200a-3p/141-3p to coordinate Keap1-Nrf2, Tgfβ1/2, and Zeb1/2 signaling in renal mesangial cells and the renal cortex of diabetic mice
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2013.10.811
– volume: 277
  start-page: 36544
  year: 2002
  ident: ref_28
  article-title: The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M206530200
– ident: ref_31
  doi: 10.2337/db16-0020
– volume: 285
  start-page: 16782
  year: 2010
  ident: ref_73
  article-title: Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.096545
– volume: 25
  start-page: 1639
  year: 2019
  ident: ref_107
  article-title: NRF2 through RPS6 Activation Is Related to Anti-HER2 Drug Resistance in HER2 -Amplified Gastric Cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-2421
– volume: 32
  start-page: 2307
  year: 2013
  ident: ref_77
  article-title: The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): Cellular functions and disease implications
  publication-title: EMBO J.
  doi: 10.1038/emboj.2013.173
– volume: 21
  start-page: 2498
  year: 2014
  ident: ref_85
  article-title: The PTEN/NRF2 axis promotes human carcinogenesis
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2014.5843
– volume: 285
  start-page: 22576
  year: 2010
  ident: ref_74
  article-title: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.118976
– volume: 122
  start-page: 281
  year: 2014
  ident: ref_19
  article-title: Role of the keap1-Nrf2 Pathway in Cancer
  publication-title: Adv. Cancer Res.
  doi: 10.1016/B978-0-12-420117-0.00008-6
– volume: 6
  start-page: 317
  year: 2011
  ident: ref_66
  article-title: Regulation of KEAP1 expression by promoter methylation in malignant gliomas and association with patient’s outcome
  publication-title: Epigenetics
  doi: 10.4161/epi.6.3.14408
– volume: 287
  start-page: 6539
  year: 2012
  ident: ref_81
  article-title: Wilms Tumor Gene on X Chromosome (WTX) Inhibits Degradation of NRF2 Protein through Competitive Binding to KEAP1 Protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.316471
– ident: ref_57
  doi: 10.3390/antiox9030193
– ident: ref_70
  doi: 10.3390/cancers11111755
– volume: 12
  start-page: 3181
  year: 2018
  ident: ref_123
  article-title: Design and development of Nrf2 modulators for cancer chemoprevention and therapy: A review
  publication-title: Drug Des. Dev. Ther.
  doi: 10.2147/DDDT.S172612
– volume: 30
  start-page: 3275
  year: 2010
  ident: ref_76
  article-title: A Noncanonical Mechanism of Nrf2 Activation by Autophagy Deficiency: Direct Interaction between Keap1 and p62
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00248-10
– volume: 50
  start-page: 1201
  year: 2018
  ident: ref_96
  article-title: Activation of Nrf2 by Sulforaphane Inhibits High Glucose-Induced Progression of Pancreatic Cancer via AMPK Dependent Signaling
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000494547
– volume: 101
  start-page: 6379
  year: 2004
  ident: ref_21
  article-title: Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0305902101
– volume: 104
  start-page: 19589
  year: 2007
  ident: ref_122
  article-title: Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0709483104
– volume: 91
  start-page: 9926
  year: 1994
  ident: ref_20
  article-title: Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the β-globin locus control region
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.91.21.9926
– volume: 13
  start-page: 752
  year: 2018
  ident: ref_61
  article-title: New Insights into the Molecular Characteristics of Pulmonary Carcinoids and Large Cell Neuroendocrine Carcinomas, and the Impact on Their Clinical Management
  publication-title: J. Thorac. Oncol.
  doi: 10.1016/j.jtho.2018.02.002
– volume: 19
  start-page: 2179
  year: 2020
  ident: ref_118
  article-title: Luteolin induces mitochondrial apoptosis in HT29 cells by inhibiting the Nrf2/ARE signaling pathway
  publication-title: Exp. Ther. Med.
