Kernel machine tests of association using extrinsic and intrinsic cluster evaluation metrics

Modeling the network topology of the human brain within the mesoscale has become an increasing focus within the neuroscientific community due to its variation across diverse cognitive processes, in the presence of neuropsychiatric disease or injury, and over the lifespan. Much research has been done...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 20; no. 11; p. e1012524
Main Authors Jensen, Alexandria M., DeWitt, Peter, Bettcher, Brianne M., Wrobel, Julia, Kechris, Katerina, Ghosh, Debashis
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 11.11.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1012524

Cover

Abstract Modeling the network topology of the human brain within the mesoscale has become an increasing focus within the neuroscientific community due to its variation across diverse cognitive processes, in the presence of neuropsychiatric disease or injury, and over the lifespan. Much research has been done on the creation of algorithms to detect these mesoscopic structures, called communities or modules, but less has been done to conduct inference on these structures. The literature on analysis of these community detection algorithms has focused on comparing them within the same subject. These approaches, however, either do not accomodate a more general association between community structure and an outcome or cannot accommodate additional covariates that may confound the association of interest. We propose a semiparametric kernel machine regression model for either a continuous or binary outcome, where covariate effects are modeled parametrically and brain connectivity measures are measured nonparametrically. By incorporating notions of similarity between network community structures into a kernel distance function, the high-dimensional feature space of brain networks, defined on input pairs, can be generalized to non-linear spaces, allowing for a wider class of distance-based algorithms. We evaluate our proposed methodology on both simulated and real datasets.
AbstractList Modeling the network topology of the human brain within the mesoscale has become an increasing focus within the neuroscientific community due to its variation across diverse cognitive processes, in the presence of neuropsychiatric disease or injury, and over the lifespan. Much research has been done on the creation of algorithms to detect these mesoscopic structures, called communities or modules, but less has been done to conduct inference on these structures. The literature on analysis of these community detection algorithms has focused on comparing them within the same subject. These approaches, however, either do not accomodate a more general association between community structure and an outcome or cannot accommodate additional covariates that may confound the association of interest. We propose a semiparametric kernel machine regression model for either a continuous or binary outcome, where covariate effects are modeled parametrically and brain connectivity measures are measured nonparametrically. By incorporating notions of similarity between network community structures into a kernel distance function, the high-dimensional feature space of brain networks, defined on input pairs, can be generalized to non-linear spaces, allowing for a wider class of distance-based algorithms. We evaluate our proposed methodology on both simulated and real datasets.Modeling the network topology of the human brain within the mesoscale has become an increasing focus within the neuroscientific community due to its variation across diverse cognitive processes, in the presence of neuropsychiatric disease or injury, and over the lifespan. Much research has been done on the creation of algorithms to detect these mesoscopic structures, called communities or modules, but less has been done to conduct inference on these structures. The literature on analysis of these community detection algorithms has focused on comparing them within the same subject. These approaches, however, either do not accomodate a more general association between community structure and an outcome or cannot accommodate additional covariates that may confound the association of interest. We propose a semiparametric kernel machine regression model for either a continuous or binary outcome, where covariate effects are modeled parametrically and brain connectivity measures are measured nonparametrically. By incorporating notions of similarity between network community structures into a kernel distance function, the high-dimensional feature space of brain networks, defined on input pairs, can be generalized to non-linear spaces, allowing for a wider class of distance-based algorithms. We evaluate our proposed methodology on both simulated and real datasets.
Modeling the network topology of the human brain within the mesoscale has become an increasing focus within the neuroscientific community due to its variation across diverse cognitive processes, in the presence of neuropsychiatric disease or injury, and over the lifespan. Much research has been done on the creation of algorithms to detect these mesoscopic structures, called communities or modules, but less has been done to conduct inference on these structures. The literature on analysis of these community detection algorithms has focused on comparing them within the same subject. These approaches, however, either do not accomodate a more general association between community structure and an outcome or cannot accommodate additional covariates that may confound the association of interest. We propose a semiparametric kernel machine regression model for either a continuous or binary outcome, where covariate effects are modeled parametrically and brain connectivity measures are measured nonparametrically. By incorporating notions of similarity between network community structures into a kernel distance function, the high-dimensional feature space of brain networks, defined on input pairs, can be generalized to non-linear spaces, allowing for a wider class of distance-based algorithms. We evaluate our proposed methodology on both simulated and real datasets. Parcellating the brain into clusters, which can be characterized as a way to describe the balance between dense relationships among areas highly engaged in the same processing tasks as well as sparser relationships between regions with different processing assignments, has been an area of recent focus within the neuroscientific community. While many algorithms exist to discover and characterize these clusters, there is a paucity of literature seeking to conduct inference on these parcellations between subjects. We have proposed a semiparametric kernel machine regression framework that can accommodate either a binary or continuous outcome, where brain connectivity measures are modeled nonparametrically and any additional covariates of interest (e.g., age, sex, etc.) are modeled parametrically. Evaluating our proposed methodology on both simulated and real datasets, we provide evidence of the robustness of this method within a single layer of clusters, thus showing the potential utility in the rapidly-changing field of network neuroscience.
