In vivo measurement of breast tissues stiffness using a light aspiration device

•The Vlastic device is used to measure the Young’s modulus of a material composed of two layers.•This study uses this device to obtain in vivo in situ Young’s modulus of skin and fibroglandular breast tissue in volunteers.•The results obtained will allow a study on a larger number of volunteers. Thi...

Full description

Saved in:
Bibliographic Details
Published inClinical biomechanics (Bristol) Vol. 99; p. 105743
Main Authors Briot, N., Chagnon, G., Connesson, N., Payan, Y.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2022
Elsevier
Subjects
Online AccessGet full text
ISSN0268-0033
1879-1271
1879-1271
DOI10.1016/j.clinbiomech.2022.105743

Cover

Abstract •The Vlastic device is used to measure the Young’s modulus of a material composed of two layers.•This study uses this device to obtain in vivo in situ Young’s modulus of skin and fibroglandular breast tissue in volunteers.•The results obtained will allow a study on a larger number of volunteers. This paper addresses the question of the in vivo measurement of breast tissue stiffness, which has been poorly adressed until now, except for elastography imaging which has shown promising results but which is still difficult for clinicians to use on a day-to-day basis. Estimating subject-specific tissue stiffness is indeed a critical area of research due to the development of a large number of Finite Element (FE) breast models for various medical applications. This paper proposes to use an original aspiration device, put into contact with breast surface, and to estimate tissue stiffness using an inverse analysis of the aspiration experiment. The method assumes that breast tissue is composed of a bilayered structure made of fatty and fribroglandular tissues (lower layer) superimposed with the skin (upper layer). Young moduli of both layers are therefore estimated based on repeating low intensity suction tests (<40 mbar) of breast tissues using cups of 7 different diameters. Seven volunteers were involved in this pilot study with average Young moduli of 56.3 kPa  ± 16.4 and 3.04 kPa  ± 1.17 respectively for the skin and the fatty and fibroglandular tissue. The measurements were carried out in a reasonable time scale (<60 min in total) without any discomfort perceived by the participants. These encouraging results should be confirmed in a clinical study that will include a much larger number of volunteers and patients.
AbstractList Background: This paper addresses the question of the in vivo measurement of breast tissue stiffness, which has been poorly adressed until now, except for elastography imaging which has shown promising results but which is still difficult for clinicians to use on a day-today basis. Estimating subject-specific tissue stiffness is indeed a critical area of research due to the development of a large number of Finite Element (FE) breast models for various medical applications. Methods: This paper proposes to use an original aspiration device, put into contact with breast surface, and to estimate tissue stiffness using an inverse analysis of the aspiration experiment. The method assumes that breast tissue is composed of a bilayered structure made of fatty and fribroglandular tissues (lower layer) superimposed with the skin (upper layer). Young moduli of both layers are therefore estimated based on 20 repeating low intensity suction tests (< 40mbar) of breast tissues using cups of 7 different diameters. Findings: Seven volunteers were involved in this pilot study with average Young moduli of 56.3 kPa ±16.4 and 3.04 kPa ±1.17 respectively for the skin and the fatty and fibroglandular tissue. The measurements were carried out in a reasonable time scale (< 60min in total) without any discomfort perceived by the participants. These encouraging results should be confirmed in a clinical study that will include a much larger number of volunteers and patients.
Highlights•The Vlastic device is used to measure the Young’s modulus of a material composed of two layers. •This study uses this device to obtain in vivo in situ Young’s modulus of skin and fibroglandular breast tissue in volunteers. •The results obtained will allow a study on a larger number of volunteers.
This paper addresses the question of the in vivo measurement of breast tissue stiffness, which has been poorly adressed until now, except for elastography imaging which has shown promising results but which is still difficult for clinicians to use on a day-to-day basis. Estimating subject-specific tissue stiffness is indeed a critical area of research due to the development of a large number of Finite Element (FE) breast models for various medical applications.BACKGROUNDThis paper addresses the question of the in vivo measurement of breast tissue stiffness, which has been poorly adressed until now, except for elastography imaging which has shown promising results but which is still difficult for clinicians to use on a day-to-day basis. Estimating subject-specific tissue stiffness is indeed a critical area of research due to the development of a large number of Finite Element (FE) breast models for various medical applications.This paper proposes to use an original aspiration device, put into contact with breast surface, and to estimate tissue stiffness using an inverse analysis of the aspiration experiment. The method assumes that breast tissue is composed of a bilayered structure made of fatty and fribroglandular tissues (lower layer) superimposed with the skin (upper layer). Young moduli of both layers are therefore estimated based on repeating low intensity suction tests (<40 mbar) of breast tissues using cups of 7 different diameters.METHODSThis paper proposes to use an original aspiration device, put into contact with breast surface, and to estimate tissue stiffness using an inverse analysis of the aspiration experiment. The method assumes that breast tissue is composed of a bilayered structure made of fatty and fribroglandular tissues (lower layer) superimposed with the skin (upper layer). Young moduli of both layers are therefore estimated based on repeating low intensity suction tests (<40 mbar) of breast tissues using cups of 7 different diameters.Seven volunteers were involved in this pilot study with average Young moduli of 56.3 kPa ± 16.4 and 3.04 kPa ± 1.17 respectively for the skin and the fatty and fibroglandular tissue. The measurements were carried out in a reasonable time scale (<60 min in total) without any discomfort perceived by the participants. These encouraging results should be confirmed in a clinical study that will include a much larger number of volunteers and patients.FINDINGSSeven volunteers were involved in this pilot study with average Young moduli of 56.3 kPa ± 16.4 and 3.04 kPa ± 1.17 respectively for the skin and the fatty and fibroglandular tissue. The measurements were carried out in a reasonable time scale (<60 min in total) without any discomfort perceived by the participants. These encouraging results should be confirmed in a clinical study that will include a much larger number of volunteers and patients.
•The Vlastic device is used to measure the Young’s modulus of a material composed of two layers.•This study uses this device to obtain in vivo in situ Young’s modulus of skin and fibroglandular breast tissue in volunteers.•The results obtained will allow a study on a larger number of volunteers. This paper addresses the question of the in vivo measurement of breast tissue stiffness, which has been poorly adressed until now, except for elastography imaging which has shown promising results but which is still difficult for clinicians to use on a day-to-day basis. Estimating subject-specific tissue stiffness is indeed a critical area of research due to the development of a large number of Finite Element (FE) breast models for various medical applications. This paper proposes to use an original aspiration device, put into contact with breast surface, and to estimate tissue stiffness using an inverse analysis of the aspiration experiment. The method assumes that breast tissue is composed of a bilayered structure made of fatty and fribroglandular tissues (lower layer) superimposed with the skin (upper layer). Young moduli of both layers are therefore estimated based on repeating low intensity suction tests (<40 mbar) of breast tissues using cups of 7 different diameters. Seven volunteers were involved in this pilot study with average Young moduli of 56.3 kPa  ± 16.4 and 3.04 kPa  ± 1.17 respectively for the skin and the fatty and fibroglandular tissue. The measurements were carried out in a reasonable time scale (<60 min in total) without any discomfort perceived by the participants. These encouraging results should be confirmed in a clinical study that will include a much larger number of volunteers and patients.
ArticleNumber 105743
Author Connesson, N.
Payan, Y.
Briot, N.
Chagnon, G.
Author_xml – sequence: 1
  givenname: N.
  surname: Briot
  fullname: Briot, N.
  email: noemie.briot@univ-grenoble-alpes.fr
– sequence: 2
  givenname: G.
  surname: Chagnon
  fullname: Chagnon, G.
– sequence: 3
  givenname: N.
  surname: Connesson
  fullname: Connesson, N.
– sequence: 4
  givenname: Y.
  surname: Payan
  fullname: Payan, Y.
BackLink https://hal.science/hal-03787504$$DView record in HAL
BookMark eNqNkc1q3DAUhUVJoZOfd1B37cJT_dmyNy1DSJvAQBZp1kKWrzOa2tJUkg15-8pxKaVQyErocs6H9N1zdOa8A4TeU7KlhFafjlszWNdaP4I5bBlhLM9LKfgbtKG1bArKJD1DG8KquiCE83foPMYjIUSwUm7Q_Z3Ds509HkHHKcAILmHf4zbke8LJxjhBxDHZvncQI56idU9Y48E-HRLW8WSDTtY73MFsDVyit70eIlz9Pi_Q49eb79e3xf7-2931bl-YsqxT0RsCWnDDKSWy70DQtjPQ1Rwk55XgUImmAcbatiGiN7QkQhjGDOim033Z8Av0ceUe9KBOwY46PCuvrbrd7dUyI1zWMtdmmrMf1uwp-J_5N0mNNhoYBu3AT1FlQ4I3tKqrHG3WqAk-xgD9HzYlahGujuov4WoRrlbhufvln66x6cVNCtoOryJ8XgmQzc0WwkvSGj38gGeIRz8Fl6UqqiJTRD0sS112yhghVPIyA3b_B6jO21c84hfHS7rB
CitedBy_id crossref_primary_10_1007_s11604_024_01708_y
crossref_primary_10_1016_j_clinbiomech_2024_106216
crossref_primary_10_1007_s00455_024_10780_5
crossref_primary_10_1002_ca_24134
crossref_primary_10_3390_gels8120821
crossref_primary_10_1016_j_jmbbm_2023_105708
Cites_doi 10.1016/j.mri.2004.11.060
10.1007/s11548-019-01997-z
10.1016/j.acra.2008.07.017
10.1142/S0219519418500379
10.1016/j.cma.2016.08.024
10.1097/01.RLI.0000059544.18910.BD
10.1016/j.jbiomech.2003.12.032
10.1016/j.jbiomech.2005.07.005
10.1088/0031-9155/54/8/020
10.1007/s11340-018-00440-9
10.1007/s11548-021-02452-8
10.1007/s10439-013-0962-8
10.3233/THC-2007-15404
10.1016/j.jbiomech.2020.110147
10.1016/j.medengphy.2005.07.001
10.1039/TF9433900241
10.1371/journal.pone.0159766
10.1098/rsfs.2019.0034
10.1097/01.rli.0000166940.72971.4a
10.1002/nbm.3932
10.1016/j.jmbbm.2019.07.001
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7X8
1XC
VOOES
DOI 10.1016/j.clinbiomech.2022.105743
DatabaseName CrossRef
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1879-1271
EndPage 105743
ExternalDocumentID oai_HAL_hal_03787504v1
10_1016_j_clinbiomech_2022_105743
1_s2_0_S0268003322001735
S0268003322001735
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6PF
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
H~9
IHE
J1W
KOM
M29
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OVD
OZT
P-8
P-9
P2P
PC.
Q38
QZG
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
TEORI
UAP
UPT
WH7
WUQ
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
YCJ
AAYXX
AGRNS
CITATION
7X8
ACLOT
EFLBG
~HD
1XC
VOOES
ID FETCH-LOGICAL-c558t-fc0ea43c31107fde41bdced83e733643e6499e22bb904fc15044c22cea9daf593
ISSN 0268-0033
1879-1271
IngestDate Sun Sep 28 07:53:31 EDT 2025
Sun Sep 28 00:08:01 EDT 2025
Tue Jul 01 01:24:40 EDT 2025
Thu Apr 24 23:05:39 EDT 2025
Tue Feb 25 19:54:42 EST 2025
Tue Aug 26 16:34:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Young modulus
Breast
In vivo stiffness estimation
Bilayer structure
Vlastic aspiration device
bilayer structure
in vivo stiffness estimation
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c558t-fc0ea43c31107fde41bdced83e733643e6499e22bb904fc15044c22cea9daf593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9386-7046
0000-0002-2945-4263
0000-0002-6012-4123
OpenAccessLink https://hal.science/hal-03787504
PQID 2714391686
PQPubID 23479
PageCount 1
ParticipantIDs hal_primary_oai_HAL_hal_03787504v1
proquest_miscellaneous_2714391686
crossref_primary_10_1016_j_clinbiomech_2022_105743
crossref_citationtrail_10_1016_j_clinbiomech_2022_105743
elsevier_clinicalkeyesjournals_1_s2_0_S0268003322001735
elsevier_clinicalkey_doi_10_1016_j_clinbiomech_2022_105743
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Clinical biomechanics (Bristol)
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Chung, Rajagopal, Nielsen, Nash (b0015) 2008
Rajagopal, Lee, Chung, Warren, Highnam, Nash, Nielsen (b0085) 2008; 15
Eder, Raith, Jalali, Volf, Settles, Machens, Kovacs (b0025) 2014; 42
Hendriks, Brokken, Oomens, Bader, Baaijens (b0055) 2006; 28
Elahi, Connesson, Chagnon, Payan (b0035) 2019; 59
Treloar (b0105) 1943; 39
Gefen, Margulies (b0040) 2004; 37
Vavourakis, Eiben, Hipwell, Williams, Keshtgar, Hawkes (b0110) 2016; 11
Kerdok, Ottensmeyer, Howe (b0065) 2006; 39
Kappert, Connesson, Elahi, Boonstra, Balm, van der Heijden, Payan (b0060) 2021; 114
Connesson, Briot, Rohan, Barraud, Elahi, Payan (b0020) 2022
Tagliabue, Dall’Alba, Magnabosco, Tenga, Peterlik, Fiorini (b0100) 2019; 14
Richey, Heiselman, Luo, Meszoely, Miga (b0090) 2021; 16
O’Hagan, Samani (b0075) 2009; 54
Xydeas, Siegmann, Sinkus, Krainick-Strobel, Miller, Claussen (b0120) 2005; 40
Sinkus, Tanter, Xydeas, Catheline, Bercoff, Fink (b0095) 2005; 23
Han, Hipwell, Eiben, Barratt, Modat, Ourselin, Hawkes (b0050) 2013; 33
Girard, Chagnon, Gremen, Calvez, Masri, Boutonnat, Trilling, Nottelet (b0045) 2019; 98
Babarenda Gamage, Malcolm, Maso Talou, Mıˇra, Doyle, Nielsen, Nash (b0005) 2019; 9
Elahi, Connesson, Payan (b0030) 2018; 18
Bohte, Nelissen, Runge, Holub, Lambert, de Graaf, Kolkman, Van Der Meij, Stoker, Strijkers (b0010) 2018; 31
Gefen, Dilmoney (bib121) 2007; 15
Lorenzen, Sinkus, Biesterfeldt, Adam (b0070) 2003; 38
Weis, Miga, Yankeelov (b0115) 2017; 314
Ottensmeyer (b0080) 2002
Eder (10.1016/j.clinbiomech.2022.105743_b0025) 2014; 42
Xydeas (10.1016/j.clinbiomech.2022.105743_b0120) 2005; 40
Kerdok (10.1016/j.clinbiomech.2022.105743_b0065) 2006; 39
Lorenzen (10.1016/j.clinbiomech.2022.105743_b0070) 2003; 38
Kappert (10.1016/j.clinbiomech.2022.105743_b0060) 2021; 114
Chung (10.1016/j.clinbiomech.2022.105743_b0015) 2008
Babarenda Gamage (10.1016/j.clinbiomech.2022.105743_b0005) 2019; 9
Hendriks (10.1016/j.clinbiomech.2022.105743_b0055) 2006; 28
Connesson (10.1016/j.clinbiomech.2022.105743_b0020) 2022
O’Hagan (10.1016/j.clinbiomech.2022.105743_b0075) 2009; 54
Tagliabue (10.1016/j.clinbiomech.2022.105743_b0100) 2019; 14
Gefen (10.1016/j.clinbiomech.2022.105743_bib121) 2007; 15
Han (10.1016/j.clinbiomech.2022.105743_b0050) 2013; 33
Ottensmeyer (10.1016/j.clinbiomech.2022.105743_b0080) 2002
Elahi (10.1016/j.clinbiomech.2022.105743_b0035) 2019; 59
Weis (10.1016/j.clinbiomech.2022.105743_b0115) 2017; 314
Rajagopal (10.1016/j.clinbiomech.2022.105743_b0085) 2008; 15
Elahi (10.1016/j.clinbiomech.2022.105743_b0030) 2018; 18
Gefen (10.1016/j.clinbiomech.2022.105743_b0040) 2004; 37
Bohte (10.1016/j.clinbiomech.2022.105743_b0010) 2018; 31
Sinkus (10.1016/j.clinbiomech.2022.105743_b0095) 2005; 23
Treloar (10.1016/j.clinbiomech.2022.105743_b0105) 1943; 39
Girard (10.1016/j.clinbiomech.2022.105743_b0045) 2019; 98
Richey (10.1016/j.clinbiomech.2022.105743_b0090) 2021; 16
Vavourakis (10.1016/j.clinbiomech.2022.105743_b0110) 2016; 11
References_xml – volume: 54
  start-page: 2557
  year: 2009
  ident: b0075
  article-title: Measurement of the hyperelastic properties of 44 pathological ex vivo breast tissue samples
  publication-title: Phys. Med. Biol.
– volume: 15
  start-page: 259
  year: 2007
  end-page: 271
  ident: bib121
  article-title: Mechanics of the normal woman’s breast
  publication-title: Technology and Health Care
– volume: 39
  start-page: 2221
  year: 2006
  end-page: 2231
  ident: b0065
  article-title: Effects of perfusion on the viscoelastic characteristics of liver
  publication-title: J. Biomech.
– volume: 98
  start-page: 291
  year: 2019
  end-page: 300
  ident: b0045
  article-title: Biomechanical behaviour of human bile duct wall and impact of cadaveric preservation processes
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 11
  year: 2016
  ident: b0110
  article-title: Multiscale mechano-biological finite element modelling of oncoplastic breast surgery—numerical study towards surgical planning and cosmetic outcome prediction
  publication-title: PloS one
– year: 2022
  ident: b0020
  article-title: Bi-layer stiffness identification of soft tissues by aspiration (https://hal.archives-ouvertes.fr/hal-03718672)
  publication-title: Exp. Mech.
– volume: 28
  start-page: 259
  year: 2006
  end-page: 266
  ident: b0055
  article-title: The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments
  publication-title: Med. Eng. Phys.
– start-page: 758
  year: 2008
  end-page: 765
  ident: b0015
  article-title: Modelling mammographic compression of the breast
  publication-title: International conference on medical image computing and computer-assisted intervention
– volume: 38
  start-page: 236
  year: 2003
  end-page: 240
  ident: b0070
  article-title: Menstrual-cycle dependence of breast parenchyma elasticity: estimation with magnetic resonance elastography of breast tissue during the menstrual cycle
  publication-title: Invest. Radiol.
– volume: 40
  start-page: 412
  year: 2005
  end-page: 420
  ident: b0120
  article-title: Magnetic resonance elastography of the breast: correlation of signal intensity data with viscoelastic properties
  publication-title: Invest. Radiol.
– volume: 37
  start-page: 1339
  year: 2004
  end-page: 1352
  ident: b0040
  article-title: Are in vivo and in situ brain tissues mechanically similar?
  publication-title: J. Biomech.
– volume: 59
  start-page: 251
  year: 2019
  end-page: 261
  ident: b0035
  article-title: In-vivo soft tissues mechanical characterization: volume-based aspiration method validated on silicones
  publication-title: Exp. Mech.
– volume: 33
  start-page: 682
  year: 2013
  end-page: 694
  ident: b0050
  article-title: A nonlinear biomechanical model based registration method for aligning prone and supine mr breast images
  publication-title: IEEE Trans. Med. Imaging
– volume: 114
  year: 2021
  ident: b0060
  article-title: In-vivo tongue stiffness measured by aspiration: Resting vs general anesthesia
  publication-title: J. Biomech.
– volume: 15
  start-page: 1425
  year: 2008
  end-page: 1436
  ident: b0085
  article-title: Creating individual-specific biomechanical models of the breast for medical image analysis
  publication-title: Acad. Radiol.
– volume: 23
  start-page: 159
  year: 2005
  end-page: 165
  ident: b0095
  article-title: Viscoelastic shear properties of in vivo breast lesions measured by mr elastography
  publication-title: Magn. Reson. Imaging
– volume: 14
  start-page: 1329
  year: 2019
  end-page: 1339
  ident: b0100
  article-title: Position-based modeling of lesion displacement in ultrasound-guided breast biopsy
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 16
  start-page: 2055
  year: 2021
  end-page: 2066
  ident: b0090
  article-title: Impact of deformation on a supine-positioned image-guided breast surgery approach
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 31
  year: 2018
  ident: b0010
  article-title: Breast magnetic resonance elastography: a review of clinical work and future perspectives
  publication-title: NMR Biomed.
– volume: 39
  start-page: 241
  year: 1943
  end-page: 246
  ident: b0105
  article-title: The elasticity of a network of long-chain molecules—ii
  publication-title: Trans. Faraday Soc.
– volume: 9
  start-page: 20190034
  year: 2019
  ident: b0005
  article-title: An automated computational biomechanics workflow for improving breast cancer diagnosis and treatment
  publication-title: Interface Focus
– volume: 42
  start-page: 843
  year: 2014
  end-page: 857
  ident: b0025
  article-title: Comparison of different material models to simulate 3-d breast deformations using finite element analysis
  publication-title: Ann. Biomed. Eng.
– volume: 18
  start-page: 1850037
  year: 2018
  ident: b0030
  article-title: Disposable system for in-vivo mechanical characterization of soft tissues based on volume measurement
  publication-title: J. Mech. Med. Biol.
– start-page: 328
  year: 2002
  end-page: 333
  ident: b0080
  article-title: In vivo measurement of solid organ visco-elastic properties
  publication-title: Stud. Health Technol. Inform.
– volume: 314
  start-page: 494
  year: 2017
  end-page: 512
  ident: b0115
  article-title: Three-dimensional image-based mechanical modeling for predicting the response of breast cancer to neoadjuvant therapy
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 23
  start-page: 159
  issue: 2
  year: 2005
  ident: 10.1016/j.clinbiomech.2022.105743_b0095
  article-title: Viscoelastic shear properties of in vivo breast lesions measured by mr elastography
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2004.11.060
– volume: 14
  start-page: 1329
  issue: 8
  year: 2019
  ident: 10.1016/j.clinbiomech.2022.105743_b0100
  article-title: Position-based modeling of lesion displacement in ultrasound-guided breast biopsy
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-019-01997-z
– start-page: 758
  year: 2008
  ident: 10.1016/j.clinbiomech.2022.105743_b0015
  article-title: Modelling mammographic compression of the breast
– volume: 15
  start-page: 1425
  issue: 11
  year: 2008
  ident: 10.1016/j.clinbiomech.2022.105743_b0085
  article-title: Creating individual-specific biomechanical models of the breast for medical image analysis
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2008.07.017
– volume: 18
  start-page: 1850037
  issue: 04
  year: 2018
  ident: 10.1016/j.clinbiomech.2022.105743_b0030
  article-title: Disposable system for in-vivo mechanical characterization of soft tissues based on volume measurement
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519418500379
– volume: 314
  start-page: 494
  year: 2017
  ident: 10.1016/j.clinbiomech.2022.105743_b0115
  article-title: Three-dimensional image-based mechanical modeling for predicting the response of breast cancer to neoadjuvant therapy
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.08.024
– volume: 38
  start-page: 236
  issue: 4
  year: 2003
  ident: 10.1016/j.clinbiomech.2022.105743_b0070
  article-title: Menstrual-cycle dependence of breast parenchyma elasticity: estimation with magnetic resonance elastography of breast tissue during the menstrual cycle
  publication-title: Invest. Radiol.
  doi: 10.1097/01.RLI.0000059544.18910.BD
– volume: 37
  start-page: 1339
  issue: 9
  year: 2004
  ident: 10.1016/j.clinbiomech.2022.105743_b0040
  article-title: Are in vivo and in situ brain tissues mechanically similar?
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2003.12.032
– volume: 39
  start-page: 2221
  issue: 12
  year: 2006
  ident: 10.1016/j.clinbiomech.2022.105743_b0065
  article-title: Effects of perfusion on the viscoelastic characteristics of liver
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.07.005
– volume: 54
  start-page: 2557
  issue: 8
  year: 2009
  ident: 10.1016/j.clinbiomech.2022.105743_b0075
  article-title: Measurement of the hyperelastic properties of 44 pathological ex vivo breast tissue samples
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/8/020
– volume: 59
  start-page: 251
  issue: 2
  year: 2019
  ident: 10.1016/j.clinbiomech.2022.105743_b0035
  article-title: In-vivo soft tissues mechanical characterization: volume-based aspiration method validated on silicones
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-018-00440-9
– volume: 16
  start-page: 2055
  issue: 11
  year: 2021
  ident: 10.1016/j.clinbiomech.2022.105743_b0090
  article-title: Impact of deformation on a supine-positioned image-guided breast surgery approach
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-021-02452-8
– volume: 42
  start-page: 843
  issue: 4
  year: 2014
  ident: 10.1016/j.clinbiomech.2022.105743_b0025
  article-title: Comparison of different material models to simulate 3-d breast deformations using finite element analysis
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-013-0962-8
– volume: 15
  start-page: 259
  year: 2007
  ident: 10.1016/j.clinbiomech.2022.105743_bib121
  article-title: Mechanics of the normal woman’s breast
  publication-title: Technology and Health Care
  doi: 10.3233/THC-2007-15404
– volume: 114
  year: 2021
  ident: 10.1016/j.clinbiomech.2022.105743_b0060
  article-title: In-vivo tongue stiffness measured by aspiration: Resting vs general anesthesia
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2020.110147
– volume: 28
  start-page: 259
  issue: 3
  year: 2006
  ident: 10.1016/j.clinbiomech.2022.105743_b0055
  article-title: The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2005.07.001
– volume: 39
  start-page: 241
  year: 1943
  ident: 10.1016/j.clinbiomech.2022.105743_b0105
  article-title: The elasticity of a network of long-chain molecules—ii
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/TF9433900241
– year: 2022
  ident: 10.1016/j.clinbiomech.2022.105743_b0020
  article-title: Bi-layer stiffness identification of soft tissues by aspiration (https://hal.archives-ouvertes.fr/hal-03718672)
  publication-title: Exp. Mech.
– volume: 11
  issue: 7
  year: 2016
  ident: 10.1016/j.clinbiomech.2022.105743_b0110
  article-title: Multiscale mechano-biological finite element modelling of oncoplastic breast surgery—numerical study towards surgical planning and cosmetic outcome prediction
  publication-title: PloS one
  doi: 10.1371/journal.pone.0159766
– volume: 9
  start-page: 20190034
  issue: 4
  year: 2019
  ident: 10.1016/j.clinbiomech.2022.105743_b0005
  article-title: An automated computational biomechanics workflow for improving breast cancer diagnosis and treatment
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2019.0034
– volume: 33
  start-page: 682
  issue: 3
  year: 2013
  ident: 10.1016/j.clinbiomech.2022.105743_b0050
  article-title: A nonlinear biomechanical model based registration method for aligning prone and supine mr breast images
  publication-title: IEEE Trans. Med. Imaging
– start-page: 328
  year: 2002
  ident: 10.1016/j.clinbiomech.2022.105743_b0080
  article-title: In vivo measurement of solid organ visco-elastic properties
  publication-title: Stud. Health Technol. Inform.
– volume: 40
  start-page: 412
  issue: 7
  year: 2005
  ident: 10.1016/j.clinbiomech.2022.105743_b0120
  article-title: Magnetic resonance elastography of the breast: correlation of signal intensity data with viscoelastic properties
  publication-title: Invest. Radiol.
  doi: 10.1097/01.rli.0000166940.72971.4a
– volume: 31
  issue: 10
  year: 2018
  ident: 10.1016/j.clinbiomech.2022.105743_b0010
  article-title: Breast magnetic resonance elastography: a review of clinical work and future perspectives
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3932
– volume: 98
  start-page: 291
  year: 2019
  ident: 10.1016/j.clinbiomech.2022.105743_b0045
  article-title: Biomechanical behaviour of human bile duct wall and impact of cadaveric preservation processes
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2019.07.001
SSID ssj0004257
Score 2.417073
Snippet •The Vlastic device is used to measure the Young’s modulus of a material composed of two layers.•This study uses this device to obtain in vivo in situ Young’s...
Highlights•The Vlastic device is used to measure the Young’s modulus of a material composed of two layers. •This study uses this device to obtain in vivo in...
This paper addresses the question of the in vivo measurement of breast tissue stiffness, which has been poorly adressed until now, except for elastography...
Background: This paper addresses the question of the in vivo measurement of breast tissue stiffness, which has been poorly adressed until now, except for...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105743
SubjectTerms Bilayer structure
Bioengineering
Biomechanics
Breast
Engineering Sciences
In vivo stiffness estimation
Life Sciences
Mechanics
Physical Medicine and Rehabilitation
Vlastic aspiration device
Young modulus
Title In vivo measurement of breast tissues stiffness using a light aspiration device
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0268003322001735
https://www.clinicalkey.es/playcontent/1-s2.0-S0268003322001735
https://www.proquest.com/docview/2714391686
https://hal.science/hal-03787504
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1271
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004257
  issn: 0268-0033
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-1271
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004257
  issn: 0268-0033
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1879-1271
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004257
  issn: 0268-0033
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1879-1271
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004257
  issn: 0268-0033
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1271
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004257
  issn: 0268-0033
  databaseCode: AKRWK
  dateStart: 19860201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokSouCFoQy0suQlyiRBvHSXa5LQjYIgoHWqmcrNixC9U2qZrsSuXAb2fGzovSiqWXaGXJ3jjzeewZfzNDyEvMcWbCJIeVBiYKbAG5PzXS-HBYNzLP4lTmGJy8_zmZH_KPR_FRTxuz0SW1DNTPK-NKbiJVaAO5YpTsf0i2GxQa4DfIF54gYXiuJeO9wlv9WJXeae_ow8OfRKJ57dX2m1YeLGJjrEZbWsdA5i3QIvcyd8mO8s_1quHAdVkL2ohJG5-P4cGYzhmOo29sMoLFwIMALWXtorYGZIHjwt3nf-gbkVNTdRFe_eXVhXPCfguGLgiwXlsyW6upWDLxsSrcUK26ukeNXsRqwi4d018q23kPTgKMBG2mFOCfBH2fP9NkX9q-OlJhy1c7EYOhBA4l3FAb5DZLkwTrXAS_eiIQb_LBtpPYIrs9C_Cat7ruFLPxHem0l3Z1e1Q5uEfuNjYGnTnA3Ce3dLFNdmZFVpenF_QVtaxfe52yTbb2G3LFDvmyV1CEEx3AiZaGOjjRBk60gxO1cKIZtXCiPZyog9MDcvj-3cHbud_U2_BVHE9q36ixznikIvQJmFzzEBaqzieRxpyZPNIJmMeaMSmnY24UmBKcK8aUzqZ5ZuJp9JBsArb0I0KlDGOVccnBuuUKTNo8lBJ2UpmYSMlQjcik_X5CNcnosSbKQvxTiiPCuq5nLiPLOp1et0ISbcgxbJICQLhO5_SqzrpqVEElQlExMRZfEUMIIYZMxTSKR-QFAKJ7TUzlPp99Etg2jmCrhC-4Ckdkt8WLAN2OF3ZZoctlJVga2sD4SfL4JpN-Qu70q_Up2azPl_oZHKFr-dyugN8IfcgA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+measurement+of+breast+tissues+stiffness+using+a+light+aspiration+device&rft.jtitle=Clinical+biomechanics+%28Bristol%29&rft.au=Briot%2C+N.&rft.au=Chagnon%2C+G.&rft.au=Connesson%2C+N.&rft.au=Payan%2C+Y.&rft.date=2022-10-01&rft.issn=0268-0033&rft.volume=99&rft.spage=105743&rft_id=info:doi/10.1016%2Fj.clinbiomech.2022.105743&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_clinbiomech_2022_105743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-0033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-0033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-0033&client=summon