An effective no-reference image quality index prediction with a hybrid Artificial Intelligence approach for denoised MRI images
As the quantity and significance of digital pictures in the medical industry continue to increase, Image Quality Assessment (IQA) has recently become a prevalent subject in the research community. Due to the wide range of distortions that Magnetic Resonance Images (MRI) can experience and the wide v...
Saved in:
Published in | BMC medical imaging Vol. 24; no. 1; pp. 208 - 19 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
12.08.2024
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2342 1471-2342 |
DOI | 10.1186/s12880-024-01387-1 |
Cover
Abstract | As the quantity and significance of digital pictures in the medical industry continue to increase, Image Quality Assessment (IQA) has recently become a prevalent subject in the research community. Due to the wide range of distortions that Magnetic Resonance Images (MRI) can experience and the wide variety of information they contain, No-Reference Image Quality Assessment (NR-IQA) has always been a challenging study issue. In an attempt to address this issue, a novel hybrid Artificial Intelligence (AI) is proposed to analyze NR-IQ in massive MRI data. First, the features from the denoised MRI images are extracted using the gray level run length matrix (GLRLM) and EfficientNet B7 algorithm. Next, the Multi-Objective Reptile Search Algorithm (MRSA) was proposed for optimal feature vector selection. Then, the Self-evolving Deep Belief Fuzzy Neural network (SDBFN) algorithm was proposed for the effective NR-IQ analysis. The implementation of this research is executed using MATLAB software. The simulation results are compared with the various conventional methods in terms of correlation coefficient (PLCC), Root Mean Square Error (RMSE), Spearman Rank Order Correlation Coefficient (SROCC) and Kendall Rank Order Correlation Coefficient (KROCC), and Mean Absolute Error (MAE). In addition, our proposed approach yielded a quality number approximately we achieved significant 20% improvement than existing methods, with the PLCC parameter showing a notable increase compared to current techniques. Moreover, the RMSE number decreased by 12% when compared to existing methods. Graphical representations indicated mean MAE values of 0.02 for MRI knee dataset, 0.09 for MRI brain dataset, and 0.098 for MRI breast dataset, showcasing significantly lower MAE values compared to the baseline models. |
---|---|
AbstractList | As the quantity and significance of digital pictures in the medical industry continue to increase, Image Quality Assessment (IQA) has recently become a prevalent subject in the research community. Due to the wide range of distortions that Magnetic Resonance Images (MRI) can experience and the wide variety of information they contain, No-Reference Image Quality Assessment (NR-IQA) has always been a challenging study issue. In an attempt to address this issue, a novel hybrid Artificial Intelligence (AI) is proposed to analyze NR-IQ in massive MRI data. First, the features from the denoised MRI images are extracted using the gray level run length matrix (GLRLM) and EfficientNet B7 algorithm. Next, the Multi-Objective Reptile Search Algorithm (MRSA) was proposed for optimal feature vector selection. Then, the Self-evolving Deep Belief Fuzzy Neural network (SDBFN) algorithm was proposed for the effective NR-IQ analysis. The implementation of this research is executed using MATLAB software. The simulation results are compared with the various conventional methods in terms of correlation coefficient (PLCC), Root Mean Square Error (RMSE), Spearman Rank Order Correlation Coefficient (SROCC) and Kendall Rank Order Correlation Coefficient (KROCC), and Mean Absolute Error (MAE). In addition, our proposed approach yielded a quality number approximately we achieved significant 20% improvement than existing methods, with the PLCC parameter showing a notable increase compared to current techniques. Moreover, the RMSE number decreased by 12% when compared to existing methods. Graphical