– volume: 2016
  start-page: 6235641
  year: 2016
  ident: ref_5
  article-title: Redox homeostasis and cellular antioxidant systems: Crucial players in cancer growth and therapy
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2016/6235641
– ident: ref_16
  doi: 10.3390/biom10050791
– volume: 13
  start-page: 1665
  year: 2010
  ident: ref_33
  article-title: Discovery of the negative regulator of Nrf2, keap1: A historical overview
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2010.3222
– volume: 32
  start-page: 4825
  year: 2013
  ident: ref_116
  article-title: Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity
  publication-title: Oncogene
  doi: 10.1038/onc.2012.493
– volume: 507
  start-page: 356
  year: 2011
  ident: ref_41
  article-title: Transcription factor Nrf2 maintains the basal expression of Mdm2: An implication of the regulation of p53 signaling by Nrf2
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2010.12.034
– volume: 6
  start-page: 857
  year: 2001
  ident: ref_24
  article-title: Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.2001.00469.x
– volume: 6
  start-page: 259
  year: 2006
  ident: ref_68
  article-title: Oncomirs—MicroRNAs with a role in cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1840
– volume: 99
  start-page: 11908
  year: 2002
  ident: ref_29
  article-title: Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.172398899
– volume: 325
  start-page: 26
  year: 2012
  ident: ref_60
  article-title: Keap1: One stone kills three birds Nrf2, IKKβ and Bcl-2/Bcl-xL
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2012.06.007
– volume: 29
  start-page: 935
  year: 2016
  ident: ref_79
  article-title: p62, Upregulated during Preneoplasia, Induces Hepatocellular Carcinogenesis by Maintaining Survival of Stressed HCC-Initiating Cells
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.04.006
– volume: 16
  start-page: 2348
  year: 2016
  ident: ref_99
  article-title: Nrf2 Induces IL-17D to Mediate Tumor and Virus Surveillance
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.07.075
– volume: 101
  start-page: 2040
  year: 2004
  ident: ref_11
  article-title: Protection against electrophile and oxidant stress by induction of the phase 2 response: Fate of cysteines of the Keap1 sensor modified by inducers
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0307301101
– ident: ref_46
  doi: 10.1016/j.cell.2019.06.003
– volume: 14
  start-page: 1209
  year: 2020
  ident: ref_98
  article-title: Miconazole contributes to NRF2 activation by noncanonical P62-keap1 pathway in bladder cancer cells
  publication-title: Drug Des. Dev. Ther.
  doi: 10.2147/DDDT.S227892
– volume: 193
  start-page: 275
  year: 2011
  ident: ref_78
  article-title: Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201102031
– volume: 22
  start-page: 578
  year: 2016
  ident: ref_9
  article-title: The Dual Roles of NRF2 in Cancer
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2016.05.002
– volume: 129
  start-page: 989
  year: 2015
  ident: ref_102
  article-title: Nrf2 in health and disease: Current and future clinical implications
  publication-title: Clin. Sci.
  doi: 10.1042/CS20150436
– volume: 44
  start-page: 959
  year: 2014
  ident: ref_113
  article-title: Inhibition of NRF2 by PIK-75 augments sensitivity of pancreatic cancer cells to gemcitabine
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2013.2229
– volume: 35
  start-page: 238
  year: 2003
  ident: ref_38
  article-title: Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation
  publication-title: Nat. Genet.
  doi: 10.1038/ng1248
– volume: 60
  start-page: 943
  year: 2012
  ident: ref_51
  article-title: Somatic mutations of the KEAP1 gene in common solid cancers
  publication-title: Histopathology
  doi: 10.1111/j.1365-2559.2012.04178.x
– volume: 2018
  start-page: 2360427
  year: 2018
  ident: ref_109
  article-title: Brusatol enhances the chemotherapy efficacy of gemcitabine in pancreatic cancer via the Nrf2 signalling pathway
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2018/2360427
– volume: 234
  start-page: 14040
  year: 2019
  ident: ref_114
  article-title: The Bcl-2 inhibitor venetoclax inhibits Nrf2 antioxidant pathway activation induced by hypomethylating agents in AML
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.28091
– volume: 7
  start-page: 73593
  year: 2016
  ident: ref_47
  article-title: NRF2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal transduction
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.12435
– volume: 61
  start-page: 1576
  year: 2018
  ident: ref_93
  article-title: Design and Synthesis of Novel Reactive Oxygen Species Inducers for the Treatment of Pancreatic Ductal Adenocarcinoma
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.7b01463
– volume: 12
  start-page: 58
  year: 2014
  ident: ref_69
  article-title: The impact of miRNA-based molecular diagnostics and treatment of NRF2-stabilized tumors
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-13-0246-T
– volume: 8
  start-page: 82085
  year: 2017
  ident: ref_106
  article-title: Apigenin sensitizes BEL-7402/ADM cells to doxorubicin through inhibiting miR-101/Nrf2 pathway
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.18294
– volume: 8
  start-page: 2252
  year: 2019
  ident: ref_7
  article-title: Nrf2 in cancers: A double-edged sword
  publication-title: Cancer Med.
