The Elusive Role of Placental Macrophages: The Hofbauer Cell
In this review, we discuss the often overlooked tissue-resident fetal macrophages, Hofbauer cells, which are found within the chorionic villi of the human placenta. Hofbauer cells have been shown to have a phenotype associated with regulatory and anti-inflammatory functions. They are thought to play...
Saved in:
Published in | Journal of innate immunity Vol. 11; no. 6; pp. 447 - 456 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
S. Karger AG
01.11.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1662-811X 1662-8128 1662-8128 |
DOI | 10.1159/000497416 |
Cover
Abstract | In this review, we discuss the often overlooked tissue-resident fetal macrophages, Hofbauer cells, which are found within the chorionic villi of the human placenta. Hofbauer cells have been shown to have a phenotype associated with regulatory and anti-inflammatory functions. They are thought to play a crucial role in the regulation of pregnancy and in the maintenance of a homeostatic environment that is crucial for fetal development. Even though the numbers of these macrophages are some of the most abundant immune cells in the human placenta, which are sustained throughout pregnancy, there are very few studies that have identified their origin, their phenotype, and functions and why they are maintained throughout gestation. It is not yet understood how Hofbauer cells may change in function throughout normal pregnancy, and especially in those complicated by maternal gestational diabetes, preeclampsia, and viral infections, such as Zika, cytomegalovirus, and human immunodeficiency virus. We review what is known about the origin of these macrophages and explore how common complications of pregnancy dysregulate these cells leading to adverse birth outcomes in humans. Our synthesis sheds light on areas for human studies that can further define these innate regulatory cells. |
---|---|
AbstractList | In this review, we discuss the often overlooked tissue-resident fetal macrophages, Hofbauer cells, which are found within the chorionic villi of the human placenta. Hofbauer cells have been shown to have a phenotype associated with regulatory and anti-inflammatory functions. They are thought to play a crucial role in the regulation of pregnancy and in the maintenance of a homeostatic environment that is crucial for fetal development. Even though the numbers of these macrophages are some of the most abundant immune cells in the human placenta, which are sustained throughout pregnancy, there are very few studies that have identified their origin, their phenotype, and functions and why they are maintained throughout gestation. It is not yet understood how Hofbauer cells may change in function throughout normal pregnancy, and especially in those complicated by maternal gestational diabetes, preeclampsia, and viral infections, such as Zika, cytomegalovirus, and human immunodeficiency virus. We review what is known about the origin of these macrophages and explore how common complications of pregnancy dysregulate these cells leading to adverse birth outcomes in humans. Our synthesis sheds light on areas for human studies that can further define these innate regulatory cells. In this review, we discuss the often overlooked tissue-resident fetal macrophages, Hofbauer cells, which are found within the chorionic villi of the human placenta. Hofbauer cells have been shown to have a phenotype associated with regulatory and anti-inflammatory functions. They are thought to play a crucial role in the regulation of pregnancy and in the maintenance of a homeostatic environment that is crucial for fetal development. Even though the numbers of these macrophages are some of the most abundant immune cells in the human placenta, which are sustained throughout pregnancy, there are very few studies that have identified their origin, their phenotype, and functions and why they are maintained throughout gestation. It is not yet understood how Hofbauer cells may change in function throughout normal pregnancy, and especially in those complicated by maternal gestational diabetes, preeclampsia, and viral infections, such as Zika, cytomegalovirus, and human immunodeficiency virus. We review what is known about the origin of these macrophages and explore how common complications of pregnancy dysregulate these cells leading to adverse birth outcomes in humans. Our synthesis sheds light on areas for human studies that can further define these innate regulatory cells.In this review, we discuss the often overlooked tissue-resident fetal macrophages, Hofbauer cells, which are found within the chorionic villi of the human placenta. Hofbauer cells have been shown to have a phenotype associated with regulatory and anti-inflammatory functions. They are thought to play a crucial role in the regulation of pregnancy and in the maintenance of a homeostatic environment that is crucial for fetal development. Even though the numbers of these macrophages are some of the most abundant immune cells in the human placenta, which are sustained throughout pregnancy, there are very few studies that have identified their origin, their phenotype, and functions and why they are maintained throughout gestation. It is not yet understood how Hofbauer cells may change in function throughout normal pregnancy, and especially in those complicated by maternal gestational diabetes, preeclampsia, and viral infections, such as Zika, cytomegalovirus, and human immunodeficiency virus. We review what is known about the origin of these macrophages and explore how common complications of pregnancy dysregulate these cells leading to adverse birth outcomes in humans. Our synthesis sheds light on areas for human studies that can further define these innate regulatory cells. |
Author | Gordon, Siamon Martinez, Fernando O. Zulu, Michael Z. Gray, Clive M. |
AuthorAffiliation | a Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa b Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom c Chang Gung University, Graduate Institute of Biomedical Sciences, College of Medicine, Taoyuan City, Taiwan e National Health Laboratory Services/Groote Schuur Hospital, Cape Town, South Africa d Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom |
AuthorAffiliation_xml | – name: a Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa – name: c Chang Gung University, Graduate Institute of Biomedical Sciences, College of Medicine, Taoyuan City, Taiwan – name: b Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom – name: d Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom – name: e National Health Laboratory Services/Groote Schuur Hospital, Cape Town, South Africa |
Author_xml | – sequence: 1 givenname: Michael Z. surname: Zulu fullname: Zulu, Michael Z. – sequence: 2 givenname: Fernando O. surname: Martinez fullname: Martinez, Fernando O. – sequence: 3 givenname: Siamon surname: Gordon fullname: Gordon, Siamon – sequence: 4 givenname: Clive M. surname: Gray fullname: Gray, Clive M. email: clive.gray@uct.ac.za |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30970346$$D View this record in MEDLINE/PubMed |
BookMark | eNptkdtLHDEUxkNRqmv74LvIgC_2YWsyySQZkYIs3oq9UBR8C2eyJ7uj2ck2mRH63zvL6qDFp3Pg-53v3EZkowkNErLL6FfGivKIUipKJZj8QLaZlPlYs1xvDDm72yKjlO4plaLnPpItTktFuZDb5ORmjtmZ71L9iNmf4DELLvvtwWLTgs9-gI1hOYcZpuNshV4GV0GHMZug95_IpgOf8PNz3CG352c3k8vx9a-Lq8np9dgWhW7HUAFWCiwAOqeZcgrLkjvlZKWl1VxO83wqKl1ByaSQjlFuWe6ozgvBLS34Dvm29l121QKnq9kieLOM9QLiPxOgNm-Vpp6bWXg0UhW6FKI3OHw2iOFvh6k1izrZfgNoMHTJ5DlVJZeKqx7df91raPJysh74sgb6y6QU0Q0Io2b1DjO8o2eP_mNt3UJbh9WYtX-3Ym9d8QBxhnHwHuSDd-XvVz_XhFlOHX8Co0ygBw |
CitedBy_id | crossref_primary_10_1590_0074_02760240125 crossref_primary_10_1371_journal_ppat_1011990 crossref_primary_10_3389_fimmu_2024_1506305 crossref_primary_10_3390_nu17010025 crossref_primary_10_1016_j_devcel_2022_11_003 crossref_primary_10_3389_fimmu_2022_880286 crossref_primary_10_3390_pathogens11121410 crossref_primary_10_1016_j_envpol_2022_120174 crossref_primary_10_3389_fimmu_2020_02146 crossref_primary_10_1097_FM9_0000000000000133 crossref_primary_10_1016_j_placenta_2023_06_003 crossref_primary_10_1016_j_coi_2021_10_007 crossref_primary_10_3390_cells9040975 crossref_primary_10_14814_phy2_15741 crossref_primary_10_3389_fviro_2023_1106634 crossref_primary_10_1016_j_ebiom_2020_102951 crossref_primary_10_3390_v15091885 crossref_primary_10_1016_j_celrep_2024_114326 crossref_primary_10_1111_aji_13836 crossref_primary_10_1126_scitranslmed_adh8335 crossref_primary_10_1016_j_placenta_2024_12_004 crossref_primary_10_3389_fimmu_2021_756035 crossref_primary_10_1002_JLB_5RU1120_787RR crossref_primary_10_1080_10520295_2021_1912828 crossref_primary_10_1111_aji_13488 crossref_primary_10_1016_j_placenta_2020_10_017 crossref_primary_10_1186_s12964_024_01567_0 crossref_primary_10_1016_j_tox_2022_153206 crossref_primary_10_3390_ijerph20136298 crossref_primary_10_1038_s41467_023_42300_8 crossref_primary_10_1186_s13293_024_00652_w crossref_primary_10_1016_j_clim_2022_109215 crossref_primary_10_1172_jci_insight_172658 crossref_primary_10_3390_life15010086 crossref_primary_10_47162_RJME_65_3_01 crossref_primary_10_1111_cpr_13091 crossref_primary_10_14814_phy2_16104 crossref_primary_10_1080_19396368_2020_1753850 crossref_primary_10_1242_dev_200104 crossref_primary_10_3389_fimmu_2024_1379537 crossref_primary_10_1159_000502353 crossref_primary_10_3390_ijms22084261 crossref_primary_10_1016_j_devcel_2021_06_005 crossref_primary_10_1111_imm_13880 crossref_primary_10_1111_ahe_12644 crossref_primary_10_1371_journal_ppat_1012543 crossref_primary_10_3389_fimmu_2024_1497405 crossref_primary_10_4049_jimmunol_2300379 crossref_primary_10_5468_ogs_24247 crossref_primary_10_1159_000515202 crossref_primary_10_1093_advances_nmaa163 crossref_primary_10_3389_fimmu_2024_1384361 crossref_primary_10_4103_2519_139X_295915 crossref_primary_10_1111_cen3_12812 crossref_primary_10_1016_j_placenta_2022_11_004 crossref_primary_10_1128_mBio_01849_21 crossref_primary_10_1016_j_placenta_2021_05_010 crossref_primary_10_1159_000510316 crossref_primary_10_3389_fimmu_2022_1095879 crossref_primary_10_3390_cells13161378 crossref_primary_10_1016_j_antiviral_2020_104859 crossref_primary_10_14734_PN_2024_35_4_113 crossref_primary_10_1016_j_medj_2021_04_009 crossref_primary_10_28982_josam_900943 crossref_primary_10_3390_v12030262 crossref_primary_10_1111_aji_13383 crossref_primary_10_1007_s11428_023_01087_4 crossref_primary_10_4049_jimmunol_1901185 crossref_primary_10_5858_arpa_2021_0296_SA crossref_primary_10_3389_fcell_2021_631699 crossref_primary_10_1126_scitranslmed_abi7428 crossref_primary_10_1016_j_yexcr_2021_112715 crossref_primary_10_1093_jleuko_qiad052 crossref_primary_10_3389_fimmu_2022_837391 crossref_primary_10_3389_fmolb_2022_897228 crossref_primary_10_3390_mi12080884 crossref_primary_10_3390_pathogens10040479 |
Cites_doi | 10.1136/jcp.54.2.84 10.1016/j.placenta.2013.05.007 10.1093/humupd/6.5.485 10.1159/000240738 10.1111/j.1600-0897.2010.00927.x 10.1007/s10753-013-9621-3 10.1590/0074-02760160085 10.1186/1742-4690-9-101 10.1016/S0264-410X(98)00107-8 10.1159/000067956 10.1016/j.chom.2018.10.008 10.1089/jir.2017.0011 10.1038/jp.2008.187 10.1093/infdis/jis553 10.1016/S2352-3018(15)00207-6 10.1165/rcmb.2015-0012OC 10.1016/j.siny.2011.08.003 10.1016/j.placenta.2005.11.002 10.1099/0022-1317-72-9-2059 10.1097/00002030-199808000-00004 10.1093/humrep/des090 10.4049/jimmunol.164.12.6166 10.1007/s11892-014-0569-y 10.1086/422330 10.1016/S1473-3099(16)00095-5 10.1016/j.immuni.2016.02.024 10.4049/jimmunol.1100130 10.2350/09-03-0632-OA.1 10.4049/jimmunol.1401536 10.1007/s00404-017-4361-5 10.1128/CMR.00072-15 10.7448/IAS.18.1.19385 10.1111/j.1469-0691.2011.03574.x 10.1161/CIRCRESAHA.116.308304 10.1016/j.placenta.2015.07.170 10.1172/jci.insight.88461 10.2174/1874613601610010034 10.1038/srep35296 10.1016/j.chom.2016.05.015 10.1111/j.1365-2559.2008.02964.x 10.1099/0022-1317-77-12-3099 10.2337/diabetes.52.12.2951 10.1002/path.1700930239 10.5858/arpa.2016-0401-OA 10.1080/23120053.2016.1118838 10.1038/ni.1937 10.1016/j.it.2004.09.015 10.1093/cid/ciw878 10.1007/s11892-015-0699-x 10.2741/2692 10.1016/j.preghy.2016.04.006 10.1007/s00125-005-0054-x 10.1016/j.virol.2015.06.023 10.1016/j.ejogrb.2004.04.014 10.1128/CMR.00062-12 10.1007/BF00237612 10.1007/BF00221122 10.3389/fimmu.2015.00328 10.1371/journal.pone.0059863 10.1128/JVI.01296-17 10.3389/fimmu.2017.00888 10.1111/aji.12477 10.1016/S0143-4004(05)80415-1 10.1016/j.placenta.2014.08.004 10.1016/j.placenta.2011.02.003 10.1210/en.2012-1575 10.1089/aid.1990.6.993 10.1530/REP-16-0159 10.1189/jlb.1005586 10.1007/s11596-013-1187-7 10.1016/0140-6736(90)90349-A 10.1007/s00281-014-0449-1 10.1016/j.jri.2017.09.012 10.1371/journal.pone.0080908 10.1177/1933719109349962 10.1155/2012/985646 10.1016/j.cyto.2010.07.185 10.1186/1477-7827-1-119 10.4049/jimmunol.1300988 10.1371/journal.ppat.1000790 10.1016/j.chom.2017.04.007 10.1038/cmi.2014.46 10.1111/1471-0528.14071 10.1001/jamaophthalmol.2016.1303 10.1111/j.1699-0463.1995.tb01129.x 10.1002/jlb.50.1.57 10.1111/aji.12613 10.1016/j.bbadis.2013.07.009 10.1095/biolreprod66.2.445 10.1006/viro.1993.1383 10.3389/fimmu.2015.00486 10.1093/humrep/12.4.847 10.1002/ana.24839 10.2174/092986706777935302 10.1038/nri2448 10.1111/aji.12357 10.1002/ar.1091670211 10.1001/jama.283.9.1175 10.1007/978-3-319-54090-0_3 10.3389/fimmu.2014.00606 10.1016/j.tim.2005.02.009 10.1016/j.ajpath.2011.05.034 10.12703/P6-13 10.1111/j.1749-6632.2001.tb03798.x 10.1002/jlb.67.1.97 10.1038/nri978 10.1016/j.earlhumdev.2005.09.005 10.1097/00003081-198209000-00014 10.1016/S0143-4004(80)80005-1 10.1111/j.1749-6632.2010.05932.x 10.1126/science.aal4365 |
ContentType | Journal Article |
Copyright | 2019 The Author(s) Published by S. Karger AG, Basel 2019 The Author(s) Published by S. Karger AG, Basel. Copyright © 2019 by S. Karger AG, Basel 2019 |
Copyright_xml | – notice: 2019 The Author(s) Published by S. Karger AG, Basel – notice: 2019 The Author(s) Published by S. Karger AG, Basel. – notice: Copyright © 2019 by S. Karger AG, Basel 2019 |
DBID | M-- AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1159/000497416 |
DatabaseName | Karger Open Access Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: M-- name: Karger Open Access Journals url: https://www.karger.com/OpenAccess sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1662-8128 |
EndPage | 456 |
ExternalDocumentID | PMC6758944 30970346 10_1159_000497416 497416 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- 0~B 3O. 4.4 53G 5GY 8UI AAYIC ABDBF ABPAZ ACGFO ACGFS ACPRK ACPSR ADBBV ADFRT AENEX AEYAO AHMBA ALDHI ALIPV ALMA_UNASSIGNED_HOLDINGS AZPMC CYUIP E0A EAP EBS EJD ESX EX3 F5P FB. GROUPED_DOAJ HYE HZ~ IAO IHR IY7 KUZGX M-- M7P N9A O1H O9- OK1 P2P RKO RPM SJN UJ6 WOW 0~5 7RV 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAYXX ABBTS ABUWG ABWCG ACUHS AFJJK AFKRA AHFRZ AOIJS BBNVY BENPR BHPHI BKEYQ BPHCQ BVXVI CAG CCPQU CITATION COF FYUFA HCIFZ HMCUK ITC LK8 M1P NAPCQ PHGZM PHGZT PQQKQ PROAC PSQYO UKHRP 3V. NPM 7X8 5PM |
ID | FETCH-LOGICAL-c558t-abaeb7acaaeff817f7e993f7f6b86c836d22d4b8ba91646f103c12f082543c053 |
IEDL.DBID | M-- |
ISSN | 1662-811X 1662-8128 |
IngestDate | Thu Aug 21 18:28:00 EDT 2025 Fri Sep 05 13:02:51 EDT 2025 Wed Feb 19 02:30:43 EST 2025 Tue Jul 01 05:10:01 EDT 2025 Thu Apr 24 23:07:23 EDT 2025 Thu Aug 29 12:04:34 EDT 2024 Thu Sep 05 19:48:50 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Placenta Human immunodeficiency virus Macrophages Hofbauer cells ZIKA |
Language | English |
License | This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. https://creativecommons.org/licenses/by-nc-nd/4.0 2019 The Author(s) Published by S. Karger AG, Basel. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c558t-abaeb7acaaeff817f7e993f7f6b86c836d22d4b8ba91646f103c12f082543c053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://karger.com/doi/10.1159/000497416 |
PMID | 30970346 |
PQID | 2207936737 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | karger_primary_497416 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6758944 pubmed_primary_30970346 proquest_miscellaneous_2207936737 crossref_primary_10_1159_000497416 crossref_citationtrail_10_1159_000497416 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Switzerland – name: Allschwilerstrasse 10, P.O. Box · Postfach · Case postale, CH–4009, Basel, Switzerland · Schweiz · Suisse, Phone: +41 61 306 11 11, Fax: +41 61 306 12 34, karger@karger.ch |
PublicationTitle | Journal of innate immunity |
PublicationTitleAlternate | J Innate Immun |
PublicationYear | 2019 |
Publisher | S. Karger AG |
Publisher_xml | – name: S. Karger AG |
References | Sisino G, Bouckenooghe T, Aurientis S, Fontaine P, Storme L, Vambergue A. Diabetes during pregnancy influences Hofbauer cells, a subtype of placental macrophages, to acquire a pro-inflammatory phenotype. Biochim Biophys Acta. 2013Dec;1832(12):1959–68. 10.1016/j.bbadis.2013.07.009238725770006-3002 Moshfeghi DM, de Miranda HA2nd, CostaMC. Zika Virus, Microcephaly, and Ocular Findings. JAMA Ophthalmol. 2016Aug;134(8):945–945. 10.1001/jamaophthalmol.2016.1303272548352168-6165 Weisblum Y, Panet A, Haimov-Kochman R, Wolf DG. Models of vertical cytomegalovirus (CMV) transmission and pathogenesis. Semin Immunopathol. 2014Nov;36(6):615–25. 10.1007/s00281-014-0449-1252919721863-2297 Bright NA, Ockleford CD, Anwar M. Ontogeny and distribution of Fc gamma receptors in the human placenta. Transport or immune surveillance. J Anat. 1994Apr;184(Pt 2):297–308.80141210021-8782 Romagnani P, Annunziato F, Piccinni MP, Maggi E, Romagnani S. Th1/Th2 cells, their associated molecules and role in pathophysiology. Eur Cytokine Netw. 2000Sep;11(3):510–1.112031981148-5493 Weisblum Y, Oiknine-Djian E, Zakay-Rones Z, Vorontsov O, Haimov-Kochman R, Nevo Y, et al.. APOBEC3A Is Upregulated by Human Cytomegalovirus (HCMV) in the Maternal-Fetal Interface, Acting as an Innate Anti-HCMV Effector. J Virol. 2017Nov;91(23):e01296-17. 10.1128/JVI.01296-17289567610022-538X Jurado KA, Simoni MK, Tang Z, Uraki R, Hwang J, Householder S, et al.. Zika virus productively infects primary human placenta-specific macrophages. JCI Insight. 2016Aug;1(13):e88461. 10.1172/jci.insight.88461275951402379-3708 McDonagh S, Maidji E, Ma W, Chang HT, Fisher S, Pereira L. Viral and bacterial pathogens at the maternal-fetal interface. J Infect Dis. 2004Aug;190(4):826–34. 10.1086/422330152724120022-1899 Lum FM, Low DK, Fan Y, Tan JJ, Lee B, Chan JK, et al.. Zika Virus Infects Human Fetal Brain Microglia and Induces Inflammation. Clin Infect Dis. 2017Apr;64(7):914–20. 10.1093/cid/ciw878283629441058-4838 Gomez-Lopez N, StLouis D, Lehr MA, Sanchez-Rodriguez EN, Arenas-Hernandez M. Immune cells in term and preterm labor. Cell Mol Immunol. 2014Nov;11(6):571–81. 10.1038/cmi.2014.46249542211672-7681 Tooke L, Riemer L, Matjila M, Harrison M. Antiretrovirals causing severe pre-eclampsia. Pregnancy Hypertens. 2016Oct;6(4):266–8. 10.1016/j.preghy.2016.04.006279394652210-7789 Fox H. The incidence and significance of Hofbauer cells in the mature human placenta. J Pathol Bacteriol. 1967Apr;93(2):710–7. 10.1002/path.170093023960540690368-3494 Kharsany AB, Karim QA. HIV Infection and AIDS in Sub-Saharan Africa: Current Status, Challenges and Opportunities. Open AIDS J. 2016Apr;10(1):34–48. 10.2174/1874613601610010034273472701874-6136 Teasdale, C.A., B.J.Marais, and E.J.Abrams, HIV: prevention of mother-to-child transmission. BMJ Clin Evid, 2011. 2011. De Cock KM, Fowler MG, Mercier E, de Vincenzi I, Saba J, Hoff E, et al.. Prevention of mother-to-child HIV transmission in resource-poor countries: translating research into policy and practice. JAMA. 2000Mar;283(9):1175–82. 10.1001/jama.283.9.1175107037800098-7484 Joerink M, Rindsjö E, van Riel B, Alm J, Papadogiannakis N. Placental macrophage (Hofbauer cell) polarization is independent of maternal allergen-sensitization and presence of chorioamnionitis. Placenta. 2011May;32(5):380–5. 10.1016/j.placenta.2011.02.003214194830143-4004 Russell P. Inflammatory lesions of the human placenta. III. The histopathology of villitis of unknown aetiology. Placenta. 1980Jul-Sep;1(3):227–44. 10.1016/S0143-4004(80)80005-174436420143-4004 Hung TH, Chen SF, Hsu JJ, Hsieh CC, Hsueh S, Hsieh TT. Tumour necrosis factor-alpha converting enzyme in human gestational tissues from pregnancies complicated by chorioamnionitis. Placenta. 2006Sep-Oct;27(9-10):996–1006. 10.1016/j.placenta.2005.11.002163769860143-4004 Newell ML. Mechanisms and timing of mother-to-child transmission of HIV-1. AIDS. 1998May;12(8):831–7. 10.1097/00002030-199808000-0000496311350269-9370 Johnson EL, Chakraborty R. Placental Hofbauer cells limit HIV-1 replication and potentially offset mother to child transmission (MTCT) by induction of immunoregulatory cytokines. Retrovirology. 2012Dec;9(1):101. 10.1186/1742-4690-9-101232171371742-4690 Johnson EL, Chu H, Byrareddy SN, Spearman P, Chakraborty R. Placental Hofbauer cells assemble and sequester HIV-1 in tetraspanin-positive compartments that are accessible to broadly neutralizing antibodies. J Int AIDS Soc. 2015Jan;18(1):19385. 10.7448/IAS.18.1.19385256239301758-2652 Araújo JR, Keating E, Martel F. Impact of gestational diabetes mellitus in the maternal-to-fetal transport of nutrients. Curr Diab Rep. 2015Feb;15(2):569. 10.1007/s11892-014-0569-y256204021534-4827 Kawamura H, Takeuchi M, Sasahara J, Ishii K, Mitsuda N. Inflammatory Response in Acute Chorioamnionitis and Outcome of Very Low Birth Weight Infants. Placenta. 2015;36(10):A10–1. 10.1016/j.placenta.2015.07.1700143-4004 Svensson-Arvelund J, Mehta RB, Lindau R, Mirrasekhian E, Rodriguez-Martinez H, Berg G, et al.. The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages. J Immunol. 2015Feb;194(4):1534–44. 10.4049/jimmunol.1401536255604090022-1767 Roberts JM, et al.; American College of Obstetricians and Gynecologists; Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013Nov;122(5):1122–31.241500271873-233X Ben Amara A, Gorvel L, Baulan K, Derain-Court J, Buffat C, Vérollet C, et al.. Placental macrophages are impaired in chorioamnionitis, an infectious pathology of the placenta. J Immunol. 2013Dec;191(11):5501–14. 10.4049/jimmunol.1300988241634110022-1767 Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003Jan;3(1):23–35. 10.1038/nri978125118731474-1733 Simoni MK, Jurado KA, Abrahams VM, Fikrig E, Guller S. Zika virus infection of Hofbauer cells. Am J Reprod Immunol. 2017Feb;77(2):e12613. 10.1111/aji.12613279668151046-7408 Kliks S. Antibody-enhanced infection of monocytes as the pathogenetic mechanism for severe dengue illness. AIDS Res Hum Retroviruses. 1990Aug;6(8):993–8. 10.1089/aid.1990.6.99322232450889-2229 van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ. 1972;46(6):845–52.45385440042-9686 Selkov SA, Selutin AV, Pavlova OM, Khromov-Borisov NN, Pavlov OV. Comparative phenotypic characterization of human cord blood monocytes and placental macrophages at term. Placenta. 2013Sep;34(9):836–9. 10.1016/j.placenta.2013.05.007237738570143-4004 Arora N, Sadovsky Y, Dermody TS, Coyne CB. Microbial Vertical Transmission during Human Pregnancy. Cell Host Microbe. 2017May;21(5):561–7. 10.1016/j.chom.2017.04.007284942371931-3128 Yu J, Zhou Y, Gui J, Li AZ, Su XL, Feng L. Assessment of the number and function of macrophages in the placenta of gestational diabetes mellitus patients. J Huazhong Univ Sci Technolog Med Sci. 2013Oct;33(5):725–9. 10.1007/s11596-013-1187-7241427271672-0733 Barros MH, Hauck F, Dreyer JH, Kempkes B, Niedobitek G. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS One. 2013Nov;8(11):e80908. 10.1371/journal.pone.0080908242605071932-6203 Tang Z, Niven-Fairchild T, Tadesse S, Norwitz ER, Buhimschi CS, Buhimschi IA, et al.. Glucocorticoids enhance CD163 expression in placental Hofbauer cells. Endocrinology. 2013Jan;154(1):471–82. 10.1210/en.2012-1575231428090013-7227 Zhu Y, Zhang C. Prevalence of Gestational Diabetes and Risk of Progression to Type 2 Diabetes: a Global Perspective. Curr Diab Rep. 2016Jan;16(1):7. 10.1007/s11892-015-0699-x267429321534-4827 Weisblum Y, Panet A, Zakay-Rones Z, Vitenshtein A, Haimov-Kochman R, Goldman-Wohl D, et al.. Human cytomegalovirus induces a distinct innate immune response in the maternal-fetal interface. Virology. 2015Nov;485:289–96. 10.1016/j.virol.2015.06.023263182610042-6822 Buechler C, Ritter M, Orsó E, Langmann T, Klucken J, Schmitz G. Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J Leukoc Biol. 2000Jan;67(1):97–103. 10.1002/jlb.67.1.97106480030741-5400 Bardina SV, Bunduc P, Tripathi S, Duehr J, Frere JJ, Brown JA, et al.. Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science. 2017Apr;356(6334):175–80. 10.1126/science.aal4365283601350036-8075 Koi H, Zhang J, Parry S. The mechanisms of placental viral infection. Ann N Y Acad Sci. 2001Sep;943(1):148–56. 10.1111/j.1749-6632.2001.tb03798.x115945350077-8923 Reyes L, Wolfe B, Golos T. Hofbauer Cells: Placental Macrophages of Fetal Origin. Results Probl Cell Differ. 2017;62:45–60. 10.1007/978-3-319-54090-0_3284557050080-1844 Svensson J, Jenmalm MC, Matussek A, Geffers R, Berg G, Ernerudh J. Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. J Immunol. 2011Oct;187(7):3671–82. 10.4049/jimmunol.1100130218906600022-1767 Noronha L, Zanluca C, Azevedo ML, Luz KG, Santos CN. Zika virus damages the human placental barrier and presents marked fetal neurotropism. Mem Inst Oswaldo Cruz. 2016May;111(5):287–93. 10.1590/0074-02760160085271434900074-0276 Zimmerman MG, Quicke KM, O’Neal JT, Arora N, Machiah D, Priyamvada L, et al.. Cross-Reactive Dengue Virus Antibodies Augment Zika Virus Infection of Human Placental Macrophages. Cell Host Microbe. 2018Nov;24(5):731–742.e6. 10.1016/j.chom.2018.10.008304393421931-3128 Simister NE. Human placental Fc receptors and the trapping of immune complexes. Vaccine. 1998Aug-Sep;16(14-15):1451–5. 10.1016/S0264-410X(98)00107-897117870264-410X Vinnars MT, Rindsjö E, Ghazi S, Sundberg A, Papadogiannakis N. The number of CD68(+) (Hofbauer) cells is decreased in placentas with chorioamnionitis and with ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref96 ref11 ref99 ref10 ref98 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref73 ref72 ref110 ref68 ref67 ref69 ref64 ref63 ref66 ref65 ref60 ref62 ref61 |
References_xml | – reference: Svensson-Arvelund J, Ernerudh J. The Role of Macrophages in Promoting and Maintaining Homeostasis at the Fetal-Maternal Interface. Am J Reprod Immunol. 2015Aug;74(2):100–9. 10.1111/aji.12357255826251046-7408 – reference: Russell P. Inflammatory lesions of the human placenta. III. The histopathology of villitis of unknown aetiology. Placenta. 1980Jul-Sep;1(3):227–44. 10.1016/S0143-4004(80)80005-174436420143-4004 – reference: Medawar PB. Some Immunological and Endocrinological Problems Raised by the Evolution of Viviparity in Vertebrates. Symp Soc Exp Biol. 1953;7:320–38.0081-1386 – reference: Sisino G, Bouckenooghe T, Aurientis S, Fontaine P, Storme L, Vambergue A. Diabetes during pregnancy influences Hofbauer cells, a subtype of placental macrophages, to acquire a pro-inflammatory phenotype. Biochim Biophys Acta. 2013Dec;1832(12):1959–68. 10.1016/j.bbadis.2013.07.009238725770006-3002 – reference: Weisblum Y, Panet A, Haimov-Kochman R, Wolf DG. Models of vertical cytomegalovirus (CMV) transmission and pathogenesis. Semin Immunopathol. 2014Nov;36(6):615–25. 10.1007/s00281-014-0449-1252919721863-2297 – reference: Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014Mar;6:13. 10.12703/P6-13246692942051-7599 – reference: Przybyl L, Haase N, Golic M, Rugor J, Solano ME, Arck PC, et al.. CD74-Downregulation of Placental Macrophage-Trophoblastic Interactions in Preeclampsia. Circ Res. 2016Jun;119(1):55–68. 10.1161/CIRCRESAHA.116.308304271994650009-7330 – reference: Roberts JM, et al.; American College of Obstetricians and Gynecologists; Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013Nov;122(5):1122–31.241500271873-233X – reference: Toti P, Arcuri F, Tang Z, Schatz F, Zambrano E, Mor G, et al.. Focal increases of fetal macrophages in placentas from pregnancies with histological chorioamnionitis: potential role of fibroblast monocyte chemotactic protein-1. Am J Reprod Immunol. 2011May;65(5):470–9. 10.1111/j.1600-0897.2010.00927.x210873361046-7408 – reference: Hiden U, Maier A, Bilban M, Ghaffari-Tabrizi N, Wadsack C, Lang I, et al.. Insulin control of placental gene expression shifts from mother to foetus over the course of pregnancy. Diabetologia. 2006Jan;49(1):123–31. 10.1007/s00125-005-0054-x163449250012-186X – reference: Noronha L, Zanluca C, Azevedo ML, Luz KG, Santos CN. Zika virus damages the human placental barrier and presents marked fetal neurotropism. Mem Inst Oswaldo Cruz. 2016May;111(5):287–93. 10.1590/0074-02760160085271434900074-0276 – reference: Emery VC. Investigation of CMV disease in immunocompromised patients. J Clin Pathol. 2001Feb;54(2):84–8. 10.1136/jcp.54.2.84112152900021-9746 – reference: Weisblum Y, Oiknine-Djian E, Zakay-Rones Z, Vorontsov O, Haimov-Kochman R, Nevo Y, et al.. APOBEC3A Is Upregulated by Human Cytomegalovirus (HCMV) in the Maternal-Fetal Interface, Acting as an Innate Anti-HCMV Effector. J Virol. 2017Nov;91(23):e01296-17. 10.1128/JVI.01296-17289567610022-538X – reference: El Costa H, Gouilly J, Mansuy JM, Chen Q, Levy C, Cartron G, et al.. ZIKA virus reveals broad tissue and cell tropism during the first trimester of pregnancy. Sci Rep. 2016Oct;6(1):35296. 10.1038/srep35296277590092045-2322 – reference: Kaufmann P, Stark J, Stegner HE. The villous stroma of the human placenta. I. The ultrastructure of fixed connective tissue cells. Cell Tissue Res. 1977Feb;177(1):105–21. 10.1007/BF002211228373980302-766X – reference: Mattar R, Amed AM, Lindsey PC, Sass N, Daher S. Preeclampsia and HIV infection. Eur J Obstet Gynecol Reprod Biol. 2004Dec;117(2):240–1. 10.1016/j.ejogrb.2004.04.014155418640301-2115 – reference: Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003Jan;3(1):23–35. 10.1038/nri978125118731474-1733 – reference: Ndirangu J, Newell ML, Bland RM, Thorne C. Maternal HIV infection associated with small-for-gestational age infants but not preterm births: evidence from rural South Africa. Hum Reprod. 2012Jun;27(6):1846–56. 10.1093/humrep/des090224422450268-1161 – reference: Weisblum Y, Panet A, Zakay-Rones Z, Vitenshtein A, Haimov-Kochman R, Goldman-Wohl D, et al.. Human cytomegalovirus induces a distinct innate immune response in the maternal-fetal interface. Virology. 2015Nov;485:289–96. 10.1016/j.virol.2015.06.023263182610042-6822 – reference: Balsitis SJ, Williams KL, Lachica R, Flores D, Kyle JL, Mehlhop E, et al.. Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. PLoS Pathog. 2010Feb;6(2):e1000790. 10.1371/journal.ppat.1000790201689891553-7366 – reference: Schliefsteiner C, Peinhaupt M, Kopp S, Lögl J, Lang-Olip I, Hiden U, et al.. Human Placental Hofbauer Cells Maintain an Anti-inflammatory M2 Phenotype despite the Presence of Gestational Diabetes Mellitus. Front Immunol. 2017Jul;8:888. 10.3389/fimmu.2017.00888288246211664-3224 – reference: Joerink M, Rindsjö E, van Riel B, Alm J, Papadogiannakis N. Placental macrophage (Hofbauer cell) polarization is independent of maternal allergen-sensitization and presence of chorioamnionitis. Placenta. 2011May;32(5):380–5. 10.1016/j.placenta.2011.02.003214194830143-4004 – reference: Jensen TS, Matre R. Fc gamma-receptor activity in the developing human placenta. APMIS. 1995Jun;103(6):433–8. 10.1111/j.1699-0463.1995.tb01129.x75466461600-0463 – reference: Vinnars MT, Rindsjö E, Ghazi S, Sundberg A, Papadogiannakis N. The number of CD68(+) (Hofbauer) cells is decreased in placentas with chorioamnionitis and with advancing gestational age. Pediatr Dev Pathol. 2010Jul-Aug;13(4):300–4. 10.2350/09-03-0632-OA.1196428141093-5266 – reference: Nagamatsu T, Schust DJ. The immunomodulatory roles of macrophages at the maternal-fetal interface. Reprod Sci. 2010Mar;17(3):209–18. 10.1177/1933719109349962200653011933-7191 – reference: Reyes L, Wolfe B, Golos T. Hofbauer Cells: Placental Macrophages of Fetal Origin. Results Probl Cell Differ. 2017;62:45–60. 10.1007/978-3-319-54090-0_3284557050080-1844 – reference: Schwartz DA. Viral infection, proliferation, and hyperplasia of Hofbauer cells and absence of inflammation characterize the placental pathology of fetuses with congenital Zika virus infection. Arch Gynecol Obstet. 2017Jun;295(6):1361–8. 10.1007/s00404-017-4361-5283969920932-0067 – reference: Lissauer D, Smit E, Kilby MD. Zika virus and pregnancy. BJOG. 2016Jul;123(8):1258–63. 10.1111/1471-0528.14071271504561470-0328 – reference: Stagno S, Pass RF, Dworsky ME, AlfordCAJr. Maternal cytomegalovirus infection and perinatal transmission. Clin Obstet Gynecol. 1982Sep;25(3):563–76. 10.1097/00003081-198209000-0001462901210009-9201 – reference: Castellucci M, Zaccheo D, Pescetto G. A three-dimensional study of the normal human placental villous core. I. The Hofbauer cells. Cell Tissue Res. 1980;210(2):235–47. 10.1007/BF0023761274078680302-766X – reference: Gomez-Lopez N, StLouis D, Lehr MA, Sanchez-Rodriguez EN, Arenas-Hernandez M. Immune cells in term and preterm labor. Cell Mol Immunol. 2014Nov;11(6):571–81. 10.1038/cmi.2014.46249542211672-7681 – reference: Al-Husaini AM. Role of placenta in the vertical transmission of human immunodeficiency virus. J Perinatol. 2009May;29(5):331–6. 10.1038/jp.2008.187190205260743-8346 – reference: Zhu Y, Zhang C. Prevalence of Gestational Diabetes and Risk of Progression to Type 2 Diabetes: a Global Perspective. Curr Diab Rep. 2016Jan;16(1):7. 10.1007/s11892-015-0699-x267429321534-4827 – reference: Yu J, Zhou Y, Gui J, Li AZ, Su XL, Feng L. Assessment of the number and function of macrophages in the placenta of gestational diabetes mellitus patients. J Huazhong Univ Sci Technolog Med Sci. 2013Oct;33(5):725–9. 10.1007/s11596-013-1187-7241427271672-0733 – reference: Fayyad AM, Harrington KF. Prediction and prevention of preeclampsia and IUGR. Early Hum Dev. 2005Nov;81(11):865–76. 10.1016/j.earlhumdev.2005.09.005162896440378-3782 – reference: Saji F, Koyama M, Matsuzaki N. Current topic: human placental Fc receptors. Placenta. 1994Jul;15(5):453–66. 10.1016/S0143-4004(05)80415-179974460143-4004 – reference: Manicklal S, Emery VC, Lazzarotto T, Boppana SB, Gupta RK. The “silent” global burden of congenital cytomegalovirus. Clin Microbiol Rev. 2013Jan;26(1):86–102. 10.1128/CMR.00062-12232972600893-8512 – reference: Teasdale, C.A., B.J.Marais, and E.J.Abrams, HIV: prevention of mother-to-child transmission. BMJ Clin Evid, 2011. 2011. – reference: Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000Jun;164(12):6166–73. 10.4049/jimmunol.164.12.6166108436660022-1767 – reference: Svensson-Arvelund J, Mehta RB, Lindau R, Mirrasekhian E, Rodriguez-Martinez H, Berg G, et al.. The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages. J Immunol. 2015Feb;194(4):1534–44. 10.4049/jimmunol.1401536255604090022-1767 – reference: Fox H. The incidence and significance of Hofbauer cells in the mature human placenta. J Pathol Bacteriol. 1967Apr;93(2):710–7. 10.1002/path.170093023960540690368-3494 – reference: Simoni MK, Jurado KA, Abrahams VM, Fikrig E, Guller S. Zika virus infection of Hofbauer cells. Am J Reprod Immunol. 2017Feb;77(2):e12613. 10.1111/aji.12613279668151046-7408 – reference: Calvet G, Aguiar RS, Melo AS, Sampaio SA, de Filippis I, Fabri A, et al.. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect Dis. 2016Jun;16(6):653–60. 10.1016/S1473-3099(16)00095-5268971081473-3099 – reference: Bright NA, Ockleford CD, Anwar M. Ontogeny and distribution of Fc gamma receptors in the human placenta. Transport or immune surveillance. J Anat. 1994Apr;184(Pt 2):297–308.80141210021-8782 – reference: Araújo JR, Keating E, Martel F. Impact of gestational diabetes mellitus in the maternal-to-fetal transport of nutrients. Curr Diab Rep. 2015Feb;15(2):569. 10.1007/s11892-014-0569-y256204021534-4827 – reference: Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci. 2008Jan;13(13):453–61. 10.2741/2692179815601093-9946 – reference: Radaelli T, Varastehpour A, Catalano P, Hauguel-de Mouzon S. Gestational diabetes induces placental genes for chronic stress and inflammatory pathways. Diabetes. 2003Dec;52(12):2951–8. 10.2337/diabetes.52.12.2951146338560012-1797 – reference: Tang Z, Niven-Fairchild T, Tadesse S, Norwitz ER, Buhimschi CS, Buhimschi IA, et al.. Glucocorticoids enhance CD163 expression in placental Hofbauer cells. Endocrinology. 2013Jan;154(1):471–82. 10.1210/en.2012-1575231428090013-7227 – reference: Ornelas AM, Pezzuto P, Silveira PP, Melo FO, Ferreira TA, Oliveira-Szejnfeld PS, et al.. Immune activation in amniotic fluid from Zika virus-associated microcephaly. Ann Neurol. 2017Jan;81(1):152–6. 10.1002/ana.24839279778810364-5134 – reference: McDonagh S, Maidji E, Ma W, Chang HT, Fisher S, Pereira L. Viral and bacterial pathogens at the maternal-fetal interface. J Infect Dis. 2004Aug;190(4):826–34. 10.1086/422330152724120022-1899 – reference: Selkov SA, Selutin AV, Pavlova OM, Khromov-Borisov NN, Pavlov OV. Comparative phenotypic characterization of human cord blood monocytes and placental macrophages at term. Placenta. 2013Sep;34(9):836–9. 10.1016/j.placenta.2013.05.007237738570143-4004 – reference: Kharsany AB, Karim QA. HIV Infection and AIDS in Sub-Saharan Africa: Current Status, Challenges and Opportunities. Open AIDS J. 2016Apr;10(1):34–48. 10.2174/1874613601610010034273472701874-6136 – reference: Wedi CO, Kirtley S, Hopewell S, Corrigan R, Kennedy SH, Hemelaar J. Perinatal outcomes associated with maternal HIV infection: a systematic review and meta-analysis. Lancet HIV. 2016Jan;3(1):e33–48. 10.1016/S2352-3018(15)00207-6267629922352-3018 – reference: Simister NE. Human placental Fc receptors and the trapping of immune complexes. Vaccine. 1998Aug-Sep;16(14-15):1451–5. 10.1016/S0264-410X(98)00107-897117870264-410X – reference: Ibanez CE, Schrier R, Ghazal P, Wiley C, Nelson JA. Human cytomegalovirus productively infects primary differentiated macrophages. J Virol. 1991Dec;65(12):6581–8.16583630022-538X – reference: Hung TH, Chen SF, Hsu JJ, Hsieh CC, Hsueh S, Hsieh TT. Tumour necrosis factor-alpha converting enzyme in human gestational tissues from pregnancies complicated by chorioamnionitis. Placenta. 2006Sep-Oct;27(9-10):996–1006. 10.1016/j.placenta.2005.11.002163769860143-4004 – reference: Czikk MJ, McCarthy FP, Murphy KE. Chorioamnionitis: from pathogenesis to treatment. Clin Microbiol Infect. 2011Sep;17(9):1304–11. 10.1111/j.1469-0691.2011.03574.x216720801198-743X – reference: Lewis SH, Reynolds-Kohler C, Fox HE, Nelson JA. HIV-1 in trophoblastic and villous Hofbauer cells, and haematological precursors in eight-week fetuses. Lancet. 1990Mar;335(8689):565–8. 10.1016/0140-6736(90)90349-A16897920140-6736 – reference: Ginhoux F, Guilliams M. Tissue-Resident Macrophage Ontogeny and Homeostasis. Immunity. 2016Mar;44(3):439–49. 10.1016/j.immuni.2016.02.024269823521074-7613 – reference: Vacek Z. Derivation and ultrastructure of the stroma cells of the human chorionic villus. Folia Morphol (Praha). 1970;18(1):1–13.54366850015-5640 – reference: Yona S, Gordon S. From the reticuloendothelial to mononuclear phagocyte system - the unaccounted years. Front Immunol. 2015Jul;6:328. 10.3389/fimmu.2015.00328261910611664-3224 – reference: Buechler C, Ritter M, Orsó E, Langmann T, Klucken J, Schmitz G. Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J Leukoc Biol. 2000Jan;67(1):97–103. 10.1002/jlb.67.1.97106480030741-5400 – reference: Moshfeghi DM, de Miranda HA2nd, CostaMC. Zika Virus, Microcephaly, and Ocular Findings. JAMA Ophthalmol. 2016Aug;134(8):945–945. 10.1001/jamaophthalmol.2016.1303272548352168-6165 – reference: Johnson EL, Chu H, Byrareddy SN, Spearman P, Chakraborty R. Placental Hofbauer cells assemble and sequester HIV-1 in tetraspanin-positive compartments that are accessible to broadly neutralizing antibodies. J Int AIDS Soc. 2015Jan;18(1):19385. 10.7448/IAS.18.1.19385256239301758-2652 – reference: Redline RW. Inflammatory response in acute chorioamnionitis. Semin Fetal Neonatal Med. 2012Feb;17(1):20–5. 10.1016/j.siny.2011.08.003218651011744-165X – reference: Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008Dec;8(12):958–69. 10.1038/nri2448190299901474-1733 – reference: Wetzka B, Clark DE, Charnock-Jones DS, Zahradnik HP, Smith SK. Isolation of macrophages (Hofbauer cells) from human term placenta and their prostaglandin E2 and thromboxane production. Hum Reprod. 1997Apr;12(4):847–52. 10.1093/humrep/12.4.84791594550268-1161 – reference: Romagnani P, Annunziato F, Piccinni MP, Maggi E, Romagnani S. Th1/Th2 cells, their associated molecules and role in pathophysiology. Eur Cytokine Netw. 2000Sep;11(3):510–1.112031981148-5493 – reference: Fujiwara T, Fukushi J, Yamamoto S, Matsumoto Y, Setsu N, Oda Y, et al.. Macrophage infiltration predicts a poor prognosis for human ewing sarcoma. Am J Pathol. 2011Sep;179(3):1157–70. 10.1016/j.ajpath.2011.05.034217715720002-9440 – reference: Hoeffel G, Ginhoux F. Ontogeny of Tissue-Resident Macrophages. Front Immunol. 2015Sep;6:486. 10.3389/fimmu.2015.00486264419901664-3224 – reference: Erlebacher A. Immunology of the Maternal-Fetal Interface. In: Littman DR, Yokoyama WM, editors. Annual Review of Immunology. Volume 31. 2013. pp. 387–411. – reference: Brown MB, von Chamier M, Allam AB, Reyes L. M1/M2 macrophage polarity in normal and complicated pregnancy. Front Immunol. 2014Nov;5:606. 10.3389/fimmu.2014.00606255054711664-3224 – reference: Goldstein J, Braverman M, Salafia C, Buckley P. The phenotype of human placental macrophages and its variation with gestational age. Am J Pathol. 1988Dec;133(3):648–59.32644590002-9440 – reference: Cao B, Diamond MS, Mysorekar IU. Maternal-Fetal Transmission of Zika Virus: Routes and Signals for Infection. J Interferon Cytokine Res. 2017Jul;37(7):287–94. 10.1089/jir.2017.0011284021531079-9907 – reference: Lilleri D, Kabanova A, Revello MG, Percivalle E, Sarasini A, Genini E, et al.. Fetal human cytomegalovirus transmission correlates with delayed maternal antibodies to gH/gL/pUL128-130-131 complex during primary infection. PLoS One. 2013;8(3):e59863. 10.1371/journal.pone.0059863235558121932-6203 – reference: De Cock KM, Fowler MG, Mercier E, de Vincenzi I, Saba J, Hoff E, et al.. Prevention of mother-to-child HIV transmission in resource-poor countries: translating research into policy and practice. JAMA. 2000Mar;283(9):1175–82. 10.1001/jama.283.9.1175107037800098-7484 – reference: Zimmerman MG, Quicke KM, O’Neal JT, Arora N, Machiah D, Priyamvada L, et al.. Cross-Reactive Dengue Virus Antibodies Augment Zika Virus Infection of Human Placental Macrophages. Cell Host Microbe. 2018Nov;24(5):731–742.e6. 10.1016/j.chom.2018.10.008304393421931-3128 – reference: Maciejewski JP, Bruening EE, Donahue RE, Sellers SE, Carter C, Young NS, et al.. Infection of mononucleated phagocytes with human cytomegalovirus. Virology. 1993Aug;195(2):327–36. 10.1006/viro.1993.138383932300042-6822 – reference: Ben Amara A, Gorvel L, Baulan K, Derain-Court J, Buffat C, Vérollet C, et al.. Placental macrophages are impaired in chorioamnionitis, an infectious pathology of the placenta. J Immunol. 2013Dec;191(11):5501–14. 10.4049/jimmunol.1300988241634110022-1767 – reference: Barros MH, Hauck F, Dreyer JH, Kempkes B, Niedobitek G. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS One. 2013Nov;8(11):e80908. 10.1371/journal.pone.0080908242605071932-6203 – reference: Tang Z, Abrahams VM, Mor G, Guller S. Placental Hofbauer cells and complications of pregnancy. Ann N Y Acad Sci. 2011Mar;1221(1):103–8. 10.1111/j.1749-6632.2010.05932.x214016370077-8923 – reference: Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004Dec;25(12):677–86. 10.1016/j.it.2004.09.015155308391471-4906 – reference: Quicke KM, Bowen JR, Johnson EL, McDonald CE, Ma H, O’Neal JT, et al.. Zika Virus Infects Human Placental Macrophages. Cell Host Microbe. 2016Jul;20(1):83–90. 10.1016/j.chom.2016.05.015272470011931-3128 – reference: Arora N, Sadovsky Y, Dermody TS, Coyne CB. Microbial Vertical Transmission during Human Pregnancy. Cell Host Microbe. 2017May;21(5):561–7. 10.1016/j.chom.2017.04.007284942371931-3128 – reference: Katabuchi H. THE MYSTERY OF HOFBAUER CELLS. Placenta. 2014;35(10):A2–2. 10.1016/j.placenta.2014.08.0040143-4004 – reference: Castellucci M, Kosanke G, Verdenelli F, Huppertz B, Kaufmann P. Villous sprouting: fundamental mechanisms of human placental development. Hum Reprod Update. 2000Sep-Oct;6(5):485–94. 10.1093/humupd/6.5.485110458791355-4786 – reference: Moskalewski S, Czarnik Z, Ptak W. Demonstration of cells with igg receptor in human placenta. Biol Neonate. 1975;26(3-4):268–73. 10.1159/00024073810935730006-3126 – reference: Rosenberg AZ, Yu W, Hill DA, Reyes CA, Schwartz DA. Placental Pathology of Zika Virus: Viral Infection of the Placenta Induces Villous Stromal Macrophage (Hofbauer Cell) Proliferation and Hyperplasia. Arch Pathol Lab Med. 2017Jan;141(1):43–8. 10.5858/arpa.2016-0401-OA276813340003-9985 – reference: Yang SW, Cho EH, Choi SY, Lee YK, Park JH, Kim MK, et al.. DC-SIGN expression in Hofbauer cells may play an important role in immune tolerance in fetal chorionic villi during the development of preeclampsia. J Reprod Immunol. 2017Nov;124:30–7. 10.1016/j.jri.2017.09.012290499180165-0378 – reference: Lum FM, Low DK, Fan Y, Tan JJ, Lee B, Chan JK, et al.. Zika Virus Infects Human Fetal Brain Microglia and Induces Inflammation. Clin Infect Dis. 2017Apr;64(7):914–20. 10.1093/cid/ciw878283629441058-4838 – reference: Svensson J, Jenmalm MC, Matussek A, Geffers R, Berg G, Ernerudh J. Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. J Immunol. 2011Oct;187(7):3671–82. 10.4049/jimmunol.1100130218906600022-1767 – reference: Newell ML. Mechanisms and timing of mother-to-child transmission of HIV-1. AIDS. 1998May;12(8):831–7. 10.1097/00002030-199808000-0000496311350269-9370 – reference: Vinnars MT, et al.. The number of CD68+(Hofbauer) cells is decreased in placentas with chorioamnionitis and with advancing gestational age. Placenta. 2008;29(8):A48–48.0143-4004 – reference: Kawamura H, Takeuchi M, Sasahara J, Ishii K, Mitsuda N. Inflammatory Response in Acute Chorioamnionitis and Outcome of Very Low Birth Weight Infants. Placenta. 2015;36(10):A10–1. 10.1016/j.placenta.2015.07.1700143-4004 – reference: Palmeira P, Quinello C, Silveira-Lessa AL, Zago CA, Carneiro-Sampaio M. IgG placental transfer in healthy and pathological pregnancies. Clin Dev Immunol. 2012;2012:985646. 10.1155/2012/985646222352281740-2522 – reference: Kim JS, Romero R, Kim MR, Kim YM, Friel L, Espinoza J, et al.. Involvement of Hofbauer cells and maternal T cells in villitis of unknown aetiology. Histopathology. 2008Mar;52(4):457–64. 10.1111/j.1365-2559.2008.02964.x183155980309-0167 – reference: Bardina SV, Bunduc P, Tripathi S, Duehr J, Frere JJ, Brown JA, et al.. Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science. 2017Apr;356(6334):175–80. 10.1126/science.aal4365283601350036-8075 – reference: Enders AC, King BF. The cytology of Hofbauer cells. Anat Rec. 1970Jun;167(2):231–6. 10.1002/ar.109167021154450270003-276X – reference: Kliks S. Antibody-enhanced infection of monocytes as the pathogenetic mechanism for severe dengue illness. AIDS Res Hum Retroviruses. 1990Aug;6(8):993–8. 10.1089/aid.1990.6.99322232450889-2229 – reference: Jawerbaum A, González E. Diabetic pregnancies: the challenge of developing in a pro-inflammatory environment. Curr Med Chem. 2006;13(18):2127–38. 10.2174/092986706777935302169183430929-8673 – reference: Naidoo M, Sartorius B, Tshimanga-Tshikala G. Maternal HIV infection and preterm delivery outcomes at an urban district hospital in KwaZulu-Natal 2011. S Afr J Infect Dis. 2016;31(1):25–8. 10.1080/23120053.2016.11188382312-0053 – reference: van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ. 1972;46(6):845–52.45385440042-9686 – reference: Jurado KA, Simoni MK, Tang Z, Uraki R, Hwang J, Householder S, et al.. Zika virus productively infects primary human placenta-specific macrophages. JCI Insight. 2016Aug;1(13):e88461. 10.1172/jci.insight.88461275951402379-3708 – reference: Taylor-Wiedeman J, Sissons JG, Borysiewicz LK, Sinclair JH. Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol. 1991Sep;72(Pt 9):2059–64. 10.1099/0022-1317-72-9-205916543700022-1317 – reference: Tarique AA, Logan J, Thomas E, Holt PG, Sly PD, Fantino E. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am J Respir Cell Mol Biol. 2015Nov;53(5):676–88. 10.1165/rcmb.2015-0012OC258709031044-1549 – reference: Mor G, Abrahams VM. Potential role of macrophages as immunoregulators of pregnancy. Reprod Biol Endocrinol. 2003Dec;1(1):119–119. 10.1186/1477-7827-1-119146517521477-7827 – reference: Pereira L, Maidji E, McDonagh S, Tabata T. Insights into viral transmission at the uterine-placental interface. Trends Microbiol. 2005Apr;13(4):164–74. 10.1016/j.tim.2005.02.009158173860966-842X – reference: Bracci R, Buonocore G. Chorioamnionitis: a risk factor for fetal and neonatal morbidity. Biol Neonate. 2003;83(2):85–96. 10.1159/000067956125767510006-3126 – reference: Loegl J, Hiden U, Nussbaumer E, Schliefsteiner C, Cvitic S, Lang I, et al.. Hofbauer cells of M2a, M2b and M2c polarization may regulate feto-placental angiogenesis. Reproduction. 2016Nov;152(5):447–55. 10.1530/REP-16-0159275345711470-1626 – reference: Tooke L, Riemer L, Matjila M, Harrison M. Antiretrovirals causing severe pre-eclampsia. Pregnancy Hypertens. 2016Oct;6(4):266–8. 10.1016/j.preghy.2016.04.006279394652210-7789 – reference: Takahashi K, Naito M, Katabuchi H, Higashi K. Development, differentiation, and maturation of macrophages in the chorionic villi of mouse placenta with special reference to the origin of Hofbauer cells. J Leukoc Biol. 1991Jul;50(1):57–68. 10.1002/jlb.50.1.5720562470741-5400 – reference: Young A, Thomson AJ, Ledingham M, Jordan F, Greer IA, Norman JE. Immunolocalization of proinflammatory cytokines in myometrium, cervix, and fetal membranes during human parturition at term. Biol Reprod. 2002Feb;66(2):445–9. 10.1095/biolreprod66.2.445118049610006-3363 – reference: Chen JY, Ribaudo HJ, Souda S, Parekh N, Ogwu A, Lockman S, et al.. Highly active antiretroviral therapy and adverse birth outcomes among HIV-infected women in Botswana. J Infect Dis. 2012Dec;206(11):1695–705. 10.1093/infdis/jis553230661600022-1899 – reference: Krausgruber T, Saliba D, Blazek K, Lockstone H, Sahgal N, Alzabin S, et al.. IRF5 as a defining factor of M1 macrophage polarization. Cytokine. 2010;52(1-2):44–44. 10.1016/j.cyto.2010.07.1851043-4666 – reference: Mendelson M, Monard S, Sissons P, Sinclair J. Detection of endogenous human cytomegalovirus in CD34+ bone marrow progenitors. J Gen Virol. 1996Dec;77(Pt 12):3099–102. 10.1099/0022-1317-77-12-309990001020022-1317 – reference: Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010Oct;11(10):889–96. 10.1038/ni.1937208562201529-2908 – reference: Ning F, Liu H, Lash GE. The Role of Decidual Macrophages During Normal and Pathological Pregnancy. Am J Reprod Immunol. 2016Mar;75(3):298–309. 10.1111/aji.12477267500891046-7408 – reference: Sironi M, Martinez FO, D’Ambrosio D, Gattorno M, Polentarutti N, Locati M, et al.. Differential regulation of chemokine production by Fcgamma receptor engagement in human monocytes: association of CCL1 with a distinct form of M2 monocyte activation (M2b, Type 2). J Leukoc Biol. 2006Aug;80(2):342–9. 10.1189/jlb.1005586167356930741-5400 – reference: Koi H, Zhang J, Parry S. The mechanisms of placental viral infection. Ann N Y Acad Sci. 2001Sep;943(1):148–56. 10.1111/j.1749-6632.2001.tb03798.x115945350077-8923 – reference: Musso D, Gubler DJ. Zika Virus. Clin Microbiol Rev. 2016Jul;29(3):487–524. 10.1128/CMR.00072-15270295950893-8512 – reference: Johnson EL, Chakraborty R. Placental Hofbauer cells limit HIV-1 replication and potentially offset mother to child transmission (MTCT) by induction of immunoregulatory cytokines. Retrovirology. 2012Dec;9(1):101. 10.1186/1742-4690-9-101232171371742-4690 – reference: Ferrante CJ, Pinhal-Enfield G, Elson G, Cronstein BN, Hasko G, Outram S, et al.. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Rα) signaling. Inflammation. 2013Aug;36(4):921–31. 10.1007/s10753-013-9621-3235042590360-3997 – ident: ref102 doi: 10.1136/jcp.54.2.84 – ident: ref15 doi: 10.1016/j.placenta.2013.05.007 – ident: ref9 doi: 10.1093/humupd/6.5.485 – ident: ref16 doi: 10.1159/000240738 – ident: ref56 doi: 10.1111/j.1600-0897.2010.00927.x – ident: ref29 doi: 10.1007/s10753-013-9621-3 – ident: ref74 doi: 10.1590/0074-02760160085 – ident: ref40 doi: 10.1186/1742-4690-9-101 – ident: ref44 doi: 10.1016/S0264-410X(98)00107-8 – ident: ref51 doi: 10.1159/000067956 – ident: ref87 doi: 10.1016/j.chom.2018.10.008 – ident: ref20 doi: 10.1089/jir.2017.0011 – ident: ref97 doi: 10.1038/jp.2008.187 – ident: ref91 doi: 10.1093/infdis/jis553 – ident: ref93 doi: 10.1016/S2352-3018(15)00207-6 – ident: ref34 doi: 10.1165/rcmb.2015-0012OC – ident: ref49 doi: 10.1016/j.siny.2011.08.003 – ident: ref55 doi: 10.1016/j.placenta.2005.11.002 – ident: ref109 doi: 10.1099/0022-1317-72-9-2059 – ident: ref98 doi: 10.1097/00002030-199808000-00004 – ident: ref92 doi: 10.1093/humrep/des090 – ident: ref24 doi: 10.4049/jimmunol.164.12.6166 – ident: ref57 doi: 10.1007/s11892-014-0569-y – ident: ref21 doi: 10.1086/422330 – ident: ref77 doi: 10.1016/S1473-3099(16)00095-5 – ident: ref6 doi: 10.1016/j.immuni.2016.02.024 – ident: ref38 doi: 10.4049/jimmunol.1100130 – ident: ref54 doi: 10.2350/09-03-0632-OA.1 – ident: ref37 doi: 10.4049/jimmunol.1401536 – ident: ref81 doi: 10.1007/s00404-017-4361-5 – ident: ref71 doi: 10.1128/CMR.00072-15 – ident: ref96 doi: 10.7448/IAS.18.1.19385 – ident: ref48 doi: 10.1111/j.1469-0691.2011.03574.x – ident: ref68 doi: 10.1161/CIRCRESAHA.116.308304 – ident: ref50 doi: 10.1016/j.placenta.2015.07.170 – ident: ref80 doi: 10.1172/jci.insight.88461 – ident: ref88 doi: 10.2174/1874613601610010034 – ident: ref107 doi: 10.1038/srep35296 – ident: ref79 doi: 10.1016/j.chom.2016.05.015 – ident: ref18 doi: 10.1111/j.1365-2559.2008.02964.x – ident: ref110 doi: 10.1099/0022-1317-77-12-3099 – ident: ref61 doi: 10.2337/diabetes.52.12.2951 – ident: ref13 doi: 10.1002/path.1700930239 – ident: ref83 doi: 10.5858/arpa.2016-0401-OA – ident: ref90 doi: 10.1080/23120053.2016.1118838 – ident: ref25 doi: 10.1038/ni.1937 – ident: ref28 doi: 10.1016/j.it.2004.09.015 – ident: ref78 doi: 10.1093/cid/ciw878 – ident: ref59 doi: 10.1007/s11892-015-0699-x – ident: ref27 doi: 10.2741/2692 – ident: ref89 doi: 10.1016/j.preghy.2016.04.006 – ident: ref58 doi: 10.1007/s00125-005-0054-x – ident: ref111 doi: 10.1016/j.virol.2015.06.023 – ident: ref66 doi: 10.1016/j.ejogrb.2004.04.014 – ident: ref100 doi: 10.1128/CMR.00062-12 – ident: ref8 doi: 10.1007/BF00237612 – ident: ref14 doi: 10.1007/BF00221122 – ident: ref4 doi: 10.3389/fimmu.2015.00328 – ident: ref101 doi: 10.1371/journal.pone.0059863 – ident: ref105 doi: 10.1128/JVI.01296-17 – ident: ref63 doi: 10.3389/fimmu.2017.00888 – ident: ref47 doi: 10.1111/aji.12477 – ident: ref43 doi: 10.1016/S0143-4004(05)80415-1 – ident: ref12 doi: 10.1016/j.placenta.2014.08.004 – ident: ref52 doi: 10.1016/j.placenta.2011.02.003 – ident: ref39 doi: 10.1210/en.2012-1575 – ident: ref86 doi: 10.1089/aid.1990.6.993 – ident: ref41 doi: 10.1530/REP-16-0159 – ident: ref30 doi: 10.1189/jlb.1005586 – ident: ref65 doi: 10.1007/s11596-013-1187-7 – ident: ref94 doi: 10.1016/0140-6736(90)90349-A – ident: ref104 doi: 10.1007/s00281-014-0449-1 – ident: ref69 doi: 10.1016/j.jri.2017.09.012 – ident: ref31 doi: 10.1371/journal.pone.0080908 – ident: ref22 doi: 10.1177/1933719109349962 – ident: ref95 doi: 10.1155/2012/985646 – ident: ref32 doi: 10.1016/j.cyto.2010.07.185 – ident: ref36 doi: 10.1186/1477-7827-1-119 – ident: ref53 doi: 10.4049/jimmunol.1300988 – ident: ref85 doi: 10.1371/journal.ppat.1000790 – ident: ref19 doi: 10.1016/j.chom.2017.04.007 – ident: ref35 doi: 10.1038/cmi.2014.46 – ident: ref72 doi: 10.1111/1471-0528.14071 – ident: ref73 doi: 10.1001/jamaophthalmol.2016.1303 – ident: ref42 doi: 10.1111/j.1699-0463.1995.tb01129.x – ident: ref17 doi: 10.1002/jlb.50.1.57 – ident: ref82 doi: 10.1111/aji.12613 – ident: ref62 doi: 10.1016/j.bbadis.2013.07.009 – ident: ref75 doi: 10.1095/biolreprod66.2.445 – ident: ref108 doi: 10.1006/viro.1993.1383 – ident: ref5 doi: 10.3389/fimmu.2015.00486 – ident: ref11 doi: 10.1093/humrep/12.4.847 – ident: ref76 doi: 10.1002/ana.24839 – ident: ref60 doi: 10.2174/092986706777935302 – ident: ref3 doi: 10.1038/nri2448 – ident: ref23 doi: 10.1111/aji.12357 – ident: ref10 doi: 10.1002/ar.1091670211 – ident: ref99 doi: 10.1001/jama.283.9.1175 – ident: ref7 doi: 10.1007/978-3-319-54090-0_3 – ident: ref46 doi: 10.3389/fimmu.2014.00606 – ident: ref103 doi: 10.1016/j.tim.2005.02.009 – ident: ref1 doi: 10.1016/j.ajpath.2011.05.034 – ident: ref2 doi: 10.12703/P6-13 – ident: ref70 doi: 10.1111/j.1749-6632.2001.tb03798.x – ident: ref33 doi: 10.1002/jlb.67.1.97 – ident: ref26 doi: 10.1038/nri978 – ident: ref67 doi: 10.1016/j.earlhumdev.2005.09.005 – ident: ref106 doi: 10.1097/00003081-198209000-00014 – ident: ref64 doi: 10.1016/S0143-4004(80)80005-1 – ident: ref45 doi: 10.1111/j.1749-6632.2010.05932.x – ident: ref84 doi: 10.1126/science.aal4365 |
SSID | ssj0064497 |
Score | 2.5027058 |
SecondaryResourceType | review_article |
Snippet | In this review, we discuss the often overlooked tissue-resident fetal macrophages, Hofbauer cells, which are found within the chorionic villi of the human... |
SourceID | pubmedcentral proquest pubmed crossref karger |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 447 |
SubjectTerms | Review Review Article |
Title | The Elusive Role of Placental Macrophages: The Hofbauer Cell |
URI | https://karger.com/doi/10.1159/000497416 https://www.ncbi.nlm.nih.gov/pubmed/30970346 https://www.proquest.com/docview/2207936737 https://pubmed.ncbi.nlm.nih.gov/PMC6758944 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LS8NAEB60PuhFfButZRUPXoJ5bhLxImKphRYRC72F3WQXxZCINgf_vTvZJLRFr9nJg5ndnW82M98AXCHpV5hwy_QExQDFpWZEhW06IXcltRPGfKwdHk_ocOqNZv6sPu_AWpgPzH-uqFFbbgHlcG8qJIvgYR02lMMNMHlvbJrNnqucum6jQqla37Y9qzmElm7twrZrRWqGI9hdcEKb-p1_QczVTMkF1zPYhZ0aM5J7beQ9WBP5PmzpLpI_B3CnTE0esxIT0clLkQlSSPKMx-NY6UjGDLt0val94_uWoOiwkJyV4os8iCw7hOng8fVhaNZNEczE98O5yTgTPGBKiULK0A5kIBTEkIGkPKRJ6NLUcVKPh5xFSB0mbctNbEdWkaCbqCV3BJ28yMUJkDDiqVAOWy1Z33OEZNzjCsAllhuJVErHgOtGS3FSM4Zj44osriIHP4pb3Rpw2Yp-apqMv4QOtapbkeZ6b-X66Gmih-LPVBpw0RgmVnMff2iwXBTld-w4SO-HnXYMONaGah_RmNqAYMmErQDyai-P5O9vFb82xlCR553-87ln0FWoKdIFiT3ozL9Kca6QyZz3q4i-X03NX7TF25A |
linkProvider | Karger AG |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LT8MwDLZgvHZBPAaUZ0AcuFSsr7RFXBACjbFNCIG0W5W0iYao2gm2A_-euGmrbYJr4z5kO_HnNP4McImkX0HM26YrKCYoDjVDKizTDrgjqRUz5mHtcH9AO-9ud-gNy_0OrIX5xPPPBTVqzS2gAu51gWQRPCzDiq9AN3p03zSrNVcFdd1GhVI1vy1rWHIIzd3ahHWnHSoPR7A7E4RW9Tv_gpiLJyVnQs_jFmyWmJHcaSNvw5LIdmBNd5H82YVbZWrykE7xIDp5zVNBcklecHscKx1Jn2GXrpFaN75vCIp2csnZVHyRe5GmLXh_fHi775hlUwQz9rxgYjLOBPeZUqKQMrB86QsFMaQvKQ9oHDg0se3E5QFnIVKHSavtxJYti0zQidWU24NGlmfiAEgQ8kSogK2mrOfaQjLucgXg4rYTikRK24CrSktRXDKGY-OKNCoyBy-Mat0acFGLjjVNxl9CLa3qWqS6frxwvfs00EPROJEGnFeGiZTv4w8Nlol8-h3ZNtL7YacdA_a1oepHVKY2wJ8zYS2AvNrzI9nHqODXxhwqdN3Dfz73DDY6b_1e1HsaPB9BUyGoUBcnHkNj8jUVJwqlTPhp4aC_91Tdhg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Elusive+Role+of+Placental+Macrophages%3A+The+Hofbauer+Cell&rft.jtitle=Journal+of+innate+immunity&rft.au=Zulu%2C+Michael+Z.&rft.au=Martinez%2C+Fernando+O.&rft.au=Gordon%2C+Siamon&rft.au=Gray%2C+Clive+M.&rft.date=2019-11-01&rft.pub=S.+Karger+AG&rft.issn=1662-811X&rft.eissn=1662-8128&rft.volume=11&rft.issue=6&rft.spage=447&rft.epage=456&rft_id=info:doi/10.1159%2F000497416&rft_id=info%3Apmid%2F30970346&rft.externalDocID=PMC6758944 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-811X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-811X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-811X&client=summon |