representations indicated mean MAE values of 0.02 for MRI knee dataset, 0.09 for MRI brain dataset, and 0.098 for MRI breast dataset, showcasing significantly lower MAE values compared to the baseline models.As the quantity and significance of digital pictures in the medical industry continue to increase, Image Quality Assessment (IQA) has recently become a prevalent subject in the research community. Due to the wide range of distortions that Magnetic Resonance Images (MRI) can experience and the wide variety of information they contain, No-Reference Image Quality Assessment (NR-IQA) has always been a challenging study issue. In an attempt to address this issue, a novel hybrid Artificial Intelligence (AI) is proposed to analyze NR-IQ in massive MRI data. First, the features from the denoised MRI images are extracted using the gray level run length matrix (GLRLM) and EfficientNet B7 algorithm. Next, the Multi-Objective Reptile Search Algorithm (MRSA) was proposed for optimal feature vector selection. Then, the Self-evolving Deep Belief Fuzzy Neural network (SDBFN) algorithm was proposed for the effective NR-IQ analysis. The implementation of this research is executed using MATLAB software. The simulation results are compared with the various conventional methods in terms of correlation coefficient (PLCC), Root Mean Square Error (RMSE), Spearman Rank Order Correlation Coefficient (SROCC) and Kendall Rank Order Correlation Coefficient (KROCC), and Mean Absolute Error (MAE). In addition, our proposed approach yielded a quality number approximately we achieved significant 20% improvement than existing methods, with the PLCC parameter showing a notable increase compared to current techniques. Moreover, the RMSE number decreased by 12% when compared to existing methods. Graphical representations indicated mean MAE values of 0.02 for MRI knee dataset, 0.09 for MRI brain dataset, and 0.098 for MRI breast dataset, showcasing significantly lower MAE values compared to the baseline models. As the quantity and significance of digital pictures in the medical industry continue to increase, Image Quality Assessment (IQA) has recently become a prevalent subject in the research community. Due to the wide range of distortions that Magnetic Resonance Images (MRI) can experience and the wide variety of information they contain, No-Reference Image Quality Assessment (NR-IQA) has always been a challenging study issue. In an attempt to address this issue, a novel hybrid Artificial Intelligence (AI) is proposed to analyze NR-IQ in massive MRI data. First, the features from the denoised MRI images are extracted using the gray level run length matrix (GLRLM) and EfficientNet B7 algorithm. Next, the Multi-Objective Reptile Search Algorithm (MRSA) was proposed for optimal feature vector selection. Then, the Self-evolving Deep Belief Fuzzy Neural network (SDBFN) algorithm was proposed for the effective NR-IQ analysis. The implementation of this research is executed using MATLAB software. The simulation results are compared with the various conventional methods in terms of correlation coefficient (PLCC), Root Mean Square Error (RMSE), Spearman Rank Order Correlation Coefficient (SROCC) and Kendall Rank Order Correlation Coefficient (KROCC), and Mean Absolute Error (MAE). In addition, our proposed approach yielded a quality number approximately we achieved significant 20% improvement than existing methods, with the PLCC parameter showing a notable increase compared to current techniques. Moreover, the RMSE number decreased by 12% when compared to existing methods. Graphical representations indicated mean MAE values of 0.02 for MRI knee dataset, 0.09 for MRI brain dataset, and 0.098 for MRI breast dataset, showcasing significantly lower MAE values compared to the baseline models. Abstract As the quantity and significance of digital pictures in the medical industry continue to increase, Image Quality Assessment (IQA) has recently become a prevalent subject in the research community. Due to the wide range of distortions that Magnetic Resonance Images (MRI) can experience