  doi: 10.1002/cam4.2101
– volume: 68
  start-page: 1303
  year: 2008
  ident: ref_55
  article-title: Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-5003
– volume: 8
  start-page: 461
  year: 2018
  ident: ref_44
  article-title: Effects of Nrf2 knockdown on the properties of irradiated cell conditioned medium from A549 human lung cancer cells
  publication-title: Biomed. Reports
– volume: 10
  start-page: 1287
  year: 2015
  ident: ref_67
  article-title: Promoter demethylation of nuclear factor-erythroid 2-related factor 2 gene in drug-resistant colon cancer cells
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2015.3468
– volume: 89
  start-page: 690
  year: 2015
  ident: ref_101
  article-title: Systemic administration of the apocarotenoid bixin protects skin against solar UV-induced damage through activation of NRF2
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.08.028
– volume: 12
  start-page: 213
  year: 2010
  ident: ref_75
  article-title: The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2021
– volume: 50
  start-page: 1599
  year: 2011
  ident: ref_117
  article-title: Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2011.03.008
– ident: ref_120
  doi: 10.1371/journal.pone.0152465
– volume: 21
  start-page: 689
  year: 2006
  ident: ref_54
  article-title: Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.01.013
– volume: 26
  start-page: 75
  year: 2002
  ident: ref_37
  article-title: Role of NRF2 in Protection against Hyperoxic Lung Injury in Mice
  publication-title: Free Radic. Biol. Med.
– volume: 9
  start-page: 27104
  year: 2018
  ident: ref_110
  article-title: The Nrf2 inhibitor brusatol is a potent antitumour agent in an orthotopic mouse model of colorectal cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.25497
– volume: 11
  start-page: 3214
  year: 2016
  ident: ref_119
  article-title: Small Molecule Inhibitor of NRF2 Selectively Intervenes Therapeutic Resistance in KEAP1-Deficient NSCLC Tumors
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.6b00651
– volume: 12
  start-page: 1
  year: 2012
  ident: ref_64
  article-title: Methylation of the KEAP1 gene promoter region in human colorectal cancer
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-12-66
– volume: 73
  start-page: 3097
  year: 2013
  ident: ref_26
  article-title: RXRα inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-3386
– volume: 5
  start-page: 3518
  year: 2014
  ident: ref_62
  article-title: Frequent mutations in chromatin-remodeling genes in pulmonary carcinoids
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4518
– volume: 321
  start-page: 72
  year: 2004
  ident: ref_13
  article-title: Identification of polymorphisms in the promoter region of the human NRF2 gene
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2004.06.112
– volume: 71
  start-page: 5081
  year: 2011
  ident: ref_52
  article-title: Keap1 mutations and Nrf2 pathway activation in epithelial ovarian cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-4668
– volume: 236
  start-page: 313
  year: 1997
  ident: ref_35
  article-title: An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1997.6943
– volume: 144
  start-page: 646
  year: 2011
  ident: ref_3
  article-title: Hallmarks of Cancer: The Next Generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 35
  start-page: 2333
  year: 2015
  ident: ref_71
  article-title: MiR-141 activates Nrf2-dependent antioxidant pathway via down-regulating the expression of keap1 conferring the resistance of hepatocellular carcinoma cells to 5-fluorouracil
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000374036
– volume: 74
  start-page: 7430
  year: 2014
  ident: ref_86
  article-title: Oncogenic KRAS Confers Chemoresistance by Upregulating NRF2
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-1439
– volume: 144
  start-page: 1941
  year: 2019
  ident: ref_2
  article-title: Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.31937
– volume: 475
  start-page: 106
  year: 2011
  ident: ref_84
  article-title: Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis
  publication-title: Nature
  doi: 10.1038/nature10189
– volume: 32
  start-page: 3765
  year: 2014
  ident: ref_87
  article-title: Nrf2 is controlled by two distinct β -TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity
  publication-title: Oncogene
  doi: 10.1038/onc.2012.388
– volume: 34
  start-page: 663
  year: 2009
  ident: ref_80
  article-title: Direct Interaction between Nrf2 and p21Cip1/WAF1 Upregulates the Nrf2-Mediated Antioxidant Response
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.04.029
– ident: ref_49
  doi: 10.1371/journal.pone.0132978
– ident: ref_48
  doi: 10.1186/s12885-015-1541-1
– volume: 27
  start-page: 1918
  year: 2012
  ident: ref_88
  article-title: NRF2 is overexpressed in ovarian epithelial carcinoma and is regulated by gonadotrophin and sex-steroid hormones
  publication-title: Oncol. Rep.
