The Elusive Role of Placental Macrophages: The Hofbauer Cell

In this review, we discuss the often overlooked tissue-resident fetal macrophages, Hofbauer cells, which are found within the chorionic villi of the human placenta. Hofbauer cells have been shown to have a phenotype associated with regulatory and anti-inflammatory functions. They are thought to play...

Full description

Saved in:
Bibliographic Details
Published inJournal of innate immunity Vol. 11; no. 6; pp. 447 - 456
Main Authors Zulu, Michael Z., Martinez, Fernando O., Gordon, Siamon, Gray, Clive M.
Format Journal Article
LanguageEnglish
Published Basel, Switzerland S. Karger AG 01.11.2019
Subjects
Online AccessGet full text
ISSN1662-811X
1662-8128
1662-8128
DOI10.1159/000497416

Cover

Abstract In this review, we discuss the often overlooked tissue-resident fetal macrophages, Hofbauer cells, which are found within the chorionic villi of the human placenta. Hofbauer cells have been shown to have a phenotype associated with regulatory and anti-inflammatory functions. They are thought to play a crucial role in the regulation of pregnancy and in the maintenance of a homeostatic environment that is crucial for fetal development. Even though the numbers of these macrophages are some of the most abundant immune cells in the human placenta, which are sustained throughout pregnancy, there are very few studies that have identified their origin, their phenotype, and functions and why they are maintained throughout gestation. It is not yet understood how Hofbauer cells may change in function throughout normal pregnancy, and especially in those complicated by maternal gestational diabetes, preeclampsia, and viral infections, such as Zika, cytomegalovirus, and human immunodeficiency virus. We review what is known about the origin of these macrophages and explore how common complications of pregnancy dysregulate these cells leading to adverse birth outcomes in humans. Our synthesis sheds light on areas for human studies that can further define these innate regulatory cells.
AbstractList In this review, we discuss the often overlooked tissue-resident fetal macrophages, Hofbauer cells, which are found within the chorionic villi of the human placenta. Hofbauer cells have been shown to have a phenotype associated with regulatory and anti-inflammatory functions. They are thought to play a crucial role in the regulation of pregnancy and in the maintenance of a homeostatic environment that is crucial for fetal development. Even though the numbers of these macrophages are some of the most abundant immune cells in the human placenta, which are sustained throughout pregnancy, there are very few studies that have identified their origin, their phenotype, and functions and why they are maintained throughout gestation. It is not yet understood how Hofbauer cells may change in function throughout normal pregnancy, and especially in those complicated by maternal gestational diabetes, preeclampsia, and viral infections, such as Zika, cytomegalovirus, and human immunodeficiency virus. We review what is known about the origin of these macrophages and explore how common complications of pregnancy dysregulate these cells leading to adverse birth outcomes in humans. Our synthesis sheds light on areas for human studies that can further define these innate regulatory cells.
In this review, we discuss the often overlooked tissue-resident fetal macrophages, Hofbauer cells, which are found within the chorionic villi of the human placenta. Hofbauer cells have been shown to have a phenotype associated with regulatory and anti-inflammatory functions. They are thought to play a crucial role in the regulation of pregnancy and in the maintenance of a homeostatic environment that is crucial for fetal development. Even though the numbers of these macrophages are some of the most abundant immune cells in the human placenta, which are sustained throughout pregnancy, there are very few studies that have identified their origin, their phenotype, and functions and why they are maintained throughout gestation. It is not yet understood how Hofbauer cells may change in function throughout normal pregnancy, and especially in those complicated by maternal gestational diabetes, preeclampsia, and viral infections, such as Zika, cytomegalovirus, and human immunodeficiency virus. We review what is known about the origin of these macrophages and explore how common complications of pregnancy dysregulate these cells leading to adverse birth outcomes in humans. Our synthesis sheds light on areas for human studies that can further define these innate regulatory cells.In this review, we discuss the often overlooked tissue-resident fetal macrophages, Hofbauer cells, which are found within the chorionic villi of the human placenta. Hofbauer cells have been shown to have a phenotype associated with regulatory and anti-inflammatory functions. They are thought to play a crucial role in the regulation of pregnancy and in the maintenance of a homeostatic environment that is crucial for fetal development. Even though the numbers of these macrophages are some of the most abundant immune cells in the human placenta, which are sustained throughout pregnancy, there are very few studies that have identified their origin, their phenotype, and functions and why they are maintained throughout gestation. It is not yet understood how Hofbauer cells may change in function throughout normal pregnancy, and especially in those complicated by maternal gestational diabetes, preeclampsia, and viral infections, such as Zika, cytomegalovirus, and human immunodeficiency virus. We review what is known about the origin of these macrophages and explore how common complications of pregnancy dysregulate these cells leading to adverse birth outcomes in humans. Our synthesis sheds light on areas for human studies that can further define these innate regulatory cells.
Author Gordon, Siamon
Martinez, Fernando O.
Zulu, Michael Z.
Gray, Clive M.
AuthorAffiliation a Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
b Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
c Chang Gung University, Graduate Institute of Biomedical Sciences, College of Medicine, Taoyuan City, Taiwan
e National Health Laboratory Services/Groote Schuur Hospital, Cape Town, South Africa
d Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
AuthorAffiliation_xml – name: a Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
– name: c Chang Gung University, Graduate Institute of Biomedical Sciences, College of Medicine, Taoyuan City, Taiwan
– name: b Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
– name: d Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
– name: e National Health Laboratory Services/Groote Schuur Hospital, Cape Town, South Africa
Author_xml – sequence: 1
  givenname: Michael Z.
  surname: Zulu
  fullname: Zulu, Michael Z.
– sequence: 2
  givenname: Fernando O.
  surname: Martinez
  fullname: Martinez, Fernando O.
– sequence: 3
  givenname: Siamon
  surname: Gordon
  fullname: Gordon, Siamon
– sequence: 4
  givenname: Clive M.
  surname: Gray
  fullname: Gray, Clive M.
  email: clive.gray@uct.ac.za
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30970346$$D View this record in MEDLINE/PubMed
BookMark eNptkdtLHDEUxkNRqmv74LvIgC_2YWsyySQZkYIs3oq9UBR8C2eyJ7uj2ck2mRH63zvL6qDFp3Pg-53v3EZkowkNErLL6FfGivKIUipKJZj8QLaZlPlYs1xvDDm72yKjlO4plaLnPpItTktFuZDb5ORmjtmZ71L9iNmf4DELLvvtwWLTgs9-gI1hOYcZpuNshV4GV0GHMZug95_IpgOf8PNz3CG352c3k8vx9a-Lq8np9dgWhW7HUAFWCiwAOqeZcgrLkjvlZKWl1VxO83wqKl1ByaSQjlFuWe6ozgvBLS34Dvm29l121QKnq9kieLOM9QLiPxOgNm-Vpp6bWXg0UhW6FKI3OHw2iOFvh6k1izrZfgNoMHTJ5DlVJZeKqx7df91raPJysh74sgb6y6QU0Q0Io2b1DjO8o2eP_mNt3UJbh9WYtX-3Ym9d8QBxhnHwHuSDd-XvVz_XhFlOHX8Co0ygBw