and the wide variety of information they contain, No-Reference Image Quality Assessment (NR-IQA) has always been a challenging study issue. In an attempt to address this issue, a novel hybrid Artificial Intelligence (AI) is proposed to analyze NR-IQ in massive MRI data. First, the features from the denoised MRI images are extracted using the gray level run length matrix (GLRLM) and EfficientNet B7 algorithm. Next, the Multi-Objective Reptile Search Algorithm (MRSA) was proposed for optimal feature vector selection. Then, the Self-evolving Deep Belief Fuzzy Neural network (SDBFN) algorithm was proposed for the effective NR-IQ analysis. The implementation of this research is executed using MATLAB software. The simulation results are compared with the various conventional methods in terms of correlation coefficient (PLCC), Root Mean Square Error (RMSE), Spearman Rank Order Correlation Coefficient (SROCC) and Kendall Rank Order Correlation Coefficient (KROCC), and Mean Absolute Error (MAE). In addition, our proposed approach yielded a quality number approximately we achieved significant 20% improvement than existing methods, with the PLCC parameter showing a notable increase compared to current techniques. Moreover, the RMSE number decreased by 12% when compared to existing methods. Graphical representations indicated mean MAE values of 0.02 for MRI knee dataset, 0.09 for MRI brain dataset, and 0.098 for MRI breast dataset, showcasing significantly lower MAE values compared to the baseline models. As the quantity and significance of digital pictures in the medical industry continue to increase, Image Quality Assessment (IQA) has recently become a prevalent subject in the research community. Due to the wide range of distortions that Magnetic Resonance Images (MRI) can experience and the wide variety of information they contain, No-Reference Image Quality Assessment (NR-IQA) has always been a challenging study issue. In an attempt to address this issue, a novel hybrid Artificial Intelligence (AI) is proposed to analyze NR-IQ in massive MRI data. First, the features from the denoised MRI images are extracted using the gray level run length matrix (GLRLM) and EfficientNet B7 algorithm. Next, the Multi-Objective Reptile Search Algorithm (MRSA) was proposed for optimal feature vector selection. Then, the Self-evolving Deep Belief Fuzzy Neural network (SDBFN) algorithm was proposed for the effective NR-IQ analysis. The implementation of this research is executed using MATLAB software. The simulation results are compared with the various conventional methods in terms of correlation coefficient (PLCC), Root Mean Square Error (RMSE), Spearman Rank Order Correlation Coefficient (SROCC) and Kendall Rank Order Correlation Coefficient (KROCC), and Mean Absolute Error (MAE). In addition, our proposed approach yielded a quality number approximately we achieved significant 20% improvement than existing methods, with the PLCC parameter showing a notable increase compared to current techniques. Moreover, the RMSE number decreased by 12% when compared to existing methods. Graphical representations indicated mean MAE values of 0.02 for MRI knee dataset, 0.09 for MRI brain dataset, and 0.098 for MRI breast dataset, showcasing significantly lower MAE values compared to the baseline models. Keywords: Image Quality Assessment, Magnetic Resonance Images, Artificial Intelligence, Hybridization, Multi-objective optimization, Performance metrics |
ArticleNumber | 208 |
Audience | Academic |
Author | Radhabai, Prianka Ramachandran Shanmugam, Ashok KVN, Kavitha Imoize, Agbotiname Lucky |