– volume: 68
  start-page: 394
  year: 2018
  ident: ref_1
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21492
– volume: 21
  start-page: 4719
  year: 2015
  ident: ref_39
  article-title: Keap1-Nrf2 interaction suppresses cell motility in lung adenocarcinomas by targeting the S100P protein
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-14-2880
– volume: 29
  start-page: 1235
  year: 2008
  ident: ref_43
  article-title: Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgn095
– volume: 6
  start-page: 710
  year: 2011
  ident: ref_63
  article-title: Frequent epigenetics inactivation of KEAP1 gene in non-small cell lung cancer
  publication-title: Epigenetics
  doi: 10.4161/epi.6.6.15773
– volume: 111
  start-page: 874
  year: 2014
  ident: ref_121
  article-title: Retinoic acid synergizes ATO-mediated cytotoxicity by precluding Nrf2 activity in AML cells
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2014.380
– volume: 13
  start-page: 76
  year: 1999
  ident: ref_32
  article-title: Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.1.76
– volume: 10
  start-page: 549
  year: 2004
  ident: ref_8
  article-title: Nrf2–Keap1 defines a physiologically important stress response mechanism
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2004.09.003
– volume: 29
  start-page: 1429
  year: 2013
  ident: ref_89
  article-title: AntiReactive oxygen species regulate FSH-induced expression of vascular endothelial growth factor via Nrf2 and HIF1a signaling in human epithelial ovarian cancer
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2013.2278
– volume: 25
  start-page: 300
  year: 2016
  ident: ref_4
  article-title: The Hallmarks of Cancer from a Redox Perspective
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2015.6580
– volume: 9
  start-page: 1
  year: 2011
  ident: ref_65
  article-title: Loss of keap 1 Function in prostate Cancer Cells Causes Chemo- and Radio-resistance and Promotes Tumor Growth
  publication-title: Mol. Cancer Ther.
– volume: 103
  start-page: 236
  year: 2017
  ident: ref_112
  article-title: Halofuginone enhances the chemo-sensitivity of cancer cells by suppressing NRF2 accumulation
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2016.12.041
– volume: 77
  start-page: 2881
  year: 2017
  ident: ref_83
  article-title: NRF2 induction supporting breast cancer cell survival is enabled by oxidative stress-induced DPP3-KEAP1 interaction
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-2204
– volume: 20
  start-page: e48375
  year: 2019
  ident: ref_108
  article-title: Class I HDAC inhibitors enhance YB-1 acetylation and oxidative stress to block sarcoma metastasis
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201948375
– volume: 47
  start-page: 89
  year: 2007
  ident: ref_126
  article-title: Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev.pharmtox.46.120604.141046
– volume: 17
  start-page: 1195
  year: 2003
  ident: ref_100
  article-title: Oxidative DNA damage: Mechanisms, mutation, and disease
  publication-title: FASEB J.
  doi: 10.1096/fj.02-0752rev
– volume: 32
  start-page: 687
  year: 2012
  ident: ref_27
  article-title: Small Molecule Modulators of Keap1-Nrf2-ARE Pathway as Potential Preventive and Therapeutic Agents
  publication-title: Med. Res. Rev.
  doi: 10.1002/med.21257
– volume: 24
  start-page: R453
  year: 2014
  ident: ref_124
  article-title: ROS function in redox signaling and oxidative stress
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.03.034
– volume: 1
  start-page: 29
  year: 2016
  ident: ref_125
  article-title: Overview of redox regulation by Keap1–Nrf2 system in toxicology and cancer
  publication-title: Curr. Opin. Toxicol.