CitedBy_id crossref_primary_10_1590_0074_02760240125
crossref_primary_10_1371_journal_ppat_1011990
crossref_primary_10_3389_fimmu_2024_1506305
crossref_primary_10_3390_nu17010025
crossref_primary_10_1016_j_devcel_2022_11_003
crossref_primary_10_3389_fimmu_2022_880286
crossref_primary_10_3390_pathogens11121410
crossref_primary_10_1016_j_envpol_2022_120174
crossref_primary_10_3389_fimmu_2020_02146
crossref_primary_10_1097_FM9_0000000000000133
crossref_primary_10_1016_j_placenta_2023_06_003
crossref_primary_10_1016_j_coi_2021_10_007
crossref_primary_10_3390_cells9040975
crossref_primary_10_14814_phy2_15741
crossref_primary_10_3389_fviro_2023_1106634
crossref_primary_10_1016_j_ebiom_2020_102951
crossref_primary_10_3390_v15091885
crossref_primary_10_1016_j_celrep_2024_114326
crossref_primary_10_1111_aji_13836
crossref_primary_10_1126_scitranslmed_adh8335
crossref_primary_10_1016_j_placenta_2024_12_004
crossref_primary_10_3389_fimmu_2021_756035
crossref_primary_10_1002_JLB_5RU1120_787RR
crossref_primary_10_1080_10520295_2021_1912828
crossref_primary_10_1111_aji_13488
crossref_primary_10_1016_j_placenta_2020_10_017
crossref_primary_10_1186_s12964_024_01567_0
crossref_primary_10_1016_j_tox_2022_153206
crossref_primary_10_3390_ijerph20136298
crossref_primary_10_1038_s41467_023_42300_8
crossref_primary_10_1186_s13293_024_00652_w
crossref_primary_10_1016_j_clim_2022_109215
crossref_primary_10_1172_jci_insight_172658
crossref_primary_10_3390_life15010086
crossref_primary_10_47162_RJME_65_3_01
crossref_primary_10_1111_cpr_13091
crossref_primary_10_14814_phy2_16104
crossref_primary_10_1080_19396368_2020_1753850
crossref_primary_10_1242_dev_200104
crossref_primary_10_3389_fimmu_2024_1379537
crossref_primary_10_1159_000502353
crossref_primary_10_3390_ijms22084261
crossref_primary_10_1016_j_devcel_2021_06_005
crossref_primary_10_1111_imm_13880
crossref_primary_10_1111_ahe_12644
crossref_primary_10_1371_journal_ppat_1012543
crossref_primary_10_3389_fimmu_2024_1497405
crossref_primary_10_4049_jimmunol_2300379
crossref_primary_10_5468_ogs_24247
crossref_primary_10_1159_000515202
crossref_primary_10_1093_advances_nmaa163
crossref_primary_10_3389_fimmu_2024_1384361
crossref_primary_10_4103_2519_139X_295915
crossref_primary_10_1111_cen3_12812
crossref_primary_10_1016_j_placenta_2022_11_004
crossref_primary_10_1128_mBio_01849_21
crossref_primary_10_1016_j_placenta_2021_05_010
crossref_primary_10_1159_000510316
crossref_primary_10_3389_fimmu_2022_1095879
crossref_primary_10_3390_cells13161378
crossref_primary_10_1016_j_antiviral_2020_104859
crossref_primary_10_14734_PN_2024_35_4_113
crossref_primary_10_1016_j_medj_2021_04_009
crossref_primary_10_28982_josam_900943
crossref_primary_10_3390_v12030262
crossref_primary_10_1111_aji_13383
crossref_primary_10_1007_s11428_023_01087_4
crossref_primary_10_4049_jimmunol_1901185
crossref_primary_10_5858_arpa_2021_0296_SA
crossref_primary_10_3389_fcell_2021_631699
crossref_primary_10_1126_scitranslmed_abi7428
crossref_primary_10_1016_j_yexcr_2021_112715
crossref_primary_10_1093_jleuko_qiad052
crossref_primary_10_3389_fimmu_2022_837391
crossref_primary_10_3389_fmolb_2022_897228
crossref_primary_10_3390_mi12080884
crossref_primary_10_3390_pathogens10040479
Cites_doi 10.1136/jcp.54.2.84
10.1016/j.placenta.2013.05.007
10.1093/humupd/6.5.485
10.1159/000240738
10.1111/j.1600-0897.2010.00927.x
10.1007/s10753-013-9621-3
10.1590/0074-02760160085
10.1186/1742-4690-9-101
10.1016/S0264-410X(98)00107-8
10.1159/000067956
10.1016/j.chom.2018.10.008
10.1089/jir.2017.0011
10.1038/jp.2008.187
10.1093/infdis/jis553
10.1016/S2352-3018(15)00207-6
10.1165/rcmb.2015-0012OC
10.1016/j.siny.2011.08.003
10.1016/j.placenta.2005.11.002
10.1099/0022-1317-72-9-2059
10.1097/00002030-199808000-00004
10.1093/humrep/des090
10.4049/jimmunol.164.12.6166
10.1007/s11892-014-0569-y
10.1086/422330
10.1016/S1473-3099(16)00095-5
10.1016/j.immuni.2016.02.024
10.4049/jimmunol.1100130
10.2350/09-03-0632-OA.1
10.4049/jimmunol.1401536
10.1007/s00404-017-4361-5
10.1128/CMR.00072-15
10.7448/IAS.18.1.19385
10.1111/j.1469-0691.2011.03574.x
10.1161/CIRCRESAHA.116.308304
10.1016/j.placenta.2015.07.170
10.1172/jci.insight.88461
10.2174/1874613601610010034
10.1038/srep35296
10.1016/j.chom.2016.05.015
10.1111/j.1365-2559.2008.02964.x
10.1099/0022-1317-77-12-3099
10.2337/diabetes.52.12.2951
10.1002/path.1700930239
10.5858/arpa.2016-0401-OA
10.1080/23120053.2016.1118838
10.1038/ni.1937
10.1016/j.it.2004.09.015
10.1093/cid/ciw878
10.1007/s11892-015-0699-x
10.2741/2692
10.1016/j.preghy.2016.04.006
10.1007/s00125-005-0054-x
10.1016/j.virol.2015.06.023
10.1016/j.ejogrb.2004.04.014
10.1128/CMR.00062-12
10.1007/BF00237612
10.1007/BF00221122
10.3389/fimmu.2015.00328
10.1371/journal.pone.0059863
10.1128/JVI.01296-17
10.3389/fimmu.2017.00888
10.1111/aji.12477
10.1016/S0143-4004(05)80415-1
10.1016/j.placenta.2014.08.004
10.1016/j.placenta.2011.02.003
10.1210/en.2012-1575
10.1089/aid.1990.6.993
10.1530/REP-16-0159
10.1189/jlb.1005586
10.1007/s11596-013-1187-7
10.1016/0140-6736(90)90349-A
10.1007/s00281-014-0449-1
10.1016/j.jri.2017.09.012
10.1371/journal.pone.0080908
10.1177/1933719109349962
10.1155/2012/985646
10.1016/j.cyto.2010.07.185
10.1186/1477-7827-1-119
10.4049/jimmunol.1300988
10.1371/journal.ppat.1000790
10.1016/j.chom.2017.04.007
10.1038/cmi.2014.46
10.1111/1471-0528.14071
10.1001/jamaophthalmol.2016.1303
10.1111/j.1699-0463.1995.tb01129.x
10.1002/jlb.50.1.57
10.1111/aji.12613
10.1016/j.bbadis.2013.07.009
10.1095/biolreprod66.2.445
10.1006/viro.1993.1383
10.3389/fimmu.2015.00486
10.1093/humrep/12.4.847
10.1002/ana.24839
10.2174/092986706777935302
10.1038/nri2448
10.1111/aji.12357
10.1002/ar.1091670211
10.1001/jama.283.9.1175
10.1007/978-3-319-54090-0_3
10.3389/fimmu.2014.00606
10.1016/j.tim.2005.02.009
10.1016/j.ajpath.2011.05.034
10.12703/P6-13
10.1111/j.1749-6632.2001.tb03798.x
10.1002/jlb.67.1.97
10.1038/nri978
10.1016/j.earlhumdev.2005.09.005
10.1097/00003081-198209000-00014
10.1016/S0143-4004(80)80005-1
10.1111/j.1749-6632.2010.05932.x
10.1126/science.aal4365
ContentType Journal Article
Copyright 2019 The Author(s) Published by S. Karger AG, Basel
2019 The Author(s) Published by S. Karger AG, Basel.
Copyright © 2019 by S. Karger AG, Basel 2019
Copyright_xml – notice: 2019 The Author(s) Published by S. Karger AG, Basel
– notice: 2019 The Author(s) Published by S. Karger AG, Basel.
– notice: Copyright © 2019 by S. Karger AG, Basel 2019
DBID M--
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1159/000497416
DatabaseName Karger Open Access Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: M--
  name: Karger Open Access Journals
  url: https://www.karger.com/OpenAccess
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1662-8128
EndPage 456
ExternalDocumentID PMC6758944
30970346
10_1159_000497416
497416
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
0~B
3O.
4.4
53G
5GY
8UI
AAYIC
ABDBF
ABPAZ
ACGFO
ACGFS
ACPRK
ACPSR
ADBBV
ADFRT
AENEX
AEYAO
AHMBA
ALDHI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZPMC
CYUIP
E0A
EAP
EBS
EJD
ESX
EX3
F5P
FB.
GROUPED_DOAJ
HYE
HZ~
IAO
IHR
IY7
KUZGX
M--
M7P
N9A
O1H
O9-
OK1
P2P
RKO
RPM
SJN
UJ6
WOW
0~5
7RV
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAYXX
ABBTS
ABUWG
ABWCG
ACUHS
AFJJK
AFKRA
AHFRZ
AOIJS
BBNVY
BENPR
BHPHI
BKEYQ
BPHCQ
BVXVI
CAG
CCPQU
CITATION
COF
FYUFA
HCIFZ
HMCUK
ITC
LK8
M1P
NAPCQ
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
UKHRP
3V.
