Machine learning algorithms for the prediction of adverse prognosis in patients undergoing peritoneal dialysis

Background An appropriate prediction model for adverse prognosis before peritoneal dialysis (PD) is lacking. Thus, we retrospectively analysed patients who underwent PD to construct a predictive model for adverse prognoses using machine learning (ML). Methods A retrospective analysis was conducted o...

Full description

Saved in:
Bibliographic Details
Published inBMC medical informatics and decision making Vol. 24; no. 1; pp. 8 - 11
Main Authors Yang, Jie, Wan, Jingfang, Feng, Lei, Hou, Shihui, Yv, Kaizhen, Xu, Liang, Chen, Kehong
Format Journal Article
LanguageEnglish
Published London BioMed Central 02.01.2024
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1472-6947
1472-6947
DOI10.1186/s12911-023-02412-z

Cover

More Information
Summary:Background An appropriate prediction model for adverse prognosis before peritoneal dialysis (PD) is lacking. Thus, we retrospectively analysed patients who underwent PD to construct a predictive model for adverse prognoses using machine learning (ML). Methods A retrospective analysis was conducted on 873 patients who underwent PD from August 2007 to December 2020. A total of 824 patients who met the inclusion criteria were included in the analysis. Five commonly used ML algorithms were used for the initial model training. By using the area under the curve (AUC) and accuracy (ACC), we ranked the indicators with the highest impact and displayed them using the values of Shapley additive explanation (SHAP) version 0.41.0. The top 20 indicators were selected to build a compact model that is conducive to clinical application. All model-building steps were implemented in Python 3.8.3. Results At the end of follow-up, 353 patients withdrew from PD (converted to haemodialysis or died), and 471 patients continued receiving PD. In the complete model, the categorical boosting classifier (CatBoost) model exhibited the strongest performance (AUC = 0.80, 95% confidence interval [CI] = 0.76–0.83; ACC: 0.78, 95% CI = 0.72–0.83) and was selected for subsequent analysis. We reconstructed a compression model by extracting 20 key features ranked by the SHAP values, and the CatBoost model still showed the strongest performance (AUC = 0.79, ACC = 0.74). Conclusions The CatBoost model, which was built using the intelligent analysis technology of ML, demonstrated the best predictive performance. Therefore, our developed prediction model has potential value in patient screening before PD and hierarchical management after PD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1472-6947
1472-6947
DOI:10.1186/s12911-023-02412-z