Author_xml | – sequence: 1 givenname: Prianka Ramachandran surname: Radhabai fullname: Radhabai, Prianka Ramachandran organization: Department of AIML, New Horizon College of Engineering – sequence: 2 givenname: Kavitha surname: KVN fullname: KVN, Kavitha organization: Department of Communication Engineering, School of Electronics Engineering, Vellore Institute of Technology – sequence: 3 givenname: Ashok surname: Shanmugam fullname: Shanmugam, Ashok organization: Department of Electronics and Communication Engineering, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College – sequence: 4 givenname: Agbotiname Lucky surname: Imoize fullname: Imoize, Agbotiname Lucky email: aimoize@unilag.edu.ng organization: Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Lagos |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39134983$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktvEzEUhUeoiD7gD7BAltiwmeJrz8T2CkUVj0hFSAjWlsePiaOJndqTQlb8dZxMaRuE0Cw8sr97fM_1Oa9OQgy2ql4CvgTgs7cZCOe4xqSpMVDOanhSnUHDoCa0ISeP_k-r85xXGAPjtHlWnVIBtBGcnlW_5gFZ56we_a1FIdbJOpts0Bb5teotutmqwY875IOxP9EmWeMLGwP64cclUmi565I3aJ5G77z2akCLMNph8P1BRG02KSq9RC4mZGyIPluDPn9dTPL5efXUqSHbF3frRfX9w_tvV5_q6y8fF1fz61q3rRhrjbuOia6lRgnqROs4bmjrGCWMdoKC6DrNNAdLlCOYE4Kd48pxggnFhjF6US0mXRPVSm5SuT3tZFReHjZi6qUqFvRg5Yxy4EBpGZdpBDEcNMeadY0TxkBrita7SWuz7dbWaBvGpIYj0eOT4Jeyj7cSgAInfN_NmzuFFG-2No9y7bMuU1PBxm2WFAtCZ6w5NP76L3QVtymUWUkK5emZEMAfqF4VBz64WC7We1E552UeDUBDC3X5D6p8xq69LuFyvuwfFbx67PTe4p_8FIBMgE4x55KdewSw3IdUTiGVpVN5CKmEUkSnolzg0Nv0YOk_Vb8BfkXn0Q |
Cites_doi | 10.1142/S0218001415570025 10.1007/s11263-020-01419-7 10.1109/GCAT55367.2022.9971932 10.1016/j.asej.2021.02.010 10.1016/j.jestch.2021.07.002 10.1016/j.media.2020.101900 10.3390/app12010101 10.1007/s11042-020-09229-2 10.1109/JSYST.2019.2952459 10.3390/e22020220 10.1109/ISBI45749.2020.9098391 10.18280/ts.400138 10.1007/s11042-020-10035-z 10.3390/electronics8010088 10.1109/ACCESS.2020.2972158 10.1002/cpe.5184 10.1007/s11548-020-02120-3 10.3389/fonc.2023.1282536 10.1109/ACCESS.2023.3272987 10.1007/s10278-018-0150-3 10.3389/fcvm.2024.1424585 10.22452/mjcs.vol32no1.3 10.1109/UPCON47278.2019.8980171 10.1109/TRPMS.2021.3071148 10.1109/ACCESS.2022.3154771 10.1109/TIP.2021.3061932 10.1186/s12880-022-00825-2 10.1002/cam4.6089 10.1007/s00521-022-07218-0 10.3390/app13042682 10.1109/ICISPC.2019.8935651 10.1016/j.eswa.2022.116743 10.1109/TIP.2020.3000349 10.3991/ijoe.v18i03.28011 10.1109/ICPR.2008.4760972 10.1007/s11063-019-10036-6 10.1016/j.bbe.2020.01.012 10.1109/ACCESS.2023.3234519 10.3390/s22041478 10.1016/j.dsp.2020.102849 10.1016/j.knosys.2022.109512 10.4236/jcc.2019.73002 10.1016/j.displa.2021.102101 10.1049/ipr2.12016 10.1109/ACCESS.2022.3233110 10.1016/j.compmedimag.2021.101897 10.1016/j.irbm.2019.11.005 10.34028/iajit/18/5/3 10.1126/scitranslmed.abo4802 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). COPYRIGHT 2024 BioMed Central Ltd. 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: COPYRIGHT 2024 BioMed Central Ltd. – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12880-024-01387-1 |
DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1471-2342 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_63818133001d492d81c80c7b4f9dd15d PMC11318287 A808241143 39134983 10_1186_s12880_024_01387_1 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7RV 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EBD EBLON EBS EMB EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ITC KQ8 LK8 M1P M48 M7P M~E NAPCQ O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 UKHRP W2D WOQ WOW XSB AAYXX ALIPV CITATION -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM PMFND 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c559t-c0bb79b53da93f95f80435f73273b9319bbc7c81e2af208220ff8af820230d773 |
IEDL.DBID | C6C |
ISSN | 1471-2342 |
IngestDate | Wed Aug 27 01:31:20 EDT 2025 Thu Aug 21 18:31:50 EDT 2025 Fri Sep 05 06:53:22 EDT 2025 Fri Jul 25 19:29:04 EDT 2025 Tue Jun 17 22:03:49 EDT 2025 Tue Jun 10 21:02:34 EDT 2025 Wed Feb 19 02:02:27 EST 2025 Tue Jul 01 04:02:42 EDT 2025 Sat Sep 06 07:26:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Performance metrics Multi-objective optimization Hybridization Magnetic Resonance Images Artificial Intelligence Image Quality Assessment |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c559t-c0bb79b53da93f95f80435f73273b9319bbc7c81e2af208220ff8af820230d773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doi.org/10.1186/s12880-024-01387-1 |
PMID | 39134983 |
PQID | 3102479918 |