NPM
7X8
5PM
ID FETCH-LOGICAL-c558t-abaeb7acaaeff817f7e993f7f6b86c836d22d4b8ba91646f103c12f082543c053
IEDL.DBID M--
ISSN 1662-811X
1662-8128
IngestDate Thu Aug 21 18:28:00 EDT 2025
Fri Sep 05 13:02:51 EDT 2025
Wed Feb 19 02:30:43 EST 2025
Tue Jul 01 05:10:01 EDT 2025
Thu Apr 24 23:07:23 EDT 2025
Thu Aug 29 12:04:34 EDT 2024
Thu Sep 05 19:48:50 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Placenta
Human immunodeficiency virus
Macrophages
Hofbauer cells
ZIKA
Language English
License This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission.
https://creativecommons.org/licenses/by-nc-nd/4.0
2019 The Author(s) Published by S. Karger AG, Basel.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c558t-abaeb7acaaeff817f7e993f7f6b86c836d22d4b8ba91646f103c12f082543c053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://karger.com/doi/10.1159/000497416
PMID 30970346
PQID 2207936737
PQPubID 23479
PageCount 10
ParticipantIDs karger_primary_497416
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6758944
pubmed_primary_30970346
proquest_miscellaneous_2207936737
crossref_primary_10_1159_000497416
crossref_citationtrail_10_1159_000497416
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel, Switzerland
PublicationPlace_xml – name: Basel, Switzerland
– name: Switzerland
– name: Allschwilerstrasse 10, P.O. Box · Postfach · Case postale, CH–4009, Basel, Switzerland · Schweiz · Suisse, Phone: +41 61 306 11 11, Fax: +41 61 306 12 34, karger@karger.ch
PublicationTitle Journal of innate immunity
PublicationTitleAlternate J Innate Immun
PublicationYear 2019
Publisher S. Karger AG
Publisher_xml – name: S. Karger AG
References Sisino G, Bouckenooghe T, Aurientis S, Fontaine P, Storme L, Vambergue A. Diabetes during pregnancy influences Hofbauer cells, a subtype of placental macrophages, to acquire a pro-inflammatory phenotype. Biochim Biophys Acta. 2013Dec;1832(12):1959–68. 10.1016/j.bbadis.2013.07.009238725770006-3002
Moshfeghi DM, de Miranda HA2nd, CostaMC. Zika Virus, Microcephaly, and Ocular Findings. JAMA Ophthalmol. 2016Aug;134(8):945–945. 10.1001/jamaophthalmol.2016.1303272548352168-6165
Weisblum Y, Panet A, Haimov-Kochman R, Wolf DG. Models of vertical cytomegalovirus (CMV) transmission and pathogenesis. Semin Immunopathol. 2014Nov;36(6):615–25. 10.1007/s00281-014-0449-1252919721863-2297
Bright NA, Ockleford CD, Anwar M. Ontogeny and distribution of Fc gamma receptors in the human placenta. Transport or immune surveillance. J Anat. 1994Apr;184(Pt 2):297–308.80141210021-8782
Romagnani P, Annunziato F, Piccinni MP, Maggi E, Romagnani S. Th1/Th2 cells, their associated molecules and role in pathophysiology. Eur Cytokine Netw. 2000Sep;11(3):510–1.112031981148-5493
Weisblum Y, Oiknine-Djian E, Zakay-Rones Z, Vorontsov O, Haimov-Kochman R, Nevo Y, et al.. APOBEC3A Is Upregulated by Human Cytomegalovirus (HCMV) in the Maternal-Fetal Interface, Acting as an Innate Anti-HCMV Effector. J Virol. 2017Nov;91(23):e01296-17. 10.1128/JVI.01296-17289567610022-538X
Jurado KA, Simoni MK, Tang Z, Uraki R, Hwang J, Householder S, et al.. Zika virus productively infects primary human placenta-specific macrophages. JCI Insight. 2016Aug;1(13):e88461. 10.1172/jci.insight.88461275951402379-3708
McDonagh S, Maidji E, Ma W, Chang HT, Fisher S, Pereira L. Viral and bacterial pathogens at the maternal-fetal interface. J Infect Dis. 2004Aug;190(4):826–34. 10.1086/422330152724120022-1899
Lum FM, Low DK, Fan Y, Tan JJ, Lee B, Chan JK, et al.. Zika Virus Infects Human Fetal Brain Microglia and Induces Inflammation. Clin Infect Dis. 2017Apr;64(7):914–20. 10.1093/cid/ciw878283629441058-4838
Gomez-Lopez N, StLouis D, Lehr MA, Sanchez-Rodriguez EN, Arenas-Hernandez M. Immune cells in term and preterm labor. Cell Mol Immunol. 2014Nov;11(6):571–81. 10.1038/cmi.2014.46249542211672-7681
Tooke L, Riemer L, Matjila M, Harrison M. Antiretrovirals causing severe pre-eclampsia. Pregnancy Hypertens. 2016Oct;6(4):266–8. 10.1016/j.preghy.2016.04.006279394652210-7789
Fox H. The incidence and significance of Hofbauer cells in the mature human placenta. J Pathol Bacteriol. 1967Apr;93(2):710–7. 10.1002/path.170093023960540690368-3494
Kharsany AB, Karim QA. HIV Infection and AIDS in Sub-Saharan Africa: Current Status, Challenges and Opportunities. Open AIDS J. 2016Apr;10(1):34–48. 10.2174/1874613601610010034273472701874-6136
Teasdale, C.A., B.J.Marais, and E.J.Abrams, HIV: prevention of mother-to-child transmission. BMJ Clin Evid, 2011. 2011.
De Cock KM, Fowler MG, Mercier E, de Vincenzi I, Saba J, Hoff E, et al.. Prevention of mother-to-child HIV transmission in resource-poor countries: translating research into policy and practice. JAMA. 2000Mar;283(9):1175–82. 10.1001/jama.283.9.1175107037800098-7484
Joerink M, Rindsjö E, van Riel B, Alm J, Papadogiannakis N. Placental macrophage (Hofbauer cell) polarization is independent of maternal allergen-sensitization and presence of chorioamnionitis. Placenta. 2011May;32(5):380–5. 10.1016/j.placenta.2011.02.003214194830143-4004
Russell P. Inflammatory lesions of the human placenta. III. The histopathology of villitis of unknown aetiology. Placenta. 1980Jul-Sep;1(3):227–44. 10.1016/S0143-4004(80)80005-174436420143-4004
Hung TH, Chen SF, Hsu JJ, Hsieh CC, Hsueh S, Hsieh TT. Tumour necrosis factor-alpha converting enzyme in human gestational tissues from pregnancies complicated by chorioamnionitis. Placenta. 2006Sep-Oct;27(9-10):996–1006. 10.1016/j.placenta.2005.11.002163769860143-4004
Newell ML. Mechanisms and timing of mother-to-child transmission of HIV-1. AIDS. 1998May;12(8):831–7. 10.1097/00002030-199808000-0000496311350269-9370
Johnson EL, Chakraborty R. Placental Hofbauer cells limit HIV-1 replication and potentially offset mother to child transmission (MTCT) by induction of immunoregulatory cytokines. Retrovirology. 2012Dec;9(1):101. 10.1186/1742-4690-9-101232171371742-4690
Johnson EL, Chu H, Byrareddy SN, Spearman P, Chakraborty R. Placental Hofbauer cells assemble and sequester HIV-1 in tetraspanin-positive compartments that are accessible to broadly neutralizing antibodies. J Int AIDS Soc. 2015Jan;18(1):19385. 10.7448/IAS.18.1.19385256239301758-2652
Araújo JR, Keating E, Martel F. Impact of gestational diabetes mellitus in the maternal-to-fetal transport of nutrients. Curr Diab Rep. 2015Feb;15(2):569. 10.1007/s11892-014-0569-y256204021534-4827
Kawamura H, Takeuchi M, Sasahara J, Ishii K, Mitsuda N. Inflammatory Response in Acute Chorioamnionitis and Outcome of Very Low Birth Weight Infants. Placenta. 2015;36(10):A10–1. 10.1016/j.placenta.2015.07.1700143-4004
Svensson-Arvelund J, Mehta RB, Lindau R, Mirrasekhian E, Rodriguez-Martinez H, Berg G, et al.. The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages. J Immunol. 2015Feb;194(4):1534–44. 10.4049/jimmunol.1401536255604090022-1767
Roberts JM, et al.; American College of Obstetricians and Gynecologists; Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013Nov;122(5):1122–31.241500271873-233X
Ben Amara A, Gorvel L, Baulan K, Derain-Court J, Buffat C, Vérollet C, et al.. Placental macrophages are impaired in chorioamnionitis, an infectious pathology of the placenta. J Immunol. 2013Dec;191(11):5501–14. 10.4049/jimmunol.1300988241634110022-1767
Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003Jan;3(1):23–35. 10.1038/nri978125118731474-1733
Simoni MK, Jurado KA, Abrahams VM, Fikrig E, Guller S. Zika virus infection of Hofbauer cells. Am J Reprod Immunol. 2017Feb;77(2):e12613. 10.1111/aji.12613279668151046-7408
Kliks S. Antibody-enhanced infection of monocytes as the pathogenetic mechanism for severe dengue illness. AIDS Res Hum Retroviruses. 1990Aug;6(8):993–8. 10.1089/aid.1990.6.99322232450889-2229
van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ. 1972;46(6):845–52.45385440042-9686
Selkov SA, Selutin AV, Pavlova OM, Khromov-Borisov NN, Pavlov OV. Comparative phenotypic characterization of human cord blood monocytes and placental macrophages at term. Placenta. 2013Sep;34(9):836–9. 10.1016/j.placenta.2013.05.007237738570143-4004
Arora N, Sadovsky Y, Dermody TS, Coyne CB. Microbial Vertical Transmission during Human Pregnancy. Cell Host Microbe. 2017May;21(5):561–7. 10.1016/j.chom.2017.04.007284942371931-3128
Yu J, Zhou Y, Gui J, Li AZ, Su XL, Feng L. Assessment of the number and function of macrophages in the placenta of gestational diabetes mellitus patients. J Huazhong Univ Sci Technolog Med Sci. 2013Oct;33(5):725–9. 10.1007/s11596-013-1187-7241427271672-0733
Barros MH, Hauck F, Dreyer JH, Kempkes B, Niedobitek G. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS One. 2013Nov;8(11):e80908. 10.1371/journal.pone.0080908242605071932-6203
Tang Z, Niven-Fairchild T, Tadesse S, Norwitz ER, Buhimschi CS, Buhimschi IA, et al.. Glucocorticoids enhance CD163 expression in placental Hofbauer cells. Endocrinology. 2013Jan;154(1):471–82. 10.1210/en.2012-1575231428090013-7227
Zhu Y, Zhang C. Prevalence of Gestational Diabetes and Risk of Progression to Type 2 Diabetes: a Global Perspective. Curr Diab Rep. 2016Jan;16(1):7. 10.1007/s11892-015-0699-x267429321534-4827
Weisblum Y, Panet A, Zakay-Rones Z, Vitenshtein A, Haimov-Kochman R, Goldman-Wohl D, et al.. Human cytomegalovirus induces a distinct innate immune response in the maternal-fetal interface. Virology. 2015Nov;485:289–96. 10.1016/j.virol.2015.06.023263182610042-6822
Buechler C, Ritter M, Orsó E, Langmann T, Klucken J, Schmitz G. Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J Leukoc Biol. 2000Jan;67(1):97–103. 10.1002/jlb.67.1.97106480030741-5400
Bardina SV, Bunduc P, Tripathi S, Duehr J, Frere JJ, Brown JA, et al.. Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science. 2017Apr;356(6334):175–80. 10.1126/science.aal4365283601350036-8075
Koi H, Zhang J, Parry S. The mechanisms of placental viral infection. Ann N Y Acad Sci. 2001Sep;943(1):148–56. 10.1111/j.1749-6632.2001.tb03798.x115945350077-8923
Reyes L, Wolfe B, Golos T. Hofbauer Cells: Placental Macrophages of Fetal Origin. Results Probl Cell Differ. 2017;62:45–60. 10.1007/978-3-319-54090-0_3284557050080-1844
Svensson J, Jenmalm MC, Matussek A, Geffers R, Berg G, Ernerudh J. Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. J Immunol. 2011Oct;187(7):3671–82. 10.4049/jimmunol.1100130218906600022-1767
Noronha L, Zanluca C, Azevedo ML, Luz KG, Santos CN. Zika virus damages the human placental barrier and presents marked fetal neurotropism. Mem Inst Oswaldo Cruz. 2016May;111(5):287–93. 10.1590/0074-02760160085271434900074-0276
Zimmerman MG, Quicke KM, O’Neal JT, Arora N, Machiah D, Priyamvada L, et al.. Cross-Reactive Dengue Virus Antibodies Augment Zika Virus Infection of Human Placental Macrophages. Cell Host Microbe. 2018Nov;24(5):731–742.e6. 10.1016/j.chom.2018.10.008304393421931-3128
Simister NE. Human placental Fc receptors and the trapping of immune complexes. Vaccine. 1998Aug-Sep;16(14-15):1451–5. 10.1016/S0264-410X(98)00107-897117870264-410X
Vinnars MT, Rindsjö E, Ghazi S, Sundberg A, Papadogiannakis N. The number of CD68(+) (Hofbauer) cells is decreased in placentas with chorioamnionitis and with
ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref99
ref10
ref98
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref73
ref72
ref110
ref68
ref67
ref69
ref64
ref63
ref66
ref65
ref60
ref62
ref61
References_xml – reference: Svensson-Arvelund J, Ernerudh J. The Role of Macrophages in Promoting and Maintaining Homeostasis at the Fetal-Maternal Interface. Am J Reprod Immunol. 2015Aug;74(2):100–9. 10.1111/aji.12357255826251046-7408
– reference: Russell P. Inflammatory lesions of the human placenta. III. The histopathology of villitis of unknown aetiology. Placenta. 1980Jul-Sep;1(3):227–44. 10.1016/S0143-4004(80)80005-174436420143-4004
– reference: Medawar PB. Some Immunological and Endocrinological Problems Raised by the Evolution of Viviparity in Vertebrates. Symp Soc Exp Biol. 1953;7:320–38.0081-1386
– reference: Sisino G, Bouckenooghe T, Aurientis S, Fontaine P, Storme L, Vambergue A. Diabetes during pregnancy influences Hofbauer cells, a subtype of placental macrophages, to acquire a pro-inflammatory phenotype. Biochim Biophys Acta. 2013Dec;1832(12):1959–68. 10.1016/j.bbadis.2013.07.009238725770006-3002
– reference: Weisblum Y, Panet A, Haimov-Kochman R, Wolf DG. Models of vertical cytomegalovirus (CMV) transmission and pathogenesis. Semin Immunopathol. 2014Nov;36(6):615–25. 10.1007/s00281-014-0449-1252919721863-2297
– reference: Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014Mar;6:13. 10.12703/P6-13246692942051-7599
– reference: Przybyl L, Haase N, Golic M, Rugor J, Solano ME, Arck PC, et al.. CD74-Downregulation of Placental Macrophage-Trophoblastic Interactions in Preeclampsia. Circ Res. 2016Jun;119(1):55–68. 10.1161/CIRCRESAHA.116.308304271994650009-7330
– reference: Roberts JM, et al.; American College of Obstetricians and Gynecologists; Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013Nov;122(5):1122–31.241500271873-233X
– reference: Toti P, Arcuri F, Tang Z, Schatz F, Zambrano E, Mor G, et al.. Focal increases of fetal macrophages in placentas from pregnancies with histological chorioamnionitis: potential role of fibroblast monocyte chemotactic protein-1. Am J Reprod Immunol. 2011May;65(5):470–9. 10.1111/j.1600-0897.2010.00927.x210873361046-7408
– reference: Hiden U, Maier A, Bilban M, Ghaffari-Tabrizi N, Wadsack C, Lang I, et al.. Insulin control of placental gene expression shifts from mother to foetus over the course of pregnancy. Diabetologia. 2006Jan;49(1):123–31. 10.1007/s00125-005-0054-x163449250012-186X
– reference: Noronha L, Zanluca C, Azevedo ML, Luz KG, Santos CN. Zika virus damages the human placental barrier and presents marked fetal neurotropism. Mem Inst Oswaldo Cruz. 2016May;111(5):287–93. 10.1590/0074-02760160085271434900074-0276
– reference: Emery VC. Investigation of CMV disease in immunocompromised patients. J Clin Pathol. 2001Feb;54(2):84–8. 10.1136/jcp.54.2.84112152900021-9746
– reference: Weisblum Y, Oiknine-Djian E, Zakay-Rones Z, Vorontsov O, Haimov-Kochman R, Nevo Y, et al.. APOBEC3A Is Upregulated by Human Cytomegalovirus (HCMV) in the Maternal-Fetal Interface, Acting as an Innate Anti-HCMV Effector. J Virol. 2017Nov;91(23):e01296-17. 10.1128/JVI.01296-17289567610022-538X
– reference: El Costa H, Gouilly J, Mansuy JM, Chen Q, Levy C, Cartron G, et al.. ZIKA virus reveals broad tissue and cell tropism during the first trimester of pregnancy. Sci Rep. 2016Oct;6(1):35296. 10.1038/srep35296277590092045-2322
– reference: Kaufmann P, Stark J, Stegner HE. The villous stroma of the human placenta. I. The ultrastructure of fixed connective tissue cells. Cell Tissue Res. 1977Feb;177(1):105–21. 10.1007/BF002211228373980302-766X
– reference: Mattar R, Amed AM, Lindsey PC, Sass N, Daher S. Preeclampsia and HIV infection. Eur J Obstet Gynecol Reprod Biol. 2004Dec;117(2):240–1. 10.1016/j.ejogrb.2004.04.014155418640301-2115
– reference: Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003Jan;3(1):23–35. 10.1038/nri978125118731474-1733
– reference: Ndirangu J, Newell ML, Bland RM, Thorne C. Maternal HIV infection associated with small-for-gestational age infants but not preterm births: evidence from rural South Africa. Hum Reprod. 2012Jun;27(6):1846–56. 10.1093/humrep/des090224422450268-1161
– reference: Weisblum Y, Panet A, Zakay-Rones Z, Vitenshtein A, Haimov-Kochman R, Goldman-Wohl D, et al.. Human cytomegalovirus induces a distinct innate immune response in the maternal-fetal interface. Virology. 2015Nov;485:289–96. 10.1016/j.virol.2015.06.023263182610042-6822
– reference: Balsitis SJ, Williams KL, Lachica R, Flores D, Kyle JL, Mehlhop E, et al.. Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. PLoS Pathog. 2010Feb;6(2):e1000790. 10.1371/journal.ppat.1000790201689891553-7366
– reference: Schliefsteiner C, Peinhaupt M, Kopp S, Lögl J, Lang-Olip I, Hiden U, et al.. Human Placental Hofbauer Cells Maintain an Anti-inflammatory M2 Phenotype despite the Presence of Gestational Diabetes Mellitus. Front Immunol. 2017Jul;8:888. 10.3389/fimmu.2017.00888288246211664-3224
– reference: Joerink M, Rindsjö E, van Riel B, Alm J, Papadogiannakis N. Placental macrophage (Hofbauer cell) polarization is independent of maternal allergen-sensitization and presence of chorioamnionitis. Placenta. 2011May;32(5):380–5. 10.1016/j.placenta.2011.02.003214194830143-4004
– reference: Jensen TS, Matre R. Fc gamma-receptor activity in the developing human placenta. APMIS. 1995Jun;103(6):433–8. 10.1111/j.1699-0463.1995.tb01129.x75466461600-0463
– reference: Vinnars MT, Rindsjö E, Ghazi S, Sundberg A, Papadogiannakis N. The number of CD68(+) (Hofbauer) cells is decreased in placentas with chorioamnionitis and with advancing gestational age. Pediatr Dev Pathol. 2010Jul-Aug;13(4):300–4. 10.2350/09-03-0632-OA.1196428141093-5266
– reference: Nagamatsu T, Schust DJ. The immunomodulatory roles of macrophages at the maternal-fetal interface. Reprod Sci. 2010Mar;17(3):209–18. 10.1177/1933719109349962200653011933-7191
– reference: Reyes L, Wolfe B, Golos T. Hofbauer Cells: Placental Macrophages of Fetal Origin. Results Probl Cell Differ. 2017;62:45–60. 10.1007/978-3-319-54090-0_3284557050080-1844
– reference: Schwartz DA. Viral infection, proliferation, and hyperplasia of Hofbauer cells and absence of inflammation characterize the placental pathology of fetuses with congenital Zika virus infection. Arch Gynecol Obstet. 2017Jun;295(6):1361–8. 10.1007/s00404-017-4361-5283969920932-0067
– reference: Lissauer D, Smit E, Kilby MD. Zika virus and pregnancy. BJOG. 2016Jul;123(8):1258–63. 10.1111/1471-0528.14071271504561470-0328
– reference: Stagno S, Pass RF, Dworsky ME, AlfordCAJr. Maternal cytomegalovirus infection and perinatal transmission. Clin Obstet Gynecol. 1982Sep;25(3):563–76. 10.1097/00003081-198209000-0001462901210009-9201
– reference: Castellucci M, Zaccheo D, Pescetto G. A three-dimensional study of the normal human placental villous core. I. The Hofbauer cells. Cell Tissue Res. 1980;210(2):235–47. 10.1007/BF0023761274078680302-766X
– reference: Gomez-Lopez N, StLouis D, Lehr MA, Sanchez-Rodriguez EN, Arenas-Hernandez M. Immune cells in term and preterm labor. Cell Mol Immunol. 2014Nov;11(6):571–81. 10.1038/cmi.2014.46249542211672-7681
– reference: Al-Husaini AM. Role of placenta in the vertical transmission of human immunodeficiency virus. J Perinatol. 2009May;29(5):331–6. 10.1038/jp.2008.187190205260743-8346
– reference: Zhu Y, Zhang C. Prevalence of Gestational Diabetes and Risk of Progression to Type 2 Diabetes: a Global Perspective. Curr Diab Rep. 2016Jan;16(1):7. 10.1007/s11892-015-0699-x267429321534-4827
– reference: Yu J, Zhou Y, Gui J, Li AZ, Su XL, Feng L. Assessment of the number and function of macrophages in the placenta of gestational diabetes mellitus patients. J Huazhong Univ Sci Technolog Med Sci. 2013Oct;33(5):725–9. 10.1007/s11596-013-1187-7241427271672-0733
– reference: Fayyad AM, Harrington KF. Prediction and prevention of preeclampsia and IUGR. Early Hum Dev. 2005Nov;81(11):865–76. 10.1016/j.earlhumdev.2005.09.005162896440378-3782
– reference: Saji F, Koyama M, Matsuzaki N. Current topic: human placental Fc receptors. Placenta. 1994Jul;15(5):453–66. 10.1016/S0143-4004(05)80415-179974460143-4004
– reference: Manicklal S, Emery VC, Lazzarotto T, Boppana SB, Gupta RK. The “silent” global burden of congenital cytomegalovirus. Clin Microbiol Rev. 2013Jan;26(1):86–102. 10.1128/CMR.00062-12232972600893-8512
– reference: Teasdale, C.A., B.J.Marais, and E.J.Abrams, HIV: prevention of mother-to-child transmission. BMJ Clin Evid, 2011. 2011.
– reference: Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000Jun;164(12):6166–73. 10.4049/jimmunol.164.12.6166108436660022-1767
– reference: Svensson-Arvelund J, Mehta RB, Lindau R, Mirrasekhian E, Rodriguez-Martinez H, Berg G, et al.. The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages. J Immunol. 2015Feb;194(4):1534–44. 10.4049/jimmunol.1401536255604090022-1767
– reference: Fox H. The incidence and significance of Hofbauer cells in the mature human placenta. J Pathol Bacteriol. 1967Apr;93(2):710–7. 10.1002/path.170093023960540690368-3494
– reference: Simoni MK, Jurado KA, Abrahams VM, Fikrig E, Guller S. Zika virus infection of Hofbauer cells. Am J Reprod Immunol. 2017Feb;77(2):e12613. 10.1111/aji.12613279668151046-7408
– reference: Calvet G, Aguiar RS, Melo AS, Sampaio SA, de Filippis I, Fabri A, et al.. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect Dis. 2016Jun;16(6):653–60. 10.1016/S1473-3099(16)00095-5268971081473-3099
– reference: Bright NA, Ockleford CD, Anwar M. Ontogeny and distribution of Fc gamma receptors in the human placenta. Transport or immune surveillance. J Anat. 1994Apr;184(Pt 2):297–308.80141210021-8782
– reference: Araújo JR, Keating E, Martel F. Impact of gestational diabetes mellitus in the maternal-to-fetal transport of nutrients. Curr Diab Rep. 2015Feb;15(2):569. 10.1007/s11892-014-0569-y256204021534-4827
– reference: Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci. 2008Jan;13(13):453–61. 10.2741/2692179815601093-9946
– reference: Radaelli T, Varastehpour A, Catalano P, Hauguel-de Mouzon S. Gestational diabetes induces placental genes for chronic stress and inflammatory pathways. Diabetes. 2003Dec;52(12):2951–8. 10.2337/diabetes.52.12.2951146338560012-1797
– reference: Tang Z, Niven-Fairchild T, Tadesse S, Norwitz ER, Buhimschi CS, Buhimschi IA, et al.. Glucocorticoids enhance CD163 expression in placental Hofbauer cells. Endocrinology. 2013Jan;154(1):471–82. 10.1210/en.2012-1575231428090013-7227
– reference: Ornelas AM, Pezzuto P, Silveira PP, Melo FO, Ferreira TA, Oliveira-Szejnfeld PS, et al.. Immune activation in amniotic fluid from Zika virus-associated microcephaly. Ann Neurol. 2017Jan;81(1):152–6. 10.1002/ana.24839279778810364-5134
– reference: McDonagh S, Maidji E, Ma W, Chang HT, Fisher S, Pereira L. Viral and bacterial pathogens at the maternal-fetal interface. J Infect Dis. 2004Aug;190(4):826–34. 10.1086/422330152724120022-1899
– reference: Selkov SA, Selutin AV, Pavlova OM, Khromov-Borisov NN, Pavlov OV. Comparative phenotypic characterization of human cord blood monocytes and placental macrophages at term. Placenta. 2013Sep;34(9):836–9. 10.1016/j.placenta.2013.05.007237738570143-4004
– reference: Kharsany AB, Karim QA. HIV Infection and AIDS in Sub-Saharan Africa: Current Status, Challenges and Opportunities. Open AIDS J. 2016Apr;10(1):34–48. 10.2174/1874613601610010034273472701874-6136
– reference: Wedi CO, Kirtley S, Hopewell S, Corrigan R, Kennedy SH, Hemelaar J. Perinatal outcomes associated with maternal HIV infection: a systematic review and meta-analysis. Lancet HIV. 2016Jan;3(1):e33–48. 10.1016/S2352-3018(15)00207-6267629922352-3018
– reference: Simister NE. Human placental Fc receptors and the trapping of immune complexes. Vaccine. 1998Aug-Sep;16(14-15):1451–5. 10.1016/S0264-410X(98)00107-897117870264-410X
– reference: Ibanez CE, Schrier R, Ghazal P, Wiley C, Nelson JA. Human cytomegalovirus productively infects primary differentiated macrophages. J Virol. 1991Dec;65(12):6581–8.16583630022-538X
– reference: Hung TH, Chen SF, Hsu JJ, Hsieh CC, Hsueh S, Hsieh TT. Tumour necrosis factor-alpha converting enzyme in human gestational tissues from pregnancies complicated by chorioamnionitis. Placenta. 2006Sep-Oct;27(9-10):996–1006. 10.1016/j.placenta.2005.11.002163769860143-4004
– reference: Czikk MJ, McCarthy FP, Murphy KE. Chorioamnionitis: from pathogenesis to treatment. Clin Microbiol Infect. 2011Sep;17(9):1304–11. 10.1111/j.1469-0691.2011.03574.x216720801198-743X
– reference: Lewis SH, Reynolds-Kohler C, Fox HE, Nelson JA. HIV-1 in trophoblastic and villous Hofbauer cells, and haematological precursors in eight-week fetuses. Lancet. 1990Mar;335(8689):565–8. 10.1016/0140-6736(90)90349-A16897920140-6736
– reference: Ginhoux F, Guilliams M. Tissue-Resident Macrophage Ontogeny and Homeostasis. Immunity. 2016Mar;44(3):439–49. 10.1016/j.immuni.2016.02.024269823521074-7613
– reference: Vacek Z. Derivation and ultrastructure of the stroma cells of the human chorionic villus. Folia Morphol (Praha). 1970;18(1):1–13.54366850015-5640
– reference: Yona S, Gordon S. From the reticuloendothelial to mononuclear phagocyte system - the unaccounted years. Front Immunol. 2015Jul;6:328. 10.3389/fimmu.2015.00328261910611664-3224
– reference: Buechler C, Ritter M, Orsó E, Langmann T, Klucken J, Schmitz G. Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J Leukoc Biol. 2000Jan;67(1):97–103. 10.1002/jlb.67.1.97106480030741-5400
– reference: Moshfeghi DM, de Miranda HA2nd, CostaMC. Zika Virus, Microcephaly, and Ocular Findings. JAMA Ophthalmol. 2016Aug;134(8):945–945. 10.1001/jamaophthalmol.2016.1303272548352168-6165
– reference: Johnson EL, Chu H, Byrareddy SN, Spearman P, Chakraborty R. Placental Hofbauer cells assemble and sequester HIV-1 in tetraspanin-positive compartments that are accessible to broadly neutralizing antibodies. J Int AIDS Soc. 2015Jan;18(1):19385. 10.7448/IAS.18.1.19385256239301758-2652
– reference: Redline RW. Inflammatory response in acute chorioamnionitis. Semin Fetal Neonatal Med. 2012Feb;17(1):20–5. 10.1016/j.siny.2011.08.003218651011744-165X
– reference: Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008Dec;8(12):958–69. 10.1038/nri2448190299901474-1733
– reference: Wetzka B, Clark DE, Charnock-Jones DS, Zahradnik HP, Smith SK. Isolation of macrophages (Hofbauer cells) from human term placenta and their prostaglandin E2 and thromboxane production. Hum Reprod. 1997Apr;12(4):847–52. 10.1093/humrep/12.4.84791594550268-1161
– reference: Romagnani P, Annunziato F, Piccinni MP, Maggi E, Romagnani S. Th1/Th2 cells, their associated molecules and role in pathophysiology. Eur Cytokine Netw. 2000Sep;11(3):510–1.112031981148-5493
– reference: Fujiwara T, Fukushi J, Yamamoto S, Matsumoto Y, Setsu N, Oda Y, et al.. Macrophage infiltration predicts a poor prognosis for human ewing sarcoma. Am J Pathol. 2011Sep;179(3):1157–70. 10.1016/j.ajpath.2011.05.034217715720002-9440
– reference: Hoeffel G, Ginhoux F. Ontogeny of Tissue-Resident Macrophages. Front Immunol. 2015Sep;6:486. 10.3389/fimmu.2015.00486264419901664-3224
– reference: Erlebacher A. Immunology of the Maternal-Fetal Interface. In: Littman DR, Yokoyama WM, editors. Annual Review of Immunology. Volume 31. 2013. pp. 387–411.
– reference: Brown MB, von Chamier M, Allam AB, Reyes L. M1/M2 macrophage polarity in normal and complicated pregnancy. Front Immunol. 2014Nov;5:606. 10.3389/fimmu.2014.00606255054711664-3224
– reference: Goldstein J, Braverman M, Salafia C, Buckley P. The phenotype of human placental macrophages and its variation with gestational age. Am J Pathol. 1988Dec;133(3):648–59.32644590002-9440
– reference: Cao B, Diamond MS, Mysorekar IU. Maternal-Fetal Transmission of Zika Virus: Routes and Signals for Infection. J Interferon Cytokine Res. 2017Jul;37(7):287–94. 10.1089/jir.2017.0011284021531079-9907
– reference: Lilleri D, Kabanova A, Revello MG, Percivalle E, Sarasini A, Genini E, et al.. Fetal human cytomegalovirus transmission correlates with delayed maternal antibodies to gH/gL/pUL128-130-131 complex during primary infection. PLoS One. 2013;8(3):e59863. 10.1371/journal.pone.0059863235558121932-6203
– reference: De Cock KM, Fowler MG, Mercier E, de Vincenzi I, Saba J, Hoff E, et al.. Prevention of mother-to-child HIV transmission in resource-poor countries: translating research into policy and practice. JAMA. 2000Mar;283(9):1175–82. 10.1001/jama.283.9.1175107037800098-7484
– reference: Zimmerman MG, Quicke KM, O’Neal JT, Arora N, Machiah D, Priyamvada L, et al.. Cross-Reactive Dengue Virus Antibodies Augment Zika Virus Infection of Human Placental Macrophages. Cell Host Microbe. 2018Nov;24(5):731–742.e6. 10.1016/j.chom.2018.10.008304393421931-3128
– reference: Maciejewski JP, Bruening EE, Donahue RE, Sellers SE, Carter C, Young NS, et al.. Infection of mononucleated phagocytes with human cytomegalovirus. Virology. 1993Aug;195(2):327–36. 10.1006/viro.1993.138383932300042-6822
– reference: Ben Amara A, Gorvel L, Baulan K, Derain-Court J, Buffat C, Vérollet C, et al.. Placental macrophages are impaired in chorioamnionitis, an infectious pathology of the placenta. J Immunol. 2013Dec;191(11):5501–14. 10.4049/jimmunol.1300988241634110022-1767
– reference: Barros MH, Hauck F, Dreyer JH, Kempkes B, Niedobitek G. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS One. 2013Nov;8(11):e80908. 10.1371/journal.pone.0080908242605071932-6203
– reference: Tang Z, Abrahams VM, Mor G, Guller S. Placental Hofbauer cells and complications of pregnancy. Ann N Y Acad Sci. 2011Mar;1221(1):103–8. 10.1111/j.1749-6632.2010.05932.x214016370077-8923
– reference: Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004Dec;25(12):677–86. 10.1016/j.it.2004.09.015155308391471-4906
– reference: Quicke KM, Bowen JR, Johnson EL, McDonald CE, Ma H, O’Neal JT, et al.. Zika Virus Infects Human Placental Macrophages. Cell Host Microbe. 2016Jul;20(1):83–90. 10.1016/j.chom.2016.05.015272470011931-3128
– reference: Arora N, Sadovsky Y, Dermody TS, Coyne CB. Microbial Vertical Transmission during Human Pregnancy. Cell Host Microbe. 2017May;21(5):561–7. 10.1016/j.chom.2017.04.007284942371931-3128
– reference: Katabuchi H. THE MYSTERY OF HOFBAUER CELLS. Placenta. 2014;35(10):A2–2. 10.1016/j.placenta.2014.08.0040143-4004
– reference: Castellucci M, Kosanke G, Verdenelli F, Huppertz B, Kaufmann P. Villous sprouting: fundamental mechanisms of human placental development. Hum Reprod Update. 2000Sep-Oct;6(5):485–94. 10.1093/humupd/6.5.485110458791355-4786
– reference: Moskalewski S, Czarnik Z, Ptak W. Demonstration of cells with igg receptor in human placenta. Biol Neonate. 1975;26(3-4):268–73. 10.1159/00024073810935730006-3126
– reference: Rosenberg AZ, Yu W, Hill DA, Reyes CA, Schwartz DA. Placental Pathology of Zika Virus: Viral Infection of the Placenta Induces Villous Stromal Macrophage (Hofbauer Cell) Proliferation and Hyperplasia. Arch Pathol Lab Med. 2017Jan;141(1):43–8. 10.5858/arpa.2016-0401-OA276813340003-9985
– reference: Yang SW, Cho EH, Choi SY, Lee YK, Park JH, Kim MK, et al.. DC-SIGN expression in Hofbauer cells may play an important role in immune tolerance in fetal chorionic villi during the development of preeclampsia. J Reprod Immunol. 2017Nov;124:30–7. 10.1016/j.jri.2017.09.012290499180165-0378
– reference: Lum FM, Low DK, Fan Y, Tan JJ, Lee B, Chan JK, et al.. Zika Virus Infects Human Fetal Brain Microglia and Induces Inflammation. Clin Infect Dis. 2017Apr;64(7):914–20. 10.1093/cid/ciw878283629441058-4838
– reference: Svensson J, Jenmalm MC, Matussek A, Geffers R, Berg G, Ernerudh J. Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. J Immunol. 2011Oct;187(7):3671–82. 10.4049/jimmunol.1100130218906600022-1767
– reference: Newell ML. Mechanisms and timing of mother-to-child transmission of HIV-1. AIDS. 1998May;12(8):831–7. 10.1097/00002030-199808000-0000496311350269-9370
– reference: Vinnars MT, et al.. The number of CD68+(Hofbauer) cells is decreased in placentas with chorioamnionitis and with advancing gestational age. Placenta. 2008;29(8):A48–48.0143-4004
– reference: Kawamura H, Takeuchi M, Sasahara J, Ishii K, Mitsuda N. Inflammatory Response in Acute Chorioamnionitis and Outcome of Very Low Birth Weight Infants. Placenta. 2015;36(10):A10–1. 10.1016/j.placenta.2015.07.1700143-4004
– reference: Palmeira P, Quinello C, Silveira-Lessa AL, Zago CA, Carneiro-Sampaio M. IgG placental transfer in healthy and pathological pregnancies. Clin Dev Immunol. 2012;2012:985646. 10.1155/2012/985646222352281740-2522
– reference: Kim JS, Romero R, Kim MR, Kim YM, Friel L, Espinoza J, et al.. Involvement of Hofbauer cells and maternal T cells in villitis of unknown aetiology. Histopathology. 2008Mar;52(4):457–64. 10.1111/j.1365-2559.2008.02964.x183155980309-0167
– reference: Bardina SV, Bunduc P, Tripathi S, Duehr J, Frere JJ, Brown JA, et al.. Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science. 2017Apr;356(6334):175–80. 10.1126/science.aal4365283601350036-8075
– reference: Enders AC, King BF. The cytology of Hofbauer cells. Anat Rec. 1970Jun;167(2):231–6. 10.1002/ar.109167021154450270003-276X
– reference: Kliks S. Antibody-enhanced infection of monocytes as the pathogenetic mechanism for severe dengue illness. AIDS Res Hum Retroviruses. 1990Aug;6(8):993–8. 10.1089/aid.1990.6.99322232450889-2229
– reference: Jawerbaum A, González E. Diabetic pregnancies: the challenge of developing in a pro-inflammatory environment. Curr Med Chem. 2006;13(18):2127–38. 10.2174/092986706777935302169183430929-8673
– reference: Naidoo M, Sartorius B, Tshimanga-Tshikala G. Maternal HIV infection and preterm delivery outcomes at an urban district hospital in KwaZulu-Natal 2011. S Afr J Infect Dis. 2016;31(1):25–8. 10.1080/23120053.2016.11188382312-0053
– reference: van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ. 1972;46(6):845–52.45385440042-9686
– reference: Jurado KA, Simoni MK, Tang Z, Uraki R, Hwang J, Householder S, et al.. Zika virus productively infects primary human placenta-specific macrophages. JCI Insight. 2016Aug;1(13):e88461. 10.1172/jci.insight.88461275951402379-3708
– reference: Taylor-Wiedeman J, Sissons JG, Borysiewicz LK, Sinclair JH. Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol. 1991Sep;72(Pt 9):2059–64. 10.1099/0022-1317-72-9-205916543700022-1317
– reference: Tarique AA, Logan J, Thomas E, Holt PG, Sly PD, Fantino E. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am J Respir Cell Mol Biol. 2015Nov;53(5):676–88. 10.1165/rcmb.2015-0012OC258709031044-1549
– reference: Mor G, Abrahams VM. Potential role of macrophages as immunoregulators of pregnancy. Reprod Biol Endocrinol. 2003Dec;1(1):119–119. 10.1186/1477-7827-1-119146517521477-7827
– reference: Pereira L, Maidji E, McDonagh S, Tabata T. Insights into viral transmission at the uterine-placental interface. Trends Microbiol. 2005Apr;13(4):164–74. 10.1016/j.tim.2005.02.009158173860966-842X
– reference: Bracci R, Buonocore G. Chorioamnionitis: a risk factor for fetal and neonatal morbidity. Biol Neonate. 2003;83(2):85–96. 10.1159/000067956125767510006-3126
– reference: Loegl J, Hiden U, Nussbaumer E, Schliefsteiner C, Cvitic S, Lang I, et al.. Hofbauer cells of M2a, M2b and M2c polarization may regulate feto-placental angiogenesis. Reproduction. 2016Nov;152(5):447–55. 10.1530/REP-16-0159275345711470-1626
– reference: Tooke L, Riemer L, Matjila M, Harrison M. Antiretrovirals causing severe pre-eclampsia. Pregnancy Hypertens. 2016Oct;6(4):266–8. 10.1016/j.preghy.2016.04.006279394652210-7789
– reference: Takahashi K, Naito M, Katabuchi H, Higashi K. Development, differentiation, and maturation of macrophages in the chorionic villi of mouse placenta with special reference to the origin of Hofbauer cells. J Leukoc Biol. 1991Jul;50(1):57–68. 10.1002/jlb.50.1.5720562470741-5400
– reference: Young A, Thomson AJ, Ledingham M, Jordan F, Greer IA, Norman JE. Immunolocalization of proinflammatory cytokines in myometrium, cervix, and fetal membranes during human parturition at term. Biol Reprod. 2002Feb;66(2):445–9. 10.1095/biolreprod66.2.445118049610006-3363
– reference: Chen JY, Ribaudo HJ, Souda S, Parekh N, Ogwu A, Lockman S, et al.. Highly active antiretroviral therapy and adverse birth outcomes among HIV-infected women in Botswana. J Infect Dis. 2012Dec;206(11):1695–705. 10.1093/infdis/jis553230661600022-1899
– reference: Krausgruber T, Saliba D, Blazek K, Lockstone H, Sahgal N, Alzabin S, et al.. IRF5 as a defining factor of M1 macrophage polarization. Cytokine. 2010;52(1-2):44–44. 10.1016/j.cyto.2010.07.1851043-4666
– reference: Mendelson M, Monard S, Sissons P, Sinclair J. Detection of endogenous human cytomegalovirus in CD34+ bone marrow progenitors. J Gen Virol. 1996Dec;77(Pt 12):3099–102. 10.1099/0022-1317-77-12-309990001020022-1317
– reference: Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010Oct;11(10):889–96. 10.1038/ni.1937208562201529-2908
– reference: Ning F, Liu H, Lash GE. The Role of Decidual Macrophages During Normal and Pathological Pregnancy. Am J Reprod Immunol. 2016Mar;75(3):298–309. 10.1111/aji.12477267500891046-7408
– reference: Sironi M, Martinez FO, D’Ambrosio D, Gattorno M, Polentarutti N, Locati M, et al.. Differential regulation of chemokine production by Fcgamma receptor engagement in human monocytes: association of CCL1 with a distinct form of M2 monocyte activation (M2b, Type 2). J Leukoc Biol. 2006Aug;80(2):342–9. 10.1189/jlb.1005586167356930741-5400
– reference: Koi H, Zhang J, Parry S. The mechanisms of placental viral infection. Ann N Y Acad Sci. 2001Sep;943(1):148–56. 10.1111/j.1749-6632.2001.tb03798.x115945350077-8923
– reference: Musso D, Gubler DJ. Zika Virus. Clin Microbiol Rev. 2016Jul;29(3):487–524. 10.1128/CMR.00072-15270295950893-8512
– reference: Johnson EL, Chakraborty R. Placental Hofbauer cells limit HIV-1 replication and potentially offset mother to child transmission (MTCT) by induction of immunoregulatory cytokines. Retrovirology. 2012Dec;9(1):101. 10.1186/1742-4690-9-101232171371742-4690
– reference: Ferrante CJ, Pinhal-Enfield G, Elson G, Cronstein BN, Hasko G, Outram S, et al.. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Rα) signaling. Inflammation. 2013Aug;36(4):921–31. 10.1007/s10753-013-9621-3235042590360-3997
– ident: ref102
  doi: 10.1136/jcp.54.2.84
– ident: ref15
  doi: 10.1016/j.placenta.2013.05.007
– ident: ref9
  doi: 10.1093/humupd/6.5.485
– ident: ref16
  doi: 10.1159/000240738
– ident: ref56
  doi: 10.1111/j.1600-0897.2010.00927.x
– ident: ref29
  doi: 10.1007/s10753-013-9621-3
– ident: ref74
  doi: 10.1590/0074-02760160085
– ident: ref40
  doi: 10.1186/1742-4690-9-101
– ident: ref44
  doi: 10.1016/S0264-410X(98)00107-8
– ident: ref51
  doi: 10.1159/000067956
– ident: ref87
  doi: 10.1016/j.chom.2018.10.008
– ident: ref20
  doi: 10.1089/jir.2017.0011
– ident: ref97
  doi: 10.1038/jp.2008.187
– ident: ref91
  doi: 10.1093/infdis/jis553
– ident: ref93
  doi: 10.1016/S2352-3018(15)00207-6
– ident: ref34
  doi: 10.1165/rcmb.2015-0012OC
– ident: ref49
  doi: 10.1016/j.siny.2011.08.003
– ident: ref55
  doi: 10.1016/j.placenta.2005.11.002
– ident: ref109
  doi: 10.1099/0022-1317-72-9-2059
– ident: ref98
  doi: 10.1097/00002030-199808000-00004
– ident: ref92
  doi: 10.1093/humrep/des090
– ident: ref24
  doi: 10.4049/jimmunol.164.12.6166
– ident: ref57
  doi: 10.1007/s11892-014-0569-y
– ident: ref21
  doi: 10.1086/422330
– ident: ref77
  doi: 10.1016/S1473-3099(16)00095-5
– ident: ref6
  doi: 10.1016/j.immuni.2016.02.024
– ident: ref38
  doi: 10.4049/jimmunol.1100130
– ident: ref54
  doi: 10.2350/09-03-0632-OA.1
– ident: ref37
  doi: 10.4049/jimmunol.1401536
– ident: ref81
  doi: 10.1007/s00404-017-4361-5
– ident: ref71
  doi: 10.1128/CMR.00072-15
– ident: ref96
  doi: 10.7448/IAS.18.1.19385
– ident: ref48
  doi: 10.1111/j.1469-0691.2011.03574.x
– ident: ref68
  doi: 10.1161/CIRCRESAHA.116.308304
– ident: ref50
  doi: 10.1016/j.placenta.2015.07.170
– ident: ref80
  doi: 10.1172/jci.insight.88461
– ident: ref88
  doi: 10.2174/1874613601610010034
– ident: ref107
  doi: 10.1038/srep35296
– ident: ref79
  doi: 10.1016/j.chom.2016.05.015
– ident: ref18
  doi: 10.1111/j.1365-2559.2008.02964.x
– ident: ref110
  doi: 10.1099/0022-1317-77-12-3099
– ident: ref61
  doi: 10.2337/diabetes.52.12.2951
– ident: ref13
  doi: 10.1002/path.1700930239
– ident: ref83
  doi: 10.5858/arpa.2016-0401-OA
– ident: ref90
  doi: 10.1080/23120053.2016.1118838
– ident: ref25
  doi: 10.1038/ni.1937
– ident: ref28
  doi: 10.1016/j.it.2004.09.015
– ident: ref78
  doi: 10.1093/cid/ciw878
– ident: ref59
  doi: 10.1007/s11892-015-0699-x
– ident: ref27
  doi: 10.2741/2692
– ident: ref89
  doi: 10.1016/j.preghy.2016.04.006
– ident: ref58
  doi: 10.1007/s00125-005-0054-x
– ident: ref111
  doi: 10.1016/j.virol.2015.06.023
– ident: ref66
  doi: 10.1016/j.ejogrb.2004.04.014
– ident: ref100
  doi: 10.1128/CMR.00062-12
– ident: ref8
  doi: 10.1007/BF00237612
– ident: ref14
  doi: 10.1007/BF00221122
– ident: ref4
  doi: 10.3389/fimmu.2015.00328
– ident: ref101
  doi: 10.1371/journal.pone.0059863
– ident: ref105
  doi: 10.1128/JVI.01296-17
– ident: ref63
  doi: 10.3389/fimmu.2017.00888
– ident: ref47
  doi: 10.1111/aji.12477
– ident: ref43
  doi: 10.1016/S0143-4004(05)80415-1
– ident: ref12
  doi: 10.1016/j.placenta.2014.08.004
– ident: ref52
  doi: 10.1016/j.placenta.2011.02.003
– ident: ref39
  doi: 10.1210/en.2012-1575
– ident: ref86
  doi: 10.1089/aid.1990.6.993
– ident: ref41
  doi: 10.1530/REP-16-0159
– ident: ref30
  doi: 10.1189/jlb.1005586
– ident: ref65
  doi: 10.1007/s11596-013-1187-7
– ident: ref94
  doi: 10.1016/0140-6736(90)90349-A
– ident: ref104
  doi: 10.1007/s00281-014-0449-1
– ident: ref69
  doi: 10.1016/j.jri.2017.09.012
– ident: ref31
  doi: 10.1371/journal.pone.0080908
– ident: ref22
  doi: 10.1177/1933719109349962
– ident: ref95
  doi: 10.1155/2012/985646
– ident: ref32
  doi: 10.1016/j.cyto.2010.07.185
– ident: ref36
  doi: 10.1186/1477-7827-1-119
– ident: ref53
  doi: 10.4049/jimmunol.1300988
– ident: ref85
  doi: 10.1371/journal.ppat.1000790
– ident: ref19
  doi: 10.1016/j.chom.2017.04.007
– ident: ref35
  doi: 10.1038/cmi.2014.46
– ident: ref72
  doi: 10.1111/1471-0528.14071
– ident: ref73
  doi: 10.1001/jamaophthalmol.2016.1303
– ident: ref42
  doi: 10.1111/j.1699-0463.1995.tb01129.x
– ident: ref17
  doi: 10.1002/jlb.50.1.57
– ident: ref82
  doi: 10.1111/aji.12613
– ident: ref62
  doi: 10.1016/j.bbadis.2013.07.009
– ident: ref75
  doi: 10.1095/biolreprod66.2.445
– ident: ref108
  doi: 10.1006/viro.1993.1383
– ident: ref5
  doi: 10.3389/fimmu.2015.00486
– ident: ref11
  doi: 10.1093/humrep/12.4.847
– ident: ref76
  doi: 10.1002/ana.24839
– ident: ref60
  doi: 10.2174/092986706777935302
– ident: ref3
  doi: 10.1038/nri2448
– ident: ref23
  doi: 10.1111/aji.12357
– ident: ref10
  doi: 10.1002/ar.1091670211
– ident: ref99
  doi: 10.1001/jama.283.9.1175
– ident: ref7
  doi: 10.1007/978-3-319-54090-0_3
– ident: ref46
  doi: 10.3389/fimmu.2014.00606
– ident: ref103
  doi: 10.1016/j.tim.2005.02.009
– ident: ref1
  doi: 10.1016/j.ajpath.2011.05.034
– ident: ref2
  doi: 10.12703/P6-13
– ident: ref70
  doi: 10.1111/j.1749-6632.2001.tb03798.x
– ident: ref33
  doi: 10.1002/jlb.67.1.97
– ident: ref26
  doi: 10.1038/nri978
– ident: ref67
  doi: 10.1016/j.earlhumdev.2005.09.005
– ident: ref106
  doi: 10.1097/00003081-198209000-00014
– ident: ref64
  doi: 10.1016/S0143-4004(80)80005-1
– ident: ref45
  doi: 10.1111/j.1749-6632.2010.05932.x
– ident: ref84
  doi: 10.1126/science.aal4365
SSID ssj0064497
Score 2.5027058
SecondaryResourceType review_article
Snippet In this review, we discuss the often overlooked tissue-resident fetal macrophages, Hofbauer cells, which are found within the chorionic villi of the human...
SourceID pubmedcentral
proquest
pubmed
crossref
karger
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 447
SubjectTerms Review
Review Article
Title The Elusive Role of Placental Macrophages: The Hofbauer Cell
URI https://karger.com/doi/10.1159/000497416
https://www.ncbi.nlm.nih.gov/pubmed/30970346
https://www.proquest.com/docview/2207936737
https://pubmed.ncbi.nlm.nih.gov/PMC6758944
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LS8NAEB60PuhFfButZRUPXoJ5bhLxImKphRYRC72F3WQXxZCINgf_vTvZJLRFr9nJg5ndnW82M98AXCHpV5hwy_QExQDFpWZEhW06IXcltRPGfKwdHk_ocOqNZv6sPu_AWpgPzH-uqFFbbgHlcG8qJIvgYR02lMMNMHlvbJrNnqucum6jQqla37Y9qzmElm7twrZrRWqGI9hdcEKb-p1_QczVTMkF1zPYhZ0aM5J7beQ9WBP5PmzpLpI_B3CnTE0esxIT0clLkQlSSPKMx-NY6UjGDLt0val94_uWoOiwkJyV4os8iCw7hOng8fVhaNZNEczE98O5yTgTPGBKiULK0A5kIBTEkIGkPKRJ6NLUcVKPh5xFSB0mbctNbEdWkaCbqCV3BJ28yMUJkDDiqVAOWy1Z33OEZNzjCsAllhuJVErHgOtGS3FSM4Zj44osriIHP4pb3Rpw2Yp-apqMv4QOtapbkeZ6b-X66Gmih-LPVBpw0RgmVnMff2iwXBTld-w4SO-HnXYMONaGah_RmNqAYMmErQDyai-P5O9vFb82xlCR553-87ln0FWoKdIFiT3ozL9Kca6QyZz3q4i-X03NX7TF25A
linkProvider Karger AG
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LT8MwDLZgvHZBPAaUZ0AcuFSsr7RFXBACjbFNCIG0W5W0iYao2gm2A_-euGmrbYJr4z5kO_HnNP4McImkX0HM26YrKCYoDjVDKizTDrgjqRUz5mHtcH9AO-9ud-gNy_0OrIX5xPPPBTVqzS2gAu51gWQRPCzDiq9AN3p03zSrNVcFdd1GhVI1vy1rWHIIzd3ahHWnHSoPR7A7E4RW9Tv_gpiLJyVnQs_jFmyWmJHcaSNvw5LIdmBNd5H82YVbZWrykE7xIDp5zVNBcklecHscKx1Jn2GXrpFaN75vCIp2csnZVHyRe5GmLXh_fHi775hlUwQz9rxgYjLOBPeZUqKQMrB86QsFMaQvKQ9oHDg0se3E5QFnIVKHSavtxJYti0zQidWU24NGlmfiAEgQ8kSogK2mrOfaQjLucgXg4rYTikRK24CrSktRXDKGY-OKNCoyBy-Mat0acFGLjjVNxl9CLa3qWqS6frxwvfs00EPROJEGnFeGiZTv4w8Nlol8-h3ZNtL7YacdA_a1oepHVKY2wJ8zYS2AvNrzI9nHqODXxhwqdN3Dfz73DDY6b_1e1HsaPB9BUyGoUBcnHkNj8jUVJwqlTPhp4aC_91Tdhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Elusive+Role+of+Placental+Macrophages%3A+The+Hofbauer+Cell&rft.jtitle=Journal+of+innate+immunity&rft.au=Zulu%2C+Michael+Z.&rft.au=Martinez%2C+Fernando+O.&rft.au=Gordon%2C+Siamon&rft.au=Gray%2C+Clive+M.&rft.date=2019-11-01&rft.pub=S.+Karger+AG&rft.issn=1662-811X&rft.eissn=1662-8128&rft.volume=11&rft.issue=6&rft.spage=447&rft.epage=456&rft_id=info:doi/10.1159%2F000497416&rft_id=info%3Apmid%2F30970346&rft.externalDocID=PMC6758944
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-811X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-811X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-811X&client=summon