An effective no-reference image quality index prediction with a hybrid Artificial Intelligence approach for denoised MRI images

As the quantity and significance of digital pictures in the medical industry continue to increase, Image Quality Assessment (IQA) has recently become a prevalent subject in the research community. Due to the wide range of distortions that Magnetic Resonance Images (MRI) can experience and the wide v...

Full description

Saved in:
Bibliographic Details
Published inBMC medical imaging Vol. 24; no. 1; pp. 208 - 19
Main Authors Radhabai, Prianka Ramachandran, KVN, Kavitha, Shanmugam, Ashok, Imoize, Agbotiname Lucky
Format Journal Article
LanguageEnglish
Published London BioMed Central 12.08.2024
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2342
1471-2342
DOI10.1186/s12880-024-01387-1

Cover

Abstract As the quantity and significance of digital pictures in the medical industry continue to increase, Image Quality Assessment (IQA) has recently become a prevalent subject in the research community. Due to the wide range of distortions that Magnetic Resonance Images (MRI) can experience and the wide variety of information they contain, No-Reference Image Quality Assessment (NR-IQA) has always been a challenging study issue. In an attempt to address this issue, a novel hybrid Artificial Intelligence (AI) is proposed to analyze NR-IQ in massive MRI data. First, the features from the denoised MRI images are extracted using the gray level run length matrix (GLRLM) and EfficientNet B7 algorithm. Next, the Multi-Objective Reptile Search Algorithm (MRSA) was proposed for optimal feature vector selection. Then, the Self-evolving Deep Belief Fuzzy Neural network (SDBFN) algorithm was proposed for the effective NR-IQ analysis. The implementation of this research is executed using MATLAB software. The simulation results are compared with the various conventional methods in terms of correlation coefficient (PLCC), Root Mean Square Error (RMSE), Spearman Rank Order Correlation Coefficient (SROCC) and Kendall Rank Order Correlation Coefficient (KROCC), and Mean Absolute Error (MAE). In addition, our proposed approach yielded a quality number approximately we achieved significant 20% improvement than existing methods, with the PLCC parameter showing a notable increase compared to current techniques. Moreover, the RMSE number decreased by 12% when compared to existing methods. Graphical representations indicated mean MAE values of 0.02 for MRI knee dataset, 0.09 for MRI brain dataset, and 0.098 for MRI breast dataset, showcasing significantly lower MAE values compared to the baseline models.
AbstractList As the quantity and significance of digital pictures in the medical industry continue to increase, Image Quality Assessment (IQA) has recently become a prevalent subject in the research community. Due to the wide range of distortions that Magnetic Resonance Images (MRI) can experience and the wide variety of information they contain, No-Reference Image Quality Assessment (NR-IQA) has always been a challenging study issue. In an attempt to address this issue, a novel hybrid Artificial Intelligence (AI) is proposed to analyze NR-IQ in massive MRI data. First, the features from the denoised MRI images are extracted using the gray level run length matrix (GLRLM) and EfficientNet B7 algorithm. Next, the Multi-Objective Reptile Search Algorithm (MRSA) was proposed for optimal feature vector selection. Then, the Self-evolving Deep Belief Fuzzy Neural network (SDBFN) algorithm was proposed for the effective NR-IQ analysis. The implementation of this research is executed using MATLAB software. The simulation results are compared with the various conventional methods in terms of correlation coefficient (PLCC), Root Mean Square Error (RMSE), Spearman Rank Order Correlation Coefficient (SROCC) and Kendall Rank Order Correlation Coefficient (KROCC), and Mean Absolute Error (MAE). In addition, our proposed approach yielded a quality number approximately we achieved significant 20% improvement than existing methods, with the PLCC parameter showing a notable increase compared to current techniques. Moreover, the RMSE number decreased by 12% when compared to existing methods. Graphical representations indicated mean MAE values of 0.02 for MRI knee dataset, 0.09 for MRI brain dataset, and 0.098 for MRI breast dataset, showcasing significantly lower MAE values compared to the baseline models.As the quantity and significance of digital pictures in the medical industry continue to increase, Image Quality Assessment (IQA) has recently become a prevalent subject in the research community. Due to the wide range of distortions that Magnetic Resonance Images (MRI) can experience and the wide variety of information they contain, No-Reference Image Quality Assessment (NR-IQA) has always been a challenging study issue. In an attempt to address this issue, a novel hybrid Artificial Intelligence (AI) is proposed to analyze NR-IQ in massive MRI data. First, the features from the denoised MRI images are extracted using the gray level run length matrix (GLRLM) and EfficientNet B7 algorithm. Next, the Multi-Objective Reptile Search Algorithm (MRSA) was proposed for optimal feature vector selection. Then, the Self-evolving Deep Belief Fuzzy Neural network (SDBFN) algorithm was proposed for the effective NR-IQ analysis. The implementation of this research is executed using MATLAB software. The simulation results are compared with the various conventional methods in terms of correlation coefficient (PLCC), Root Mean Square Error (RMSE), Spearman Rank Order Correlation Coefficient (SROCC) and Kendall Rank Order Correlation Coefficient (KROCC), and Mean Absolute Error (MAE). In addition, our proposed approach yielded a quality number approximately we achieved significant 20% improvement than existing methods, with the PLCC parameter showing a notable increase compared to current techniques. Moreover, the RMSE number decreased by 12% when compared to existing methods. Graphical representations indicated mean MAE values of 0.02 for MRI knee dataset, 0.09 for MRI brain dataset, and 0.098 for MRI breast dataset, showcasing significantly lower MAE values compared to the baseline models.