  doi: 10.1016/j.cotox.2016.10.001
– volume: 65
  start-page: 750
  year: 2013
  ident: ref_56
  article-title: Oncogenic functions of the transcription factor Nrf2
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2013.06.041
– volume: 11
  start-page: 1668
  year: 2015
  ident: ref_59
  article-title: Cross-cancer profiling of molecular alterations within the human autophagy interaction network
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1067362
– ident: ref_111
  doi: 10.1371/journal.pone.0177227
– volume: 29
  start-page: 2189
  year: 2019
  ident: ref_105
  article-title: Homoharringtonine stabilizes secondary structure of guanine-rich sequence existing in the 5′-untranslated region of Nrf2
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2019.06.049
– ident: ref_103
  doi: 10.1089/ars.2020.8146
– volume: 24
  start-page: 461
  year: 2003
  ident: ref_34
  article-title: Interactive effects of nrf2 genotype and oltipraz on benzo[a]pyrene-DNA adducts and tumor yield in mice
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/24.3.461
– volume: 32
  start-page: 1506
  year: 2012
  ident: ref_82
  article-title: PALB2 Interacts with KEAP1 To Promote NRF2 Nuclear Accumulation and Function
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.06271-11
– volume: 26
  start-page: 221
  year: 2006
  ident: ref_91
  article-title: Oxidative and Electrophilic Stresses Activate Nrf2 through Inhibition of Ubiquitination Activity of Keap1
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.26.1.221-229.2006
– volume: 26
  start-page: 57
  year: 2018
  ident: ref_18
  article-title: Dysregulation of NRF2 in cancer: From molecular mechanisms to therapeutic opportunities
  publication-title: Biomol. Ther.
  doi: 10.4062/biomolther.2017.195
– volume: 8
  start-page: 36603
  year: 2017
  ident: ref_50
  article-title: Suppression of radiation-induced migration of non-small cell lung cancer through inhibition of Nrf2-Notch Axis
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.16622
– volume: 34
  start-page: 21
  year: 2018
  ident: ref_6
  article-title: NRF2 and the Hallmarks of Cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.03.022
– ident: ref_17
  doi: 10.1016/j.pharmthera.2020.107664
– volume: 31
  start-page: 1181
  year: 2011
  ident: ref_92
  article-title: MT477 acts in tumor cells as an AURKA inhibitor and strongly induces NRF-2 signaling
  publication-title: Anticancer Res.
– volume: 216
  start-page: 2635
  year: 2019
  ident: ref_104
  article-title: Tumors with TSC mutations are sensitive to CDK7 inhibition through NRF2 and glutathione depletion
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20190251
– volume: 25
  start-page: 10895
  year: 2005
  ident: ref_23
  article-title: The Carboxy-Terminal Neh3 Domain of Nrf2 Is Required for Transcriptional Activation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.24.10895-10906.2005
– volume: 52
  start-page: 1416
  year: 2018
  ident: ref_115
  article-title: Suppression of NRF2/ARE by convallatoxin sensitises A549 cells to 5-FU-mediated apoptosis
  publication-title: Free Radic. Res.
  doi: 10.1080/10715762.2018.1489132
– volume: 33
  start-page: 2402
  year: 2013
  ident: ref_14
  article-title: Regulatory Nexus of Synthesis and Degradation Deciphers Cellular Nrf2 Expression Levels
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00065-13
– volume: 121
  start-page: 1883
  year: 2007
  ident: ref_10
  article-title: Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.22943
– volume: 17
  start-page: 1
  year: 2019
  ident: ref_94
  article-title: Dual roles and therapeutic potential of Keap1-Nrf2 pathway in pancreatic cancer: A systematic review
  publication-title: Cell Commun. Signal.
  doi: 10.1186/s12964-019-0435-2
– volume: 4
  start-page: 246
  year: 2013
  ident: ref_95
  article-title: Overview on how oncogenic Kras promotes pancreatic carcinogenesis by inducing low intracellular ROS levels
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2013.00246
– volume: 24
  start-page: 10941
  year: 2004
  ident: ref_22
  article-title: Keap1 is aredox-regulated substrate adaptor protein for a Cul3-dependent ubiquitinligase complex
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.24.10941-10953.2004
– volume: 3
  start-page: 1865
  year: 2006
  ident: ref_45
  article-title: Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.0030420
– volume: 16
  start-page: 2605
  year: 2016
  ident: ref_58
  article-title: Recurrent Loss of NFE2L2 Exon 2 Is a Mechanism for Nrf2 Pathway Activation in Human Cancers
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.08.010
– volume: 29
  start-page: 3703
  year: 2010
  ident: ref_12
  article-title: Increased cell migration and plasticity in Nrf2-deficient cancer cell lines
  publication-title: Oncogene
  doi: 10.1038/onc.2010.118
– ident: ref_15
  doi: 10.1155/2019/8592348
– volume: 480–481
  start-page: 305
  year: 2001
  ident: ref_36
  article-title: Role of phase 2 enzyme induction in chemoprotection by dithiolethiones
  publication-title: Mutat. Res. Fundam. Mol. Mech. Mutagen.
  doi: 10.1016/S0027-5107(01)00190-7
– volume: 31
  start-page: 1121
  year: 2011
  ident: ref_25
  article-title: SCF/ -TrCP Promotes Glycogen Synthase Kinase 3-Dependent Degradation of the Nrf2 Transcription Factor in a Keap1-Independent Manner
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01204-10
– volume: 135
  start-page: 1358
  year: 2008
  ident: ref_53
  article-title: Genetic Alteration of Keap1 Confers Constitutive Nrf2 Activation and Resistance to Chemotherapy in Gallbladder Cancer
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2008.06.082
– volume: 1
  start-page: 175
  year: 2015
  ident: ref_97
  article-title: Keap1–Nrf2 pathway: A promising target towards lung cancer prevention and therapeutics
  publication-title: Chronic Dis. Transl. Med.