PQPubID | 44833 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_63818133001d492d81c80c7b4f9dd15d pubmedcentral_primary_oai_pubmedcentral_nih_gov_11318287 proquest_miscellaneous_3092367477 proquest_journals_3102479918 gale_infotracmisc_A808241143 gale_infotracacademiconefile_A808241143 pubmed_primary_39134983 crossref_primary_10_1186_s12880_024_01387_1 springer_journals_10_1186_s12880_024_01387_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-12 |
PublicationDateYYYYMMDD | 2024-08-12 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | BMC medical imaging |
PublicationTitleAbbrev | BMC Med Imaging |
PublicationTitleAlternate | BMC Med Imaging |
PublicationYear | 2024 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | KY Chan (1387_CR29) 2022; 34 G Geleijnse (1387_CR6) 2022; 66 M Rehman (1387_CR30) 2022; 71 MY Ansari (1387_CR53) 2023 A Shanmugam (1387_CR24) 2020; 40 SS Esfahani (1387_CR38) 2020; 15 MY Ansari (1387_CR49) 2024 S Kaplan (1387_CR10) 2019; 32 MY Ansari (1387_CR46) 2022; 22 AD Desai (1387_CR32) 2022; 18 X Zhai (1387_CR39) 2019; 14 MY Ansari (1387_CR54) 2023; 11 TX Jiang (1387_CR12) 2020; 29 A Kumar (1387_CR3) 2018; 119 JV Bagade (1387_CR27) 2019; 32 1387_CR11 J Hu (1387_CR31) 2020; 106 MY Ansari (1387_CR50) 2023; 13 1387_CR8 1387_CR17 R Obuchowicz (1387_CR28) 2020; 22 X Zhai (1387_CR40) 2019; 31 1387_CR1 K Ding (1387_CR4) 2021; 129 M Ferroukhi (1387_CR15) 2019; 8 J Czajkowska (1387_CR21) 2022; 22 A Shanmugam (1387_CR25) 2020; 41 MY Ansari (1387_CR44) 2023 SP Dakua (1387_CR37) 2015; 29 J Ryu (1387_CR22) 2023; 13 V Chandrasekar (1387_CR51) 2023; 11 S Ali (1387_CR2) 2021; 68 WT Loh (1387_CR13) 2021; 15 S Mohanty (1387_CR35) 2022; 10 U Sara (1387_CR9) 2019; 7 X Zheng (1387_CR14) 2020; 8 MY Ansari (1387_CR42) 2022 IF Nizami (1387_CR16) 2020; 79 D Varga (1387_CR19) 2019; 50 1387_CR33 Y Akhtar (1387_CR47) 2021; 6 SK Natarajan (1387_CR36) 2023; 40 DRIM Setiadi (1387_CR7) 2021; 80 Z Han (1387_CR41) 2022; 253 W Zhang (1387_CR5) 2021; 30 J Witowski (1387_CR34) 2022; 14 M Jafari (1387_CR43) 2020 MY Ansari (1387_CR52) 2022; 11 L Abdel-Hamid (1387_CR18) 2021; 12 MY Ansari (1387_CR55) 2024; 11 P Rai (1387_CR48) 2023; 12 D Varga (1387_CR23) 2021; 12 I Fantini (1387_CR20) 2021; 90 J Rajevenceltha (1387_CR26) 2022; 30 Y Xie (1387_CR45) 2021 |
References_xml | – volume: 29 start-page: 1557002 issue: 03 year: 2015 ident: 1387_CR37 publication-title: Int J Pattern Recognit Artif Intell doi: 10.1142/S0218001415570025 – volume: 129 start-page: 1258 year: 2021 ident: 1387_CR4 publication-title: Int J Comput Vision doi: 10.1007/s11263-020-01419-7 – volume: 66 start-page: 030508 issue: 3 year: 2022 ident: 1387_CR6 publication-title: J Image Sci Technol – ident: 1387_CR33 doi: 10.1109/GCAT55367.2022.9971932 – volume: 12 start-page: 2799 issue: 3 year: 2021 ident: 1387_CR18 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2021.02.010 – volume: 30 start-page: 101039 year: 2022 ident: 1387_CR26 publication-title: Engineering Science and Technology, an International Journal doi: 10.1016/j.jestch.2021.07.002 – volume: 68 start-page: 101900 year: 2021 ident: 1387_CR2 publication-title: Med Image Anal doi: 10.1016/j.media.2020.101900 – volume: 12 start-page: 101 issue: 1 year: 2021 ident: 1387_CR23 publication-title: Appl Sci doi: 10.3390/app12010101 – volume-title: Advancements in Deep Learning for B-Mode Ultrasound Segmentation: A Comprehensive Review. IEEE Transactions on Emerging Topics in Computational Intelligence. year: 2024 ident: 1387_CR49 – volume: 79 start-page: 26285 year: 2020 ident: 1387_CR16 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-020-09229-2 – volume: 14 start-page: 1592 issue: 2 year: 2019 ident: 1387_CR39 publication-title: IEEE Syst J doi: 10.1109/JSYST.2019.2952459 – start-page: 102690 volume-title: Estimating age and gender from electrocardiogram signals: A comprehensive review of the past decade. Artificial Intelligence in Medicine year: 2023 ident: 1387_CR53 – volume: 22 start-page: 220 issue: 2 year: 2020 ident: 1387_CR28 publication-title: Entropy doi: 10.3390/e22020220 – start-page: 1144 volume-title: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) year: 2020 ident: 1387_CR43 doi: 10.1109/ISBI45749.2020.9098391 – start-page: 171 volume-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part III 24 year: 2021 ident: 1387_CR45 – volume: 40 start-page: 375 issue: 1 year: 2023 ident: 1387_CR36 publication-title: Traitement du Signal. doi: 10.18280/ts.400138 – volume: 80 start-page: 8423 issue: 6 year: 2021 ident: 1387_CR7 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-020-10035-z – volume: 8 start-page: 88 issue: 1 year: 2019 ident: 1387_CR15 publication-title: Electronics doi: 10.3390/electronics8010088 – start-page: 27 volume-title: International Conference on Medical Imaging and Computer-Aided Diagnosis year: 2022 ident: 1387_CR42 – volume: 8 start-page: 31647 year: 2020 ident: 1387_CR14 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2972158 – volume: 31 start-page: e5184 issue: 17 year: 2019 ident: 1387_CR40 publication-title: Concurrency and Computation: Practice and Experience doi: 10.1002/cpe.5184 – volume: 15 start-page: 629 year: 2020 ident: 1387_CR38 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-020-02120-3 – volume: 13 start-page: 1282536 year: 2023 ident: 1387_CR50 publication-title: Front Oncol doi: 10.3389/fonc.2023.1282536 – volume: 11 start-page: 52726 year: 2023 ident: 1387_CR51 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3272987 – volume: 32 start-page: 773 issue: 5 year: 2019 ident: 1387_CR10 publication-title: J Digit Imaging doi: 10.1007/s10278-018-0150-3 – volume: 11 start-page: 1424585 year: 2024 ident: 1387_CR55 publication-title: Frontiers in Cardiovascular Medicine doi: 10.3389/fcvm.2024.1424585 – volume: 32 start-page: 31 issue: 1 year: 2019 ident: 1387_CR27 publication-title: Malaysian J Comp Sci doi: 10.22452/mjcs.vol32no1.3 – ident: 1387_CR8 doi: 10.1109/UPCON47278.2019.8980171 – volume: 6 start-page: 667 issue: 6 year: 2021 ident: 1387_CR47 publication-title: IEEE transactions on radiation and plasma medical sciences doi: 10.1109/TRPMS.2021.3071148 – volume: 10 start-page: 24528 year: 2022 ident: 1387_CR35 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3154771 – volume: 30 start-page: 3474 year: 2021 ident: 1387_CR5 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2021.3061932 – volume: 22 start-page: 97 issue: 1 year: 2022 ident: 1387_CR46 publication-title: BMC Med Imaging doi: 10.1186/s12880-022-00825-2 – volume: 12 start-page: 14225 issue: 13 year: 2023 ident: 1387_CR48 publication-title: Cancer Med doi: 10.1002/cam4.6089 – volume: 34 start-page: 15409 issue: 18 year: 2022 ident: 1387_CR29 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07218-0 – volume: 13 start-page: 2682 issue: 4 year: 2023 ident: 1387_CR22 publication-title: Appl Sci doi: 10.3390/app13042682 – ident: 1387_CR11 doi: 10.1109/ICISPC.2019.8935651 – ident: 1387_CR17 doi: 10.1016/j.eswa.2022.116743 – volume: 29 start-page: 7233 year: 2020 ident: 1387_CR12 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.3000349 – ident: 1387_CR1 doi: 10.3991/ijoe.v18i03.28011 – volume: 119 start-page: 1565 year: 2018 ident: 1387_CR3 publication-title: Int J Pure Appl Math doi: 10.1109/ICPR.2008.4760972 – volume: 50 start-page: 2595 issue: 3 year: 2019 ident: 1387_CR19 publication-title: Neural Process Lett doi: 10.1007/s11063-019-10036-6 – volume: 40 start-page: 574 issue: 1 year: 2020 ident: 1387_CR24 publication-title: Biocybernetics and Biomedical Engineering doi: 10.1016/j.bbe.2020.01.012 – volume: 11 start-page: 4589 year: 2023 ident: 1387_CR54 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3234519 – start-page: 1 volume-title: 2023 international joint conference on neural networks (IJCNN) year: 2023 ident: 1387_CR44 – volume: 22 start-page: 1478 issue: 4 year: 2022 ident: 1387_CR21 publication-title: Sensors doi: 10.3390/s22041478 – volume: 106 start-page: 102849 year: 2020 ident: 1387_CR31 publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2020.102849 – volume: 253 start-page: 109512 year: 2022 ident: 1387_CR41 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2022.109512 – volume: 7 start-page: 8 issue: 3 year: 2019 ident: 1387_CR9 publication-title: Journal of Computer