As the quantity and significance of digital pictures in the medical industry continue to increase, Image Quality Assessment (IQA) has recently become a prevalent subject in the research community. Due to the wide range of distortions that Magnetic Resonance Images (MRI) can experience and the wide variety of information they contain, No-Reference Image Quality Assessment (NR-IQA) has always been a challenging study issue. In an attempt to address this issue, a novel hybrid Artificial Intelligence (AI) is proposed to analyze NR-IQ in massive MRI data. First, the features from the denoised MRI images are extracted using the gray level run length matrix (GLRLM) and EfficientNet B7 algorithm. Next, the Multi-Objective Reptile Search Algorithm (MRSA) was proposed for optimal feature vector selection. Then, the Self-evolving Deep Belief Fuzzy Neural network (SDBFN) algorithm was proposed for the effective NR-IQ analysis. The implementation of this research is executed using MATLAB software. The simulation results are compared with the various conventional methods in terms of correlation coefficient (PLCC), Root Mean Square Error (RMSE), Spearman Rank Order Correlation Coefficient (SROCC) and Kendall Rank Order Correlation Coefficient (KROCC), and Mean Absolute Error (MAE). In addition, our proposed approach yielded a quality number approximately we achieved significant 20% improvement than existing methods, with the PLCC parameter showing a notable increase compared to current techniques. Moreover, the RMSE number decreased by 12% when compared to existing methods. Graphical representations indicated mean MAE values of 0.02 for MRI knee dataset, 0.09 for MRI brain dataset, and 0.098 for MRI breast dataset, showcasing significantly lower MAE values compared to the baseline models.
Abstract As the quantity and significance of digital pictures in the medical industry continue to increase, Image Quality Assessment (IQA) has recently become a prevalent subject in the research community. Due to the wide range of distortions that Magnetic Resonance Images (MRI) can experience and the wide variety of information they contain, No-Reference Image Quality Assessment (NR-IQA) has always been a challenging study issue. In an attempt to address this issue, a novel hybrid Artificial Intelligence (AI) is proposed to analyze NR-IQ in massive MRI data. First, the features from the denoised MRI images are extracted using the gray level run length matrix (GLRLM) and EfficientNet B7 algorithm. Next, the Multi-Objective Reptile Search Algorithm (MRSA) was proposed for optimal feature vector selection. Then, the Self-evolving Deep Belief Fuzzy Neural network (SDBFN) algorithm was proposed for the effective NR-IQ analysis. The implementation of this research is executed using MATLAB software. The simulation results are compared with the various conventional methods in terms of correlation coefficient (PLCC), Root Mean Square Error (RMSE), Spearman Rank Order Correlation Coefficient (SROCC) and Kendall Rank Order Correlation Coefficient (KROCC), and Mean Absolute Error (MAE). In addition, our proposed approach yielded a quality number approximately we achieved significant 20% improvement than existing methods, with the PLCC parameter showing a notable increase compared to current techniques. Moreover, the RMSE number decreased by 12% when compared to existing methods. Graphical representations indicated mean MAE values of 0.02 for MRI knee dataset, 0.09 for MRI brain dataset, and 0.098 for MRI breast dataset, showcasing significantly lower MAE values compared to the baseline models.
As the quantity and significance of digital pictures in the medical industry continue to increase, Image Quality Assessment (IQA) has recently become a prevalent subject in the research community. Due to the wide range of distortions that Magnetic Resonance Images (MRI) can experience and the wide variety of information they contain, No-Reference Image Quality Assessment (NR-IQA) has always been a challenging study issue. In an attempt to address this issue, a novel hybrid Artificial Intelligence (AI) is proposed to analyze NR-IQ in massive MRI data. First, the features from the denoised MRI images are extracted using the gray level run length matrix (GLRLM) and EfficientNet B7 algorithm. Next, the Multi-Objective Reptile Search Algorithm (MRSA) was proposed for optimal feature vector selection. Then, the Self-evolving Deep Belief Fuzzy Neural network (SDBFN) algorithm was proposed for the effective NR-IQ analysis. The implementation of this research is executed using MATLAB software. The simulation results are compared with the various conventional methods in terms of correlation coefficient (PLCC), Root Mean Square Error (RMSE), Spearman Rank Order Correlation Coefficient (SROCC) and Kendall Rank Order Correlation Coefficient (KROCC), and Mean Absolute Error (MAE). In addition, our proposed approach yielded a quality number approximately we achieved significant 20% improvement than existing methods, with the PLCC parameter showing a notable increase compared to current techniques. Moreover, the RMSE number decreased by 12% when compared to existing methods. Graphical representations indicated mean MAE values of 0.02 for MRI knee dataset, 0.09 for MRI brain dataset, and 0.098 for MRI breast dataset, showcasing significantly lower MAE values compared to the baseline models. Keywords: Image Quality Assessment, Magnetic Resonance Images, Artificial Intelligence, Hybridization, Multi-objective optimization, Performance metrics
ArticleNumber 208
Audience Academic
Author Radhabai, Prianka Ramachandran
Shanmugam, Ashok
KVN, Kavitha
Imoize, Agbotiname Lucky
Author_xml – sequence: 1
  givenname: Prianka Ramachandran
  surname: Radhabai
  fullname: Radhabai, Prianka Ramachandran
  organization: Department of AIML, New Horizon College of Engineering
– sequence: 2
  givenname: Kavitha
  surname: KVN
  fullname: KVN, Kavitha
  organization: Department of Communication Engineering, School of Electronics Engineering, Vellore Institute of Technology
– sequence: 3
  givenname: Ashok
  surname: Shanmugam
  fullname: Shanmugam, Ashok
  organization: Department of Electronics and Communication Engineering, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College
– sequence: 4
  givenname: Agbotiname Lucky
  surname: Imoize
  fullname: Imoize, Agbotiname Lucky
  email: aimoize@unilag.edu.ng
  organization: Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Lagos
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39134983$$D View this record in MEDLINE/PubMed
BookMark eNp9kktvEzEUhUeoiD7gD7BAltiwmeJrz8T2CkUVj0hFSAjWlsePiaOJndqTQlb8dZxMaRuE0Cw8sr97fM_1Oa9OQgy2ql4CvgTgs7cZCOe4xqSpMVDOanhSnUHDoCa0ISeP_k-r85xXGAPjtHlWnVIBtBGcnlW_5gFZ56we_a1FIdbJOpts0Bb5teotutmqwY875IOxP9EmWeMLGwP64cclUmi565I3aJ5G77z2akCLMNph8P1BRG02KSq9RC4mZGyIPluDPn9dTPL5efXUqSHbF3frRfX9w_tvV5_q6y8fF1fz61q3rRhrjbuOia6lRgnqROs4bmjrGCWMdoKC6DrNNAdLlCOYE4Kd48pxggnFhjF6US0mXRPVSm5SuT3tZFReHjZi6qUqFvRg5Yxy4EBpGZdpBDEcNMeadY0TxkBrita7SWuz7dbWaBvGpIYj0eOT4Jeyj7cSgAInfN_NmzuFFG-2No9y7bMuU1PBxm2WFAtCZ6w5NP76L3QVtymUWUkK5emZEMAfqF4VBz64WC7We1E552UeDUBDC3X5D6p8xq69LuFyvuwfFbx67PTe4p_8FIBMgE4x55KdewSw3IdUTiGVpVN5CKmEUkSnolzg0Nv0YOk_Vb8BfkXn0Q
Cites_doi 10.1142/S0218001415570025
10.1007/s11263-020-01419-7
10.1109/GCAT55367.2022.9971932
10.1016/j.asej.2021.02.010
10.1016/j.jestch.2021.07.002
10.1016/j.media.2020.101900
10.3390/app12010101
10.1007/s11042-020-09229-2
10.1109/JSYST.2019.2952459
10.3390/e22020220
10.1109/ISBI45749.2020.9098391
10.18280/ts.400138
10.1007/s11042-020-10035-z
10.3390/electronics8010088
10.1109/ACCESS.2020.2972158
10.1002/cpe.5184
10.1007/s11548-020-02120-3
10.3389/fonc.2023.1282536
10.1109/ACCESS.2023.3272987
10.1007/s10278-018-0150-3
10.3389/fcvm.2024.1424585
10.22452/mjcs.vol32no1.3
10.1109/UPCON47278.2019.8980171
10.1109/TRPMS.2021.3071148
10.1109/ACCESS.2022.3154771
10.1109/TIP.2021.3061932
10.1186/s12880-022-00825-2
10.1002/cam4.6089
10.1007/s00521-022-07218-0
10.3390/app13042682
10.1109/ICISPC.2019.8935651
10.1016/j.eswa.2022.116743
10.1109/TIP.2020.3000349
10.3991/ijoe.v18i03.28011
10.1109/ICPR.2008.4760972
10.1007/s11063-019-10036-6
10.1016/j.bbe.2020.01.012
10.1109/ACCESS.2023.3234519
10.3390/s22041478
10.1016/j.dsp.2020.102849
10.1016/j.knosys.2022.109512
10.4236/jcc.2019.73002
10.1016/j.displa.2021.102101
10.1049/ipr2.12016
10.1109/ACCESS.2022.3233110
10.1016/j.compmedimag.2021.101897
10.1016/j.irbm.2019.11.005
10.34028/iajit/18/5/3
10.1126/scitranslmed.abo4802
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12880-024-01387-1
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



CrossRef

MEDLINE
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2342
EndPage 19
ExternalDocumentID oai_doaj_org_article_63818133001d492d81c80c7b4f9dd15d
PMC11318287
A808241143
39134983
10_1186_s12880_024_01387_1
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7RV
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EMB
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c559t-c0bb79b53da93f95f80435f73273b9319bbc7c81e2af208220ff8af820230d773
IEDL.DBID C6C
ISSN 1471-2342
IngestDate Wed Aug 27 01:31:20 EDT 2025
Thu Aug 21 18:31:50 EDT 2025
Fri Sep 05 06:53:22 EDT 2025
Fri Jul 25 19:29:04 EDT 2025
Tue Jun 17 22:03:49 EDT 2025
Tue Jun 10 21:02:34 EDT 2025
Wed Feb 19 02:02:27 EST 2025
Tue Jul 01 04:02:42 EDT 2025
Sat Sep 06 07:26:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Performance metrics
Multi-objective optimization
Hybridization
Magnetic Resonance Images
Artificial Intelligence
Image Quality Assessment
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c559t-c0bb79b53da93f95f80435f73273b9319bbc7c81e2af208220ff8af820230d773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1186/s12880-024-01387-1
PMID 39134983
PQID 3102479918
PQPubID 44833
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_63818133001d492d81c80c7b4f9dd15d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11318287
proquest_miscellaneous_3092367477
proquest_journals_3102479918
gale_infotracmisc_A808241143
gale_infotracacademiconefile_A808241143
pubmed_primary_39134983
crossref_primary_10_1186_s12880_024_01387_1
springer_journals_10_1186_s12880_024_01387_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-12
PublicationDateYYYYMMDD 2024-08-12
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical imaging
PublicationTitleAbbrev BMC Med Imaging
PublicationTitleAlternate BMC Med Imaging
PublicationYear 2024
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References KY Chan (1387_CR29) 2022; 34
G Geleijnse (1387_CR6) 2022; 66
M Rehman (1387_CR30) 2022; 71
MY Ansari (1387_CR53) 2023
A Shanmugam (1387_CR24) 2020; 40
SS Esfahani (1387_CR38) 2020; 15
MY Ansari (1387_CR49) 2024
S Kaplan (1387_CR10) 2019; 32
MY Ansari (1387_CR46) 2022; 22
AD Desai (1387_CR32) 2022; 18
X Zhai (1387_CR39) 2019; 14
MY Ansari (1387_CR54) 2023; 11
TX Jiang (1387_CR12) 2020; 29
A Kumar (1387_CR3) 2018; 119
JV Bagade (1387_CR27) 2019; 32
1387_CR11
J Hu (1387_CR31) 2020; 106
MY Ansari (1387_CR50) 2023; 13
1387_CR8
1387_CR17
R Obuchowicz (1387_CR28) 2020; 22
X Zhai (1387_CR40) 2019; 31
1387_CR1
K Ding (1387_CR4) 2021; 129
M Ferroukhi (1387_CR15) 2019; 8
J Czajkowska (1387_CR21) 2022; 22
A Shanmugam (1387_CR25) 2020; 41
MY Ansari (1387_CR44) 2023
SP Dakua (1387_CR37) 2015; 29
J Ryu (1387_CR22) 2023; 13
V Chandrasekar (1387_CR51) 2023; 11
S Ali (1387_CR2) 2021; 68
WT Loh (1387_CR13) 2021; 15
S Mohanty (1387_CR35) 2022; 10
U Sara (1387_CR9) 2019; 7
X Zheng (1387_CR14) 2020; 8
MY Ansari (1387_CR42) 2022
IF Nizami (1387_CR16) 2020; 79
D Varga (1387_CR19) 2019; 50
1387_CR33
Y Akhtar (1387_CR47) 2021; 6
SK Natarajan (1387_CR36) 2023; 40
DRIM Setiadi (1387_CR7) 2021; 80
Z Han (1387_CR41) 2022; 253
W Zhang (1387_CR5) 2021; 30
J Witowski (1387_CR34) 2022; 14
M Jafari (1387_CR43) 2020
MY Ansari (1387_CR52) 2022; 11
L Abdel-Hamid (1387_CR18) 2021; 12
MY Ansari (1387_CR55) 2024; 11
P Rai (1387_CR48) 2023; 12
D Varga (1387_CR23) 2021; 12
I Fantini (1387_CR20) 2021; 90
J Rajevenceltha (1387_CR26) 2022; 30
Y Xie (1387_CR45) 2021
References_xml – volume: 29
  start-page: 1557002
  issue: 03
  year: 2015
  ident: 1387_CR37
  publication-title: Int J Pattern Recognit Artif Intell
  doi: 10.1142/S0218001415570025
– volume: 129
  start-page: 1258
  year: 2021
  ident: 1387_CR4
  publication-title: Int J Comput Vision
  doi: 10.1007/s11263-020-01419-7
– volume: 66
  start-page: 030508
  issue: 3
  year: 2022
  ident: 1387_CR6
  publication-title: J Image Sci Technol
– ident: 1387_CR33
  doi: 10.1109/GCAT55367.2022.9971932
– volume: 12
  start-page: 2799
  issue: 3
  year: 2021
  ident: 1387_CR18
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2021.02.010
– volume: 30
  start-page: 101039
  year: 2022
  ident: 1387_CR26
  publication-title: Engineering Science and Technology, an International Journal
  doi: 10.1016/j.jestch.2021.07.002
– volume: 68
  start-page: 101900
  year: 2021
  ident: 1387_CR2
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101900
– volume: 12
  start-page: 101
  issue: 1
  year: 2021
  ident: 1387_CR23
  publication-title: Appl Sci
  doi: 10.3390/app12010101
– volume-title: Advancements in Deep Learning for B-Mode Ultrasound Segmentation: A Comprehensive Review. IEEE Transactions on Emerging Topics in Computational Intelligence.
  year: 2024
  ident: 1387_CR49
– volume: 79
  start-page: 26285
  year: 2020
  ident: 1387_CR16
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-020-09229-2
– volume: 14
  start-page: 1592
  issue: 2
  year: 2019
  ident: 1387_CR39
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2019.2952459
– start-page: 102690
  volume-title: Estimating age and gender from electrocardiogram signals: A comprehensive review of the past decade. Artificial Intelligence in Medicine
  year: 2023
  ident: 1387_CR53
– volume: 22
  start-page: 220
  issue: 2
  year: 2020
  ident: 1387_CR28
  publication-title: Entropy
  doi: 10.3390/e22020220
– start-page: 1144
  volume-title: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)
  year: 2020
  ident: 1387_CR43
  doi: 10.1109/ISBI45749.2020.9098391
– start-page: 171
  volume-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part III 24
  year: 2021
  ident: 1387_CR45
– volume: 40
  start-page: 375
  issue: 1
  year: 2023
  ident: 1387_CR36
  publication-title: Traitement du Signal.
  doi: 10.18280/ts.400138
– volume: 80
  start-page: 8423
  issue: 6
  year: 2021
  ident: 1387_CR7
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-020-10035-z
– volume: 8
  start-page: 88
  issue: 1
  year: 2019
  ident: 1387_CR15
  publication-title: Electronics
  doi: 10.3390/electronics8010088
– start-page: 27
  volume-title: International Conference on Medical Imaging and Computer-Aided Diagnosis
  year: 2022
  ident: 1387_CR42
– volume: 8
  start-page: 31647
  year: 2020
  ident: 1387_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972158
– volume: 31
  start-page: e5184
  issue: 17
  year: 2019
  ident: 1387_CR40
  publication-title: Concurrency and Computation: Practice and Experience
  doi: 10.1002/cpe.5184
– volume: 15
  start-page: 629
  year: 2020
  ident: 1387_CR38
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-020-02120-3
– volume: 13
  start-page: 1282536
  year: 2023
  ident: 1387_CR50
  publication-title: Front Oncol
  doi: 10.3389/fonc.2023.1282536
– volume: 11
  start-page: 52726
  year: 2023
  ident: 1387_CR51
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3272987
– volume: 32
  start-page: 773
  issue: 5
  year: 2019
  ident: 1387_CR10
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-018-0150-3
– volume: 11
  start-page: 1424585
  year: 2024
  ident: 1387_CR55
  publication-title: Frontiers in Cardiovascular Medicine
  doi: 10.3389/fcvm.2024.1424585
– volume: 32
  start-page: 31
  issue: 1
  year: 2019
  ident: 1387_CR27
  publication-title: Malaysian J Comp Sci
  doi: 10.22452/mjcs.vol32no1.3
– ident: 1387_CR8
  doi: 10.1109/UPCON47278.2019.8980171
– volume: 6
  start-page: 667
  issue: 6
  year: 2021
  ident: 1387_CR47
  publication-title: IEEE transactions on radiation and plasma medical sciences
  doi: 10.1109/TRPMS.2021.3071148
– volume: 10
  start-page: 24528
  year: 2022
  ident: 1387_CR35
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3154771
– volume: 30
  start-page: 3474
  year: 2021
  ident: 1387_CR5
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2021.3061932
– volume: 22
  start-page: 97
  issue: 1
  year: 2022
  ident: 1387_CR46
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-022-00825-2
– volume: 12
  start-page: 14225
  issue: 13
  year: 2023
  ident: 1387_CR48
  publication-title: Cancer Med
  doi: 10.1002/cam4.6089
– volume: 34
  start-page: 15409
  issue: 18
  year: 2022
  ident: 1387_CR29
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07218-0
– volume: 13
  start-page: 2682
  issue: 4
  year: 2023
  ident: 1387_CR22
  publication-title: Appl Sci
  doi: 10.3390/app13042682
– ident: 1387_CR11
  doi: 10.1109/ICISPC.2019.8935651
– ident: 1387_CR17
  doi: 10.1016/j.eswa.2022.116743
– volume: 29
  start-page: 7233
  year: 2020
  ident: 1387_CR12
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2020.3000349
– ident: 1387_CR1
  doi: 10.3991/ijoe.v18i03.28011
– volume: 119
  start-page: 1565
  year: 2018
  ident: 1387_CR3
  publication-title: Int J Pure Appl Math
  doi: 10.1109/ICPR.2008.4760972
– volume: 50
  start-page: 2595
  issue: 3
  year: 2019
  ident: 1387_CR19
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-019-10036-6
– volume: 40
  start-page: 574
  issue: 1
  year: 2020
  ident: 1387_CR24
  publication-title: Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2020.01.012
– volume: 11
  start-page: 4589
  year: 2023
  ident: 1387_CR54
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3234519
– start-page: 1
  volume-title: 2023 international joint conference on neural networks (IJCNN)
  year: 2023
  ident: 1387_CR44
– volume: 22
  start-page: 1478
  issue: 4
  year: 2022
  ident: 1387_CR21
  publication-title: Sensors
  doi: 10.3390/s22041478
– volume: 106
  start-page: 102849
  year: 2020
  ident: 1387_CR31
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2020.102849
– volume: 253
  start-page: 109512
  year: 2022
  ident: 1387_CR41
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.109512
– volume: 7
  start-page: 8
  issue: 3
  year: 2019
  ident: 1387_CR9
  publication-title: Journal of Computer and Communications
  doi: 10.4236/jcc.2019.73002
– volume: 71
  start-page: 102101
  year: 2022
  ident: 1387_CR30
  publication-title: Displays
  doi: 10.1016/j.displa.2021.102101
– volume: 15
  start-page: 166
  issue: 1
  year: 2021
  ident: 1387_CR13
  publication-title: IET Image Proc
  doi: 10.1049/ipr2.12016
– volume: 11
  start-page: 9890
  year: 2022
  ident: 1387_CR52
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3233110
– volume: 90
  start-page: 101897
  year: 2021
  ident: 1387_CR20
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2021.101897
– volume: 41
  start-page: 261
  issue: 5
  year: 2020
  ident: 1387_CR25
  publication-title: IRBM
  doi: 10.1016/j.irbm.2019.11.005
– volume: 18
  start-page: 20
  issue: 5
  year: 2022
  ident: 1387_CR32
  publication-title: arXiv preprint
  doi: 10.34028/iajit/18/5/3
– volume: 14
  start-page: eabo4802
  issue: 664
  year: 2022
  ident: 1387_CR34
  publication-title: Sci Transl Med.
  doi: 10.1126/scitranslmed.abo4802
SSID ssj0017834
Score 2.3401618
Snippet As the quantity and significance of digital pictures in the medical industry continue to increase, Image Quality Assessment (IQA) has recently become a...
Abstract As the quantity and significance of digital pictures in the medical industry continue to increase, Image Quality Assessment (IQA) has recently become...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 208
SubjectTerms Algorithms
Artificial Intelligence
Classification
Correlation coefficient
Correlation coefficients
Datasets
Deep learning
Design
Digital imaging
Drug resistance
Error analysis
Feature selection
Fuzzy Logic
Graphical representations
Humans
Hybridization
Image Processing, Computer-Assisted - methods
Image quality
Image Quality Assessment
Imaging
Magnetic Resonance Images
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Measurement techniques
Medical imaging
Medical imaging equipment
Medicine
Medicine & Public Health
Methods
Multi-objective optimization
Neural networks
Neural Networks, Computer
Noise reduction
Performance metrics
Quality assessment
Quality control
Quality management
Radiology
Reptiles
Root-mean-square errors
Search algorithms
Semantics
Signal-To-Noise Ratio
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29b9QwFLdQB8SC-CbQIiMhMYBVO3H8MR6IqkUqA6JSNyu2Y_UGclXvOnTiX-97dnJcihALa2wntt93_Px7hLwzXoWaB85ErySTOklmo-HM86QUDIFxGe3zmzo-k1_P2_OdUl-YE1bggcvGHSo0KRBIgTqN0tbRiGB40F4mG6NoI2pfbvkUTI3nB1g-YroiY9ThGrQwTADsEcOTOc3EzAxltP4_dfKOUbqbMHnn1DQbo6NH5OHoRdJFmf1jcq8fnpD7p-M5-VPyazHQkqkByowOK7atJkKXP0GD0HKX8oZmsER6eYUjkUQU_8vSjl7c4E2u_IECMUFPdrA76YRETsHlpaC5Vst1H-np95Py-vUzcnb05cfnYzaWWmABQooNC9x7bX3bxM42ybbJcPCjkm7Au_EWxNT7oIMRfd2lGkHieUqmSwaLr_OodfOc7A2roX9JaLDAnK0NXbBRyl53Xa98sp5H_HnZyIp8mHbeXRZEDZcjEaNcoZMDOrlMJycq8gmJs-2JaNj5AfCIG3nE_YtHKvIeSetQZoF-MLVy9QAmjOhXbmFgSRIiw6Yi-7OeIGth3jwxhxtlfe3AQa6lBj_bVOTtthlHYv7a0K-uoQ-3CJUnta7Ii8JL2yU1mPxgDbzczLhstuZ5y7C8yEjgQoBKhpi3Ih8nhvw9r79v6qv_samvyYM6C5Rhot4ne5ur6_4AHLSNf5Nl8RaFojXe
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbKVkJcEG9SCjISEgew6iRObB8Q2qJWLVJXqKJSb1Zsx-0eSJbd7aGn_nVmnGTbFMF1_Vg78_CMPfMNIR-ULV3GHWdpXQomZBBMe8WZ5aEsYQiMi2ifs_LoTHw_L863yGzIhcGwykEnRkXtW4d35HtghmRCgjWjvi5-M6waha-rQwmNqi-t4L9EiLEHZBtUcsEnZHv_YPbjdPOugGUlhtQZVe6tQDvDwmBmhi92kqWj4ymi-P-tq-8cVvcDKe-9psZD6vAJedxbl3TascNTslU3z8jDk_79_Dm5mTa0i-AAJUeblm2qjND5L9AstMuxvKYRRJEuljgSSUfxvpZW9PIaM7ziH3TQE_T4DqYnHRDKKZjCFDRaO1_Vnp6cHnfTr16Qs8ODn9-OWF-CgTlwNdbMcWultkXuK50HXQTFwb4KMgerx2oQX2uddCqtsypkCB7PQ1BVUFiUnXsp85dk0rRN_ZpQp4FpC-0qp70QtayqurRBW-7xUjMXCfk0fHmz6JA2TPRQVGk6Ohmgk4l0MmlC9pE4m56Ikh1_aJcXphc6U6I5Ak44EN4LnXmVOsWdtCJo79PCJ-QjktagLAP9YGldSgIsGFGxzFTBlgR4jHlCdkc9QQbduHlgDtPrgJW55diEvN8040iMa2vq9gr6cI0QekLKhLzqeGmzpRyDIrSCydWIy0Z7Hrc088uIEJ6moKrBF07I54Ehb9f174-68_9tvCGPsigqiqXZLpmsl1f1WzDJ1vZdL2d_AJ3SNP8
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIiEuiDeBgoyExAEMTuLE9gGhBVG1SOWAWKk3K7ZjuhIkZXcrsSf-OjN2sm1KOXBde7y25-GZjP0NIc-VrV3BHWd5WwsmZBBMe8WZ5aGugQToItrn5_pgLj4dV8c7ZCx3NGzg6srQDutJzZffX__6uXkHCv82Kryq36zAxsLwcNowzLtJBtHQtZgvwqt84jyrgEUlxoczV9JNDqeI4f-3pb5wVF2-RnkplxqPqP1b5ObgW9JZEobbZKft7pDrR0P2_C75Petour8BJo52PdvWGKGLH2BXaHphuaERQpGeLpESGUfxay1t6MkG33fFP0jAE_TwAqInHfHJKTjCFOxZv1i1nh59OUzDr-6R-f7Hrx8O2FCAgTkINNbMcWultlXpG10GXQXFwbsKsgSfx2pQXmuddCpviyYUCB3PQ1BNUFiSnXspy_tkt-u79iGhToPIVto1TnshWtk0bW2DttzjJ81SZOTluPPmNOFsmBifqNokPhngk4l8MnlG3iNztj0RIzv-0C-_mUHlTI3OCITgwHgvdOFV7hR30oqgvc8rn5EXyFqDsgX8g6mlBwkwYcTEMjMFSxIQL5YZ2Zv0BA100-ZROMwowAbc5kJI8L5VRp5tm5ESb7V1bX8GfbhGAD0hZUYeJFnaLqnEKxFaweBqImWTNU9busVJxAfPczDUEAln5NUokOfz-vemPvq_7o_JjSKqjmJ5sUd218uz9gk4aGv7NGrdHzUoNc0
  priority: 102
  providerName: Scholars Portal
Title An effective no-reference image quality index prediction with a hybrid Artificial Intelligence approach for denoised MRI images
URI https://link.springer.com/article/10.1186/s12880-024-01387-1
https://www.ncbi.nlm.nih.gov/pubmed/39134983
https://www.proquest.com/docview/3102479918
https://www.proquest.com/docview/3092367477
https://pubmed.ncbi.nlm.nih.gov/PMC11318287
https://doaj.org/article/63818133001d492d81c80c7b4f9dd15d
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdgkxAXxDeBURkJiQNYOIkT28e2WtmQOqGKSRUXK7ZjrYel09odduJf5z0nKc2AAxcfYr_Ezvvwe372z4S8V7Z0GXecpXUpmJBBMO0VZ5aHsgQSoIton2flybn4uiyWHUwOnoXZz9-nqvy8AfsJpDCTMMypSQaRzmEBhheleVpOdxkDvDCiPxTzV7rBxBPx-f-0wnvT0N0tknfypHH6mT0mjzq_kY5bRj8h9-rmKXkw7zLjz8jPcUPbvRlgvmizZrv7Q-jqEmwGbU9P3tIIj0ivrpESmUJxJZZW9OIWz27FD7SgEvR0D62T9tjjFJxcCrZqvdrUns4Xp-3rN8_J-ez4-_SEdZcrMAdBxJY5bq3Utsh9pfOgi6A4eE5B5uDPWA2Kaa2TTqV1VoUMYeF5CKoKCq9b517K_AU5aNZN_YpQp0EcC-0qp70QtayqurRBW-5xuTIXCfnY_3lz1WJomBh7qNK0fDLAJxP5ZNKETJA5u5aIfx0fgFiYTp1MiY4GhNfAeC905lXqFHfSiqC9TwufkA_IWoNaCvyDrrWHDaDDiHdlxgqGJCAWzBNyNGgJ2uWG1b1wmE67NwZc4kxI8KxVQt7tqpESd6w19foG2nCN4HhCyoS8bGVpN6QctztoBS9XAykbjHlY06wuIvZ3moIRhig3IZ96gfzdr3__1Nf_1_wNeZhF1VEszY7Iwfb6pn4LztfWjsh9uZRQqtmXETmcHJ99W4yiJo7icgaUc6GgXEx-_AIgZC2K
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwEviDuBAUYC8QDWcnFj-2FCHWxq2VqhaZP2ZmI7YX0gKW0n1Cf-Gb-Nc5ykW4bgba_xJbbP1ZfzHUJeS5PaOLQhi_KUMy4KzpSTITNhkabQBNp5tM9JOjzhn0_7pxvkdxsLg88qW53oFbWrLJ6Rb4MbEnMB3oz8MPvBMGsU3q62KTSyJrWC2_EQY01gx0G--glbuMXO6BPQ-00c7-8dfxyyJssAs-BNL5kNjRHK9BOXqaRQ_UKG4EIUIgHDbhRwqDFWWBnlcVbEiI8eFoXMCol5x0MnRAL93iCbHA9QemRzd2_y5Wh9j4FpLNpQHZluL8AawELATBjeEAoWdcyhzxrwt224ZByvPty8cnvrjeL-XXKn8WbpoGa_e2QjL--Tm-Pmvv4B-TUoaf1iBJQqLSu2zmpCp99Bk9E6pnNFPWgjnc2xJbIKxfNhmtGzFUaU-R_UUBd0dAlDlLaI6BRcbwoatJouckfHR6O6-8VDcnItxHhEemVV5k8ItQqEpK9sZpXjPBdZlqemUCZ0eIia8IC8a1dez2pkD-13RDLVNZ000El7OukoILtInHVNROX2H6r5N90IuU7R_YFNPxDecRU7GVkZWmF4oZyL-i4gb5G0GnUH0A-GVodAwIARhUsPJEyJww41CchWpybIvO0Wt8yhG52z0BcSEpBX62Jsie_oyrw6hzqhQsg-LkRAHte8tJ5Sgo8wlITOZYfLOnPulpTTM49IHkVgGmDvHZD3LUNejOvfi_r0_9N4SW4Nj8eH-nA0OXhGbsdebCSL4i3SW87P8-fgDi7Ni0bmKPl63WL-B4uvcP4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQkCZeEN-EDTASEg9gzUnc2H4shWoFNiHEpL1ZsR2zPpBUbfewp_3r3NlNaQY88Br7HDvnO9_l7n4m5LWylSu44yxvKsGEDIJprzizPFQVkABdRPs8rY7PxKfz0flOFX_Mdu9DkqmmAVGa2vXRwock4qo6WoFWhQHhfGEYaZMM_J_biNWFSX2TarKNI-A1En2pzF_pBsdRRO3_UzfvHE43EydvRE_joTS9R-5urEk6Tuy_T2417QOyf7KJlz8k1-OWpowNUGq07dj2VhE6_wmahKaayisaQRPpYomUyCqK_2dpTS-usKIrviBBTdDZDoYn7RHJKZi-FDRYN181np58m6XhV4_I2fTj98kx21y5wBy4FmvmuLVS21Hpa10GPQqKgz0VZAlWjtUgrtY66VTeFHUoECyeh6DqoPASdu6lLB-TvbZrm6eEOg2bdKRd7bQXopF13VQ2aMs9_sQsRUbe9l_eLBKyhokeiapM4pMBPpnIJ5Nn5D0yZ9sTUbHjg275w2yEzFRofoDTDYz3Qhde5U5xJ60I2vt85DPyBllrUHaBfzC1VIIAE0YULDNWsCQBHmKZkcNBT5A5N2zuN4fZyPzKgKFcCAn2tsrIq20zUmIeW9t0l9CHa4TME1Jm5EnaS9sllZgEoRUMrga7bLDmYUs7v4iI4HkOqhl834y86zfk73n9-6M--7_uL8n-1w9T82V2-vmA3CmiFCmWF4dkb728bJ6Ddba2L6IA_gJ31jKE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+no-reference+image+quality+index+prediction+with+a+hybrid+Artificial+Intelligence+approach+for+denoised+MRI+images&rft.jtitle=BMC+medical+imaging&rft.au=Radhabai%2C+Prianka+Ramachandran&rft.au=KVN%2C+Kavitha&rft.au=Shanmugam%2C+Ashok&rft.au=Imoize%2C+Agbotiname+Lucky&rft.date=2024-08-12&rft.pub=BioMed+Central&rft.eissn=1471-2342&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1186%2Fs12880-024-01387-1&rft.externalDocID=10_1186_s12880_024_01387_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2342&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2342&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2342&client=summon