Modeling the network topology of the human brain within the mesoscale has become an increasing focus within the neuroscientific community due to its variation across diverse cognitive processes, in the presence of neuropsychiatric disease or injury, and over the lifespan. Much research has been done on the creation of algorithms to detect these mesoscopic structures, called communities or modules, but less has been done to conduct inference on these structures. The literature on analysis of these community detection algorithms has focused on comparing them within the same subject. These approaches, however, either do not accomodate a more general association between community structure and an outcome or cannot accommodate additional covariates that may confound the association of interest. We propose a semiparametric kernel machine regression model for either a continuous or binary outcome, where covariate effects are modeled parametrically and brain connectivity measures are measured nonparametrically. By incorporating notions of similarity between network community structures into a kernel distance function, the high-dimensional feature space of brain networks, defined on input pairs, can be generalized to non-linear spaces, allowing for a wider class of distance-based algorithms. We evaluate our proposed methodology on both simulated and real datasets.
Audience Academic
Author Ghosh, Debashis
Jensen, Alexandria M.
Kechris, Katerina
Bettcher, Brianne M.
DeWitt, Peter
Wrobel, Julia
AuthorAffiliation 2 Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
3 Behavioral Neurology Section, Department of Neurology, University of Colorado Alzheimer’s and Cognitition Center, Aurora, Colorado, United States of America
Brown University, UNITED STATES OF AMERICA
1 Quantitative Sciences Unit, Stanford School of Medicine, Palo Alto, California, United States of America
4 Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, United States of America
AuthorAffiliation_xml – name: Brown University, UNITED STATES OF AMERICA
– name: 3 Behavioral Neurology Section, Department of Neurology, University of Colorado Alzheimer’s and Cognitition Center, Aurora, Colorado, United States of America
– name: 2 Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
– name: 4 Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, United States of America
– name: 1 Quantitative Sciences Unit, Stanford School of Medicine, Palo Alto, California, United States of America
Author_xml – sequence: 1
  givenname: Alexandria M.
  orcidid: 0000-0001-6337-9079
  surname: Jensen
  fullname: Jensen, Alexandria M.
– sequence: 2
  givenname: Peter
  surname: DeWitt
  fullname: DeWitt, Peter
– sequence: 3
  givenname: Brianne M.
  surname: Bettcher
  fullname: Bettcher, Brianne M.
– sequence: 4
  givenname: Julia
  surname: Wrobel
  fullname: Wrobel, Julia
– sequence: 5
  givenname: Katerina
  orcidid: 0000-0002-3725-5459
  surname: Kechris
  fullname: Kechris, Katerina
– sequence: 6
  givenname: Debashis
  orcidid: 0000-0001-6618-1316
  surname: Ghosh
  fullname: Ghosh, Debashis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39527632$$D View this record in MEDLINE/PubMed
BookMark eNqVkktv1DAUhSNURB_wDxCKxAYWM9iOHccrVFU8RlQg8dghWTe2k3rk2IOdFPrv8ZBp1UgsQF74cb9zZB_f0-LIB2-K4ilGa1xx_GobpujBrXeqtWuMMGGEPihOMGPVilesObq3Pi5OU9oilJeiflQcV4IRXlfkpPj-wURvXDmAurLelKNJYypDV0JKQVkYbfDllKzvS_NrjNYnq0rwurT-dqfclEYTS3MNbpoFg8lFlR4XDztwyTw5zGfFt7dvvl68X11-ere5OL9cKcbEuKoN1Rq6ijAQjHMhCEEYWswQIKUbylqN2o7XWCPVEg2o47hRoDSCTtcdrc6KzeyrA2zlLtoB4o0MYOWfgxB7CXG0yhlZKaoIAFY1B4q4bltBDKbZnBCBTJu92Ow1-R3c_ATn7gwxkvvk5SF5uU9eHpLPutezbje1g9HK5HzALS6zrHh7JftwLTFmDaa4yg4vDg4x_JjyP8jBJmWcA2_ClGSFScOpEDXK6PMZ7SG_yfouZEu1x-V5gxtBaI1EptZ_ofLQZrAqd1Nn8_lC8HIhyMyYf72HKSW5-fL5P9iPS_bZ_WzuQrltwwzQGVAxpBRN92-Z_wartvT7