and Communications doi: 10.4236/jcc.2019.73002 – volume: 71 start-page: 102101 year: 2022 ident: 1387_CR30 publication-title: Displays doi: 10.1016/j.displa.2021.102101 – volume: 15 start-page: 166 issue: 1 year: 2021 ident: 1387_CR13 publication-title: IET Image Proc doi: 10.1049/ipr2.12016 – volume: 11 start-page: 9890 year: 2022 ident: 1387_CR52 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3233110 – volume: 90 start-page: 101897 year: 2021 ident: 1387_CR20 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2021.101897 – volume: 41 start-page: 261 issue: 5 year: 2020 ident: 1387_CR25 publication-title: IRBM doi: 10.1016/j.irbm.2019.11.005 – volume: 18 start-page: 20 issue: 5 year: 2022 ident: 1387_CR32 publication-title: arXiv preprint doi: 10.34028/iajit/18/5/3 – volume: 14 start-page: eabo4802 issue: 664 year: 2022 ident: 1387_CR34 publication-title: Sci Transl Med. doi: 10.1126/scitranslmed.abo4802 |
SSID | ssj0017834 |
Score | 2.3401618 |
Snippet | As the quantity and significance of digital pictures in the medical industry continue to increase, Image Quality Assessment (IQA) has recently become a... Abstract As the quantity and significance of digital pictures in the medical industry continue to increase, Image Quality Assessment (IQA) has recently become... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 208 |
SubjectTerms | Algorithms Artificial Intelligence Classification Correlation coefficient Correlation coefficients Datasets Deep learning Design Digital imaging Drug resistance Error analysis Feature selection Fuzzy Logic Graphical representations Humans Hybridization Image Processing, Computer-Assisted - methods Image quality Image Quality Assessment Imaging Magnetic Resonance Images Magnetic resonance imaging Magnetic Resonance Imaging - methods Measurement techniques Medical imaging Medical imaging equipment Medicine Medicine & Public Health Methods Multi-objective optimization Neural networks Neural Networks, Computer Noise reduction Performance metrics Quality assessment Quality control Quality management Radiology Reptiles Root-mean-square errors Search algorithms Semantics Signal-To-Noise Ratio |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29b9QwFLdQB8SC-CbQIiMhMYBVO3H8MR6IqkUqA6JSNyu2Y_UGclXvOnTiX-97dnJcihALa2wntt93_Px7hLwzXoWaB85ErySTOklmo-HM86QUDIFxGe3zmzo-k1_P2_OdUl-YE1bggcvGHSo0KRBIgTqN0tbRiGB40F4mG6NoI2pfbvkUTI3nB1g-YroiY9ThGrQwTADsEcOTOc3EzAxltP4_dfKOUbqbMHnn1DQbo6NH5OHoRdJFmf1jcq8fnpD7p-M5-VPyazHQkqkByowOK7atJkKXP0GD0HKX8oZmsER6eYUjkUQU_8vSjl7c4E2u_IECMUFPdrA76YRETsHlpaC5Vst1H-np95Py-vUzcnb05cfnYzaWWmABQooNC9x7bX3bxM42ybbJcPCjkm7Au_EWxNT7oIMRfd2lGkHieUqmSwaLr_OodfOc7A2roX9JaLDAnK0NXbBRyl53Xa98sp5H_HnZyIp8mHbeXRZEDZcjEaNcoZMDOrlMJycq8gmJs-2JaNj5AfCIG3nE_YtHKvIeSetQZoF-MLVy9QAmjOhXbmFgSRIiw6Yi-7OeIGth3jwxhxtlfe3AQa6lBj_bVOTtthlHYv7a0K-uoQ-3CJUnta7Ii8JL2yU1mPxgDbzczLhstuZ5y7C8yEjgQoBKhpi3Ih8nhvw9r79v6qv_samvyYM6C5Rhot4ne5ur6_4AHLSNf5Nl8RaFojXe priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbKVkJcEG9SCjISEgew6iRObB8Q2qJWLVJXqKJSb1Zsx-0eSJbd7aGn_nVmnGTbFMF1_Vg78_CMPfMNIR-ULV3GHWdpXQomZBBMe8WZ5aEsYQiMi2ifs_LoTHw_L863yGzIhcGwykEnRkXtW4d35HtghmRCgjWjvi5-M6waha-rQwmNqi-t4L9EiLEHZBtUcsEnZHv_YPbjdPOugGUlhtQZVe6tQDvDwmBmhi92kqWj4ymi-P-tq-8cVvcDKe-9psZD6vAJedxbl3TascNTslU3z8jDk_79_Dm5mTa0i-AAJUeblm2qjND5L9AstMuxvKYRRJEuljgSSUfxvpZW9PIaM7ziH3TQE_T4DqYnHRDKKZjCFDRaO1_Vnp6cHnfTr16Qs8ODn9-OWF-CgTlwNdbMcWultkXuK50HXQTFwb4KMgerx2oQX2uddCqtsypkCB7PQ1BVUFiUnXsp85dk0rRN_ZpQp4FpC-0qp70QtayqurRBW-7xUjMXCfk0fHmz6JA2TPRQVGk6Ohmgk4l0MmlC9pE4m56Ikh1_aJcXphc6U6I5Ak44EN4LnXmVOsWdtCJo79PCJ-QjktagLAP9YGldSgIsGFGxzFTBlgR4jHlCdkc9QQbduHlgDtPrgJW55diEvN8040iMa2vq9gr6cI0QekLKhLzqeGmzpRyDIrSCydWIy0Z7Hrc088uIEJ6moKrBF07I54Ehb9f174-68_9tvCGPsigqiqXZLpmsl1f1WzDJ1vZdL2d_AJ3SNP8 priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIiEuiDeBgoyExAEMTuLE9gGhBVG1SOWAWKk3K7ZjuhIkZXcrsSf-OjN2sm1KOXBde7y25-GZjP0NIc-VrV3BHWd5WwsmZBBMe8WZ5aGugQToItrn5_pgLj4dV8c7ZCx3NGzg6srQDutJzZffX__6uXkHCv82Kryq36zAxsLwcNowzLtJBtHQtZgvwqt84jyrgEUlxoczV9JNDqeI4f-3pb5wVF2-RnkplxqPqP1b5ObgW9JZEobbZKft7pDrR0P2_C75Petour8BJo52PdvWGKGLH2BXaHphuaERQpGeLpESGUfxay1t6MkG33fFP0jAE_TwAqInHfHJKTjCFOxZv1i1nh59OUzDr-6R-f7Hrx8O2FCAgTkINNbMcWultlXpG10GXQXFwbsKsgSfx2pQXmuddCpviyYUCB3PQ1BNUFiSnXspy_tkt-u79iGhToPIVto1TnshWtk0bW2DttzjJ81SZOTluPPmNOFsmBifqNokPhngk4l8MnlG3iNztj0RIzv-0C-_mUHlTI3OCITgwHgvdOFV7hR30oqgvc8rn5EXyFqDsgX8g6mlBwkwYcTEMjMFSxIQL5YZ2Zv0BA100-ZROMwowAbc5kJI8L5VRp5tm5ESb7V1bX8GfbhGAD0hZUYeJFnaLqnEKxFaweBqImWTNU9busVJxAfPczDUEAln5NUokOfz-vemPvq_7o_JjSKqjmJ5sUd218uz9gk4aGv7NGrdHzUoNc0 priority: 102 providerName: Scholars Portal |
Title | An effective no-reference image quality index prediction with a hybrid Artificial Intelligence approach for denoised MRI images |
URI | https://link.springer.com/article/10.1186/s12880-024-01387-1 https://www.ncbi.nlm.nih.gov/pubmed/39134983 https://www.proquest.com/docview/3102479918 https://www.proquest.com/docview/3092367477 https://pubmed.ncbi.nlm.nih.gov/PMC11318287 https://doaj.org/article/63818133001d492d81c80c7b4f9dd15d |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdgkxAXxDeBURkJiQNYOIkT28e2WtmQOqGKSRUXK7ZjrYel09odduJf5z0nKc2AAxcfYr_Ezvvwe372z4S8V7Z0GXecpXUpmJBBMO0VZ5aHsgQSoIton2flybn4uiyWHUwOnoXZz9-nqvy8AfsJpDCTMMypSQaRzmEBhheleVpOdxkDvDCiPxTzV7rBxBPx-f-0wnvT0N0tknfypHH6mT0mjzq_kY5bRj8h9-rmKXkw7zLjz8jPcUPbvRlgvmizZrv7Q-jqEmwGbU9P3tIIj0ivrpESmUJxJZZW9OIWz27FD7SgEvR0D62T9tjjFJxcCrZqvdrUns4Xp-3rN8_J-ez4-_SEdZcrMAdBxJY5bq3Utsh9pfOgi6A4eE5B5uDPWA2Kaa2TTqV1VoUMYeF5CKoKCq9b517K_AU5aNZN_YpQp0EcC-0qp70QtayqurRBW-5xuTIXCfnY_3lz1WJomBh7qNK0fDLAJxP5ZNKETJA5u5aIfx0fgFiYTp1MiY4GhNfAeC905lXqFHfSiqC9TwufkA_IWoNaCvyDrrWHDaDDiHdlxgqGJCAWzBNyNGgJ2uWG1b1wmE67NwZc4kxI8KxVQt7tqpESd6w19foG2nCN4HhCyoS8bGVpN6QctztoBS9XAykbjHlY06wuIvZ3moIRhig3IZ96gfzdr3__1Nf_1_wNeZhF1VEszY7Iwfb6pn4LztfWjsh9uZRQqtmXETmcHJ99W4yiJo7icgaUc6GgXEx-_AIgZC2K |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwEviDuBAUYC8QDWcnFj-2FCHWxq2VqhaZP2ZmI7YX0gKW0n1Cf-Gb-Nc5ykW4bgba_xJbbP1ZfzHUJeS5PaOLQhi_KUMy4KzpSTITNhkabQBNp5tM9JOjzhn0_7pxvkdxsLg88qW53oFbWrLJ6Rb4MbEnMB3oz8MPvBMGsU3q62KTSyJrWC2_EQY01gx0G--glbuMXO6BPQ-00c7-8dfxyyJssAs-BNL5kNjRHK9BOXqaRQ_UKG4EIUIgHDbhRwqDFWWBnlcVbEiI8eFoXMCol5x0MnRAL93iCbHA9QemRzd2_y5Wh9j4FpLNpQHZluL8AawELATBjeEAoWdcyhzxrwt224ZByvPty8cnvrjeL-XXKn8WbpoGa_e2QjL--Tm-Pmvv4B-TUoaf1iBJQqLSu2zmpCp99Bk9E6pnNFPWgjnc2xJbIKxfNhmtGzFUaU-R_UUBd0dAlDlLaI6BRcbwoatJouckfHR6O6-8VDcnItxHhEemVV5k8ItQqEpK9sZpXjPBdZlqemUCZ0eIia8IC8a1dez2pkD-13RDLVNZ000El7OukoILtInHVNROX2H6r5N90IuU7R_YFNPxDecRU7GVkZWmF4oZyL-i4gb5G0GnUH0A-GVodAwIARhUsPJEyJww41CchWpybIvO0Wt8yhG52z0BcSEpBX62Jsie_oyrw6hzqhQsg-LkRAHte8tJ5Sgo8wlITOZYfLOnPulpTTM49IHkVgGmDvHZD3LUNejOvfi_r0_9N4SW4Nj8eH-nA0OXhGbsdebCSL4i3SW87P8-fgDi7Ni0bmKPl63WL-B4uvcP4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQkCZeEN-EDTASEg9gzUnc2H4shWoFNiHEpL1ZsR2zPpBUbfewp_3r3NlNaQY88Br7HDvnO9_l7n4m5LWylSu44yxvKsGEDIJprzizPFQVkABdRPs8rY7PxKfz0flOFX_Mdu9DkqmmAVGa2vXRwock4qo6WoFWhQHhfGEYaZMM_J_biNWFSX2TarKNI-A1En2pzF_pBsdRRO3_UzfvHE43EydvRE_joTS9R-5urEk6Tuy_T2417QOyf7KJlz8k1-OWpowNUGq07dj2VhE6_wmahKaayisaQRPpYomUyCqK_2dpTS-usKIrviBBTdDZDoYn7RHJKZi-FDRYN181np58m6XhV4_I2fTj98kx21y5wBy4FmvmuLVS21Hpa10GPQqKgz0VZAlWjtUgrtY66VTeFHUoECyeh6DqoPASdu6lLB-TvbZrm6eEOg2bdKRd7bQXopF13VQ2aMs9_sQsRUbe9l_eLBKyhokeiapM4pMBPpnIJ5Nn5D0yZ9sTUbHjg275w2yEzFRofoDTDYz3Qhde5U5xJ60I2vt85DPyBllrUHaBfzC1VIIAE0YULDNWsCQBHmKZkcNBT5A5N2zuN4fZyPzKgKFcCAn2tsrIq20zUmIeW9t0l9CHa4TME1Jm5EnaS9sllZgEoRUMrga7bLDmYUs7v4iI4HkOqhl834y86zfk73n9-6M--7_uL8n-1w9T82V2-vmA3CmiFCmWF4dkb728bJ6Ddba2L6IA_gJ31jKE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+no-reference+image+quality+index+prediction+with+a+hybrid+Artificial+Intelligence+approach+for+denoised+MRI+images&rft.jtitle=BMC+medical+imaging&rft.au=Radhabai%2C+Prianka+Ramachandran&rft.au=KVN%2C+Kavitha&rft.au=Shanmugam%2C+Ashok&rft.au=Imoize%2C+Agbotiname+Lucky&rft.date=2024-08-12&rft.pub=BioMed+Central&rft.eissn=1471-2342&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1186%2Fs12880-024-01387-1&rft.externalDocID=10_1186_s12880_024_01387_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2342&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2342&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2342&client=summon |