– volume: 26
  start-page: 2887
  year: 2006
  ident: ref_90
  article-title: Keap1 Recruits Neh2 through Binding to ETGE and DLG Motifs: Characterization of the Two-Site Molecular Recognition Model
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.26.8.2887-2900.2006
– volume: 22
  start-page: 66
  year: 2012
  ident: ref_40
  article-title: Nrf2 Redirects Glucose and Glutamine into Anabolic Pathways in Metabolic Reprogramming
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.05.016
SSID ssj0021415
Score 2.5550213
SecondaryResourceType review_article
Snippet Cancer is one of the most fatal diseases with an increasing incidence and mortality all over the world. Thus, there is an urgent need for novel therapies...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1417
SubjectTerms Animals
Antioxidants
Cancer
Cell division
Epigenesis, Genetic
Gene expression
Genes, Tumor Suppressor
Homeostasis
Humans
Keap1
Kelch-Like ECH-Associated Protein 1 - genetics
Kelch-Like ECH-Associated Protein 1 - metabolism
Kinases
Metastasis
Molecular Targeted Therapy - methods
Mutation
Neoplasms - drug therapy
Neoplasms - genetics
Neoplasms - metabolism
Neoplasms - pathology
NF-E2-Related Factor 2 - antagonists & inhibitors
NF-E2-Related Factor 2 - genetics
NF-E2-Related Factor 2 - metabolism
Nrf2
Oxidative Stress
Proteins
Review
Roles
Signal Transduction
Transcription factors
Tumorigenesis
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYll_RS2vS1bRoU6KlliVaP3dWxNTEmEBNaG3JbNJK2Nbjr4AfG_76jfWGTUF963NUIxMxo55vV6BtCPnuTcm7BxN4wG0sHuKUE6Fjw3EuHMYOb8GvgdpyOpvLmXt3vtfoKNWENPXCjuCsrQ39c5wE0ky5lYBNb4pfdq8Q46et75BjGumSqTbUSjEvNGabApP7qT9Nq1q8Cesex7CAK1WT9TyHMx4WSp5vqwey2Zj7fi0LDl-RFCx_pt2bZr8gzX52R00HXte113Ta-u1BFJ3WZNwYnuigpIj06_jHk9OfsV0Df-PYO4d_W7OisooNg_eUbMh1eTwajuG2REFtMBdaxFdbbvGQaAm8ZKMi1d6zECMRA5SxlAoQEyfLSaHAikOU5QFlprTAJc-ItOakWlX9PKAjnZOmsypyQHKXwES2FOxYSk5QqIqxTWWFb_vDQxmJeYB4RtFw80nJEvvRTHhryjH8Jfw926AUD73X9Ar2haL2hOOYNETnvrFi0m3FVYIapM42JKo_IZT-MdglnI6byiw3KIFBVuVY6j8i7xuj9SjCLD7g6iUh24A4HSz0cqWa_a6ruTCP84Tjza-84xzXx4X9o4iN5zkP5TSiXU-fkZL3c-E-In9ZwUW-VvwauHbA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagHMoF8SZQkJE4gaI6fmziE4IVS4VEhaCVeos8ttOutCTLPlT13zOTF6yKyjH2OEo8M55v7PEMY2-im0jpwaXRCZ_qAKhSCmyqZBF1QJshHW0NfD2eHJ3qL2fmrN9wW_dhlcOa2C7UofG0R36IboLNLXob8v3yV0pVo-h0tS-hcZvdySRKEt0Un30eHa4MrVN3kqnQtT_82RWcjWvC8NiX79iiNmX_v3Dm9XDJ_W29dFeXbrH4yxbN7rN7PYjkHzquP2C3Yv2Q7U-H2m2P2uLxw7UqftIGe6OJ4k3FEe_x4-8zyX_MzwmDY-s3BIGX7orPaz4lGVg9ZqezTyfTo7QvlJB6dAg2qVc--qISFih7GRgobAyiQjskwBRiIhQoDVoUlbMQFKXMC4C02nvlMhHUE7ZXN3V8xjioEHQVvMmD0hKp8BH5hXoLmcsqkzAxTFnp-yziVMxiUaI3QbNcXpvlhL0dhyy7FBo3EX8kPoyElP26bWhW52WvTKXXVDM5RAArdJgI8Jmv0NpHk7mgI77kYOBi2avkuvwjQAl7PXYjX-iExNWx2SINwlVTWGOLhD3tmD5-CfryhK6zhOU74rDzqbs99fyiTdidWwRBEke-GwXn_zPx_OafeMHuSgqvoXA4c8D2NqttfIn4aAOvWiX4DcDlE1k
  priority: 102
  providerName: ProQuest
Title Therapeutic Targeting of the NRF2 Signaling Pathway in Cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/33808001
https://www.proquest.com/docview/2499791562
https://www.proquest.com/docview/2508589598
https://pubmed.ncbi.nlm.nih.gov/PMC7961421
https://www.mdpi.com/1420-3049/26/5/1417/pdf?version=1615271966
https://doaj.org/article/c46654debb904d60bc1cfceee51ad4e7
UnpaywallVersion publishedVersion
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: HH5
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: KQ8
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: ABDBF
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: DIK
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: GX1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEB7RRKi8cBRKDSUyEk8gN-vd9bFPqI0aKiSiqDRSeDJ7uUSkTpSDqvx6Zn1EhCIQ4iWK7VnL9szufLM7-w3AKytjSrWSgZVEB9wo7FJMiYDR1HKDPoNKNzXwYRCfjfj7cTSu65wu67RKDMUn5SAdcre9FzFsl8bdCA_DpDs3-dtv9VSSQys0QRuKd6AduxWmFrRHg-Hxp3JPUd24_M9YELKEVeuaDAP97lVVftYuHaJ3t97yTCWB_-9Q5-3kyd11MZc313I6_ckz9R_A5-adqoSUr0frlTrS33-he_yPl34I92vU6h9XZvYI7thiD3Z7TbG4PbhbZpLq5eOybn2zo8u_KPPM0Tv6s9xHqOkPzvvU_zi5dPAfzw4Rf17LG39S-D1nfosnMOqfXvTOgrpGQ6AxFlkFmmmr05wI5YjTVKRSYQ3J0QUSFaUkJkwxrjhJcymUYY6tzyiU5VozGRLD9qFVzAp7AL5ixvDc6CgxjFOUwkM0FRwyVCjDPPKANPrJdE1g7upoTDMMZJxKs1sq9eD1psm8Yu_4k_CJU_pG0BFvlydmi8us7seZ5q5cs7FKCcJNTJQOdY5Aw0ahNNziTQ4bk8nq0WCZYYgrEoGRMvXg5eYyasgtzsjCztYog0g5SkUkUg-eVha2eRLGHPsnCT1Itmxv61G3rxSTLyVXeCIQf1Fs-WZjpX__Es_-Sfo53KMu0ccl5kWH0Fot1vYFIrWV6sBOMk7wN-2_60D75HQwPO-Usx6dup_-AA8hPYI
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcggXxBuXAkaCC8jqencdew8IQSBKaRshSKXc3H25RAp2moei_Cl-IzN-laionHq0d9ayZ2ZnvvHOzhDy2qkuY0arwClqAmE1LCmuZcBZ4oQFn8EU_ho4GXYHp-LrOBrvkN_NWRhMq2xsYmmobWHwH_kBhAkylhBtsA-ziwC7RuHuatNCo1KLI7dZQ8i2eH_4GeT7hrH-l1FvENRdBQID6HkZGG6cSTIqNZb60pFOpLM0A6NNdZTQLuWaCy1okimpLcf6clYDrTCGq5BaDs-9RW4LTgXW6o_HlwFeCN6w2jnlXNKDX1WDW7fAmAHG4i3fV7YI-BeuvZqe2VnlM7VZq-n0L9_Xv0fu1qDV_1hp2X2y4_IHpNNresU9LJvVN8e4_FGZXA4u0S8yH_ClP_zeZ_6PyTlifrj7DUDnWm38Se73UOfmj8jpjbDwMdnNi9w9Jb7m1orMmii2XDCggkvQD7ATOlRhFnmENixLTV21HJtnTFOIXpDL6RUue-RtO2VWley4jvgTyqElxGrb5Y1ifp7Wizc1Ans0W6e1pMJ2qTahyQBduChUVjh4yH4jxbQ2AYv0UmE98qodBrngjozKXbECGoDHUSIjmXjkSSX09k04x5KfNPRIvKUOW6-6PZJPfpYFwmMJoIvBzHet4vyfE3vXf8RL0hmMTo7T48Ph0TNyh2FqD6biRftkdzlfueeAzZb6RbkgfHJ20yvwDyT-UF8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlEuiDeGAosEF5CV9e469h4QgpSopRBV0Eq5mX25jZQ6IQ9F-Wv8Omb8KlFROfVo79iy5_mNdzxDyGuvu5xbo0OvmQ2lM2BSwqhQ8NRLBzGDa_w08G3Q3T-RX4bxcIv8bv6FwbLKxieWjtpNLH4j70CaoBIF2Qbv5HVZxNFe_8P0V4gTpHCntRmnUanIoV-vIH2bvz_YA1m_4bz_-bi3H9YTBkILSHoRWmG9TXOmDLb9MrFJlXcsBwfOTJyyLhNGSCNZmmtlnMBec84ArbRW6Ig5Afe9QW4mQgosJ0uGF8leBJGx2kUVQrHOeTXs1s8xf4C1ZCMOluMC_oVxL5dq7iyLqV6v9Hj8Vxzs3yV3agBLP1Yad49s-eI-2ek1c-MelIPrm1-66HFZaA7hkU5yCliTDr73Of0xOkX8D2ePAICu9JqOCtpD_Zs9JCfXwsJHZLuYFP4JoUY4J3Nn48QJyYEKDkFXwGeYSEd5HBDWsCyzdQdzHKQxziCTQS5nl7gckLftJdOqfcdVxJ9QDi0hdt4uT0xmp1ltyJmVOK_ZeWMUk67LjI1sDkjDx5F20sNNdhspZrU7mGcXyhuQV-0yyAV3Z3ThJ0ugAagcpypWaUAeV0Jvn0QIbP_JooAkG-qw8aibK8XorGwWnigAYByufNcqzv858fTql3hJboHtZV8PBofPyG2OVT5YlRfvku3FbOmfA0xbmBelPVDy87oN8A-h4lSa
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEB5BKlReOAqFQEFG4gnkZr2H7X1CJSKqkIgqaKTyZPZyiQhOlIOq_Hpm7bVFKAIh3nzMWmvP7M433tlvAJ47lVJqtIqdIibmVuOQYlrGjOaOW_QZVPlfA-_G6fGEvz0TZ6HO6SqkVWIoPq0n6YT77b2IYQc0HQg8TbLBwpavvoVfSR6t0AxtKL0OO6lfYerBzmR8cvSx3lMUGtfHjMUJy1izrskw0B98bcrPupVH9P7RW56pJvD_Heq8mjy5u6kW6vJCzWY_eabRbfjUvlOTkPLlcLPWh-b7L3SP__HSd-BWQK3RUWNmd-Gaq_Zgd9gWi9uDG3UmqVndq-vWtzu6otM6zxy9YzQvI4Sa0fj9iEYfpuce_uPVE8SfF-oymlbR0Jvf8j5MRm9Oh8dxqNEQG4xF1rFhxpm8JFJ74jQtdC6dJSW6QKJFTlLCNOOak7xUUlvm2fqsRlluDFMJsWwfetW8cg8h0sxaXlojMss4RSk8RVPBKUMnKilFH0irn8IEAnNfR2NWYCDjVVpcUWkfXnRNFg17x5-EX3uld4KeeLu-MF-eF2EcF4b7cs3WaS0JtynRJjElAg0nEmW5w4cctCZThNlgVWCIKzOJkTLtw7PuNmrIL86oys03KINIWeRSyLwPDxoL63rCmGf_JEkfsi3b2-rq9p1q-rnmCs8k4i-KLV92Vvr3L_Hon6Qfw03qE318Yp44gN56uXFPEKmt9dMwGn8AFXU5Jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Therapeutic+Targeting+of+the+NRF2+Signaling+Pathway+in+Cancer&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Telkoparan-Akillilar%2C+Pelin&rft.au=Panieri%2C+Emiliano&rft.au=Cevik%2C+Dilek&rft.au=Suzen%2C+Sibel&rft.date=2021-03-05&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=26&rft.issue=5&rft_id=info:doi/10.3390%2Fmolecules26051417&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon