Siphonaxanthin, a carotenoid from green algae Codium cylindricum, protects Ob/Ob mice fed on a high-fat diet against lipotoxicity by ameliorating somatic stresses and restoring anti-oxidative capacity
Oxidative stress is implicated in the pathogenesis of many diseases including obesity, non-alcoholic fatty liver disease, and diabetes mellitus. Previously, we reported that siphonaxanthin, a carotenoid from green algae, elicited a potent inhibitory effect on hepatic de novo lipogenesis, and an anti...
Saved in:
Published in | Nutrition research (New York, N.Y.) Vol. 77; pp. 29 - 42 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0271-5317 1879-0739 1879-0739 |
DOI | 10.1016/j.nutres.2020.02.001 |
Cover
Abstract | Oxidative stress is implicated in the pathogenesis of many diseases including obesity, non-alcoholic fatty liver disease, and diabetes mellitus. Previously, we reported that siphonaxanthin, a carotenoid from green algae, elicited a potent inhibitory effect on hepatic de novo lipogenesis, and an anti-obesity effect in both 3T3L1 cells and KKAy mice. Thus, we hypothesized that consumption of siphonaxanthin could improve metabolic disorders including hepatic steatosis and systemic adiposity, as well as ameliorate somatic stress under obese conditions. Both the hepatocyte cell line HepG2 and a mouse model of severe obesity, produced by feeding Ob/Ob mice on a high-fat diet (HFD), were used to test this hypothesis. In obese mice, siphonaxanthin intake did not improve liver steatosis or systemic adiposity. However, intake did lower plasma glucose and alanine aminotransferase (ALT) levels and diminished hepatic lipid peroxidation products and antioxidant gene expression, which increased significantly in control group obese mice. Renal protein carbonyl content decreased significantly in the siphonaxanthin group, which might also indicate an ameliorated oxidative stress. Siphonaxanthin restored gene expression related to antioxidant signaling, lipid β-oxidation, and endoplasmic-reticulum-associated protein degradation in the kidney, which decreased significantly in obese mice. Liver and kidney responded to obesity-induced somatic stress in a divergent pattern. In addition, we confirmed that siphonaxanthin potently induced Nrf2-regulated antioxidant signaling in HepG2 cells. In conclusion, our results indicated that siphonaxanthin might protect obesity-leading somatic stress through restoration of Nrf2-regulated antioxidant signaling, and might be a promising nutritional supplement. |
---|---|
AbstractList | Oxidative stress is implicated in the pathogenesis of many diseases including obesity, non-alcoholic fatty liver disease, and diabetes mellitus. Previously, we reported that siphonaxanthin, a carotenoid from green algae, elicited a potent inhibitory effect on hepatic de novo lipogenesis, and an anti-obesity effect in both 3T3L1 cells and KKAy mice. Thus, we hypothesized that consumption of siphonaxanthin could improve metabolic disorders including hepatic steatosis and systemic adiposity, as well as ameliorate somatic stress under obese conditions. Both the hepatocyte cell line HepG2 and a mouse model of severe obesity, produced by feeding Ob/Ob mice on a high-fat diet (HFD), were used to test this hypothesis. In obese mice, siphonaxanthin intake did not improve liver steatosis or systemic adiposity. However, intake did lower plasma glucose and alanine aminotransferase (ALT) levels and diminished hepatic lipid peroxidation products and antioxidant gene expression, which increased significantly in control group obese mice. Renal protein carbonyl content decreased significantly in the siphonaxanthin group, which might also indicate an ameliorated oxidative stress. Siphonaxanthin restored gene expression related to antioxidant signaling, lipid β-oxidation, and endoplasmic-reticulum-associated protein degradation in the kidney, which decreased significantly in obese mice. Liver and kidney responded to obesity-induced somatic stress in a divergent pattern. In addition, we confirmed that siphonaxanthin potently induced Nrf2-regulated antioxidant signaling in HepG2 cells. In conclusion, our results indicated that siphonaxanthin might protect obesity-leading somatic stress through restoration of Nrf2-regulated antioxidant signaling, and might be a promising nutritional supplement. Oxidative stress is implicated in the pathogenesis of many diseases including obesity, non-alcoholic fatty liver disease, and diabetes mellitus. Previously, we reported that siphonaxanthin, a carotenoid from green algae, elicited a potent inhibitory effect on hepatic de novo lipogenesis, and an anti-obesity effect in both 3T3L1 cells and KKAy mice. Thus, we hypothesized that consumption of siphonaxanthin could improve metabolic disorders including hepatic steatosis and systemic adiposity, as well as ameliorate somatic stress under obese conditions. Both the hepatocyte cell line HepG2 and a mouse model of severe obesity, produced by feeding Ob/Ob mice on a high-fat diet (HFD), were used to test this hypothesis. In obese mice, siphonaxanthin intake did not improve liver steatosis or systemic adiposity. However, intake did lower plasma glucose and alanine aminotransferase (ALT) levels and diminished hepatic lipid peroxidation products and antioxidant gene expression, which increased significantly in control group obese mice. Renal protein carbonyl content decreased significantly in the siphonaxanthin group, which might also indicate an ameliorated oxidative stress. Siphonaxanthin restored gene expression related to antioxidant signaling, lipid β-oxidation, and endoplasmic-reticulum-associated protein degradation in the kidney, which decreased significantly in obese mice. Liver and kidney responded to obesity-induced somatic stress in a divergent pattern. In addition, we confirmed that siphonaxanthin potently induced Nrf2-regulated antioxidant signaling in HepG2 cells. In conclusion, our results indicated that siphonaxanthin might protect obesity-leading somatic stress through restoration of Nrf2-regulated antioxidant signaling, and might be a promising nutritional supplement.Oxidative stress is implicated in the pathogenesis of many diseases including obesity, non-alcoholic fatty liver disease, and diabetes mellitus. Previously, we reported that siphonaxanthin, a carotenoid from green algae, elicited a potent inhibitory effect on hepatic de novo lipogenesis, and an anti-obesity effect in both 3T3L1 cells and KKAy mice. Thus, we hypothesized that consumption of siphonaxanthin could improve metabolic disorders including hepatic steatosis and systemic adiposity, as well as ameliorate somatic stress under obese conditions. Both the hepatocyte cell line HepG2 and a mouse model of severe obesity, produced by feeding Ob/Ob mice on a high-fat diet (HFD), were used to test this hypothesis. In obese mice, siphonaxanthin intake did not improve liver steatosis or systemic adiposity. However, intake did lower plasma glucose and alanine aminotransferase (ALT) levels and diminished hepatic lipid peroxidation products and antioxidant gene expression, which increased significantly in control group obese mice. Renal protein carbonyl content decreased significantly in the siphonaxanthin group, which might also indicate an ameliorated oxidative stress. Siphonaxanthin restored gene expression related to antioxidant signaling, lipid β-oxidation, and endoplasmic-reticulum-associated protein degradation in the kidney, which decreased significantly in obese mice. Liver and kidney responded to obesity-induced somatic stress in a divergent pattern. In addition, we confirmed that siphonaxanthin potently induced Nrf2-regulated antioxidant signaling in HepG2 cells. In conclusion, our results indicated that siphonaxanthin might protect obesity-leading somatic stress through restoration of Nrf2-regulated antioxidant signaling, and might be a promising nutritional supplement. |
Author | Sugawara, Tatsuya Zheng, Jiawen Manabe, Yuki |
Author_xml | – sequence: 1 givenname: Jiawen surname: Zheng fullname: Zheng, Jiawen email: feitianmao0715@gmail.com – sequence: 2 givenname: Yuki surname: Manabe fullname: Manabe, Yuki email: yuukim@kais.kyoto-u.ac.jp – sequence: 3 givenname: Tatsuya surname: Sugawara fullname: Sugawara, Tatsuya email: sugawara@kais.kyoto-u.ac.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32315893$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1uEzEUhUeoiKaFN0DISxad1D_jeAYhJBTxJ1XKAlhbHvs6cZixg-2pmjfksfAohUU3WflK_s7Rvefeq-rCBw9V9ZrgJcFkdbtf-ilHSEuKKV5iusSYPKsWpBVdjQXrLqoFpoLUnBFxWV2ltC-AIIy9qC4ZZYS3HVtUf767wy549aB83jl_gxTSKoYMPjiDbAwj2kYAj9SwVYDWwbhpRPo4OG-i09N4gw4zrnNCm_5206PRaUAWDApFhHZuu6utysg4yEhtlfMpo8EdQg4PTrt8RP0RqREGF6LKzm9RCmMpNErzdAkSUt6gUuYQ5-_SqKuL1hToHkq3BzXbvKyeWzUkePX4Xlc_P3_6sf5a322-fFt_vKs1522urQbKe25WhHcttS0RtFOClrwstK0C1ULfNbwXWmDRC0s0bY0tya0w2Mb27Lp6e_ItY_-eSldydEnDMCgPYUqSNhg3grNudR5lHVtxznhT0DeP6NSPYOQhulHFo_y3qAI0J0DHkFIE-x8hWM73IPfydA9yvgeJqSxNF9m7J7KSVQku-ByVG86JP5zEUPK8dxBl0g68BuNiWbg0wZ0zeP_EQJe7cVoNv-B4Xv4XeRzssg |
CitedBy_id | crossref_primary_10_3177_jnsv_69_62 crossref_primary_10_3390_foods12142768 crossref_primary_10_3390_md21040258 crossref_primary_10_3390_obesities2020012 crossref_primary_10_1016_j_bbalip_2025_159604 crossref_primary_10_1016_j_jbc_2025_108246 crossref_primary_10_2174_0115672018260113231023064614 crossref_primary_10_3390_ijms23041990 crossref_primary_10_1016_j_aquaculture_2022_738057 crossref_primary_10_1088_1755_1315_1118_1_012028 crossref_primary_10_3390_md18110568 crossref_primary_10_1111_jfbc_14395 crossref_primary_10_3390_app12052638 crossref_primary_10_3390_md18060291 crossref_primary_10_3390_md18090453 crossref_primary_10_3390_md22070309 crossref_primary_10_1186_s43014_022_00103_2 crossref_primary_10_1007_s00227_023_04350_w |
Cites_doi | 10.1681/ASN.2009070690 10.1016/S0076-6879(94)33033-6 10.1016/j.cell.2010.02.034 10.1038/s41419-018-0894-1 10.1038/nm1185 10.1053/bega.2002.0332 10.1016/j.redox.2017.08.009 10.1172/JCI0216886 10.1079/BJN20041243 10.1016/j.nutres.2016.02.005 10.1016/j.bbagen.2011.02.008 10.1038/nrgastro.2012.79 10.1038/ki.2012.439 10.1016/j.freeradbiomed.2011.10.483 10.1152/ajpgi.00296.2009 10.1073/pnas.0908771107 10.1046/j.1523-1755.2001.00939.x 10.3390/md12063660 10.1128/MCB.00677-14 10.1016/j.phymed.2010.05.005 10.1111/j.1478-3231.2006.01405.x 10.5650/jos.ess18204 10.1002/lipd.12002 10.1096/fj.04-2291fje 10.1038/s41467-017-00566-9 10.1016/j.bcp.2017.04.014 10.1016/j.jnutbio.2010.03.009 10.1016/j.biocel.2005.09.018 10.3109/10715762.2010.507670 10.1016/j.cmet.2012.05.012 10.5650/jos.ess13169 10.1038/clpt.2012.110 10.1111/j.1365-2443.2008.01234.x 10.1007/s11010-013-1651-5 10.1126/science.1209038 10.1681/ASN.V134991 10.1016/j.mam.2011.10.006 10.1016/j.jhep.2004.11.040 10.3945/jn.114.200931 10.2337/db08-0057 10.1038/s41588-019-0345-7 10.1038/ki.1988.147 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.nutres.2020.02.001 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Diet & Clinical Nutrition |
EISSN | 1879-0739 |
EndPage | 42 |
ExternalDocumentID | 32315893 10_1016_j_nutres_2020_02_001 S0271531719304063 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29N 4.4 457 4CK 4G. 53G 5RE 5VS 7-5 71M 85S 8P~ 9JM AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABGSF ABJNI ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDZ HMK HMO HVGLF HZ~ IHE J1W K-O KOM LZ1 M29 M41 MO0 MVM N9A O-L O9- OAUVE OC. ON0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSU SSZ T5K WH7 WUQ Z5R ZGI ZXP ~G- ~KM AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG LCYCR AAYXX ACLOT CITATION ~HD NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c558t-fce25b5d615982f81729a72739fe88aea8eb945b7c707b7f1c28df00160ef4fb3 |
IEDL.DBID | .~1 |
ISSN | 0271-5317 1879-0739 |
IngestDate | Sun Sep 28 05:56:11 EDT 2025 Sun Sep 28 09:46:35 EDT 2025 Wed Feb 19 02:30:27 EST 2025 Thu Apr 24 23:04:35 EDT 2025 Wed Oct 01 04:29:44 EDT 2025 Fri Feb 23 02:47:56 EST 2024 Tue Aug 26 18:28:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oxidative stress NAFLD DMSO ALT PDA HDL TBA NEFA UPR GSH HPLC Obesity GSSG Endothelium reticulum stress AST H&E qRT-PCR TBARS NASH ER ERAD SDS-PAGE TCA ROS Non-alcoholic fatty liver diseases Carotenoid |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c558t-fce25b5d615982f81729a72739fe88aea8eb945b7c707b7f1c28df00160ef4fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://hdl.handle.net/2433/252354 |
PMID | 32315893 |
PQID | 2393655354 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2400475396 proquest_miscellaneous_2393655354 pubmed_primary_32315893 crossref_primary_10_1016_j_nutres_2020_02_001 crossref_citationtrail_10_1016_j_nutres_2020_02_001 elsevier_sciencedirect_doi_10_1016_j_nutres_2020_02_001 elsevier_clinicalkey_doi_10_1016_j_nutres_2020_02_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nutrition research (New York, N.Y.) |
PublicationTitleAlternate | Nutr Res |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Bataille, Manautou (bb0035) 2012; 92 Arkan, Hevener, Greten, Maeda, Li, Long (bb0170) 2005; 11 Ganesan, Matsubara, Sugawara, Hirata (bb0210) 2013; 380 Hagen, Aw, Jones (bb0165) 1988; 34 Sugawara, Ganesan, Li, Manabe, Hirata (bb0075) 2014; 12 Li, Cheng, Liao, Lin, Yang (bb0125) 2010; 21 Zhu, Wang, Jiang, Ni, Jiang, Li (bb0120) 2018; 9 Bonora, Targher (bb0020) 2012; 9 Meakin, Chowdhry, Sharma, Ashford, Walsh, McCrimmon (bb0040) 2014; 34 Singh, Vrishni, Singh, Rahman, Kakkar (bb0025) 2010; 44 Ganesan, Matsubara, Ohkubo, Tanaka, Noda, Sugawara (bb0215) 2010; 17 Ruiz, Pergola, Zager, Vaziri (bb0135) 2013; 83 Sugimoto, Okada, Shoda, Warabi, Ishige, Ueda (bb0045) 2010; 298 Bartoli, Häberle, Sies (bb0160) 1978 Koteish, Mae Diehl (bb0150) 2002; 16 Andrisic, Dudzik, Barbas, Milkovic, Grune, Zarkovic (bb0185) 2018; 14 WalterP (bb0115) 2011; 334 Item, Wueest, Lemos, Stein, Lucchini, Denzler (bb0180) 2017; 8 Ilan, Maron, Tukpah, Maioli, Murugaiyan, Yang (bb0175) 2010; 107 Hu, Li, Lu, Weng, Wang, Zekavat (bb0195) 2019; 51 Feng, Yu, Li, Zhou, Zhang, Shen (bb0105) 2017; 136 Whitfield, German, Noble (bb0190) 2004; 92 Malaguarnera, Madeddu, Palio, Arena, Malaguarnera (bb0110) 2005; 42 Hotamisligil (bb0010) 2010; 140 Li, Noda, Fujita, Manabe, Hirata, Sugawara (bb0080) 2015; 145 Ganesan, Noda, Manabe, Ohkubo, Tanaka, Maoka (bb0090) 2011; 1810 Kaufman (bb0005) 2002; 110 Corongiu, Banni (bb0100) 1994; 233 Maser RL, Vassmer D, Magenheimer BS, Calvet JP. Oxidant stress and reduced antioxidant enzyme protection in polycystic kidney disease. J Am Soc Nephrol 2002;13:991–9. de Lima, de Oliveira, Sawada, Barbeiro, de Mello, Soriano (bb0145) 2007; 27 Yoh, Itoh, Enomoto, Hirayama, Yamaguchi, Kobayashi (bb0050) 2001; 60 Park, DiNatale, Chung, Park, Lee, Koo (bb0070) 2011; 22 Cullinan, Diehl (bb0015) 2006; 38 Imajo, Fujita, Yoneda, Nozaki, Ogawa, Shinohara (bb0155) 2012; 16 Zhu, Jia, Wang, Zhang, Xia (bb0065) 2012; 52 Yoh, Hirayama, Ishizaki, Yamada, Takeuchi, Yamagishi (bb0055) 2008; 13 Hybertson, Gao, Bose, JMJMaom (bb0060) 2011; 32 Zheng, Li, Manabe, Kim, Goto, Kawada (bb0085) 2018; 53 Manabe, Hirata, Sugawara (bb0205) 2019; 68 Sundaram, Yan (bb0095) 2016; 36 Carmiel-Haggai, Cederbaum (bb0140) 2005; 19 Manabe, Hirata, Sugawara (bb0200) 2014; 63 Forbes, Coughlan, Cooper (bb0030) 2008; 57 Cullinan (10.1016/j.nutres.2020.02.001_bb0015) 2006; 38 Corongiu (10.1016/j.nutres.2020.02.001_bb0100) 1994; 233 Arkan (10.1016/j.nutres.2020.02.001_bb0170) 2005; 11 Yoh (10.1016/j.nutres.2020.02.001_bb0055) 2008; 13 Whitfield (10.1016/j.nutres.2020.02.001_bb0190) 2004; 92 Carmiel-Haggai (10.1016/j.nutres.2020.02.001_bb0140) 2005; 19 10.1016/j.nutres.2020.02.001_bb0130 Zhu (10.1016/j.nutres.2020.02.001_bb0120) 2018; 9 Li (10.1016/j.nutres.2020.02.001_bb0080) 2015; 145 Malaguarnera (10.1016/j.nutres.2020.02.001_bb0110) 2005; 42 Ruiz (10.1016/j.nutres.2020.02.001_bb0135) 2013; 83 Sugimoto (10.1016/j.nutres.2020.02.001_bb0045) 2010; 298 de Lima (10.1016/j.nutres.2020.02.001_bb0145) 2007; 27 Ganesan (10.1016/j.nutres.2020.02.001_bb0210) 2013; 380 Manabe (10.1016/j.nutres.2020.02.001_bb0200) 2014; 63 Koteish (10.1016/j.nutres.2020.02.001_bb0150) 2002; 16 Ganesan (10.1016/j.nutres.2020.02.001_bb0215) 2010; 17 Li (10.1016/j.nutres.2020.02.001_bb0125) 2010; 21 Hu (10.1016/j.nutres.2020.02.001_bb0195) 2019; 51 Zhu (10.1016/j.nutres.2020.02.001_bb0065) 2012; 52 Bartoli (10.1016/j.nutres.2020.02.001_bb0160) 1978 Bataille (10.1016/j.nutres.2020.02.001_bb0035) 2012; 92 Meakin (10.1016/j.nutres.2020.02.001_bb0040) 2014; 34 Hagen (10.1016/j.nutres.2020.02.001_bb0165) 1988; 34 Sugawara (10.1016/j.nutres.2020.02.001_bb0075) 2014; 12 Feng (10.1016/j.nutres.2020.02.001_bb0105) 2017; 136 Imajo (10.1016/j.nutres.2020.02.001_bb0155) 2012; 16 Item (10.1016/j.nutres.2020.02.001_bb0180) 2017; 8 Park (10.1016/j.nutres.2020.02.001_bb0070) 2011; 22 Forbes (10.1016/j.nutres.2020.02.001_bb0030) 2008; 57 Ilan (10.1016/j.nutres.2020.02.001_bb0175) 2010; 107 Andrisic (10.1016/j.nutres.2020.02.001_bb0185) 2018; 14 Hybertson (10.1016/j.nutres.2020.02.001_bb0060) 2011; 32 Yoh (10.1016/j.nutres.2020.02.001_bb0050) 2001; 60 Ganesan (10.1016/j.nutres.2020.02.001_bb0090) 2011; 1810 Hotamisligil (10.1016/j.nutres.2020.02.001_bb0010) 2010; 140 Manabe (10.1016/j.nutres.2020.02.001_bb0205) 2019; 68 Sundaram (10.1016/j.nutres.2020.02.001_bb0095) 2016; 36 Kaufman (10.1016/j.nutres.2020.02.001_bb0005) 2002; 110 Bonora (10.1016/j.nutres.2020.02.001_bb0020) 2012; 9 Zheng (10.1016/j.nutres.2020.02.001_bb0085) 2018; 53 WalterP (10.1016/j.nutres.2020.02.001_bb0115) 2011; 334 Singh (10.1016/j.nutres.2020.02.001_bb0025) 2010; 44 |
References_xml | – volume: 136 start-page: 136 year: 2017 end-page: 149 ident: bb0105 article-title: Apigenin, a modulator of PPARgamma, attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation publication-title: Biochem Pharmacol – volume: 34 start-page: 74 year: 1988 end-page: 81 ident: bb0165 article-title: Glutathione uptake and protection against oxidative injury in isolated kidney cells publication-title: Kidney Int – volume: 8 start-page: 480 year: 2017 ident: bb0180 article-title: Fas cell surface death receptor controls hepatic lipid metabolism by regulating mitochondrial function publication-title: Nat Commun – reference: Maser RL, Vassmer D, Magenheimer BS, Calvet JP. Oxidant stress and reduced antioxidant enzyme protection in polycystic kidney disease. J Am Soc Nephrol 2002;13:991–9. – volume: 36 start-page: 603 year: 2016 end-page: 611 ident: bb0095 article-title: Time-restricted feeding reduces adiposity in mice fed a high-fat diet publication-title: Nutr Res – volume: 22 start-page: 393 year: 2011 end-page: 400 ident: bb0070 article-title: Green tea extract attenuates hepatic steatosis by decreasing adipose lipogenesis and enhancing hepatic antioxidant defenses in Ob/Ob mice publication-title: J Nutr Biochem – volume: 140 start-page: 900 year: 2010 end-page: 917 ident: bb0010 article-title: Endoplasmic reticulum stress and the inflammatory basis of metabolic disease publication-title: Cell – volume: 13 start-page: 1159 year: 2008 end-page: 1170 ident: bb0055 article-title: Hyperglycemia induces oxidative and nitrosative stress and increases renal functional impairment in Nrf2-deficient mice publication-title: Genes Cells – volume: 12 start-page: 3660 year: 2014 end-page: 3668 ident: bb0075 article-title: Siphonaxanthin, a green algal carotenoid, as a novel functional compound publication-title: Mar Drugs – volume: 9 start-page: 910 year: 2018 end-page: 923 ident: bb0120 article-title: Loss of ATF3 exacerbates liver damage through the activation of mTOR/p70S6K/ HIF-1alpha signaling pathway in liver inflammatory injury publication-title: Cell Death Dis – volume: 107 start-page: 9765 year: 2010 end-page: 9770 ident: bb0175 article-title: Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in Ob/Ob mice publication-title: Proc Natl Acad Sci U S A – volume: 53 start-page: 41 year: 2018 end-page: 52 ident: bb0085 article-title: Siphonaxanthin, a carotenoid from green algae, inhibits lipogenesis in hepatocytes via the suppression of liver X receptor alpha activity publication-title: Lipids – volume: 233 start-page: 303 year: 1994 end-page: 310 ident: bb0100 article-title: [30] detection of conjugated dienes by second derivative ultraviolet spectrophotometry publication-title: Methods Enzymol – volume: 9 start-page: 372 year: 2012 end-page: 381 ident: bb0020 article-title: Increased risk of cardiovascular disease and chronic kidney disease in NAFLD publication-title: Nat Rev Gastroenterol Hepatol – volume: 19 start-page: 136 year: 2005 end-page: 138 ident: bb0140 article-title: Nieto NJTFJ. A high-fat diet leads to the progression of non-alcoholic fatty liver disease in obese rats publication-title: FASEB J – volume: 32 start-page: 234 year: 2011 end-page: 246 ident: bb0060 article-title: Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation publication-title: Mol Aspects Med – volume: 83 start-page: 1029 year: 2013 end-page: 1041 ident: bb0135 article-title: Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease publication-title: Kidney Int – volume: 51 start-page: 568 year: 2019 end-page: 576 ident: bb0195 article-title: A statistical framework for cross-tissue transcriptome-wide association analysis publication-title: Nat Genet – volume: 52 start-page: 314 year: 2012 end-page: 327 ident: bb0065 article-title: The anthocyanin cyanidin-3-O-beta-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: involvement of a cAMP-PKA-dependent signaling pathway publication-title: Free Radic Biol Med – volume: 38 start-page: 317 year: 2006 end-page: 332 ident: bb0015 article-title: Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway publication-title: Int J Biochem Cell Biol – volume: 60 start-page: 1343 year: 2001 end-page: 1353 ident: bb0050 article-title: Nrf2-deficient female mice develop lupus-like autoimmune nephritis publication-title: Kidney Int – volume: 298 start-page: G283 year: 2010 end-page: G294 ident: bb0045 article-title: Deletion of nuclear factor-E2-related factor-2 leads to rapid onset and progression of nutritional steatohepatitis in mice publication-title: Am J Physiol Gastrointest Liver Physiol – volume: 145 start-page: 490 year: 2015 end-page: 498 ident: bb0080 article-title: The green algal carotenoid siphonaxanthin inhibits adipogenesis in 3T3-L1 preadipocytes and the accumulation of lipids in white adipose tissue of KK-ay mice publication-title: J Nutr – volume: 334 start-page: 1081 year: 2011 end-page: 1086 ident: bb0115 article-title: The unfolded protein response: from stress pathway to homeostatic regulation publication-title: Science – volume: 1810 start-page: 497 year: 2011 end-page: 503 ident: bb0090 article-title: Siphonaxanthin, a marine carotenoid from green algae, effectively induces apoptosis in human leukemia (HL-60) cells publication-title: Biochim Biophys Acta – volume: 68 start-page: 149 year: 2019 end-page: 158 ident: bb0205 article-title: Inhibitory effect of carotenoids on ligand-induced lipid raft translocation of Immunoreceptors publication-title: J Oleo Sci – volume: 42 start-page: 585 year: 2005 end-page: 591 ident: bb0110 article-title: Heme oxygenase-1 levels and oxidative stress-related parameters in non-alcoholic fatty liver disease patients publication-title: J Hepatol – volume: 16 start-page: 679 year: 2002 end-page: 690 ident: bb0150 article-title: Animal models of steatohepatitis publication-title: Best Pract Res Clin Gastroenterol – volume: 92 start-page: 549 year: 2004 end-page: 555 ident: bb0190 article-title: Metabolomics: an emerging post-genomic tool for nutrition publication-title: Br J Nutr – year: 1978 ident: bb0160 article-title: Glutathione efflux from perfused rat liver and its relation to glutathione uptake by the kidney. Functions of glutathione in liver and kidney: Functions of glutathione in liver and kidney – volume: 21 start-page: 1003 year: 2010 end-page: 1013 ident: bb0125 article-title: ATF3-mediated epigenetic regulation protects against acute kidney injury publication-title: J Am Soc Nephrol – volume: 11 start-page: 191 year: 2005 end-page: 198 ident: bb0170 article-title: IKK-β links inflammation to obesity-induced insulin resistance publication-title: Nat Med – volume: 14 start-page: 47 year: 2018 end-page: 58 ident: bb0185 article-title: Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer publication-title: Redox Biol – volume: 27 start-page: 227 year: 2007 end-page: 234 ident: bb0145 article-title: Yo jyo hen shi ko, a novel Chinese herbal, prevents nonalcoholic steatohepatitis in Ob/Ob mice fed a high fat or methionine-choline-deficient diet publication-title: Liver Int – volume: 16 start-page: 44 year: 2012 end-page: 54 ident: bb0155 article-title: Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling publication-title: Cell Metab – volume: 92 start-page: 340 year: 2012 end-page: 348 ident: bb0035 article-title: Nrf2: a potential target for new therapeutics in liver disease publication-title: Clin Pharmacol Ther – volume: 34 start-page: 3305 year: 2014 end-page: 3320 ident: bb0040 article-title: Susceptibility of Nrf2-null mice to steatohepatitis and cirrhosis upon consumption of a high-fat diet is associated with oxidative stress, perturbation of the unfolded protein response, and disturbance in the expression of metabolic enzymes but not with insulin resistance publication-title: Mol Cell Biol – volume: 63 start-page: 291 year: 2014 end-page: 294 ident: bb0200 article-title: Suppressive effects of carotenoids on the antigen-induced degranulation in RBL-2H3 rat basophilic leukemia cells publication-title: J Oleo Sci – volume: 17 start-page: 1140 year: 2010 end-page: 1144 ident: bb0215 article-title: Anti-angiogenic effect of siphonaxanthin from green alga publication-title: Codium fragile Phytomedicine – volume: 44 start-page: 1267 year: 2010 end-page: 1288 ident: bb0025 article-title: Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases publication-title: Free Radic Res – volume: 57 start-page: 1446 year: 2008 end-page: 1454 ident: bb0030 article-title: Oxidative stress as a major culprit in kidney disease in diabetes publication-title: Diabetes – volume: 110 start-page: 1389 year: 2002 end-page: 1398 ident: bb0005 article-title: Orchestrating the unfolded protein response in health and disease publication-title: J Clin Invest – volume: 380 start-page: 1 year: 2013 end-page: 9 ident: bb0210 article-title: Marine algal carotenoids inhibit angiogenesis by down-regulating FGF-2-mediated intracellular signals in vascular endothelial cells publication-title: Mol Cell Biochem – volume: 21 start-page: 1003 year: 2010 ident: 10.1016/j.nutres.2020.02.001_bb0125 article-title: ATF3-mediated epigenetic regulation protects against acute kidney injury publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2009070690 – volume: 233 start-page: 303 year: 1994 ident: 10.1016/j.nutres.2020.02.001_bb0100 article-title: [30] detection of conjugated dienes by second derivative ultraviolet spectrophotometry publication-title: Methods Enzymol doi: 10.1016/S0076-6879(94)33033-6 – volume: 140 start-page: 900 year: 2010 ident: 10.1016/j.nutres.2020.02.001_bb0010 article-title: Endoplasmic reticulum stress and the inflammatory basis of metabolic disease publication-title: Cell doi: 10.1016/j.cell.2010.02.034 – volume: 9 start-page: 910 year: 2018 ident: 10.1016/j.nutres.2020.02.001_bb0120 article-title: Loss of ATF3 exacerbates liver damage through the activation of mTOR/p70S6K/ HIF-1alpha signaling pathway in liver inflammatory injury publication-title: Cell Death Dis doi: 10.1038/s41419-018-0894-1 – volume: 11 start-page: 191 year: 2005 ident: 10.1016/j.nutres.2020.02.001_bb0170 article-title: IKK-β links inflammation to obesity-induced insulin resistance publication-title: Nat Med doi: 10.1038/nm1185 – volume: 16 start-page: 679 year: 2002 ident: 10.1016/j.nutres.2020.02.001_bb0150 article-title: Animal models of steatohepatitis publication-title: Best Pract Res Clin Gastroenterol doi: 10.1053/bega.2002.0332 – volume: 14 start-page: 47 year: 2018 ident: 10.1016/j.nutres.2020.02.001_bb0185 article-title: Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer publication-title: Redox Biol doi: 10.1016/j.redox.2017.08.009 – volume: 110 start-page: 1389 year: 2002 ident: 10.1016/j.nutres.2020.02.001_bb0005 article-title: Orchestrating the unfolded protein response in health and disease publication-title: J Clin Invest doi: 10.1172/JCI0216886 – volume: 92 start-page: 549 year: 2004 ident: 10.1016/j.nutres.2020.02.001_bb0190 article-title: Metabolomics: an emerging post-genomic tool for nutrition publication-title: Br J Nutr doi: 10.1079/BJN20041243 – volume: 36 start-page: 603 year: 2016 ident: 10.1016/j.nutres.2020.02.001_bb0095 article-title: Time-restricted feeding reduces adiposity in mice fed a high-fat diet publication-title: Nutr Res doi: 10.1016/j.nutres.2016.02.005 – volume: 1810 start-page: 497 year: 2011 ident: 10.1016/j.nutres.2020.02.001_bb0090 article-title: Siphonaxanthin, a marine carotenoid from green algae, effectively induces apoptosis in human leukemia (HL-60) cells publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagen.2011.02.008 – volume: 9 start-page: 372 year: 2012 ident: 10.1016/j.nutres.2020.02.001_bb0020 article-title: Increased risk of cardiovascular disease and chronic kidney disease in NAFLD publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/nrgastro.2012.79 – volume: 83 start-page: 1029 year: 2013 ident: 10.1016/j.nutres.2020.02.001_bb0135 article-title: Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease publication-title: Kidney Int doi: 10.1038/ki.2012.439 – volume: 52 start-page: 314 year: 2012 ident: 10.1016/j.nutres.2020.02.001_bb0065 article-title: The anthocyanin cyanidin-3-O-beta-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: involvement of a cAMP-PKA-dependent signaling pathway publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2011.10.483 – volume: 298 start-page: G283 year: 2010 ident: 10.1016/j.nutres.2020.02.001_bb0045 article-title: Deletion of nuclear factor-E2-related factor-2 leads to rapid onset and progression of nutritional steatohepatitis in mice publication-title: Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00296.2009 – volume: 107 start-page: 9765 year: 2010 ident: 10.1016/j.nutres.2020.02.001_bb0175 article-title: Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in Ob/Ob mice publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0908771107 – volume: 60 start-page: 1343 year: 2001 ident: 10.1016/j.nutres.2020.02.001_bb0050 article-title: Nrf2-deficient female mice develop lupus-like autoimmune nephritis publication-title: Kidney Int doi: 10.1046/j.1523-1755.2001.00939.x – volume: 12 start-page: 3660 year: 2014 ident: 10.1016/j.nutres.2020.02.001_bb0075 article-title: Siphonaxanthin, a green algal carotenoid, as a novel functional compound publication-title: Mar Drugs doi: 10.3390/md12063660 – volume: 34 start-page: 3305 year: 2014 ident: 10.1016/j.nutres.2020.02.001_bb0040 publication-title: Mol Cell Biol doi: 10.1128/MCB.00677-14 – volume: 17 start-page: 1140 year: 2010 ident: 10.1016/j.nutres.2020.02.001_bb0215 article-title: Anti-angiogenic effect of siphonaxanthin from green alga publication-title: Codium fragile Phytomedicine doi: 10.1016/j.phymed.2010.05.005 – volume: 27 start-page: 227 year: 2007 ident: 10.1016/j.nutres.2020.02.001_bb0145 article-title: Yo jyo hen shi ko, a novel Chinese herbal, prevents nonalcoholic steatohepatitis in Ob/Ob mice fed a high fat or methionine-choline-deficient diet publication-title: Liver Int doi: 10.1111/j.1478-3231.2006.01405.x – volume: 68 start-page: 149 year: 2019 ident: 10.1016/j.nutres.2020.02.001_bb0205 article-title: Inhibitory effect of carotenoids on ligand-induced lipid raft translocation of Immunoreceptors publication-title: J Oleo Sci doi: 10.5650/jos.ess18204 – volume: 53 start-page: 41 year: 2018 ident: 10.1016/j.nutres.2020.02.001_bb0085 article-title: Siphonaxanthin, a carotenoid from green algae, inhibits lipogenesis in hepatocytes via the suppression of liver X receptor alpha activity publication-title: Lipids doi: 10.1002/lipd.12002 – volume: 19 start-page: 136 year: 2005 ident: 10.1016/j.nutres.2020.02.001_bb0140 article-title: Nieto NJTFJ. A high-fat diet leads to the progression of non-alcoholic fatty liver disease in obese rats publication-title: FASEB J doi: 10.1096/fj.04-2291fje – year: 1978 ident: 10.1016/j.nutres.2020.02.001_bb0160 – volume: 8 start-page: 480 year: 2017 ident: 10.1016/j.nutres.2020.02.001_bb0180 article-title: Fas cell surface death receptor controls hepatic lipid metabolism by regulating mitochondrial function publication-title: Nat Commun doi: 10.1038/s41467-017-00566-9 – volume: 136 start-page: 136 year: 2017 ident: 10.1016/j.nutres.2020.02.001_bb0105 article-title: Apigenin, a modulator of PPARgamma, attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2017.04.014 – volume: 22 start-page: 393 year: 2011 ident: 10.1016/j.nutres.2020.02.001_bb0070 article-title: Green tea extract attenuates hepatic steatosis by decreasing adipose lipogenesis and enhancing hepatic antioxidant defenses in Ob/Ob mice publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2010.03.009 – volume: 38 start-page: 317 year: 2006 ident: 10.1016/j.nutres.2020.02.001_bb0015 article-title: Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2005.09.018 – volume: 44 start-page: 1267 year: 2010 ident: 10.1016/j.nutres.2020.02.001_bb0025 article-title: Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases publication-title: Free Radic Res doi: 10.3109/10715762.2010.507670 – volume: 16 start-page: 44 year: 2012 ident: 10.1016/j.nutres.2020.02.001_bb0155 article-title: Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling publication-title: Cell Metab doi: 10.1016/j.cmet.2012.05.012 – volume: 63 start-page: 291 year: 2014 ident: 10.1016/j.nutres.2020.02.001_bb0200 article-title: Suppressive effects of carotenoids on the antigen-induced degranulation in RBL-2H3 rat basophilic leukemia cells publication-title: J Oleo Sci doi: 10.5650/jos.ess13169 – volume: 92 start-page: 340 year: 2012 ident: 10.1016/j.nutres.2020.02.001_bb0035 article-title: Nrf2: a potential target for new therapeutics in liver disease publication-title: Clin Pharmacol Ther doi: 10.1038/clpt.2012.110 – volume: 13 start-page: 1159 year: 2008 ident: 10.1016/j.nutres.2020.02.001_bb0055 article-title: Hyperglycemia induces oxidative and nitrosative stress and increases renal functional impairment in Nrf2-deficient mice publication-title: Genes Cells doi: 10.1111/j.1365-2443.2008.01234.x – volume: 380 start-page: 1 year: 2013 ident: 10.1016/j.nutres.2020.02.001_bb0210 article-title: Marine algal carotenoids inhibit angiogenesis by down-regulating FGF-2-mediated intracellular signals in vascular endothelial cells publication-title: Mol Cell Biochem doi: 10.1007/s11010-013-1651-5 – volume: 334 start-page: 1081 year: 2011 ident: 10.1016/j.nutres.2020.02.001_bb0115 article-title: The unfolded protein response: from stress pathway to homeostatic regulation publication-title: Science doi: 10.1126/science.1209038 – ident: 10.1016/j.nutres.2020.02.001_bb0130 doi: 10.1681/ASN.V134991 – volume: 32 start-page: 234 year: 2011 ident: 10.1016/j.nutres.2020.02.001_bb0060 article-title: Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation publication-title: Mol Aspects Med doi: 10.1016/j.mam.2011.10.006 – volume: 42 start-page: 585 year: 2005 ident: 10.1016/j.nutres.2020.02.001_bb0110 article-title: Heme oxygenase-1 levels and oxidative stress-related parameters in non-alcoholic fatty liver disease patients publication-title: J Hepatol doi: 10.1016/j.jhep.2004.11.040 – volume: 145 start-page: 490 year: 2015 ident: 10.1016/j.nutres.2020.02.001_bb0080 article-title: The green algal carotenoid siphonaxanthin inhibits adipogenesis in 3T3-L1 preadipocytes and the accumulation of lipids in white adipose tissue of KK-ay mice publication-title: J Nutr doi: 10.3945/jn.114.200931 – volume: 57 start-page: 1446 year: 2008 ident: 10.1016/j.nutres.2020.02.001_bb0030 article-title: Oxidative stress as a major culprit in kidney disease in diabetes publication-title: Diabetes doi: 10.2337/db08-0057 – volume: 51 start-page: 568 year: 2019 ident: 10.1016/j.nutres.2020.02.001_bb0195 article-title: A statistical framework for cross-tissue transcriptome-wide association analysis publication-title: Nat Genet doi: 10.1038/s41588-019-0345-7 – volume: 34 start-page: 74 year: 1988 ident: 10.1016/j.nutres.2020.02.001_bb0165 article-title: Glutathione uptake and protection against oxidative injury in isolated kidney cells publication-title: Kidney Int doi: 10.1038/ki.1988.147 |
SSID | ssj0017133 |
Score | 2.3741329 |
Snippet | Oxidative stress is implicated in the pathogenesis of many diseases including obesity, non-alcoholic fatty liver disease, and diabetes mellitus. Previously, we... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 29 |
SubjectTerms | adiposity alanine transaminase animal disease models antioxidant activity antioxidant genes antioxidants beta oxidation blood glucose Carotenoid carotenoids Codium diabetes mellitus Endothelium reticulum stress fatty liver gene expression high fat diet human cell lines kidneys lipid peroxidation lipids lipogenesis lipotoxicity liver mice Non-alcoholic fatty liver diseases Obesity Oxidative stress pathogenesis protein degradation |
Title | Siphonaxanthin, a carotenoid from green algae Codium cylindricum, protects Ob/Ob mice fed on a high-fat diet against lipotoxicity by ameliorating somatic stresses and restoring anti-oxidative capacity |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0271531719304063 https://dx.doi.org/10.1016/j.nutres.2020.02.001 https://www.ncbi.nlm.nih.gov/pubmed/32315893 https://www.proquest.com/docview/2393655354 https://www.proquest.com/docview/2400475396 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0739 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017133 issn: 0271-5317 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0739 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017133 issn: 0271-5317 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-0739 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017133 issn: 0271-5317 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0739 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017133 issn: 0271-5317 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0739 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017133 issn: 0271-5317 databaseCode: AKRWK dateStart: 19810101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5V5cIFQcsjPKpBQpxqEj_WXh-jQBVASg-lUm_WPsuixI4aR2ou_D5-FjNrOxKHUsTR9o61scez32y--Yaxd7Kgt1rYKJFaYIJikkhmqYpyZ1PMiHiubSDILvL5Zfblil8dsNlQC0O0yj72dzE9ROv-zLh_muO19-MLTKjwc40LhCDoiTkpfpL6F_r0h597mkdMSVjYZyniiEYP5XOB41VvqSADs8Rk0il3xnctT3fBz7AMnT1mj3r8CNNuik_Yga2P2PG0xtx5tYP3EBidYav8iI0-etviuV77cwmLQXr_mP268MRKl7f4ZL_7-hQkUAcfRNCNN0BFJ3BNlBygWg8Ls8b47Qr0Dm9laM9wdQq9xMMGztX4XAH1tQdnDTRoBCSDHDnZgqE5yGvpEYfC0q-btrn1GrE_qB3IlV364IT1NWyaIB8LXfmK3YCsDdyEzjd0GSfqI7Q1QaocZ4vZPt7mKbs8-_RtNo_6rg6R5ly0kdM24YobhFKlSJxABFVKQlGls0JIK4VVZcZVoYtJoQoX60QYF_phW5c5lT5jh3VT2xcMJkILroVWTuaZVhkhDsmNjA2XicrkiKXDy6x0L3lOnTeW1cBt-1F1LlCRC1SThCh-Ixbtrdad5Mc94_ngJ9VQzooBuMI16R67Ym_3h8v_g-XbwR0rjAb0F4-sbbPFQWmZ5pynPPvLGArbmKWW-Yg973x5_ztThPscIezL_57bK_aQjjpO6Gt22N5s7RvEba06CR_mCXsw_fx1vvgNmbRH5w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6V9AAXBC2P8BwkxKlWEtvrxzEKVCkt6aGt1Ju1z3RRYkeNIzX_kJ_FzNqOxKEUcfXurMb2ePab9TczjH0WKb3V1AShUBkGKDoMRBzJILEmwoiIJ8p4guwsmV7F36_59R6bdLkwRKtsfX_j0723bq8M2qc5WDk3uMCACj_XUYoQBC0xiR6x_ZijT-6x_fHJ6XS2-5lAcZg_aklHAQl0GXSe5lVuKCcDA8Vw2BTvHN23Q92HQP1OdPyMPW0hJIwbLZ-zPVMesMNxieHzcgtfwJM6_Wn5Aet_dabGa235zwXMuur7h-zXhSNiurjDh3vjyiMQQE18EERXTgPlncCcWDlA6R4GJpV2myWoLS6l6dhweQRtlYc1nMvBuQRqbQ_WaKhQCKgScmBFDZp0EHPhEIrCwq2qurpzCuE_yC2IpVk4b4flHNaVryALTQaLWYMoNdz65jc0jIq6AGW1r1aO2mLAj8u8YFfH3y4n06Bt7BAozrM6sMqEXHKNaCrPQpshiMoFAancmiwTRmRG5jGXqUqHqUztSIWZtr4ltrGxldFL1iur0rxmMMxUxlWmpBVJrGRMoENwLUaai1DGos-i7mUWqq16Ts03FkVHb_tZNCZQkAkUw5BYfn0W7KRWTdWPB-bzzk6KLqMVfXCB29IDculO7g-r_wfJT505FugQ6C-PKE21wUlRHiWcRzz-yxzy3Bio5kmfvWpseXefESJ-jij2zX_r9pE9nl7-OCvOTmanb9kTGmkoou9Yr77dmPcI42r5of1MfwOLzkqS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Siphonaxanthin%2C+a+carotenoid+from+green+algae+Codium+cylindricum%2C+protects+Ob%2FOb+mice+fed+on+a+high-fat+diet+against+lipotoxicity+by+ameliorating+somatic+stresses+and+restoring+anti-oxidative+capacity&rft.jtitle=Nutrition+research+%28New+York%2C+N.Y.%29&rft.au=Zheng%2C+Jiawen&rft.au=Manabe%2C+Yuki&rft.au=Sugawara%2C+Tatsuya&rft.date=2020-05-01&rft.issn=0271-5317&rft.volume=77&rft.spage=29&rft.epage=42&rft_id=info:doi/10.1016%2Fj.nutres.2020.02.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nutres_2020_02_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-5317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-5317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-5317&client=summon |