Cites_doi 10.1109/72.914517
10.1214/009053607000000677
10.1016/j.rasd.2007.08.005
10.1073/pnas.1912957117
10.1016/j.physrep.2009.11.002
10.3389/fnsys.2010.00147
10.1371/journal.pone.0159161
10.1371/journal.pcbi.1003712
10.1038/srep30750
10.1016/j.neuroimage.2016.11.006
10.1073/pnas.1502829112
10.1016/j.neuroimage.2011.11.007
10.1097/WCO.0b013e32832d92de
10.3389/neuro.11.037.2009
10.1162/netn_a_00073
10.31887/DCNS.2013.15.3/osporns
10.1016/j.mri.2007.08.006
10.1016/j.tics.2011.03.006
10.1016/0306-4522(94)90489-8
10.1016/j.mri.2017.09.001
10.1016/j.socnet.2021.04.004
10.1016/j.neuroimage.2014.07.067
10.1016/j.neuroimage.2011.01.010
10.1016/j.neuroimage.2011.11.035
10.1103/PhysRevE.86.036104
10.1038/s41598-021-94724-1
10.1186/1471-2105-9-292
10.1016/j.rasd.2020.101548
10.1177/1073858406293182
10.1016/j.neuroimage.2019.07.003
10.3389/fnagi.2017.00275
10.1103/PhysRevE.74.016110
10.3389/conf.fninf.2013.09.00041
10.1007/s41109-016-0007-y
10.1016/j.neuroimage.2007.04.042
10.1016/j.neuroimage.2011.11.055
10.1016/j.neuroimage.2009.10.003
10.1016/B978-0-12-381479-1.00010-1
10.1007/s10803-017-3413-9
10.1111/j.1541-0420.2007.00799.x
10.3389/fpsyt.2012.00032
10.1088/1742-5468/2008/10/P10008
10.1016/j.joi.2019.100987
10.1098/rsos.171747
10.1016/0022-247X(71)90184-3
10.1186/s12859-015-0506-3
10.1016/j.neuroimage.2021.118245
10.1002/hbm.21333
10.1016/j.neuron.2014.05.014
10.1038/nrn2575
ContentType Journal Article
Copyright Copyright: © 2024 Jensen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Jensen et al 2024 Jensen et al
Copyright_xml – notice: Copyright: © 2024 Jensen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Jensen et al 2024 Jensen et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pcbi.1012524
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Kernel machine tests of association using extrinsic & intrinsic cluster evaluation metrics
EISSN 1553-7358
ExternalDocumentID oai_doaj_org_article_3c4c2aa1c67a407dbb92e147612290eb
10.1371/journal.pcbi.1012524
PMC11581413
A818924609
39527632
10_1371_journal_pcbi_1012524
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M0N
M~E
NPM
PGMZT
RIG
WOQ
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c559t-6e4ddaf325a9577992201ab150a0cd845bd0bf761d0cb2da0f718cacd0afd6f43
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Fri Oct 03 12:52:47 EDT 2025
Sun Oct 26 03:40:19 EDT 2025
Tue Sep 30 17:06:30 EDT 2025
Thu Sep 04 15:52:04 EDT 2025
Mon Oct 20 22:42:44 EDT 2025
Mon Oct 20 16:57:27 EDT 2025
Thu Oct 16 15:38:37 EDT 2025
Thu Oct 16 15:46:29 EDT 2025
Wed Feb 19 02:17:31 EST 2025
Wed Oct 01 01:50:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Copyright: © 2024 Jensen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c559t-6e4ddaf325a9577992201ab150a0cd845bd0bf761d0cb2da0f718cacd0afd6f43
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The author(s) have declared that no competing interests exist.
ORCID 0000-0001-6337-9079
0000-0002-3725-5459
0000-0001-6618-1316
OpenAccessLink https://doaj.org/article/3c4c2aa1c67a407dbb92e147612290eb
PMID 39527632
PQID 3128749960
PQPubID 23479
PageCount e1012524
ParticipantIDs doaj_primary_oai_doaj_org_article_3c4c2aa1c67a407dbb92e147612290eb
unpaywall_primary_10_1371_journal_pcbi_1012524
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11581413
proquest_miscellaneous_3128749960
gale_infotracmisc_A818924609
gale_infotracacademiconefile_A818924609
gale_incontextgauss_ISR_A818924609
gale_incontextgauss_ISN_A818924609
pubmed_primary_39527632
crossref_primary_10_1371_journal_pcbi_1012524
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241111
PublicationDateYYYYMMDD 2024-11-11
PublicationDate_xml – month: 11
  year: 2024
  text: 20241111
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References VD Blondel (pcbi.1012524.ref053) 2008; 2008
P Bródka (pcbi.1012524.ref031) 2018; 5
A Fornito (pcbi.1012524.ref017) 2012; 3
A Alexander-Bloch (pcbi.1012524.ref033) 2012; 59
S Gu (pcbi.1012524.ref011) 2015; 112
F Taya (pcbi.1012524.ref027) 2016; 1
J Reichardt (pcbi.1012524.ref040) 2006; 74
Y Behzadi (pcbi.1012524.ref051) 2007; 37
J Han (pcbi.1012524.ref037) 2012
RF Betzel (pcbi.1012524.ref005) 2019; 202
MY Chan (pcbi.1012524.ref013) 2014; 111
HS An (pcbi.1012524.ref055) 2017; 44
KR Müller (pcbi.1012524.ref043) 2001; 12
W de Haan (pcbi.1012524.ref015) 2012; 59
D Liu (pcbi.1012524.ref046) 2007; 63
M Rubinov (pcbi.1012524.ref004) 2010; 52
C Cameron (pcbi.1012524.ref050) 2013; 7
AF Alexander-Bloch (pcbi.1012524.ref016) 2010; 4
H Koh (pcbi.1012524.ref060) 2019; 10
AB Ratto (pcbi.1012524.ref054) 2018; 48
H Tost (pcbi.1012524.ref018) 2012; 62
JP Onnela (pcbi.1012524.ref030) 2012; 86
DS Bassett (pcbi.1012524.ref009) 2011; 15
pcbi.1012524.ref045
L Ribeiro de Oliveira (pcbi.1012524.ref057) 2020; 73
HA Simon (pcbi.1012524.ref007) 1962; 206
X Zhan (pcbi.1012524.ref034) 2015; 16
O Sporns (pcbi.1012524.ref003) 2013; 15
ZJ Chen (pcbi.1012524.ref012) 2011; 56
M Behr (pcbi.1012524.ref061) 2020; 117
JD Van Horn (pcbi.1012524.ref056) 2009; 22
MW Cole (pcbi.1012524.ref019) 2014; 83
AE Sizemore (pcbi.1012524.ref025) 2019; 3
TM McKenna (pcbi.1012524.ref042) 1994; 60
RF Betzel (pcbi.1012524.ref002) 2017; 160
DL Williams (pcbi.1012524.ref058) 2008; 2
RC Craddock (pcbi.1012524.ref052) 2012; 33
pcbi.1012524.ref035
S Fortunato (pcbi.1012524.ref021) 2022
pcbi.1012524.ref039
RB Davies (pcbi.1012524.ref049) 1987; 74
RF Betzel (pcbi.1012524.ref010) 2014; 102
pcbi.1012524.ref038
E Bullmore (pcbi.1012524.ref001) 2009; 10
DS Bassett (pcbi.1012524.ref008) 2006; 12
T Hofmann (pcbi.1012524.ref044) 2008; 36
D Liu (pcbi.1012524.ref047) 2008; 9
S Mukerjee (pcbi.1012524.ref023) 2021; 11
C Lohse (pcbi.1012524.ref032) 2014; 10
L Caputi (pcbi.1012524.ref026) 2021; 238
K Liu (pcbi.1012524.ref014) 2017; 9
Z Yang (pcbi.1012524.ref022) 2016; 6
A Lancichinetti (pcbi.1012524.ref059) 2008
pcbi.1012524.ref024
G Kimeldorf (pcbi.1012524.ref048) 1971; 33
S Emmons (pcbi.1012524.ref041) 2016; 11
R Ghawi (pcbi.1012524.ref028) 2022; 68
RJ Zhang (pcbi.1012524.ref029) 2020; 14
M Mikl (pcbi.1012524.ref036) 2008; 26
S Fortunato (pcbi.1012524.ref020) 2010; 486
D Meunier (pcbi.1012524.ref006) 2009; 3
References_xml – ident: pcbi.1012524.ref035
– volume: 12
  start-page: 181
  issue: 2
  year: 2001
  ident: pcbi.1012524.ref043
  article-title: An introduction to kernel-based learning algorithms
  publication-title: IEEE transactions on neural networks
  doi: 10.1109/72.914517
– volume: 36
  issue: 3
  year: 2008
  ident: pcbi.1012524.ref044
  article-title: Kernel methods in machine learning
  publication-title: The Annals of Statistics
  doi: 10.1214/009053607000000677
– volume: 206
  start-page: 467
  issue: 6
  year: 1962
  ident: pcbi.1012524.ref007
  article-title: The architecture of complexity
  publication-title: Proceedings of the Americal Philosophical Society
– volume: 2
  start-page: 353
  issue: 2
  year: 2008
  ident: pcbi.1012524.ref058
  article-title: Do individuals with high functioning autism have the IQ profile associated with nonverbal learning disability?
  publication-title: Research in autism spectrum disorders
  doi: 10.1016/j.rasd.2007.08.005
– volume: 117
  start-page: 9787
  issue: 18
  year: 2020
  ident: pcbi.1012524.ref061
  article-title: Testing for dependence on tree structures
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1912957117
– volume: 486
  start-page: 75
  issue: 3
  year: 2010
  ident: pcbi.1012524.ref020
  article-title: Community detection in graphs
  publication-title: Physics Reports
  doi: 10.1016/j.physrep.2009.11.002
– volume: 4
  start-page: 147
  year: 2010
  ident: pcbi.1012524.ref016
  article-title: Disrupted Modularity and Local Connectivity of Brain Functional Networks in Childhood-Onset Schizophrenia
  publication-title: Frontiers in Systems Neuroscience
  doi: 10.3389/fnsys.2010.00147
– ident: pcbi.1012524.ref039
– volume: 11
  start-page: e0159161
  issue: 7
  year: 2016
  ident: pcbi.1012524.ref041
  article-title: Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0159161
– volume: 10
  start-page: e1003712
  issue: 10
  year: 2014
  ident: pcbi.1012524.ref032
  article-title: Resolving Anatomical and Functional Structure in Human Brain Organization: Identifying Mesoscale Organization in Weighted Network Representations
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1003712
– volume: 6
  start-page: 30750
  issue: 1
  year: 2016
  ident: pcbi.1012524.ref022
  article-title: A Comparative Analysis of Community Detection Algorithms on Artificial Networks
  publication-title: Scientific Reports
  doi: 10.1038/srep30750
– volume: 160
  start-page: 73
  year: 2017
  ident: pcbi.1012524.ref002
  article-title: Multi-scale brain networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.11.006
– volume: 112
  start-page: 13681
  issue: 44
  year: 2015
  ident: pcbi.1012524.ref011
  article-title: Emergence of system roles in normative neurodevelopment
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1502829112
– ident: pcbi.1012524.ref045
– volume: 62
  start-page: 2250
  issue: 4
  year: 2012
  ident: pcbi.1012524.ref018
  article-title: Brain connectivity in psychiatric imaging genetics
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.007
– volume: 22
  start-page: 370
  issue: 4
  year: 2009
  ident: pcbi.1012524.ref056
  article-title: Multi-Site Neuroimaging Trials
  publication-title: Current opinion in neurology
  doi: 10.1097/WCO.0b013e32832d92de
– volume: 3
  year: 2009
  ident: pcbi.1012524.ref006
  article-title: Hierarchical modularity in human brain functional networks
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/neuro.11.037.2009
– volume: 3
  start-page: 656
  issue: 3
  year: 2019
  ident: pcbi.1012524.ref025
  article-title: The importance of the whole: Topological data analysis for the network neuroscientist
  publication-title: Network Neuroscience
  doi: 10.1162/netn_a_00073
– ident: pcbi.1012524.ref038
– volume: 15
  start-page: 247
  issue: 3
  year: 2013
  ident: pcbi.1012524.ref003
  article-title: Structure and function of complex brain networks
  publication-title: Dialogues in Clinical Neuroscience
  doi: 10.31887/DCNS.2013.15.3/osporns
– volume: 26
  start-page: 490
  issue: 4
  year: 2008
  ident: pcbi.1012524.ref036
  article-title: Effects of spatial smoothing on fMRI group inferences
  publication-title: Magnetic Resonance Imaging
  doi: 10.1016/j.mri.2007.08.006
– volume: 15
  start-page: 200
  issue: 5
  year: 2011
  ident: pcbi.1012524.ref009
  article-title: Understanding complexity in the human brain
  publication-title: Trends in cognitive sciences
  doi: 10.1016/j.tics.2011.03.006
– volume: 60
  start-page: 587
  issue: 3
  year: 1994
  ident: pcbi.1012524.ref042
  article-title: The brain as a dynamic physical system
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(94)90489-8
– volume: 44
  start-page: 125
  year: 2017
  ident: pcbi.1012524.ref055
  article-title: Inter-vender and test-retest reliabilities of resting-state functional magnetic resonance imaging: Implications for multi-center imaging studies
  publication-title: Magnetic Resonance Imaging
  doi: 10.1016/j.mri.2017.09.001
– volume: 68
  start-page: 1
  year: 2022
  ident: pcbi.1012524.ref028
  article-title: A community matching based approach to measuring layer similarity in multilayer networks
  publication-title: Social Networks
  doi: 10.1016/j.socnet.2021.04.004
– volume: 102
  start-page: 345
  year: 2014
  ident: pcbi.1012524.ref010
  article-title: Changes in structural and functional connectivity among resting-state networks across the human lifespan
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.07.067
– volume: 56
  start-page: 235
  issue: 1
  year: 2011
  ident: pcbi.1012524.ref012
  article-title: Age-related alterations in the modular organization of structural cortical network by using cortical thickness from MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.010
– year: 2008
  ident: pcbi.1012524.ref059
  publication-title: Detecting the overlapping and hierarchical community structure of complex networks
– volume: 59
  start-page: 3889
  issue: 4
  year: 2012
  ident: pcbi.1012524.ref033
  article-title: The discovery of population differences in network community structure: New methods and applications to brain functional networks in schizophrenia
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.035
– volume: 86
  start-page: 036104
  issue: 3 Pt 2
  year: 2012
  ident: pcbi.1012524.ref030
  article-title: Taxonomies of networks from community structure
  publication-title: Physical Review E, Statistical, Nonlinear, and Soft Matter Physics
  doi: 10.1103/PhysRevE.86.036104
– volume: 11
  start-page: 15218
  issue: 1
  year: 2021
  ident: pcbi.1012524.ref023
  article-title: A systematic comparison of community detection algorithms for measuring selective exposure in co-exposure networks
  publication-title: Scientific Reports
  doi: 10.1038/s41598-021-94724-1
– volume: 9
  start-page: 292
  issue: 1
  year: 2008
  ident: pcbi.1012524.ref047
  article-title: Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-292
– volume: 73
  start-page: 101548
  year: 2020
  ident: pcbi.1012524.ref057
  article-title: Exploring the use of the verbal intelligence quotient as a proxy for language ability in autism spectrum disorder
  publication-title: Research in Autism Spectrum Disorders
  doi: 10.1016/j.rasd.2020.101548
– volume: 12
  start-page: 512
  issue: 6
  year: 2006
  ident: pcbi.1012524.ref008
  article-title: Small-world brain networks
  publication-title: The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry
  doi: 10.1177/1073858406293182
– volume: 202
  start-page: 115990
  year: 2019
  ident: pcbi.1012524.ref005
  article-title: The community structure of functional brain networks exhibits scale-specific patterns of inter- and intra-subject variability
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.07.003
– volume: 9
  start-page: 275
  year: 2017
  ident: pcbi.1012524.ref014
  article-title: Structural Brain Network Changes across the Adult Lifespan
  publication-title: Frontiers in Aging Neuroscience
  doi: 10.3389/fnagi.2017.00275
– volume: 74
  start-page: 016110
  issue: 1
  year: 2006
  ident: pcbi.1012524.ref040
  article-title: Statistical mechanics of community detection
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.74.016110
– volume: 7
  year: 2013
  ident: pcbi.1012524.ref050
  article-title: The Neuro Bureau Preprocessing Initiative: open sharing of preprocessed neuroimaging data and derivatives
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/conf.fninf.2013.09.00041
– volume: 1
  start-page: 1
  issue: 1
  year: 2016
  ident: pcbi.1012524.ref027
  article-title: Comparison method for community detection on brain networks from neuroimaging data
  publication-title: Applied Network Science
  doi: 10.1007/s41109-016-0007-y
– ident: pcbi.1012524.ref024
– volume: 37
  start-page: 90
  issue: 1
  year: 2007
  ident: pcbi.1012524.ref051
  article-title: A Component Based Noise Correction Method (CompCor) for BOLD and Perfusion Based fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.04.042
– volume: 59
  start-page: 3085
  issue: 4
  year: 2012
  ident: pcbi.1012524.ref015
  article-title: Disrupted modular brain dynamics reflect cognitive dysfunction in Alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.055
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  ident: pcbi.1012524.ref004
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.003
– start-page: 443
  volume-title: Data Mining
  year: 2012
  ident: pcbi.1012524.ref037
  doi: 10.1016/B978-0-12-381479-1.00010-1
– volume: 48
  start-page: 1698
  issue: 5
  year: 2018
  ident: pcbi.1012524.ref054
  article-title: What About the Girls? Sex-Based Differences in Autistic Traits and Adaptive Skills
  publication-title: Journal of autism and developmental disorders
  doi: 10.1007/s10803-017-3413-9
– volume: 63
  start-page: 1079
  issue: 4
  year: 2007
  ident: pcbi.1012524.ref046
  article-title: Semiparametric Regression of Multidimensional Genetic Pathway Data: Least-Squares Kernel Machines and Linear Mixed Models
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00799.x
– volume: 3
  start-page: 32
  year: 2012
  ident: pcbi.1012524.ref017
  article-title: Connectomic intermediate phenotypes for psychiatric disorders
  publication-title: Frontiers in Psychiatry
  doi: 10.3389/fpsyt.2012.00032
– volume: 74
  start-page: 33
  issue: 1
  year: 1987
  ident: pcbi.1012524.ref049
  article-title: Hypothesis Testing when a Nuisance Parameter is Present Only Under the Alternatives
  publication-title: Biometrika
– volume: 111
  start-page: E4997
  issue: 46
  year: 2014
  ident: pcbi.1012524.ref013
  article-title: Decreased segregation of brain systems across the healthy adult lifespan
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 2008
  start-page: 10008
  year: 2008
  ident: pcbi.1012524.ref053
  article-title: Fast unfolding of communities in large networks
  publication-title: Journal of Statistical Mechanics: Theory and Experiment
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 14
  start-page: 100987
  issue: 1
  year: 2020
  ident: pcbi.1012524.ref029
  article-title: Measuring similarity for clarifying layer difference in multiplex ad hoc duplex information networks
  publication-title: Journal of Informetrics
  doi: 10.1016/j.joi.2019.100987
– volume: 5
  start-page: 171747
  issue: 8
  year: 2018
  ident: pcbi.1012524.ref031
  article-title: Quantifying layer similarity in multiplex networks: a systematic study
  publication-title: Royal Society Open Science
  doi: 10.1098/rsos.171747
– volume: 10
  year: 2019
  ident: pcbi.1012524.ref060
  article-title: A Distance-Based Kernel Association Test Based on the Generalized Linear Mixed Model for Correlated Microbiome Studies
  publication-title: Frontiers in Genetics
– volume: 33
  start-page: 82
  issue: 1
  year: 1971
  ident: pcbi.1012524.ref048
  article-title: Some results on Tchebycheffian spline functions
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1016/0022-247X(71)90184-3
– volume: 16
  start-page: 77
  issue: 1
  year: 2015
  ident: pcbi.1012524.ref034
  article-title: Kernel approaches for differential expression analysis of mass spectrometry-based metabolomics data
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-015-0506-3
– volume: 238
  start-page: 118245
  year: 2021
  ident: pcbi.1012524.ref026
  article-title: Promises and pitfalls of topological data analysis for brain connectivity analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118245
– volume: 33
  start-page: 1914
  issue: 8
  year: 2012
  ident: pcbi.1012524.ref052
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.21333
– volume: 83
  start-page: 238
  issue: 1
  year: 2014
  ident: pcbi.1012524.ref019
  article-title: Intrinsic and task-evoked network architectures of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.05.014
– volume: 10
  start-page: 186
  issue: 3
  year: 2009
  ident: pcbi.1012524.ref001
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn2575
– year: 2022
  ident: pcbi.1012524.ref021
  article-title: 20 years of network community detection
  publication-title: Nature Physics
SSID ssj0035896
Score 2.447472
Snippet Modeling the network topology of the human brain within the mesoscale has become an increasing focus within the neuroscientific community due to its variation...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1012524
SubjectTerms Algorithms
Biology and Life Sciences
Brain
Brain - physiology
Cluster Analysis
Computational Biology - methods
Computer and Information Sciences
Computer Simulation
Ecology and Environmental Sciences
Humans
Kernel functions
Machine Learning
Medicine and Health Sciences
Methods
Models, Neurological
Nerve Net - physiology
Physical Sciences
Research and Analysis Methods
Social Sciences
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQXxJtAQQYhcUrr2E6cHAuiKiB6ACrtAcnys11p613tboT675lJstsNCMGBQw6J5-L5xvNQxt8Q8rq20pdR2TxAMMul5XVeG-lyYwsZWfAQsvE28ufT6uRMfpyUk51RX9gT1tMD94o7FE46bkzhKmWg-PDWNjwUEqpvZCoPFr0vq5tNMdX7YFHW3WQuHIqTKyEnw6U5oYrDAaODhbNTrF15yeUoKHXc_b976J0Q9Wv75K02LczVDzOb7cSm47vkzpBU0qN-M_fIjZDuk5v9mMmrB-T7p7BMYUYvu8bJQCG7XK_oPFJzjQ3FBvhzCq56OU2AHDXJ02navLlZi4wK9JocnF7iLC63ekjOjt9_e3eSD1MVcgfVwzqvgvTeRMFL05RKIS8tKwCakhnmfC1L65mNoF_PnOXesAjhyxnnmYm-ilI8IntpnsITQoOFbEoGxRAbY6UVhZdOwVMGJaLLSL5Rq1705Bm6-4OmoOjoVaMRBj3AkJG3qPutLFJfdx_AIPRgEPpvBpGRV4icRnKLhN0z56ZdrfSHr6f6CLITqDcr1vxR6MtI6M0gFOcANOigv7EAm0fSrJHk_kgSjqgbLb_cWJHGJexrS2HerrQocN4AMuRk5HFvVdvdi6bk4P15RuqRvY3UM15J04uOIRzS_LqA9CQjB1vT_CcEnv4PBJ6R2xxSP7yxWRT7ZG-9bMNzSN3W9kV3Sn8C-QZD6w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEA_nHqJffD-qp0QR_GL3mjZpuh9X8TiVW0RdWEEIefVc3Msu2xY5_3onfexuTw7OD4W2mT4yM8nMkJlfEHqVKWpYzlVowZiFVMVZmEmqQ6kIzSNrwGT7auSTSXo8pR9nbLaH3nS1MLvr9wknhy1Hhyut5j7SjFlMr6H9lIHnPUD708nn8fcaEpUlIU_obHvOsrZS7rLX9CxRDdj_77S8Y5cu5kzeqNxKnv-Wi8WOQTq6jU66rjR5KL-GVamG-s8FlMer9vUOutV6pnjcqNJdtGfdPXS92avy_D768cmunV3gszr70mJwUcsCL3MstwLGPov-FMN8v547ED-WzuC56670ovKwDHiLMI7P_IZeuniApkfvv707DtutGUINIUgZppYaI_MkZnLEOPfgthEB-bJIRtpklCkTqZynxERaxUZGOdhALbWJZG7SnCYP0cAtnX2MsFXgklHLwWxKKhVVCTFUcziY5UmuAxR2YhKrBoFD1MtwHCKXhjXCc0y0HAvQWy_LDa3Hz65vAKtFOxxFoqmOpSTafzTiRqlRbAmFH_b491YF6KXXBOERMpxPwTmVVVGID18nYgwuDgStaTS6lOhLj-h1S5QvQXGAB03ZA3TeI2_1KA96lDDOda_5RaeVwjf55Dhnl1UhEuI3LfAwOwF61GjppvfJiMVgQuIAZT397bGn3-LmP2uYcYgVMgI-ToCGG1W_kgSe_O8DT9HNGHxFX-JJyAEalOvKPgNfr1TP2yH-F57VVCM
  priority: 102
  providerName: Unpaywall
Title Kernel machine tests of association using extrinsic and intrinsic cluster evaluation metrics
URI https://www.ncbi.nlm.nih.gov/pubmed/39527632
https://www.proquest.com/docview/3128749960
https://pubmed.ncbi.nlm.nih.gov/PMC11581413
https://doi.org/10.1371/journal.pcbi.1012524
https://doaj.org/article/3c4c2aa1c67a407dbb92e147612290eb
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: ABDBF
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: GX1
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 8FG
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M48
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEF_uA9EX8fOMnmUVwacc2WTTTR9EWr16KleO00IFYdmv1EJvW5sW7X_vTJL2LurBPbSl2UnTzMxmZpLZ34-QV5nmNs2FDh0Es5DrOAszxU2oNON55CyEbFyNfDponwz5p1E62iEbztZagcV_Szvkkxoupke_f67fwoR_U7I2CLbZ6Whu9ASr0TiN-S7Zh1jVQTKHU759rpCkWcnYhWQ5oUj4qF5Md92vNIJVien_75X7Suj6u63y9srP1fqXmk6vxKz-PXK3TjZpt_KO-2TH-QfkVkU_uX5Ivn92C--m9KJsqHQUss5lQWc5VZc2o9gYP6ZwCV9MPFiUKm_pxG--mekKkRboJWg4vUCOLlM8IsP-8dd3J2HNthAaqCqWYdtxa1WexKnqpEIgXm3EwGRppCJjM55qG-lctJmNjI6tinIIa0YZG6nctnOePCZ7fubdE0KdhiyLOwGRUHGluU6Y5UbAK3UiyU1Awo1a5bwC1ZDlkzUBxUilGolmkLUZAtJD3W9lERK73DBbjGU9w2RiuImVYgYPGgmrdSd2jMMfRkh7pwPyEi0nEfTCY1fNWK2KQn78MpBdyFqgDm1HnWuFzhtCr2uhfAaGBh1UKxng5BFMqyF52JCEqWsawy82XiRxCPvdvJutCpkw5CFA5JyAHFRetT37pJPGEBXigGQNf2uopzniJz9K5HBI_zMGaUtAjraueSMLPL2JXp6ROzGkfLhSk7FDsrdcrNxzSNmWukV2xUjAe9b_0CL73d77Xh8-e8eDs_NWeRukVc5T2DYcnHW__QHOj0q5
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEA_nHqJffD-qp0QR_GL3mjZpuh9X8TiVW0RdWEEIefVc3Msu2xY5_3onfexuTw7OD4W2mT4yM8nMkJlfEHqVKWpYzlVowZiFVMVZmEmqQ6kIzSNrwGT7auSTSXo8pR9nbLaH3nS1MLvr9wknhy1Hhyut5j7SjFlMr6H9lIHnPUD708nn8fcaEpUlIU_obHvOsrZS7rLX9CxRDdj_77S8Y5cu5kzeqNxKnv-Wi8WOQTq6jU66rjR5KL-GVamG-s8FlMer9vUOutV6pnjcqNJdtGfdPXS92avy_D768cmunV3gszr70mJwUcsCL3MstwLGPov-FMN8v547ED-WzuC56670ovKwDHiLMI7P_IZeuniApkfvv707DtutGUINIUgZppYaI_MkZnLEOPfgthEB-bJIRtpklCkTqZynxERaxUZGOdhALbWJZG7SnCYP0cAtnX2MsFXgklHLwWxKKhVVCTFUcziY5UmuAxR2YhKrBoFD1MtwHCKXhjXCc0y0HAvQWy_LDa3Hz65vAKtFOxxFoqmOpSTafzTiRqlRbAmFH_b491YF6KXXBOERMpxPwTmVVVGID18nYgwuDgStaTS6lOhLj-h1S5QvQXGAB03ZA3TeI2_1KA96lDDOda_5RaeVwjf55Dhnl1UhEuI3LfAwOwF61GjppvfJiMVgQuIAZT397bGn3-LmP2uYcYgVMgI-ToCGG1W_kgSe_O8DT9HNGHxFX-JJyAEalOvKPgNfr1TP2yH-F57VVCM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+machine+tests+of+association+using+extrinsic+and+intrinsic+cluster+evaluation+metrics&rft.jtitle=PLoS+computational+biology&rft.au=Jensen%2C+Alexandria+M&rft.au=DeWitt%2C+Peter&rft.au=Bettcher%2C+Brianne+M&rft.au=Wrobel%2C+Julia&rft.date=2024-11-11&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=20&rft.issue=11&rft.spage=e1012524&rft_id=info:doi/10.1371%2Fjournal.pcbi.1012524&rft.externalDBID=ISR&rft.externalDocID=A818924609
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon